
Implementing the Required Degree of Multitenancy
Isolation: A Case Study of Cloud-hosted Bug

Tracking System

Laud Charles Ochei, Andrei Petrovski

School of Computing Science and Digital Media
Robert Gordon University

Aberdeen, United Kingdom
Emails: {l.c.ochei,a.petrovski}@rgu.ac.uk

Julian M. Bass

School of Computing, Science and Engineering
University of Salford

Manchester, United Kingdom
Email: J.Bass@salford.ac.uk

Abstract—Implementing the required degree of isolation be-
tween tenants is one of the significant challenges for deploying a
multitenant application on the cloud. In this paper, we applied
COMITRE (COmponent-based approach to Multitenancy Iso-
lation Through request RE-routing) to empirically evaluate the
degree of isolation between tenants enabled by three multitenancy
patterns (i.e., shared component, tenant-isolated component, and
dedicated component) for a cloud-hosted Bug tracking system
using Bugzilla. The study revealed among other things that a
component deployed based on dedicated component offers the
highest degree of isolation (especially for database transactions
where support for locking is enabled). Tenant isolation based
on performance (e.g., response time) favoured shared component
(compared to resource consumption (e.g., CPU and memory)
which favoured dedicated component). We also discuss key
challenges and recommendations for implementing multitenancy
for application components in cloud-hosted bug tracking systems
with guarantees for isolation between multiple tenants.

Keywords—Multitenancy, Degree of Isolation, GSD tools, Cloud
Patterns, Bug tracking

I. INTRODUCTION

Software tools used for Global Software Development
(GSD) projects are increasingly being deployed on the cloud
[1] [2] [3]. As these tools are used by multiple users/tenants,
there is need to ensure that proper isolation of both the data
(e.g., source code files) and processes (e.g., builds) associated
with these tools. Therefore the challenge for an architect would
be to: (i) implement multitenancy so that a single instance
of an application/component is used to serve multiple tenants
[4][5]; and (ii) implement the required degree of isolation
between tenants so that the performance, resource utilization
and access rights of other tenants is not affected by one of the
tenants accessing the component or functionality of a shared
application component [6] [4].

There are varying degrees of isolation that can be imple-
mented for a cloud-hosted GSD tool. For example, certain
laws and regulations would impose a much higher degree of
isolation between tenants accessing an application component
than if the same component needed some re-configuration.
Therefore, an architect has to resolve the trade-offs between

the required degree of isolation, and the performance, resource
consumption and access privileges at different levels of an
application when implementing multitenancy isolation.

Motivated by this problem, this paper evaluates the degree
of isolation between tenants enabled by multitenancy patterns
using a bug tracking system as a case study in order to resolve
these trade-offs under different cloud deployment conditions.
This study is inspired by the work of Fehling et al. [4] where
the authors captured the degrees of multitenancy in three cloud
deployment patterns: shared component, tenant-isolation com-
ponent and dedicated component. They also suggested that the
varying degrees of isolation between tenants is the main factor
that can be used to distinguish between these cloud patterns.
However, the various cloud deployment conditions are often
unknown which offers the required degree of isolation, and the
implication of specific cloud resources like CPU, memory and
disk I/O. In addition, these patterns have never been evaluated
empirically to determine the practicality of determining the
degree of isolation between tenants for applications in software
engineering domain. This study is one of the three primary
case studies on applying our novel approach, COMITRE
(Component-based approach to Multitenancy Isolation through
Request Re-routing) to empirically evaluate the degree of
isolation between tenants enabled by multitenancy patterns
within the context of cloud-hosted GSD tools (in this case bug
tracking system) under different cloud deployment conditions.

We evaluate the degrees of multitenancy isolation by
comparing the effect of resource utilization (e.g., CPU and
memory) and performance (e.g., response times and error%) on
tenants deployed based on different multitenancy patterns (i.e.,
shared component, tenant-isolated component, and dedicated
component) when one of the tenants experiences a demanding
deployment conditions (e.g., a sudden increase in large instant
loads). The research question this paper addresses is: “How
can we evaluate the degree of isolation between tenants
enabled by multitenancy patterns for cloud-hosted bug
tracking system”. Multitenancy isolation introduces signifi-
cant security and performance challenges in the cloud depend-
ing on the location of the functionality to be shared on the
cloud application stack, and the required degree of isolation



between the tenants. For example, if one of the tenants on the
network is malicious, it can cause performance degradation
and denial of service to other tenants [7].

To implement multitenancy (based on multitenancy pat-
terns), the Bugzilla database was reconfigured in a way that
isolates bugs from different tenants (see Fig. 2). The degree
of isolation was then evaluated for each pattern at two levels:
process isolation and data isolation; as it affects tenants inter-
action with the bug tracking system. The overarching result
of the study is that a component deployed based on dedicated
component offers the highest degree of isolation (especially for
database transactions where support for locking is enabled).
Multitenancy isolation based on performance (e.g., response
time) favoured shared component (compared to resource con-
sumption (e.g., CPU and memory) which favoured dedicated
component).

The main contributions of this paper are:
1. Applying an enhanced COMITRE algorithm to: (i) em-
pirically evaluate the required degree of multitenancy isola-
tion between tenants enabled by multitenancy patterns for a
cloud-hosted bug tracking system; and (ii) compare how well
different multitenancy patterns perform under different cloud
deployment conditions.
2. Presenting recommendations and best-practice guidelines for
implementing the required degree of multitenancy isolation for
cloud-hosted bug tracking systems, and their implications for
optimizing performance and cloud resources (e.g., RAM, CPU,
disk space) based on different cloud deployment scenarios.

The rest of the paper is organized as follows - Section II
discusses the concept of multitenancy isolation as it affects
implementing the required degree of isolation between tenants
using cloud-hosted bug tracking system. In Section III, we
discuss the methodology including GSD tool selection, and
application of COMITRE algorithm to implement and evaluate
the required degree of multitenancy isolation. Section IV
presents the results and then discusses the implications of the
results in Section V. The recommendations and limitations of
the study are detailed in Section VI and VII, respectively.
Section VIII concludes the paper with future work.

II. MULTITENANCY PATTERNS FOR DEPLOYING
CLOUD-HOSTED BUG TRACKING SYSTEM USING

BUGZILLA.

In this section, we discuss the concept of multitenancy
isolation on the bug tracking system within the context of
Global software development.

A. The Role of a Bug Tracking System in Global Software
Development (GSD)

In recent times, software tools used for Global Software
Development have been moving to the cloud. We call these
tools Cloud-hosted GSD tools. Examples of these software
tools are Hudson (used for continuous integration), Subversion
(used for version control) and Bugzilla (used for bug tracking).

Bug tracking (or issue tracking) is the process of keep-
ing track of reported software bugs or issues in software
development projects. This paper focuses on Bugzilla, a web-
based general-purpose bug tracker and testing tool, originally

developed and used for the Mozilla project [8]. Other examples
of bug tracking tools are JIRA, ITracker, Rational ClearQuest,
and TrackStudio. Bug tracking, as used in this paper, also
includes issues and enhancements to an application and not
only restricted to error-related data such as stack traces and
log files. However, we do not include task registry, which is
more related to the function of a project management system
[9].

The main component of a bug tracking system is the
database that stores bugs and attachments, which require
isolation. Attachments are usually added to compliment the
process of submitting a bug. Developers are encouraged to use
attachments instead of comments especially for large chunks
of ASCII data, such as trace, debugging output files, or log
files [8]. These attachments have to be isolated as bugs can be
assigned to different teams members for resolution.

B. Evaluating Degree of Multitenancy Isolation

We define “Multitenancy isolation” as a way of ensuring
that the performance, stored data volume and access privileges
required by one tenant does not affect other tenants access-
ing the component or functionality of a shared application
component [10] [11]. There are three multitenancy patterns
which express the degree of isolation between tenants ac-
cessing an application component: shared component, tenant-
isolated component and dedicated component [4]. The ded-
icated component represents the highest degree of isolation
whereas shared component represents the lowest. The degree
of isolation for tenant-isolated component would be in the
middle.

There are three main aspects of tenant isolation, namely,
performance, stored data volume and access privileges [4]. In
performance isolation for example, one tenant is not supposed
to be affected by the workload generated by other tenants.
Guo et al [12] evaluated different isolation capabilities related
to authentication, information protection, faults, administration
etc. Bauer and Adams [5] discussed how to use virtualization to
ensure that the failure of one tenants’ instance does not cascade
to other tenants’ instances. The work of Walraven et al [13] is
closely related to ours. By using a multitenant implementation
of a hotel booking application deployed on top of a cluster, the
authors implemented a middleware framework for enforcing
performance isolation. Krebs et al [14] implemented a mul-
titenancy performance benchmark for web application based
on the TCP-W benchmark which was used to evaluate where
the maximum throughput and the amount of tenants that can
be served by a platform. Other works related to multitenancy
isolation can be seen in [15] [16] [17].

The focus of this paper is to evaluate the degree of isolation
between tenants enabled by multitenancy patterns, and thus
provide empirical evidence of their effects on performance,
resource utilization and access privileges on other tenants
due to high workload created by one of the tenants. In our
work, we implemented multitenancy isolation by reconfiguring
the Bugzilla database to support varying degree of isolation
between tenants. In addition, our evaluation is done in a real
cloud environment. The application used for our evaluation is
within the domain of software engineering, to emulate a typical
software development process. Furthermore, we also deployed



Bugzilla to the cloud based on the three different types of
cloud multitenancy patterns.

III. METHODOLOGY

This study sits within the framework of a cross-case
analysis methodology which will be used later to synthesis
the results of the three case studies to draw conclusions and
implication for implementing the required degree of isola-
tion between tenants. Therefore, this study adopts the same
methodology used in two previous case studies to allow for
transparency and ease of evaluation of evidence.

A. Selecting the GSD Tools and Software Processes

A previous work conducted to find out the type of GDS
tools (and associated tasks) used in large scale distributed
enterprise software development projects produced a dataset
of five GSD tools: JIRA, VersionOne, Hudson, Subversion
and Bugzilla (see Ochei et al [3] and Bass [18] for details).
Based on this dataset, three software processes which have
the highest impact on Global Software Development were
selected: continuous integration (CI), version control (VC) and
issue/bug tracking. Two of these software processes have been
used previously in two separate case studies to empirically
evaluate the degrees of multitenancy isolation based on our
novel approach for implementing multitenancy isolation (i.e.,
COMITRE) [10] [11]. In this paper, we focus on applying
COMITRE to implement the required degree of multitenancy
isolation in a bug tracking system.

B. Applying COMITRE to Evaluate the Degrees of Multite-
nancy Isolation in Bugzilla

In a nutshell, COMITRE’s implementation relies on shift-
ing the task of routing a request from the web server to
a separate component (e.g., a Java class or plugin) at the
application level of a cloud-hosted GSD tool. Figure 1 captures
the structure of COMITRE while the logic used to implement it
shown in Algorithm 1. We have presented the full explanation
of COMITRE (including its step-by-step procedure) in Ochei
et al. [10] [11].

This paper applies an improved version of the algorithm
(i.e., in terms of adding more details to achieve generality
and applicability in different environments) used to implement
COMITRE for evaluating the degrees of isolation between
tenants for a particular multitenancy pattern. Assuming the
required isolation level of tenants is set to 1, 2, and 3 for
the three different multitenancy patterns, the logic can then be
summarized as follows: (i) if the isolation level is 1, then a
tenant can access the created component irrespective of where
it is located; (ii) if the isolation level is 2, the tenant is first
authenticated, and then assigned a tenantID. This ID is linked
with a specific configuration of the tenant which is then used
to adjust the behavior of the created component; and (iii) if
the isolation level is 3, then the created component is tagged
as unsharable, and so is dedicated exclusively for one tenant.

Bugzilla was modified using the recommended Bugzilla
Extension mechanism. Extensions can be used to modify either
the source code or user interface of Bugzilla, which can then be
distributed to other users and re-used in later versions of the
software. Bugzilla maintains a list of hooks which represent

Fig. 1. Architectural diagram of COMITRE approach

areas of Bugzilla that an extension can hook into, thereby
allowing the extension to perform any required action during
that point in Bugzilla’s extension. For our experiments, we
developed a special extension and then ”‘hooked”’ it into
Bugzilla using the hook called install before final checks.
This hook can be used to execute any custom logic before
the final checks are carried out by checksetup.pl, and so
we implemented COMITRE logic in this hook [8]. The two
main processes we wanted to capture in Bugzilla are: (i)
creating a bug, and (ii) adding an attachment specific to
a bug. Creating a simple bug with attachment in Bugzilla
requires access to three main tables: bugs, attachments, and
attach data. Most bug tracking systems like JIRA and Bugzilla
use a database to store bugs/issues created by users during
the software development process. To simulate this process
in Apache JMeter, we use the JMeter Beanshell sampler to
invoke two separate custom Java classes that run a query that:
(i) inserts multiple bugs with attachments into the Bugzilla
database concurrently, and (ii) sets the database transaction
isolation level to SERIALIZABLE (i.e., the highest isolation
level) during bug creation with attachment.

C. Evaluation

A set of four tenants (T1, T2, T3, and T4) were configured
into three groups (i.e., the three multitenancy patterns) to
access an application component deployed based on three
different multitenancy patterns. We created three different sce-
narios for all the tenants to evaluate the effect of multitenancy
isolation at both data and process levels. We describe the
scenarios as follows: (i) scenario 1- concurrent release of
requests, represents a case where large instant bugs submitted
concurrently to the database; (ii) scenario 2- variation in inter-
arrival times of requests, represents a case where there is
variation in frequency with which bugs are submitted to the
database; and (iii) scenario 3- enabling support for locking,
represents the use of locking to prevent conflicts between mul-
tiple tenants attempting to access a bug database. Fig. 2 shows
a sample architecture of multitenancy isolation involving three
tenants at the data level. For multitenancy isolation at the
process level, the component that is being shared is a lock
object [10] [11]. At the process level, the component that is
being shared is a lock object [10] [11]. The above scenarios
are very important in the so called distributed bug tracking
in which some bug trackers such as Fossil and Veracity, are
either integrated with or designed to use distributed VCS or
CI systems, thus allowing bugs generated automatically and



Algorithm 1 COMITRE Algorithm

1: INPUT: tenantRequest, tenantConf-file, isolationLevel
2: OUTPUT: multApplFunctn
3: Get tenantID from incoming request
4: tenantConf← null
5: share← true
6: Select tenantData from tenantConf-file
7: if tenantData is found then
8: tenantConf← tenantData
9: end if

10: Create defaultApplFunctn
11: multApplFunctn← defaultApplFunctn
12: if tenantConf is not null then
13: if isolationLevel = 1 then
14: Create tenantApplFunctn
15: else if isolationLevel = 2 then
16: Authenticate tenantID
17: Create tenantApplFunctn
18: Adjust tenantApplFunctn with tenantID
19: else if isolationLevel = 3 then
20: Create tenantApplFunctn
21: share← false
22: end if
23: multApplFunctn← tenantApplFunctn
24: end if
25: return multApplFunctn

added to the database at varying frequencies.

In order to measure the effect of isolation between tenants,
we configured one of the four tenants to represent a treatment
(i.e., T1 in the case) for each group to experience a large
instant loads while accessing the application component. Mea-
surements (e.g, response time, CPU usage) were then taken
before the treatment (pre-test) and after the treatment (post-
test). Apache JMeter is used to simulate large instant loads as
follows: (i) increasing the number of requests using the thread
count and loop count; (ii) attaching a large file to the request to
increase its size; (iii) increasing the speed of sending requests
by reducing the ramp-up period by 10 percent so that requests
are sent faster.; and (iv) creating a heavy load burst using
the Synchronous Timer so that a certain number of request
are fired at the same time. This type of configuration can be
likened to unpredictable (i.e., sudden increase) workload [4]
and aggressive load [13].

The experiments were conducted on a UEC (Ubuntu En-
terprise Cloud) private cloud based on a typical minimal
Eucalyptus configuration. The values for the experimental
setup are as follows: (1) Number of threads = 5; (2) Thread
Loop count = 2; (3) Loop controller count = 20 for tenant 1,
and 10 for all other tenants; (4) Ramp-up period: 6 seconds
for tenant 1 and 60 seconds for all other tenants; and (5)
Size of bug attachment = 1MB for tenant 1 and 200KB
for all other tenants. With this setup, the requests sent by
tenant 1 are two times more, five times heavier, and ten times
faster, than the other tenants. Ten iterations were performed
for each run and the values reported by JMeter were taken as
measure for response times, throughput and error% (i.e., the
percentage of the total number of requests whose response time
is unacceptably slow and above which the request is considered

a failure). The system activity report (SAR) tool was used to
report the average memory, CPU, disk I/O and system load.

As in previous case studies, we performed three main sta-
tistical test (i.e., two-way ANOVA, one-way ANOVA followed
by Scheffe post hoc, paired sample test) to show whether or
not the performance and resource utilization of other tenants
have been affected by the workload generated by one of
the tenants [11]. For example, the paired sample test was
used to determine if the subjects within any particular group
changed significantly from pre-test to post-test measured at
95% confidence interval.

The aim of the experiment is to evaluate the degrees
of multitenancy isolation for cloud-hosted bug tracking sys-
tem. The experimental hypothesis states that the performance
and system’s resource utilization experienced by tenants
accessing an application component deployed using each
multitenancy pattern changes significantly from the pre-test
to the post test. A summary of the experimental procedure we
adopted can be seen in Ochei et al [10] [11].

Fig. 2. Multitenancy Data Isolation Architecture

Fig. 3. Changes in response time for each pattern relative to other patterns-1

Fig. 4. Changes in error% for each pattern relative to other patterns-1



Fig. 5. Changes in throughput for each pattern relative to other patterns-1

Fig. 6. Changes in CPU for each pattern relative to other patterns-1

Fig. 7. Changes in memory for each pattern relative to other patterns-1

Fig. 8. Changes in disk I/O for each pattern relative to other patterns-1

IV. RESULTS

The experimental results were analyzed using a combina-
tion of plots of estimated marginal means of change (EMMC)
derived from ANOVA (plus post hoc test) and paired sample
test results from SPSS. Due to space limitations, we show only
EMMC for scenario 1 and 2 as shown in Fig. 3 to Fig. 16).
Table 1 summarizes the effect of T1 (which experiences large
instant loads) on the other three tenants (T2, T2, T4). The
notation used in Table 1 are: (i) YES - significant change;(ii)
NO - no significant change; and (iii) the symbol “-” means
no chance of variability. A summary of the results based on

Fig. 9. Changes in system load for each pattern relative to other patterns-1

Fig. 10. Changes in response time for each pattern relative to other
patterns-3

Fig. 11. Changes in error% for each pattern relative to other patterns-3

Fig. 12. Changes in throughput for each pattern relative to other patterns-3

the paired sample test and the estimated marginal means of
change is presented as follows:
(1) Response times and Error%: The post hoc test showed that
there was significant difference between shared and tenant-
isolated component and between tenant-isolated and dedicated
component. From plots of EMMC, it is clear that dedicated
component showed the lowest magnitude of change in response
time, and so it is recommended for achieving isolation between
tenants accessing bugs database. The post hoc test results for
error% was similar to that of response times. The plots of
EMMC shows that the number of requests with unacceptably



Fig. 13. Changes in CPU for each pattern relative to other patterns-3

Fig. 14. Changes in memory for each pattern relative to other patterns-3

Fig. 15. Changes in disk I/O for each pattern relative to other patterns-3

Fig. 16. Changes in system load for each pattern relative to other patterns-3

slow response times was much higher for shared components
(compared to tenant-isolated and dedicated components). This
is due to the effect of locking on the database which causes
delay on the time it takes for a request to be committed.
(2) Throughput: There was no significant change based on the
paired sample test. In fact, this result is very similar to that of
the other two scenarios, where the throughput was fairly stable.
This seems to suggest that if the application component being
shared is a database, then we should not expect throughput to
change drastically.
(3) Memory and Disk I/O: The post hoc test and paired sample
test confirmed that there was a highly significant change in

both memory and disk usage across the three patterns, and
the paired sample test for both the memory and disk I/O
showed a highly significant difference from pre-test to post
test. The plot of the EMMC similarly showed that the dedicated
component had the highest significant change compared to the
other patterns, and so should not be used to run Bugzilla on
runtime-libraries that by nature consumes much memory. For
example, it is well known that mod perl support in Bugzilla
consumes a lot of RAM [8]. For disk I/O consumption, having
enough storage space would be required, especially if we
expect large volume of bugs with attachments.
(4) CPU and System load: The paired sample test showed
that CPU usage changed significantly for all the patterns. By
analyzing the plots of the EMMC, the results show that the
dedicated component changed the most and so would not be
recommend for optimizing CPU usage in addition to achieving
multitenancy isolation. As with other case study results, there
was no influence on the any of the patterns. Interesting, the
plots of EMMC showed an increasing trend from shared
component to dedicated component.

V. DISCUSSION

(1) Response time, Error% and Throughput: The results
showed that dedicated component is generally highly recom-
mended to improve performance, while the reverse holds for
throughput. The implication is that using a dedicated compo-
nent will consume more memory and CPU. To address this
challenge, we suggest storing large bug attachments on disk
and then store the links to these files on the bug database. This
can help to improve performance. Also when transferring large
bug attachments across a low network bandwidth, compressing
the data could improve speed and throughput.
(2) Disk I/O: The results showed that disk I/O changed
significantly in terms of disk consumption in all the patterns
and for most of the scenarios. The only exception was for
scenario 3 where we would not recommend the dedicated com-
ponent when locking is enabled. Based on this information, we
conclude that there would be no meaningful difference in the
disk I/O consumption which may be slightly on the high side.
It would be necessary to have enough disk space, especially
if we expect large volume of bugs with attachments. Also if
error files are setup (i.e., errorlog in Bugzilla) then these files
should be purged from time to time to save disk space.
(3) Memory and CPU: Bug trackers are not known to consume
much memory and CPU. However, there are a few bug tracking
related operations that could affect memory and CPU con-
sumption. The first is the type of runtime time library used to
support web server running the bug tracker. For example,if you
are running Bugzilla under mod perl, then using a dedicated
component would not be a good option for optimizing memory,
especially when locking is enabled on the bug database. It is
well known that mod perl support in Bugzilla consumes a lot
of RAM [8]. Compressing the size of large bug attachments
could improve performance but the shortcoming is that it will
consume much CPU.
(4) System load: The results showed that there was no chance
of variability, and there is no influence on any of the patterns.
A possible explanation for this is that the configuration of the
running VM instance, the nature of the tasks, and absence of
piled-up task queue for a long time being processed resulted
in a reasonably good throughput. In most cases, if the load



TABLE I. PAIRED SAMPLES TEST ANALYSIS OF TENANT ISOLATION FOR SCENARIO 1, 2 AND 3

Pattern Response times Error% Throughput CPU Memory Disk I/O System Load
Scenario 1

Shared NO YES NO YES YES YES -
Tenant-
isolated

NO NO NO YES YES YES -

Dedicated NO YES NO YES YES YES -
Scenario 2

Shared YES YES NO YES YES YES NO
Tenant-
isolated

NO NO NO YES NO YES -

Dedicated NO YES NO YES YES YES -
Scenario 3

Shared NO YES NO YES YES YES -
Tenant-
isolated

YES YES YES YES YES YES -

Dedicated NO NO NO YES YES YES -

average is less than the total number of processors in the
system, this suggests that the system is not overloaded and
so it is assumed that nothing else influences the load average.

VI. RECOMMENDATIONS AND LIMITATION

In this section, we discuss the limitations of the study
and also provide some recommendations that will help in
implementing the required degree of multitenancy isolation for
bug tracking systems. A summary of recommended multite-
nancy patterns for realizing isolation between tenants based
on different scenarios is shown in Table 2. For example, we
would recommend using shared component to improve disk
I/O consumption and the dedicated component to improve
response time when locking is enabled on the bug database.
Volume of bug data: Bug trackers, unlike version controls
systems, do not generate additional copies of files. A large
disk size would be required to accommodate the volume of
bugs generated, if dealing with a large user base. Moreover,
the submitted bugs may also be associated with large file
attachments which could weigh down the database. To address
this problem, large files/attachments could be stored directly
on the disk while the file path to the attachments are stored
in the bug database. The error or log files (e.g., errorlog in
Bugzilla) could also be purged regularly to reduce disk space.

Optimizing the cloud resources: Bug trackers do not consume
much resources like CPU, and memory. However, they could
consume more CPU depending on runtime library used. For
example, Bugzilla consumes huge RAM if mod perl is en-
abled. The results of the experiments also shows that Bugzilla
consumes a significant amount of memory if transactions in
the bug database are cached.

Sensitivity to workload interference: Our experience with
Bugzilla may suggest that bug trackers are sensitive to in-
crease workload especially if locking is enabled for the bug
database. We noticed frequent crashes of Bugzilla database
in our experiments which required recovery. There are also
numerous database related errors. We recommend increasing
the maximum size of file that can be stored in the database. It
may also be necessary to remove restriction on the maximum
number of allowed queries, connections and packets etc.

Clients accessing bug database with low latency and band-
width: If a client with low bandwidth is accessing the bug
database it may be necessary to compressed large bug attach-
ments before moving the data across the network. However,
there is a price to pay in term in terms of high CPU utilization.

Implementing multitenancy isolation for bug trackers on
different layers of the application stack: Depending on
the layer of the application stack, multitenancy isolation for
the bug database may be realized differently with associated
implications. For example, implementing the shared compo-
nent on the SaaS layer ensures efficient sharing of cloud
resources, but isolation is either very low or not guaranteed
at all. Implementing dedicated component on the IaaS layer
would require installing the bug database for each tenant on
its own instance of virtual hardware. This increases the runtime
cost and limits the number of tenants that can be served.

With regards to limitations of the study, this work applies
to open-source cloud-hosted bug tracking that use relational
databases to store bugs/issues. Due to limitations on the ca-
pacity of the private cloud (i.e., Ubuntu Enterprise Cloud), we
used large instant requests to create a high workload within the
limit of the private cloud. Therefore, the results is applicable
to private clouds and not be generalized to large public clouds.
This study assumes that a small number of users send multiple
requests; it would be interesting to replicate this experiments
in a large private cloud infrastructure to investigate the effect
of large number and size of users.

One of the most challenging aspects of the study was
resolving database related errors, for examples, exceeding limit
of file size, query, connections etc. Therefore it is necessary to
modify the bug database to remove these restrictions. The bug
database running on the VM instance can be quite sensitive to
workload changes depending on the size, volume of bugs, and
bug database isolation level, and so it is important to carefully
vary the number requests that would cope with the size of the
cloud infrastructure used before running the experiments.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have implemented multitenancy by ap-
plying COMITRE (Component-based approach to Multite-
nancy Isolation through Request Re-routing), to contribute
to literature on multitenancy isolation for cloud-hosted Bug



TABLE II. Recommended Multitenancy Patterns for optimizing performance and resource utilization

Case Studies Aspects of
Isolation Factors Scenario 1 Scenario 2 Scenario 3

Sh Te De Sh Te De Sh Te De

Bug tracking with
Bugzilla

Performance Res Time X X X X
Thru X X X X X X X

Security Error X X X X X X

Resource
utilization

CPU X X X X X
Memory X X X X X
Disk I/O X X X X X X X X
System Load - - - × - - - - -

Tracking System by showing how to implement the required
degree of isolation between tenants enabled by multitenancy
patterns. Three multitenancy patterns (i.e., shared component,
tenant-isolated component and dedicated component) were
implemented by reconfiguring Bugzilla database and deploying
it as a Virtual Machine (VM) instance to a private cloud.

The study revealed that for transactions on bug database
where support for locking is enabled, performance isolation
between tenants (e.g., in terms of response time) can be
improved with dedicated component while isolation with re-
source consumption (e.g., CPU and memory) can be improved
with shared component. We also presented a summary of
recommended multitenancy patterns and their implications for
cloud-hosted bug tracking systems. The study recommends that
during bug tracking, the storage space should be reasonably
large enough to accommodate bugs with large attachments. To
save disk space, bugs can be stored directly on disk while the
file paths to the such bugs are stored in the database tables.

We plan to investigate how locking is used in three different
GSD processes (i.e, continuous integration, version control
and bug tracking) to prevent clashes between multiple tenants
when trying to access a shared functionality or application
component, and its implication for optimizing the deployment
of the application component. Furthermore, we also plan to
compare and contrast the three case studies. In the future,
we will develop a decision support model for optimizing
the deployment of application components of cloud-hosted
software services while guaranteeing multitenancy isolation.

ACKNOWLEDGMENT

This research was supported by the Tertiary Education Trust
Fund (TETFUND), Nigeria and IDEAS Research Institute,
Robert Gordon University, UK.

REFERENCES

[1] R. Buyya, J. Broberg, and A. Goscinski, Cloud Comput-
ing: Principles and Paradigms. John Wiley & Sons,
Inc., 2011.

[2] M. A. Chauhan and M. A. Babar, “Cloud infrastructure
for providing tools as a service: quality attributes and
potential solutions,” in Proceedings of the WICSA/ECSA
2012 Companion Volume. ACM, 2012, pp. 5–13.

[3] L. C. Ochei, J. M. Bass, and A. Petrovski, “A novel
taxonomy of deployment patterns for cloud-hosted ap-
plications: A case study of global software development
(gsd) tools and processes,” International Journal On
Advances in Software., vol. 8, numbers 3 and 4, pp. 420–
434, 2015.

[4] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and
P. Arbitter, Cloud Computing Patterns. Springer, 2014.

[5] E. Bauer and R. Adams, Reliability and availability of
cloud computing. John Wiley & Sons, 2012.

[6] R. Krebs, C. Momm, and S. Kounev, “Architectural
concerns in multi-tenant saas applications.” CLOSER,
vol. 12, pp. 426–431, 2012.

[7] L. Bass, P. Clements, and R. Kazman, Software Architec-
ture in Practice, 3/E. Pearson Education India, 2013.

[8] Bugzilla.org. The bugzilla guide. The Mozilla Foun-
dation. [Online: accessed in November, 2015 from
http://www.bugzilla.org/docs/.

[9] N. Serrano and I. Ciordia, “Bugzilla, itracker, and other
bug trackers,” Software, IEEE, vol. 22, no. 2, pp. 11–13,
2005.

[10] L. C. Ochei, J. Bass, and A. Petrovski, “Evaluating
degrees of multitenancy isolation: A case study of cloud-
hosted gsd tools,” in 2015 International Conference on
Cloud and Autonomic Computing (ICCAC). IEEE, 2015,
pp. 101–112.

[11] L. C. Ochei, A. Petrovski, and J. Bass, “Evaluating
degrees of isolation between tenants enabled by multite-
nancy patterns for cloud-hosted version control systems
(vcs),” International Journal of Intelligent Computing
Research, vol. 6, Issue 3, pp. 601 – 612, 2015.

[12] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao,
“A framework for native multi-tenancy application devel-
opment and management,” in E-Commerce Technology
and the 4th IEEE International Conference on Enter-
prise Computing, E-Commerce, and E-Services, 2007.
CEC/EEE 2007. The 9th IEEE International Conference
on E-Commerce Technology. IEEE, 2007, pp. 551–558.

[13] S. Walraven, T. Monheim, E. Truyen, and W. Joosen,
“Towards performance isolation in multi-tenant saas ap-
plications,” in Proceedings of the 7th Workshop on Mid-
dleware for Next Generation Internet Computing. ACM,
2012, p. 6.

[14] R. Krebs, A. Wert, and S. Kounev, “Multi-tenancy per-
formance benchmark for web application platforms,” in
Web Engineering. Springer, 2013, pp. 424–438.

[15] S. Walraven, B. Lagaisse, and W. Joosen, “Application-
level multi-tenancy: the promise and pitfalls of shared-
everything architectures,” 2014, distriNet Research
Group.

[16] S. Strauch, V. Andrikopoulos, F. Leymann, D. Muhler
et al., “Esbmt: Enabling multi-tenancy in enterprise ser-
vice buses,” CloudCom, vol. 12, pp. 456–463, 2012.

[17] R. Krebs and M. Loesch, “Comparison of request ad-
mission based performance isolation approaches in multi-
tenant saas applications.” in CLOSER, 2014, pp. 433–438.

[18] J. Bass, “How product owner teams scale agile methods



to large distributed enterprises,” Empirical Software En-
gineering, pp. 1–33, 2014.


