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Abstract 

Sign language is used by approximately 70 million1 

people throughout the world, and an automatic tool 

for interpreting it could make a major impact on 

communication between those who use it and those 

who may not understand it. 

However, computer interpretation of sign language 

is very difficult given the variability in size, shape 

and position of the fingers or hands in an image. 

Hence, this paper explores the applicability of deep 

learning for interpreting sign language.  The paper 

develops a convolutional neural network aimed at 

classifying fingerspelling images using both image 

intensity and depth data. 

  

 The developed convolutional network is evaluated 

by applying it to the problem of finger spelling 

recognition for American Sign Language.   The 

evaluation shows that the developed convolutional 

network performs better than previous studies and 

has precision of 82% and recall of 80%.  Analysis 

of the confusion matrix from the evaluation reveals 

the underlying difficulties of classifying some 

particular signs which is discussed in the paper.  

   
 Keywords – Deep learning; Convolutional Neural 

Network (ConvNet); Fingerspelling. 

1. Introduction 

American Sign Language (ASL) (Vicars, 1997) is 

an example of one handed sign language and a 

method of spelling words or letters in the American 

language. According to Wikipedia, from 250,000 to 

500,000 deaf people use this sign language.   A 

person who uses ASL needs to use one hand for 

spelling the letters, which all have a static picture 

to show the meaning except two letters J and Z, 

which both need a motion to convey meaning.  

Several previous studies have attempted to develop 

systems for interpreting fingerspelling using a 

combination of image processing methods and 

learning methods. Most of these studies aim to 

                                                           
1 http://wfdeaf.org/human-rights/crpd/sign-language 

extract relevant features and then use machine 

learning methods to induce a classifier.  

One of the earliest attempts was by Pugeault and 

Bowden (2011), who used Gabor filters to extract 

features which were then used to train multi-class 

random forests to develop a classifier for 24 letters 

of ASL. 

Rioux-Maldague and Giguere (2014) experiment 

with different types of feature extraction methods 

in combination with a deep belief network (DBN) 

for classification.  In their first method, they 

concatenate both depth and intensity data and use 

this as input to DBN to classify the images.  In a 

second method, they use 16 Gabor filters with four 

different scales and orientations to extract features 

which are used as inputs to a DBN. In a third 

method, they extract features from the main  

contours of  a hand by using three different types of 

bar filters (vertical, horizontal and diagonal) and 

then use these as inputs.   In a fourth method, they 

adjust the depth of images according to the distance 

between the object and the camera, and then 

combine them with intensity and use these as input 

to a DBN.  

Moreover, there are many other works related to 

sign language. Moeslund, et al. (2011) addressed 

different kinds of sign language such as American 

Sign Language and British Sign Language, 

concluding that although sign language recognition 

is in its infancy, ASL is the subject of most of the 

research to date.  

In this paper we explore a different architecture to 

the above studies; that is we utilise a ConvNet in 

which intensity and depth information are used as 

separate inputs.     

The paper is organised as follows:  Section 2 

begins with some background on deep learning and 

then presents the architecture proposed in this 

paper, Section 3 presents the empirical trials and 

Section 4 presents the conclusions. 
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Figure 1. American Sign Language. 

2. Architecture for Deep Learning ASL 

Although neural networks have a long history 

(Rumelhart et al., 1986; LeCun et al., 1989), deep 

learning was introduced fairly recently in the mid-

2000s by Hinton and his collaborators (Hinton et 

al., 2006a; 2006b).   As the name suggests, the 

main idea is to develop a sequence of feature 

recognition maps, building one layer on top the 

previous layer and where each layer aims to 

provide an abstraction of the previous layer, with 

the final layer performing classification (Yosinski 

et al., 2014). For example, to recognise objects in 

images, the first layer aims to learn to recognise 

edges, the second layer combines edges to form 

motifs, the third learns to combine motifs into 

parts, and the final layer learns to recognise objects 

from the parts identified in the previous layer 

(LeCun et al., 2015). 

 

This paper aims to utilise such a deep learning 

architecture to recognise the kind of signs 

presented as images in Figure 1. 

 

Figure 2 presents a typical architecture for 

ConvNets which was proposed by (LeCun, Galland 

et al., 1988, LeCun, Boser et al., 1989, Lecun, 

Matan, et al., 1990, Lecun, Jackel, et al., 1990, 

Jackel, Boser et al., 1990, LeCun, Boser, Denker et 

al., 1990, LeCun, Bengio et al., 1995), where each 

level contains a convolution module followed by a 

pooling or subsampling module and a final layer 

that is a fully connected neural network that 

performs classification. 

 

In general, a convolution aims to apply kernel 

transformations on an image to identify relevant 

features while the main goal of pooling is to 

introduce invariance to local translation and reduce 

the number of hidden units (Jarret et al., 2009; 

Boureau et al., 2010).  

 

 
Figure 2. ConvNet (image from LeCun and 

Bengio, 1995)). 

 

As outlined in the introduction, several authors 

have tried different feature extraction methods 

followed by use of learning methods such as 

random forests.  The most promising results to date 

have been presented by Rioux-Maldague and 

Giguere (2014) who combine both depth and 

intensity features and then utilise a DBN for 

classification.   

 

In this paper, we explore the use of a different 

architecture that recognises that depth and intensity 

are inherently different types of information and 

that there may be advantages in keeping these 

separate in the initial layers of a ConvNet, leading 

to the architecture depicted in Figure 3. The 

following subsections describe the layers of this 

architecture in more detail. 

 

Intensity

Depth

3x32x32

1x32x32

64x28x28 64x14x14 128x5x5128x10x10 3200x1x1 128x1x1

2
4

Inputs First Stage Second Stage Classifier

Convolution ConvolutionPooling

Pooling
Output

Fully connected

 

Figure 3. ConvNet model with two inputs 

(Intensity and Depth). 

2.1 Input layer 

The input consists of an image of a finger sign in 

the form of three feature maps (YUV components), 

each with 32x32 pixels, and  one feature map of 

32x32 pixels for the depth.   Figures 4 shows an 

example of the normalized input of YUV 

components of an image and Figure 5 shows an 
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example of the normalised depth data from an 

image. 

   

      Y channel                  V channel                   U channel 

Figure 4. Colour images after normalization show 

three channel in YUV channel. 

 

Figure 5. Depth images after normalization. 

 

2.2 Stages 1 & 2: Convolution and pooling layers 

 

Given the normalized representations, convolutions 

are applied to identify potentially useful features. 

The convolution of an input x with a kernel k is 

computed by (Jarret et al., 2009): 

 

(𝑥 ∗ 𝑘)𝑖𝑗 = ∑ (𝑥𝑖+𝑝,𝑗+𝑞𝑘𝑟−𝑝,𝑟−𝑞)
𝑟−1
𝑝𝑞=0    (1) 

 

Where x is the image in the input layer and a 

feature map in the subsequent layers. The 

convolution kernel, k is a square matrix, and the 

symbol * denotes the convolution operator. The 

number of filters in each layer is a hyper parameter 

that is determined experimentally. In our 

architecture, 64 filters (feature maps) are used, each 

with a 5x5 receptive field, no zero padding and a 

stride of one which leads to 64 planes each of 

dimension 28x28. In the second stage, 128 filters 

with the same receptive field and stride are used, 

leading to an array of 128x10x10. Each single 

number in this dimension is squashed using a Tanh 

as an activation function.   

 

In the first stage, a pooling operation is applied to 

reduce the impact of translations and reduce the 

number of weights that would be needed.   

 

A range of pooling operations have been used in 

the literature including averaging (Jarrett et al., 

2009), maximum value (Boureau, et al., 2010) and 

Lp-pooling (Sermanet et al., 2012).  Following 

some preliminary experimentation with these, the 

Lp-Pooling operation, which is defined by the 

following was adopted: 

𝑂 = (∑ ∑ 𝐼(𝑖, 𝑗)𝑝 × 𝐺(𝑖, 𝑗))
1

𝑝
𝑗𝑖                           (2)                                                    

Where I and O are the input and output respectively 

and G is a Gaussian kernel. P is hyper parameter 

that needs to be tested on validation data. 

 

Following pooling, a convolution is again applied 

to the intensity and depth arrays.  

 In this experiment, the 64 filters are pooled by a 

2x2 receptive field with a stride of 2, leading to 64 

planes each of dimension 14x14. In the second 

stage, the 128 filters are pooled by a 2x2 receptive 

field with stride of 2, leading to 128x5x5 planes. 

 

The output from the first layer provides a 

representation of the edges of the depth and 

intensity.  Figure 5(a) and 5(b) show examples of 

the output from the first layer and Figure 5(c) 

shows a typical output from the second layer. As 

these images show, the first layer mainy produces 

edges while the second layer combines the edges to 

start forming objects.  

 

    

(a)                        (b)                        (c) 

Figure 6. The output of convolutional layer: (a) 

and (b) after the first convolutional layer of RGB 

and depth respectively. (c) after the convolution in 

the second stage. 

 

2.3 Stage 3:  Classification Layer 

 

The final layer aims to perform the classification 

using a fully connected feedforward neural 

network. 

The 128-dimensional feature vectors with a matrix 

of size 5x5 is reshaped to a single 3200 

dimensional vector, and used as input to a two-

layer neural net with 128 nodes in the hidden layer 

and 24 class nodes, one for each letter. 

 

3. Empirical Evaluation 

 

As mentioned earlier, some of the best results for 

recognising ASL have been obtained by adopting 

the architecture presented in (Rioux-Maldague and  

Giguere, 2014) and the aim of this paper has been 

to try the alternative architecture presented in 

Figure 3.  The architecture was implemented using 

the Torch scientific computing framework 

(Collobert et al., 2012). To enable comparison, the 

same experimental methodology as (Rioux-
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Maldague and  Giguere, 2014) is adopted.  That is, 

given n users, a model is first developed using the 

data from the first n-1 users and tested on the nth 

user.  Next, a model is trained on all the data except 

the (n-1)th and tested on the (n-1)th user, etc.  This 

results in n values which are averaged to produce 

estimates of the precision and recall measures.    

 

To enable comparison, the same ASL 

fingerspelling data is used as in (Pugeault and 

Bowden, 2011; Rioux-Maldague and Giguere, 

2014). The dataset represents images of the 

fingerspelling alphabet of ASL by five different 

users A, B, C, D and E.  The dataset contains all 

the letters except letters J and Z as both of these 

need motion. The dataset contains more than 60000 

images and there are more than 500 images for 

each particular sign for each user. 

The results were evaluated by computing the recall 

and precision measures for each letter and 

comparing the results to the best in class for this 

benchmark, which is the study by Rioux-Maldague 

and Giguere (2014). The experiments were run for 

250 epochs or until the neural network converged. 

 

 
Figure 7. Comparison of the recall and precision 

for the different types of features used in 

(RiouxMaldague and Giguere, 2014) and ConvNet 

 

Appendices B and C present the precision and 

recall for all classes separately and Appendix D 

shows the confusion matrix of the results. In 

addition, Appendix A shows the classification 

accuracy and f1 score of the model. 

 

Figure 7 compares the results of the ConvNet 

architecture used in this paper with the feature 

extraction methods and use of DBN presented in 

(Rioux-Maldague and Giguere, 2014), namely: 

(i) Succ. Binary method, that adjusts the 

depth to be correlated with intensity in the 

input level. 

(ii) Raw which is based on using a 

combination of the raw intensity and 

depth data. 

(iii) Gabor which uses 16 Gabor filters to 

extract features.  

(iv) Bar which is based on using three bar 

filters to extract features of the main 

contours from an image of a hand. 

  

Table 1 compares the results  from the Convnet 

architecture  developed in this paper  with the best 

results to date, which are  presented  in Rioux-

Maldague and Giguere(2014) .     

 

 Precision Recall 

Rioux-Maldague  and 

Philippe Giguere 
79% 77% 

ConvNet 82% 80% 

 

Table 1. Precision and Recall results 

 

Why might the results from the use of ConvNet be 

better?  One possible explanation is that in the 

architecture presented in this paper, the first stage 

has two separate parts:  one extracts the edges of 

RGB images, the other extracts the edges of the 

depth.  The features are then combined in the 

second stage.  In contrast, the existing approach 

combines the depth and intensity information in the 

first phase, resulting in a much bigger search space 

of potential features of which only a subset will be 

meaningful. 

 

However, the performance of the architecture used 

in this paper is not uniform across all the letters as 

shown in Figures 8 and 9 which compares the 

results of recall and precision with the Succ. Binary 

method.  

 

 

 

Figure 8. Precision with Standard Error 
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Figure 9. Recall with Standard Error 

 

The performance of the model for the letters F, W, 

L, B, I and Y is very good with more than 90% 

recall and precision.  The model’s performance on 

the letter T is only 52% for recall and 58% for 

precision. Nevertheless, the results show that the 

model is more robust to confusion between letters 

when compared to previous work, where letters 

like E, P and K have less than 50% for recall.    

Examining the confusion matrix in Appendix D, 

we can identify cases where the classification is 

weakest.  These include the cases shown in Figure 

10 such as P&Q, T&A and G&H, where there is 

mutual confusion in classification.  There are also 

asymmetric cases, such as those shown in Figure 

11, where for example, Q is misclassified as O, and 

R is misclassified as U, though rarely the other way 

round. The letter Q has the most variation in the 

dataset. Figure 12 shows examples of how different 

users represent the shape of the letter Q and 

compares them with the recommended shape 

(image on the left). Another interesting observation 

is that the sign for the letter R has nearly the same 

shape as that for the letter U, especially when the 

hand moves. In both letters, the signer needs to use 

two fingers to convey the meaning. In addition, the 

distance between the camera and the fingers is 

nearly equal which makes it difficult to recognize 

the differences even when using depth. 

 

 

          
P                                    Q 

 

           
T                                   A 

 

          
G                                     H 

 

Figure 10. Symmetric confusion 

 

           
Q                                     O 

 

         
R                                         U 

 

Figure 11. Asymmetric confusion 

 

 

 

Figure 12. The sign variations of letter Q. Image 

on the left depicts the recommended shape for the 

letter Q [from 2] 

 

4. Conclusion and Future Work 

The ability to automatically recognise sign 

language could have a major impact on the lives of 

                                                           
2http://www.tuxpaint.org/stamps/index.php3?cat=symbols&p

erpage=25 
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many people who use it to communicate.  

However, developing systems that recognise signs 

from images is a challenging task given the 

variation in size, position, and shapes adopted by 

different people.    Several authors have studied the 

development of systems that aim to automatically 

recognise sign language by using feature extraction 

methods followed by machine learning methods to 

learn classification models with varying degrees of 

success. 

This paper has developed an alternative 

architecture that takes both depth and intensity 

information as different types of inputs to develop 

a ConvNet.    The ConvNet was implemented in 

Torch and evaluated on a benchmark American 

Sign Language data set.  The results of the 

empirical evaluation show an improvement of 

about 3% compared to previous work, with recall 

and precision rates over 80%. An analysis of the 

confusion matrix has identified two type of errors: 

(i) symmetric errors, such as two letters that can be 

misclassified as each other and (ii) asymmetric 

errors, where one letter is misclassified as another 

but not the other way round. Future work to 

improve accuracy could include using transfer 

learning (Yosinski et al., 2014; Razavian et al., 

2014) where a pre-trained model like AlexNet 

(Krizhevsky et al., 2012), VGGNet (Simonyan  and 

Zisserman, 2014) or any pre-trained model from 

Caffe zoo3 can provide a good initial model, and 

use data augmentation methods (He et al., 2015) to 

increase the volume of data available for training.  

To enable comparison with related studies, 

segmentation and background removal methods 

were not adopted, which if applied, can be 

expected to result in further improvements to the 

overall accuracy.   
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Appendix A 

Table 2 shows classification accuracy and f1 score on our model. The first column shows training of users A, B, 

C, D and testing on user E and the second column shows training one users A, B, C, E and testing on D and so 

on.  

 

  Testing on user:  Average 

E D C B A 

Accuracy 83.65% 71.29% 87.70% 80.01% 79.06% 80.34% 

F1 score 82% 70% 87% 79% 78% 79.20% 

 

Table 2. The accuracy and f1 score of the model 
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Appendix B 

Table 3 shows the precision in all classes and the average precision over the models testing on user E, D, C, B 

and A.  

 
Precision 

Test on user: 
Average  

per Class class 
E D C B A 

A 74% 93% 95% 44% 82% 78% 

B 96% 90% 97% 91% 94% 94% 

C 87% 56% 92% 90% 67% 78% 

D 96% 71% 79% 92% 94% 86% 

E 67% 91% 96% 94% 65% 83% 

F 98% 97% 99% 93% 98% 97% 

G 70% 99% 97% 90% 92% 90% 

H 97% 74% 100% 71% 72% 83% 

I 100% 98% 92% 84% 90% 93% 

K 96% 93% 97% 68% 49% 81% 

L 100% 95% 92% 92% 99% 96% 

M 81% 59% 90% 58% 87% 75% 

N 90% 20% 76% 95% 81% 72% 

O 51% 41% 79% 84% 70% 65% 

P 88% 46% 68% 86% 70% 72% 

Q 83% 55% 85% 76% 54% 71% 

R 93% 89% 66% 76% 79% 81% 

S 80% 77% 90% 66% 94% 81% 

T 52% 43% 71% 43% 53% 52% 

U 97% 54% 96% 95% 69% 82% 

V 89% 75% 97% 81% 92% 87% 

W 98% 94% 98% 96% 99% 97% 

X 91% 85% 81% 87% 71% 83% 

Y 83% 80% 99% 97% 99% 92% 

Average Precision 86% 74% 89% 81% 80% 82% 

       

 

Table 3. Precision. The cell with red colour means that the precision is under 20% and with yellow colour 

means the precision is between 20% and 40%.   
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Appendix C 

Table 4 shows the recall on all classes and the average recall over the models testing on user E, D, C, B and A.  

 
Recall 

Test on user: Average 

 per Class class 1 2 3 4 5 

A 71% 67% 55% 80% 100% 75% 

B 100% 93% 98% 89% 99% 96% 

C 96% 46% 89% 87% 90% 82% 

D 86% 82% 68% 49% 76% 72% 

E 70% 34% 90% 95% 92% 76% 

F 100% 66% 96% 91% 98% 90% 

G 83% 62% 99% 67% 98% 82% 

H 64% 99% 96% 88% 100% 89% 

I 91% 90% 94% 89% 92% 91% 

K 88% 94% 41% 79% 67% 74% 

L 100% 100% 100% 97% 98% 99% 

M 87% 58% 83% 35% 99% 72% 

N 76% 8% 94% 77% 51% 61% 

O 98% 66% 91% 70% 74% 80% 

P 38% 34% 92% 76% 64% 61% 

Q 5% 79% 85% 85% 35% 58% 

R 96% 65% 99% 88% 24% 74% 

S 98% 58% 89% 85% 43% 75% 

T 67% 82% 74% 21% 44% 58% 

U 100% 97% 98% 89% 98% 96% 

V 100% 95% 92% 85% 99% 94% 

W 99% 92% 99% 99% 100% 98% 

X 95% 39% 90% 97% 57% 76% 

Y 100% 100% 82% 92% 98% 94% 

Average Recall 84% 71% 87% 80% 79% 80% 

 

Table 4. Recall. The cell with red colour means that the recall is under 20% and with yellow colour means the 

recall is between 20% and 40%.   
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Appendix D 

 

Figure 13. Confusion matrix of the model 

 

 

 

 

 

 

 

 

 


