
1

A Convolutional Neural Network to Classify American Sign

Language Fingerspelling from Depth and Colour Images

Salem Ameen Sunil Vadera

University of Salford University of Salford

S.A.Ameen@edu.salford.ac.uk S.Vadera@salford.ac.uk

Abstract

Sign language is used by approximately 70 million1

people throughout the world, and an automatic tool

for interpreting it could make a major impact on

communication between those who use it and those

who may not understand it.

However, computer interpretation of sign language

is very difficult given the variability in size, shape

and position of the fingers or hands in an image.

Hence, this paper explores the applicability of deep

learning for interpreting sign language. The paper

develops a convolutional neural network aimed at

classifying fingerspelling images using both image

intensity and depth data.

 The developed convolutional network is evaluated

by applying it to the problem of finger spelling

recognition for American Sign Language. The

evaluation shows that the developed convolutional

network performs better than previous studies and

has precision of 82% and recall of 80%. Analysis

of the confusion matrix from the evaluation reveals

the underlying difficulties of classifying some

particular signs which is discussed in the paper.

 Keywords – Deep learning; Convolutional Neural

Network (ConvNet); Fingerspelling.

1. Introduction

American Sign Language (ASL) (Vicars, 1997) is

an example of one handed sign language and a

method of spelling words or letters in the American

language. According to Wikipedia, from 250,000 to

500,000 deaf people use this sign language. A

person who uses ASL needs to use one hand for

spelling the letters, which all have a static picture

to show the meaning except two letters J and Z,

which both need a motion to convey meaning.

Several previous studies have attempted to develop

systems for interpreting fingerspelling using a

combination of image processing methods and

learning methods. Most of these studies aim to

1 http://wfdeaf.org/human-rights/crpd/sign-language

extract relevant features and then use machine

learning methods to induce a classifier.

One of the earliest attempts was by Pugeault and

Bowden (2011), who used Gabor filters to extract

features which were then used to train multi-class

random forests to develop a classifier for 24 letters

of ASL.

Rioux-Maldague and Giguere (2014) experiment

with different types of feature extraction methods

in combination with a deep belief network (DBN)

for classification. In their first method, they

concatenate both depth and intensity data and use

this as input to DBN to classify the images. In a

second method, they use 16 Gabor filters with four

different scales and orientations to extract features

which are used as inputs to a DBN. In a third

method, they extract features from the main

contours of a hand by using three different types of

bar filters (vertical, horizontal and diagonal) and

then use these as inputs. In a fourth method, they

adjust the depth of images according to the distance

between the object and the camera, and then

combine them with intensity and use these as input

to a DBN.

Moreover, there are many other works related to

sign language. Moeslund, et al. (2011) addressed

different kinds of sign language such as American

Sign Language and British Sign Language,

concluding that although sign language recognition

is in its infancy, ASL is the subject of most of the

research to date.

In this paper we explore a different architecture to

the above studies; that is we utilise a ConvNet in

which intensity and depth information are used as

separate inputs.

The paper is organised as follows: Section 2

begins with some background on deep learning and

then presents the architecture proposed in this

paper, Section 3 presents the empirical trials and

Section 4 presents the conclusions.

2

Figure 1. American Sign Language.

2. Architecture for Deep Learning ASL

Although neural networks have a long history

(Rumelhart et al., 1986; LeCun et al., 1989), deep

learning was introduced fairly recently in the mid-

2000s by Hinton and his collaborators (Hinton et

al., 2006a; 2006b). As the name suggests, the

main idea is to develop a sequence of feature

recognition maps, building one layer on top the

previous layer and where each layer aims to

provide an abstraction of the previous layer, with

the final layer performing classification (Yosinski

et al., 2014). For example, to recognise objects in

images, the first layer aims to learn to recognise

edges, the second layer combines edges to form

motifs, the third learns to combine motifs into

parts, and the final layer learns to recognise objects

from the parts identified in the previous layer

(LeCun et al., 2015).

This paper aims to utilise such a deep learning

architecture to recognise the kind of signs

presented as images in Figure 1.

Figure 2 presents a typical architecture for

ConvNets which was proposed by (LeCun, Galland

et al., 1988, LeCun, Boser et al., 1989, Lecun,

Matan, et al., 1990, Lecun, Jackel, et al., 1990,

Jackel, Boser et al., 1990, LeCun, Boser, Denker et

al., 1990, LeCun, Bengio et al., 1995), where each

level contains a convolution module followed by a

pooling or subsampling module and a final layer

that is a fully connected neural network that

performs classification.

In general, a convolution aims to apply kernel

transformations on an image to identify relevant

features while the main goal of pooling is to

introduce invariance to local translation and reduce

the number of hidden units (Jarret et al., 2009;

Boureau et al., 2010).

Figure 2. ConvNet (image from LeCun and

Bengio, 1995)).

As outlined in the introduction, several authors

have tried different feature extraction methods

followed by use of learning methods such as

random forests. The most promising results to date

have been presented by Rioux-Maldague and

Giguere (2014) who combine both depth and

intensity features and then utilise a DBN for

classification.

In this paper, we explore the use of a different

architecture that recognises that depth and intensity

are inherently different types of information and

that there may be advantages in keeping these

separate in the initial layers of a ConvNet, leading

to the architecture depicted in Figure 3. The

following subsections describe the layers of this

architecture in more detail.

Intensity

Depth

3x32x32

1x32x32

64x28x28 64x14x14 128x5x5128x10x10 3200x1x1 128x1x1

2
4

Inputs First Stage Second Stage Classifier

Convolution ConvolutionPooling

Pooling
Output

Fully connected

Figure 3. ConvNet model with two inputs

(Intensity and Depth).

2.1 Input layer

The input consists of an image of a finger sign in

the form of three feature maps (YUV components),

each with 32x32 pixels, and one feature map of

32x32 pixels for the depth. Figures 4 shows an

example of the normalized input of YUV

components of an image and Figure 5 shows an

3

example of the normalised depth data from an

image.

 Y channel V channel U channel

Figure 4. Colour images after normalization show

three channel in YUV channel.

Figure 5. Depth images after normalization.

2.2 Stages 1 & 2: Convolution and pooling layers

Given the normalized representations, convolutions

are applied to identify potentially useful features.

The convolution of an input x with a kernel k is

computed by (Jarret et al., 2009):

(𝑥 ∗ 𝑘)𝑖𝑗 = ∑ (𝑥𝑖+𝑝,𝑗+𝑞𝑘𝑟−𝑝,𝑟−𝑞)
𝑟−1
𝑝𝑞=0 (1)

Where x is the image in the input layer and a

feature map in the subsequent layers. The

convolution kernel, k is a square matrix, and the

symbol * denotes the convolution operator. The

number of filters in each layer is a hyper parameter

that is determined experimentally. In our

architecture, 64 filters (feature maps) are used, each

with a 5x5 receptive field, no zero padding and a

stride of one which leads to 64 planes each of

dimension 28x28. In the second stage, 128 filters

with the same receptive field and stride are used,

leading to an array of 128x10x10. Each single

number in this dimension is squashed using a Tanh

as an activation function.

In the first stage, a pooling operation is applied to

reduce the impact of translations and reduce the

number of weights that would be needed.

A range of pooling operations have been used in

the literature including averaging (Jarrett et al.,

2009), maximum value (Boureau, et al., 2010) and

Lp-pooling (Sermanet et al., 2012). Following

some preliminary experimentation with these, the

Lp-Pooling operation, which is defined by the

following was adopted:

𝑂 = (∑ ∑ 𝐼(𝑖, 𝑗)𝑝 × 𝐺(𝑖, 𝑗))
1

𝑝
𝑗𝑖 (2)

Where I and O are the input and output respectively

and G is a Gaussian kernel. P is hyper parameter

that needs to be tested on validation data.

Following pooling, a convolution is again applied

to the intensity and depth arrays.

 In this experiment, the 64 filters are pooled by a

2x2 receptive field with a stride of 2, leading to 64

planes each of dimension 14x14. In the second

stage, the 128 filters are pooled by a 2x2 receptive

field with stride of 2, leading to 128x5x5 planes.

The output from the first layer provides a

representation of the edges of the depth and

intensity. Figure 5(a) and 5(b) show examples of

the output from the first layer and Figure 5(c)

shows a typical output from the second layer. As

these images show, the first layer mainy produces

edges while the second layer combines the edges to

start forming objects.

(a) (b) (c)

Figure 6. The output of convolutional layer: (a)

and (b) after the first convolutional layer of RGB

and depth respectively. (c) after the convolution in

the second stage.

2.3 Stage 3: Classification Layer

The final layer aims to perform the classification

using a fully connected feedforward neural

network.

The 128-dimensional feature vectors with a matrix

of size 5x5 is reshaped to a single 3200

dimensional vector, and used as input to a two-

layer neural net with 128 nodes in the hidden layer

and 24 class nodes, one for each letter.

3. Empirical Evaluation

As mentioned earlier, some of the best results for

recognising ASL have been obtained by adopting

the architecture presented in (Rioux-Maldague and

Giguere, 2014) and the aim of this paper has been

to try the alternative architecture presented in

Figure 3. The architecture was implemented using

the Torch scientific computing framework

(Collobert et al., 2012). To enable comparison, the

same experimental methodology as (Rioux-

4

Maldague and Giguere, 2014) is adopted. That is,

given n users, a model is first developed using the

data from the first n-1 users and tested on the nth

user. Next, a model is trained on all the data except

the (n-1)th and tested on the (n-1)th user, etc. This

results in n values which are averaged to produce

estimates of the precision and recall measures.

To enable comparison, the same ASL

fingerspelling data is used as in (Pugeault and

Bowden, 2011; Rioux-Maldague and Giguere,

2014). The dataset represents images of the

fingerspelling alphabet of ASL by five different

users A, B, C, D and E. The dataset contains all

the letters except letters J and Z as both of these

need motion. The dataset contains more than 60000

images and there are more than 500 images for

each particular sign for each user.

The results were evaluated by computing the recall

and precision measures for each letter and

comparing the results to the best in class for this

benchmark, which is the study by Rioux-Maldague

and Giguere (2014). The experiments were run for

250 epochs or until the neural network converged.

Figure 7. Comparison of the recall and precision

for the different types of features used in

(RiouxMaldague and Giguere, 2014) and ConvNet

Appendices B and C present the precision and

recall for all classes separately and Appendix D

shows the confusion matrix of the results. In

addition, Appendix A shows the classification

accuracy and f1 score of the model.

Figure 7 compares the results of the ConvNet

architecture used in this paper with the feature

extraction methods and use of DBN presented in

(Rioux-Maldague and Giguere, 2014), namely:

(i) Succ. Binary method, that adjusts the

depth to be correlated with intensity in the

input level.

(ii) Raw which is based on using a

combination of the raw intensity and

depth data.

(iii) Gabor which uses 16 Gabor filters to

extract features.

(iv) Bar which is based on using three bar

filters to extract features of the main

contours from an image of a hand.

Table 1 compares the results from the Convnet

architecture developed in this paper with the best

results to date, which are presented in Rioux-

Maldague and Giguere(2014) .

 Precision Recall

Rioux-Maldague and

Philippe Giguere
79% 77%

ConvNet 82% 80%

Table 1. Precision and Recall results

Why might the results from the use of ConvNet be

better? One possible explanation is that in the

architecture presented in this paper, the first stage

has two separate parts: one extracts the edges of

RGB images, the other extracts the edges of the

depth. The features are then combined in the

second stage. In contrast, the existing approach

combines the depth and intensity information in the

first phase, resulting in a much bigger search space

of potential features of which only a subset will be

meaningful.

However, the performance of the architecture used

in this paper is not uniform across all the letters as

shown in Figures 8 and 9 which compares the

results of recall and precision with the Succ. Binary

method.

Figure 8. Precision with Standard Error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Recall Precison

ConvNet

Succ. Binary

Raw

Gabor

Bar

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

A B C D E F G H I K L M N O P Q R S T U V W X Y

Succ. Binary ConvNet

5

Figure 9. Recall with Standard Error

The performance of the model for the letters F, W,

L, B, I and Y is very good with more than 90%

recall and precision. The model’s performance on

the letter T is only 52% for recall and 58% for

precision. Nevertheless, the results show that the

model is more robust to confusion between letters

when compared to previous work, where letters

like E, P and K have less than 50% for recall.

Examining the confusion matrix in Appendix D,

we can identify cases where the classification is

weakest. These include the cases shown in Figure

10 such as P&Q, T&A and G&H, where there is

mutual confusion in classification. There are also

asymmetric cases, such as those shown in Figure

11, where for example, Q is misclassified as O, and

R is misclassified as U, though rarely the other way

round. The letter Q has the most variation in the

dataset. Figure 12 shows examples of how different

users represent the shape of the letter Q and

compares them with the recommended shape

(image on the left). Another interesting observation

is that the sign for the letter R has nearly the same

shape as that for the letter U, especially when the

hand moves. In both letters, the signer needs to use

two fingers to convey the meaning. In addition, the

distance between the camera and the fingers is

nearly equal which makes it difficult to recognize

the differences even when using depth.

P Q

T A

G H

Figure 10. Symmetric confusion

Q O

R U

Figure 11. Asymmetric confusion

Figure 12. The sign variations of letter Q. Image

on the left depicts the recommended shape for the

letter Q [from 2]

4. Conclusion and Future Work

The ability to automatically recognise sign

language could have a major impact on the lives of

2http://www.tuxpaint.org/stamps/index.php3?cat=symbols&p

erpage=25

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

A B C D E F G H I K L M N O P Q R S T U V W X Y

Succ. Binary ConvNet

6

many people who use it to communicate.

However, developing systems that recognise signs

from images is a challenging task given the

variation in size, position, and shapes adopted by

different people. Several authors have studied the

development of systems that aim to automatically

recognise sign language by using feature extraction

methods followed by machine learning methods to

learn classification models with varying degrees of

success.

This paper has developed an alternative

architecture that takes both depth and intensity

information as different types of inputs to develop

a ConvNet. The ConvNet was implemented in

Torch and evaluated on a benchmark American

Sign Language data set. The results of the

empirical evaluation show an improvement of

about 3% compared to previous work, with recall

and precision rates over 80%. An analysis of the

confusion matrix has identified two type of errors:

(i) symmetric errors, such as two letters that can be

misclassified as each other and (ii) asymmetric

errors, where one letter is misclassified as another

but not the other way round. Future work to

improve accuracy could include using transfer

learning (Yosinski et al., 2014; Razavian et al.,

2014) where a pre-trained model like AlexNet

(Krizhevsky et al., 2012), VGGNet (Simonyan and

Zisserman, 2014) or any pre-trained model from

Caffe zoo3 can provide a good initial model, and

use data augmentation methods (He et al., 2015) to

increase the volume of data available for training.

To enable comparison with related studies,

segmentation and background removal methods

were not adopted, which if applied, can be

expected to result in further improvements to the

overall accuracy.

Reference:

BOUREAU, Y.-L. , PONCE, J. and LECUN, Y.
(2010) A theoretical analysis of feature
pooling in visual recognition. In
Proceedings of the 27th International
Conference on Machine Learning, pp.
111-118.

COLLOBERT, R., KAVUKCUOGLU, K. and
FARABET, C. (2012) Implementing neural
networks efficiently. In Neural Networks:
Tricks of the Trade, ed: Springer, pp. 537-
557.

3 https://github.com/BVLC/caffe/wiki/Model-Zoo

HE, K., ZHANG, X., REN, S. and SUN, J. (2015)
Deep Residual Learning for Image
Recognition, arXiv preprint
arXiv:1512.03385.

HINTON, G., OSINDERO, S. and TEH, Y. (2006a)
A Fast Learning Algorithm for Deep Belief
Nets, Neural Computation, vol. 18, pp.
1527-1554.

HINTON, G. E. and SALAKHUTDINOV, R.R.
(2006b) Reducing the dimensionality of
data with neural networks, Science, vol.
313, pp. 504-507.

JACKEL, L., BOSER, B., DENKER, J. , GRAF, H.,
LECUN, Y., GUYON I., et al., (1990)
Hardware requirements for neural-net
optical character recognition. In,
International Joint Conference on Neural
Networks, 855-861.

JARRETT,K., KAVUKCUOGLU, K. , RANZATO, M.
and LECUN, Y. (2009) What is the best
multi-stage architecture for object
recognition? In IEEE 12th International
Conference on Computer Vision, 2146-
2153.

KRIZHEVSKY, A. , SUTSKEVER, I. and HINTON,
G. E. (2012) Imagenet classification with
deep convolutional neural networks. In
Advances in neural information
processing systems, 1097-1105.

LECUN, Y. , BOTTOU, L. , ORR, G. and
MÜLLER, K.-R. (1989) Efficient BackProp.
In Neural Networks: Tricks of the Trade.
vol. 1524, G. Orr and K.-R. Müller, Eds.,
ed: Springer Berlin Heidelberg, 9-50.

LECUN, Y. , BENGIO, Y. and HINTON, G. "Deep
learning, (2015) Nature, vol. 521, 436-
444.

LECUN, Y., GALLAND, C. C. and HINTON, G. E.
(1988) GEMINI: Gradient Estimation
Through Matrix Inversion After Noise
Injection. In NIPS, pp. 141-148.

LECUN, Y., BOSER, B. , DENKER, G. E.,
HENDERSON, D. , HOWARD, R. E. ,.
HUBBARD, W. et al. (1989)
Backpropagation applied to handwritten
zip code recognition, Neural
computation, vol. 1, pp. 541-551.

LECUN, Y. , JACKEL, L. , BOSER, B. , DENKER, J. ,
GRAF, H. , GUYON, I. et al. (1990)
Handwritten Digit Recognition:
Applications of Neural Net Chips and

7

Automatic Learning, Neurocomputing,
Springer, 303-318.

LECUN,Y., BOSER, B., DENKER, J. S. ,
HOWARD, R. E. , HUBBARD, W., L. D.
JACKEL, and HENDERSON, D. (1990)
Handwritten digit recognition with a
back-propagation network. In Advances
in neural information processing systems,
396-404.

LECUN, Y., MATAN, O., BOSER, B. , DENKER, J.,
HENDERSON, D. , HOWARD, R. et al.
(1990) Handwritten zip code recognition
with multilayer networks. In
Proceedings. 10th International
Conference on Pattern Recognition, 35-
40.

LECUN, Y. and BENGIO, Y. (1995)
Convolutional networks for images,
speech, and time series. The handbook of
brain theory and neural networks, vol.
3361.

MOESLUND, T. B., HILTON, A., KRÜGER, A.
and SIGAL,L. (2011) Visual Analysis of
Humans: Springer.

PUGEAULT, N. and BOWDEN, R. (2011)
Spelling it out: Real-time ASL
fingerspelling recognition. In IEEE
International Conference Workshop on
Computer Vision, 1114-1119.

RAZAVIAN, A. S. , AZIZPOUR, H., SULLIVAN, J.
and CARLSSON, S. (2014) CNN Features
off-the-shelf: an Astounding Baseline for

Recognition. In IEEE Workshop on
Computer Vision and Pattern
Recognition, 512-519.

RIOUX-MALDAGUE, L. and GIGUERE, P. (2014)
Sign Language Fingerspelling
Classification from Depth and Color
Images Using a Deep Belief Network. In
Canadian Conference on Computer and
Robot Vision (CRV), 92-97.

RUMELHART, D. E., HINTON, G. E. and
WILLIAMS, R. J. (1986) Learning
representations by back-propagating
errors, Nature, vol. 323, pp. 533-536.

SERMANET, P. , CHINTALA, S. and LECUN, Y.
(2012) Convolutional neural networks
applied to house numbers digit
classification. In 21st International
Conference on Pattern Recognition 3288-
3291.

SIMONYAN, K. and ZISSERMAN,A. (2014)
Very deep convolutional networks for
large-scale

image recognition, arXiv preprint
arXiv:1409.1556.

VICARS, W. American Sign Language, 1997

YOSINSKI, J. , CLUNE, J., BENGIO, Y. (2014) and
LIPSON, H. "How transferable are
features in deep neural networks? In
Advances in Neural Information
Processing Systems, 3320-3328.

Appendix A

Table 2 shows classification accuracy and f1 score on our model. The first column shows training of users A, B,

C, D and testing on user E and the second column shows training one users A, B, C, E and testing on D and so

on.

 Testing on user: Average

E D C B A

Accuracy 83.65% 71.29% 87.70% 80.01% 79.06% 80.34%

F1 score 82% 70% 87% 79% 78% 79.20%

Table 2. The accuracy and f1 score of the model

8

Appendix B

Table 3 shows the precision in all classes and the average precision over the models testing on user E, D, C, B

and A.

Precision

Test on user:
Average

per Class class
E D C B A

A 74% 93% 95% 44% 82% 78%

B 96% 90% 97% 91% 94% 94%

C 87% 56% 92% 90% 67% 78%

D 96% 71% 79% 92% 94% 86%

E 67% 91% 96% 94% 65% 83%

F 98% 97% 99% 93% 98% 97%

G 70% 99% 97% 90% 92% 90%

H 97% 74% 100% 71% 72% 83%

I 100% 98% 92% 84% 90% 93%

K 96% 93% 97% 68% 49% 81%

L 100% 95% 92% 92% 99% 96%

M 81% 59% 90% 58% 87% 75%

N 90% 20% 76% 95% 81% 72%

O 51% 41% 79% 84% 70% 65%

P 88% 46% 68% 86% 70% 72%

Q 83% 55% 85% 76% 54% 71%

R 93% 89% 66% 76% 79% 81%

S 80% 77% 90% 66% 94% 81%

T 52% 43% 71% 43% 53% 52%

U 97% 54% 96% 95% 69% 82%

V 89% 75% 97% 81% 92% 87%

W 98% 94% 98% 96% 99% 97%

X 91% 85% 81% 87% 71% 83%

Y 83% 80% 99% 97% 99% 92%

Average Precision 86% 74% 89% 81% 80% 82%

Table 3. Precision. The cell with red colour means that the precision is under 20% and with yellow colour

means the precision is between 20% and 40%.

9

Appendix C

Table 4 shows the recall on all classes and the average recall over the models testing on user E, D, C, B and A.

Recall

Test on user: Average

 per Class class 1 2 3 4 5

A 71% 67% 55% 80% 100% 75%

B 100% 93% 98% 89% 99% 96%

C 96% 46% 89% 87% 90% 82%

D 86% 82% 68% 49% 76% 72%

E 70% 34% 90% 95% 92% 76%

F 100% 66% 96% 91% 98% 90%

G 83% 62% 99% 67% 98% 82%

H 64% 99% 96% 88% 100% 89%

I 91% 90% 94% 89% 92% 91%

K 88% 94% 41% 79% 67% 74%

L 100% 100% 100% 97% 98% 99%

M 87% 58% 83% 35% 99% 72%

N 76% 8% 94% 77% 51% 61%

O 98% 66% 91% 70% 74% 80%

P 38% 34% 92% 76% 64% 61%

Q 5% 79% 85% 85% 35% 58%

R 96% 65% 99% 88% 24% 74%

S 98% 58% 89% 85% 43% 75%

T 67% 82% 74% 21% 44% 58%

U 100% 97% 98% 89% 98% 96%

V 100% 95% 92% 85% 99% 94%

W 99% 92% 99% 99% 100% 98%

X 95% 39% 90% 97% 57% 76%

Y 100% 100% 82% 92% 98% 94%

Average Recall 84% 71% 87% 80% 79% 80%

Table 4. Recall. The cell with red colour means that the recall is under 20% and with yellow colour means the

recall is between 20% and 40%.

10

Appendix D

Figure 13. Confusion matrix of the model

