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Abstract 

The knee joint is the most common joint affected by osteoarthritis (OA). The medial 

compartment of the knee is more commonly afflicted with OA than the lateral compartment. 

Lateral wedge insoles (LWI), a common treatment approach for the conservative management 

of medial compartment knee OA, have previously been considered effective in reducing 

external knee adduction moment (EKAM). LWI aim to shift a proportion of knee load from 

the medial compartment to the lateral compartment of the knee joint, providing some 

symptomatic relief. Foot posture may influence the efficacy of LWI in reducing the EKAM 

due to its effect on the dynamic function and mechanical alignment of the lower limbs. This 

thesis investigated the role of foot posture on the magnitude of EKAM and impact on the 

effectiveness of LWI for the treatment of medial compartment knee OA. Firstly, a repeatability 

trial was conducted to ensure investigator competency, and reliability of the methods and 

outcome measures utilised. Secondly, a trial using healthy subjects assessed rearfoot posture 

using the Foot Posture Index (FPI) to determine if a relationship existed between static foot 

posture and biomechanical rearfoot motion and their effects on EKAM when wearing LWI, to 

determine whether clinical foot parameters have a role in the magnitude of EKAM. The role of 

foot posture in response to LWI, the effects of foot posture on the efficacy of LWI, and effects 

and impact on EKAM in patients with medial compartment knee OA were assessed. No 

relationship was identified between clinical static foot posture, biomechanical rearfoot motion, 

and EKAM. However, a relationship existed between rearfoot motion and EKAM. Rearfoot 

range of motion can therefore predict the response to LWI. The thesis then examined research 

questions in regards to the collection of rearfoot motion using different methods (a heel cup 

cluster and a heel pin cluster) demonstrating that heel pin cluster marker sets are an acceptable 

method of determining rearfoot motion in barefoot and shod walking. Due to changes in 

walking speed with lateral wedge insoles the role of increased walking speed on the magnitude 

of EKAM when wearing LWI was assessed. Increasing walking speed with LWI reduced 

biomechanical response. The thesis has demonstrated a further understanding of foot posture 

and ankle motion in healthy subjects and in individuals with medial compartment knee OA. 

Further clinical studies investigating the role of rearfoot motion and biomechanical response 

to lateral wedge insoles are indicated.  
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Chapter One 

Introduction 

 

Osteoarthritis (OA) is the most common form of arthritis (Bakken et al., 2007) causing pain 

and stiffness in joints as a result of the degeneration of joint cartilage and underlying bone 

(Wieland et al., 2005). More than 8.5 million people in the UK alone were diagnosed as having 

OA in the year 2002 (Arthritis Care, 2004). OA is a leading cause of functional disability 

among older adults (Felson et al., 1987) affecting approximately 10% of males and 18% of 

females aged over 60 years (Murray and Lopez, 1997). 

 

Knee osteoarthritis is a common chronic musculoskeletal condition affecting the entire knee 

joint, causing severe pain and functional limitation, with the knee joint being the most common 

joint affected by OA (Felson, 1990, Brandt et al., 2003, Parkes et al., 2013). In knee OA, the 

thickness of the articular cartilage decreases and fibrillates, and the bones concerned with the 

joint alter, including the development of osteophytes and subchondral thickening, the joint 

capsule also increases in thickness and synovitis is present (Burr, 2003, Abramson, 2004). Knee 

osteoarthritis affects approximately 12% of people aged 60 and over (Brandt et al., 2003), and 

10% of individuals aged 55 and over in the UK (Peat et al., 2001), and is estimated to be the 

eighth leading cause of disability in men, and the fourth most common in women globally. As 

much as a third of the population within the United Kingdom over the age of 40 years complain 

of symptoms associated with knee OA (such as knee pain), of which 50% will develop knee 

OA (Peat et al., 2001). 
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Figure 1.1: X-Rays and diagrams depicting the differences between normal knee joints (left) and osteoarthritic 

knee joints (right) (Sydneykneecomau, 2016). 

 

Knee osteoarthritis causes considerable burden to society, and is a leading health concern 

within the UK, in addition to the consequences experienced by patients (pain and loss of 

dynamic function) due to the high financial cost of existing interventions and because of knee 

OA’s chronic course (Healey et al., 2002, Bitton, 2009). Approximately 24% of the UK 

population aged 65 years or above present osteoarthritic changes in one or both knee joints, 

resulting in considerable economic costs. OA of the knee and hip carry a great social impact 

and additional disability compared to OA of other joints, with the knee causing the greater of 

the two, resulting in significant economic impacts. (Jinks et al., 2004, Bijlsma and Knahr, 

2007). 

Knee OA significantly contributes to functional limitations and disability in those affected, and 

is characterised by pain in the knee (which increases with activity and is relieved with rest), 

knee joint swelling, stiffness, decreased quadriceps femoris muscle strength, and a decrease in 

joint range of motion (ROM) (Bijlsma and Knahr, 2007).  

The main factors affecting the development of knee OA are body mass (obese people with a 

high Body Mass Index (BMI) are more likely to develop knee OA due to increased load on the 

knee joint, and therefore increased weight bearing by the knee joint), age, gender, racial 

characteristics, abnormal biomechanics of the lower limbs, previous lower limb injury and 

genetic predisposition (Felson et al., 2000). 
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The medial compartment of the knee is four times more likely to be affected with knee OA 

than the lateral compartment (Ledingham et al., 1993). During walking, the knee joint is subject 

to a continual system of forces and moments which work in equilibrium when no pathologies 

of the lower limbs are present. However, individuals with knee OA exhibit alterations from the 

normal gait of healthy individuals, including greater mid stance knee adduction moments, 

decreased stance phase sagittal plane peak flexion moments, reduced peak hip adduction 

moments, and decreased peak hip extension moments (Lewek et al., 2004, Astephen et al., 

2008). Previous investigations have observed secondary gait alterations in patients with medial 

knee OA indicating an adaptive strategy to shift load from the medial side of the knee to the 

lateral side in an attempt to reduce pain, including walking at slower speeds (Winter, 1991, 

Kaufman et al., 2001, Al-Zahrani and Bakheit, 2002, Baliunas et al., 2002, Mundermann et al., 

2005, Messier et al., 2005). 

A reliable indicator of medial compartment knee loading is the external knee adduction 

moment (EKAM), which can be measured during walking to determine alterations in load 

(Schipplein and Andriacchi, 1991) and has previously been described as an accurate way of 

determining knee OA disease presence, severity and progression (Sharma et al., 1998, Baliunas 

et al., 2002, Miyazaki et al., 2002). The EKAM is created during walking, where the resultant 

ground reaction force (GRF) passes medial to the centre of the knee joint, applying an EKAM 

about the knee joint throughout stance, causing a turning effect, resulting in the tibia rotating 

medially with respect to the femur, and therefore a large proportion of the load on the knee 

joint is transferred through the medial compartment of the knee (Shelburne et al., 2008).  

The magnitude of the peak adduction moment during normal walking is associated with medial 

and lateral cartilage thickness in the load bearing regions of the knee joint during walking. 

Medial knee joint cartilage thickness increases with the magnitude of the adduction moment in 

healthy cartilage, suggesting that healthy cartilage adapts to higher loads during walking by 

increasing cartilage thickness in different regions. Knee OA patients have a relative decrease 

in cartilage thickness in the load-bearing regions of the medial compartment of the knee joint, 

and a higher adduction moment. Load on the knee joint can lead to an adaptive response 

(thickening and enhanced mechanical properties) within the knee joint cartilage, and degraded 

cartilage cannot adapt to repetitive loads during walking on a cellular level, and therefore 

degrades at a higher rate, caused by higher loads of the knee joint during walking. Altered 

contact mechanics in the newly loaded regions of the knee joint may lead to local degenerative 

changes in the articular cartilage. Alterations in mechanics could therefore cause the shifting 
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of loads on to areas of cartilage that may respond poorly and fail to adapt well to increases in 

load, leading to degenerative changes in the knee joint. However, Griffin and Guilak (2005) 

state that ‘the degeneration of articular cartilage leading to knee osteoarthritis is complex, 

involving interconnected biological, mechanical, and structural pathways, including a 

kinematic change in loading patterns during walking, of sufficient magnitude (due to injury, 

increased laxity, neuromuscular changes, or obesity) to transfer load to areas of knee cartilage 

that are not conditioned to chronic loading during walking, causing degradation and negative 

response to load, resulting in the rapid progression of knee OA’ (Griffin and Guilak, 2005).  

The magnitude of the EKAM is influenced by the magnitude of the GRF (Reeves and Bowling, 

2011). Reducing the EKAM has therefore become the objective of knee OA treatment in an 

attempt to reduce pain, maintain function and slow and possibly prevent disease progression 

(Jones et al., 2012). Changes in certain kinematic or kinetic factors during gait could possibly 

reduce medial knee load and therefore the EKAM (Chang et al., 2007), and understanding and 

managing those factors could lead to a reduction in knee OA disease progression over time.  

Walking with a greater toe out angle, walking with a narrow gait, increasing mediolateral trunk 

sway, barefoot walking, modifying foot posture, and reducing walking speed have previously 

been suggested as gait altering strategies to reduce the EKAM and therefore medial knee 

loading (Shabook and Block, 2006, Chang et al., 2007, Reilly et al., 2009, Levinger et al., 

2010, Lidtke et al., 2010, Hunt et al., 2011, Wilson, 2012, Street and Cage, 2013). 

Many differing interventions can be used in the management of knee OA, including 

pharmacological, surgical and conservative treatment methods (Fang et al., 2006).  

Pharmacological interventions such as analgesics and non-steroidal anti-inflammatory drugs 

(NSAID’s), used to relieve pain and inflammation are the most commonly used intervention, 

and are effective in reducing pain, however may lead to an increase in pain free activity and 

therefore joint loading and possibly disease progression (Schnitzer et al., 1993, Huskisson et 

al., 1995, Jones et al., 2012), and often carry severe side effects with prolonged use, including 

gastrointestinal ulceration and bleeding (Bradley et al., 1991, Richy et al., 2004, Hippisley-

Cox et al., 2005). Additionally, pharmacological interventions for knee OA fail to address the 

biomechanical causes of the disease and only manage its symptoms (Walsh and Hurley, 2009). 

Additional non-pharmacological interventions include hot and cold treatment, weight loss, 

patient education, walking aids, exercise, physiotherapy and splints (Warsi et al., 2003, 

Christensen et al., 2007, McAlindon et al., 2014, NICE, 2014). 
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Surgical intervention is often required in severe cases of knee osteoarthritis, and includes; 

arthroscopic lavage and knee joint replacements. Surgical intervention, although the most 

effective treatment method, is extremely costly, and so it is only offered as a last treatment in 

severe cases where quality of life is seriously affected and other core treatments have been 

exhausted, in an attempt to reduce pain and restore normal biomechanics of the knee joint 

(Dieppe et al., 1999, Griffin et al., 2007). Surgery can also lead to complications, and requires 

considerable recovery time (Griffin et al., 2007). Thus, research into more conservative 

methods of treatment for knee OA is needed. 

Knee OA is a biomechanical disease which is affected by loading on the knee joint (Brandt et 

al., 2008). Therefore, recent research aims to devise suitable conservative interventions which 

aim to decrease the amount of loading on the knee joint, in an aim to relieve symptoms and 

slow disease progression. Current interventions aim to relieve a proportion of the load off of 

the medial side of the knee. Interventions such as lateral wedge insoles (LWI) and valgus knee 

braces have been suggested in previous investigations as reliable interventions in reducing the 

EKAM and therefore altering medial compartment knee loading (Jones et al., 2012). 

Lateral wedge insoles (LWI) are inexpensive, self-administered, conservative mechanical 

interventions utilised in the treatment of medial compartment knee OA, and comprise of an 

insole shoe insert with a thicker border on the lateral side, compared to the medial side 

(Zamosky, 1964, Jones et al., 2013, Chapman et al., 2015). LWI are a simple intervention and 

therefore they can be easily and safely used by the knee OA population (Kerrigan et al., 2002, 

Baker et al., 2007, Jones et al., 2013).  

Research has indicated LWI are a successful approach in reducing the EKAM (Jones et al., 

2012) and therefore alleviate a proportion of the force transmitted by the medial compartment 

of the knee joint by causing slanting of the calcaneus into an everted position, allowing the 

centre of pressure in the foot to shift laterally, and therefore modifying load at the knee joint 

by altering the kinematics and kinetics of the subtalar ankle joint (Sasaki and Yasuda, 1987, 

Abdallah and Radwan, 2011, Chapman et al., 2015), aiming to minimise pain and increase or 

maintain activity levels (Butler et al., 2007, Hinman et al., 2008, Shelburne et al., 2008).  

Results from trials using LWI in knee OA patients have provided inconsistent results in regards 

to reduction of the EKAM (Jones et al., 2014) and pain improvement (Hinman et al., 2008), 

with a number of studies reporting no improvement in pain (Pham et al., 2004, Parkes et al., 

2013, Jones et al., 2013) suggesting that lateral wedge insoles are not effective for the treatment 
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of knee pain in individuals with medial compartment knee osteoarthritis (Parkes et al., 2013). 

Interestingly, a substantial reduction in EKAM generated with the use of a lateral wedge insole 

does not correlate at all with immediate pain reduction (Jones et al., 2013). 

Additional investigations have identified no symptomatic or structural benefits or effects on 

disease progression after wearing LWI for 12 months (Bennell et al., 2011). A number of LWI 

trials have reported an incidence of biomechanical non-response to LWI intervention 

(Kakihana et al., 2007, Chapman et al., 2015), meaning a number of individuals within the trial 

did not demonstrate a reduction in knee loading when wearing a LWI. Reilly et al., (2009) 

identified foot posture as a possible influence on the effectiveness of orthotic interventions in 

patients with medial knee OA, perhaps explaining the incidence of non-response within the 

Kakihana and Chapman trials. Reilly et al., (2009) and Levinger et al., (2010) state that foot 

posture may contribute to a number of lower limb musculoskeletal conditions, and altering of 

the mechanical alignment and dynamic function of the lower limbs, therefore possibly affecting 

the efficacy of certain interventions designed for the treatment of knee OA, such as LWI. 

Therefore, foot posture and its effects on knee loading and also on the efficacy of certain 

orthotic interventions, specifically LWI requires further investigation, of which this thesis aims 

to attain. 

Levinger et al., (2010) recommends an in depth knowledge of foot posture to be paramount in 

fully understanding the effect of interventions on the knee and lower limb joints, also allowing 

the identification of participants who will most likely benefit from intervention. OA patients 

within a trial by Levinger et al., (2012) demonstrated altered foot kinematics during gait that 

were symptomatic of a less mobile more everted foot type. Additionally, Reilly et al., (2009) 

also infers that accurate foot assessment can provide an appreciation into how foot postures 

influence or can be influenced by reducing the load on the medial compartment. Furthermore, 

Chapman et al., (2015) concluded that coronal plane foot and ankle biomechanical measures 

are key mechanisms in influencing the magnitude of the EKAM.  

Further investigation is therefore needed in order to determine whether foot posture may 

influence the incidence of biomechanical non-response to LWI, and will be conducted within 

this thesis. 

The literature concerning the use of LWI for the treatment of medial compartment knee OA in 

relation to foot posture, rearfoot posture and motion is limited, and a number of articles infer 

that foot posture should be investigated within future research (Hinman et al., 2008, Butler et 
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al., 2009). A recent study by Chapman et al., (2015) concluded that coronal plane foot and 

ankle biomechanical measures play a key role in the reduction of the EKAM when wearing 

LWI. However, the exact mechanism of this relationship remains unclear, and therefore this 

will be investigated within this thesis. 

 

The overall research question of this thesis is to determine the role that foot and ankle motion 

have on EKAM and to evaluate the efficacy of LWI on EKAM in both patients with medial 

compartment knee osteoarthritis and also in healthy subjects. Furthermore, to understand what 

foot and ankle factors could explain biomechanical response to LWI. 

Thesis contents 

The structure of the thesis will firstly review the existing literature linked to knee OA, the 

EKAM, and treatments of knee OA, particularly LWI in order to demonstrate the novelty of 

the investigations within the thesis, and the investigation aims of exploring and satisfying gaps 

within previous literature (chapter two).  

Secondly, the biomechanical methods that define the 3D motion data capture, force 

measurement and segment modelling and computation are presented, additionally, the full 

methodology for all studies is detailed (chapter 3). A test-retest study that was conducted by 

the investigator to ensure repeatability of the investigators reflective marker placement to 

determine the error within the planned studies is also demonstrated (chapter 3).  

The thesis continues by presenting an investigation into static foot posture in 30 healthy limbs 

using the Foot Posture Index in order to identify any relationship between rearfoot motion and 

foot posture relative to the magnitude of the EKAM, aiming to provide an understanding of 

foot posture in barefoot and whether there is a relationship to the EKAM. This was further 

examined through a larger retrospective data set to establish any relationship between the FPI 

scores, FPI eversion and inversion static and dynamic rearfoot motion, related to the magnitude 

of the EKAM, in order to determine the association between the outcome parameters of clinical 

examination and the magnitude of the EKAM (chapter 4). 

A clinical trial was then conducted that assessed the role of foot posture in response to the 

wearing of LWI, the effects of foot posture on the efficacy of LWI, and also the effects and 

impact on the EKAM in patients with medial compartment knee OA with the objective of 

categorising any relationship between clinical static foot posture and biomechanical dynamic 
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foot posture, in biomechanical responders and biomechanical non-responders to LWI (chapter 

5).  

Rearfoot motion was identified as a possible influence on the biomechanical response and non-

response to LWI in medial compartment knee OA patients within investigations conducted in 

chapter 5. The previous clinical trial did not collect in-shoe rearfoot motion and further 

examination of the rearfoot was assessed through novel methods for both barefoot and shod 

data collections. Finally, with changes in speed commonly seen when interventions are worn, 

a further examination of speed effects on the reduction of the EKAM was investigated (chapter 

6).  

Finally, the thesis concludes with demonstration of the thesis novelty and potential future 

studies are presented (chapter 7). 
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Chapter Two 

Literature Review 

2.1 Osteoarthritis 

Osteoarthritis (OA) can be defined as, ‘the degeneration of joint cartilage and the underlying 

bone’ and is a common progressive musculoskeletal disorder (Fang et al., 2006) associated 

with ageing (Maly et al., 2002), accounting for a large proportion of disability in the UK and 

globally due to its major effect on joint function as a result of its clinical symptoms, including: 

pain, joint stiffness, swelling, and a decline in joint range of motion (Kean et al., 2004, Fang 

et al., 2006, Jones et al., 2015). OA is characterised by the progressive breakdown of articular 

cartilage, apoptosis of chondrocytes (death of chondrocyte cartilage cells), new growth of 

cartilage and bone at the joint margins (osteophytes) and increased bony envelope thickness 

(bony sclerosis) (Brandt et al., 1998, Fang et al., 2006). Further features include: joint space 

narrowing which contributes to capsular and ligamentous laxity and muscle weakness around 

the affected joint, leading to joint instability and deformity (Cooke et al., 1994). 

OA affects a number of joints within the human body, including joints of the hand, the spine 

and weight-bearing joints, such as the hip, knee and ankle. It is much more common in the 

joints of the fingers, hip, knee and spine than in the elbow, wrist and ankle. The knee joint is 

the most commonly affected weight bearing joint (Oliveria de Almeida et al., 1995). 

2.2 Incidence and Prevalence of Knee OA 

In 1990, knee OA was found to account for 2.8% of the overall years lost to disability and 

therefore was considered to be the 10th leading cause of non-fatal burden (Murray and Lopez, 

1997). In 2000, knee OA became the 6th leading cause of non-fatal burden as this percentage 

increased to 3% of overall years lost to disability (Symmons et al., 2006). According to the 

World Health Organisation (WHO), OA is among the top ten conditions in Europe with respect 

to causing burdens to society (Englund, 2010).  

The incidence and prevalence of OA increases with age with the most common joint affected 

being the knee (Vad et al., 2002, Wieland et al., 2005, Bakken et al., 2007). It has been 

established that 10% of people over the age of 55 are affected by knee OA (Peat et al., 2001), 
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with it rarely occurring before the age of 40 years, but most significantly affecting populations 

aged 70 years and above (Petersson, 1996) with symptoms usually starting to develop between 

the ages of 40-60. In the UK, 20-28% of the population aged 40 years and above experience 

knee pain, of which 50% will develop knee OA (Peat et al., 2001). 

In the Framingham cohort study, 27% of people aged 70 years or less had radiographic knee 

OA, compared with 44% in people above 80 years (Felson et al., 1987). Similarly, symptomatic 

knee OA was less frequent in people younger than 70 years (7%) compared with more elderly 

individuals (11.2%). Interestingly, the elderly participants without knee OA at baseline (mean 

age 70.5 years, range 63-92 years) were followed up for eight years, and 15.6% developed knee 

OA (Felson et al., 1997). The Framingham Osteoarthritis Study provided evidence that over 

twenty years, the prevalence of symptomatic knee OA increased, whereas radiographic knee 

OA did not (Nguyen et al., 2011). Conversely, the results of an additional cohort study showed 

the incidence of developing radiographic knee OA increased by 21.7% between 2003-2006 in 

subjects aged 50 years and above (Duncan et al., 2011). 

The incidence and prevalence of OA particularly of the knee joint, overall is higher in women 

compared to men (Felson et al., 1995, Johnson and Hunter, 2014) with 45% of women over 

the age of 65 having symptoms, whilst radiological evidence is identified in 70% of women 

over the age of 65 (Symmons et al., 2000), however this relationship changes with age (Oliveria 

de Almeida et al., 1995) (Felson and Zhang, 1998). Men aged below 45 years were found to 

have a higher prevalence of knee OA than women of the same age (Silman and Hochberg, 

2001). The estimated lifetime risk for knee OA is approximately 40% in men, and 47% in 

women (Johnson et al., 2014). In the UK, the Chingford study, a 15 year follow up study, 

explored the incidence and prevalence of radiographic knee OA in 561 women (48-58 years) 

and discovered the prevalence increased from 9.5% at baseline to 38.6% after 15 years. 

Similarly to the Framingham study, the prevalence of radiographic knee OA was found to 

increase in those without the condition at baseline (86.3%), with 39.5% developing 

radiographic knee OA in at least one knee over a 15 year period (Leyland et al., 2012).  

The WHO has reported knee OA to be the fourth most common cause of disability in women, 

and the eighth in men (Vad et al., 2002). Srikanth et al., (2005) concluded that women are more 

likely to have more severe knee OA after experiencing the menopause. 

Prevalence rates for knee OA based on population studies in the USA are comparable to those 

in Europe (Litwic et al., 2013), however previous studies have identified a higher prevalence 
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of knee OA in some races compared to others (Zhang et al., 2001). Chinese women were found 

to have a higher prevalence of knee OA compared with age matched white American females, 

and Caucasian females (Zhang et al., 2001). Furthermore, black females were acknowledged 

as having higher prevalence of knee OA than white females (Anderson and Felson, 1988). The 

differences in prevalence rates may be related to a number of local and environmental factors 

such as; genetics, anatomy, nutritional status, education, lifestyle, economics, and culture 

(Jordan et al., 2007, Jordan et al., 2009, Johnson et al., 2014). 

2.3 Economic Burden of Knee Osteoarthritis 

Knee OA has been found to cause major economic burdens globally, resulting in both direct 

and indirect costs (Bitton, 2009). In the UK alone, around 25% of the population aged over 65 

years have been diagnosed as having knee osteoarthritic changes, resulting in vast economic 

expense (Jinks et al., 2004, Bijlsma and Knahr, 2007). The 2012 Osteoarthritis Nation report 

conducted by Arthritis Care concluded that approximately 8.5 million of the UK population 

have OA, which is estimated to cost around 1% of the annual Gross National Product (Arthritis 

Care, 2012).  

Direct costs associated with OA diagnosis include physician and allied health professional 

visits and hospital costs, while associated indirect costs result from the inability of those 

afflicted with knee OA to work, despite the disease mostly affecting those who have retired 

from work due to age (Pincus et al., 1989, March and Bachmeier, 1997).  

Pincus et al., (1989) states that individuals with knee OA experience work limitations, 

including loss of work days, decreased working hours, inability to find suitable employment 

and early retirement, all leading to reliance on the state and therefore causing an economic 

burden (Gabriel et al., 1997). In the UK, 36 million working days are lost to OA per year, 

which is estimated to cost £3.2 billion (Arthritis Care, 2012). This figure is expected to rise in 

subsequent years due to the global ageing population and increasing prevalence of obesity, and 

the subsequent increasing incidence of knee OA. 

The rates of knee replacements in the UK alone tripled during the period between 1991 and 

2006 (Culliford et al., 2010) and the cost for total knee replacements carried out in the US was 

$14.6 billion in 2004 (Kim, 2008). In Canada, the direct costs of 140 patients with OA were 

$5700 USD per person during the period of 1999-2000 (Maetzel et al., 2004). The previously 

mentioned costs do not take into account the expenses of pain management, loss of income due 



12 

 

to disability and various treatments including follow up appointments, revision surgery and 

rehabilitation physiotherapy (Kim, 2008).  

The increasing prevalence of OA worldwide means the economic burden of OA is increasing 

(Gabriel et al., 1997), with a predicted 1.4 million knee replacements expected to be required 

in 2015, a large increase compared with the amount of knee replacement operations carried out 

in 2004 (Kim, 2008). 

In view of the increasing prevalence of OA and the mounting burdens on the global economies, 

there is a paramount need to identify and understand the causes of knee OA, in order to find 

effective preventative treatments and interventions to manage this debilitating disease and 

reduce risk factors for both incidence and progression of knee OA. 

2.4 Diagnosis of Knee Osteoarthritis 

OA can be categorised by identifying the joint which is affected (for example the hip or knee), 

and also by whether it is primary; (idiopathic) (experienced after no antecedent event or disease 

associated with OA), or secondary; (caused by an antecedent event, for example; metabolic, 

anatomical, traumatic or inflammatory conditions, congenital diseases, joint disorders, 

endocrine diseases, or neuropathic anthropathy). Primary (idiopathic) OA can be divided into 

localised OA (where one joint or region is affected) and generalised OA (where two or more 

joints or regions are affected) (Altman et al., 1987, Brandt et al., 1998). Generalised OA 

includes the following affected areas: the distal and proximal inter-phalangeal joints of the 

hand, the first carpo-metacarpal joint, knees, hips and the metatarsophalangeal joints (Altman, 

1987). 

Knee OA can be diagnosed both clinically and/or radiographically. The American College of 

Rheumatology (ACR) devised a clinical classification criterion which is commonly used in 

clinical practice to identify symptomatic knee OA. Knee pain experienced on the majority of 

days in the previous month is the key feature to identifying knee OA (Altman, 1987). 

In addition to experiencing knee pain, the patient must also meet at least three out of six of the 

following criteria in order to be diagnosed with knee OA: The patient must be aged 50 years 

and above, must experience morning stiffness of the knee for no longer than 30 minutes, must 

experience crepitus sensations with movement of the knee joint, bone tenderness of the bones 

in the surrounding area of the joint, bone enlargement around the affected knee joint, and no 

palpable warmth around the knee joint.  
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The ACR clinical classification criterion has been shown to be a reliable method in identifying 

articular cartilage damage at an early stage (Wu et al., 2005). Some limitations surrounding the 

ACR clinical classification criteria can be identified however, as the criteria was established 

after comparing patients diagnosed with knee OA and young subjects with knee pain caused 

by varying musculoskeletal issues (mainly rheumatoid arthritis). Additionally, the criteria are 

mostly subjective and based on opinion, and are therefore open to discussion by professionals 

(McAlindon and Dieppe, 1989). Even so, the ACR criteria remain of use in identifying and 

amalgamating the characteristics of participants involved in numerous varying studies for ease 

of evaluation and comparison (Wu et al., 2005). Knee OA may also be diagnosed using both 

the ACR criteria and radiographic classification criteria. In order to be considered as being 

afflicted with knee OA, individuals should meet the ACR clinical classification criteria and 

should also have evidence of osteophytes (bone growths at the joint margins) surrounding the 

knee joint, identified using radiography (Altman, 1987). 

An additional, commonly used radiographic classification method to identify knee OA and to 

determine its severity is the Kellgren and Lawrence (KL) grading system (Kellgren and 

Lawrence, 1957). The KL grading system has been developed to diagnose and classify knee 

osteoarthritis into five grades: KL Radiographic score - Grade 0: no features (Normal); Grade 

1: (Doubtful) narrowing of joint space and possible osteophytic lipping; Grade 2: (Mild) 

definite osteophytes and possible narrowing of joint space; Grade 3: (Moderate) multiple 

osteophytes, definite narrowing of joint space, some sclerosis and possible deformity of bone 

contour; Grade 4: (Severe) large osteophytes, marked narrowing of joint space, severe sclerosis 

and  definite deformity of bone contour (attrition) (Kellgren and Lawrence, 1957) (figure 1.1). 

Knee OA is usually classified when the KL grade is 2 or above (Felson et al., 1997, Leyland 

et al., 2012), however it is frequently disputed that the KL grade 1 should not be considered as 

OA, due to the grades features being of limited clinical significance (Thorstensson et al., 2004). 

Conversely, the KL grade 1 classification has been associated with progression of radiographic 

features five years after initial grade 1 classification and therefore is noteworthy, and should 

be treated as an early phase of the disease (Hart and Spector, 2003). Previous investigations 

also questions the relevance of osteophytes in the osteoarthritic process, as their role is not 

clear (Thorstensson et al., 2004).  

Limited correlation exists between knee OA severity and clinical symptoms. The Framingham 

study identified 60% of participants with radiographic knee OA to be asymptomatic (Felson, 

1990). Pain is usually the major concern for patients with knee OA as it affects quality of life, 
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balance and knee function. Consequently, clinical management of knee OA irrelevant of the 

KL classification stage usually focuses on decreasing pain and therefore managing symptoms 

and not their cause (Felson, 1990). 

  

Figure 2.1: Kellgren and Lawrence Knee Osteoarthritis Radiographic Grading Scale (A = KL grade 1, B = KL 

grade 2, C = KL grade 3, D = KL grade 4) (Link et al., 2003). 

2.5 Knee Osteoarthritis Risk Factors 

The current ageing population in the UK and the lack of a cure for OA mean the prevalence of 

OA is rising over time resulting in increased costs; both financially and also in terms of 

reducing the quality of life (QoL) of patients (Felson et al., 2000). It is therefore paramount 

that risk factors are identified (Felson et al., 2000) aiding early diagnosis of OA. An 

understanding of symptoms, together with early OA diagnosis, and the development of 

effective and reliable interventions are vital to treat and manage this debilitating condition 

(Felson et al., 2000). 

A combination of systemic and local biomechanical factors contributes to OA of the knee joint 

(Felson et al., 2000). The systemic factors establish the foundation for cartilage properties and 

quality, whereas local biomechanical factors have a critical influence on the final qualities and 

properties of articular cartilage, its wellbeing, or deterioration (Cooper et al., 2000). Therefore, 

local biomechanical factors establish both the site and severity of OA (Cooper et al., 2000, 

Felson, 2000, Haara et al., 2003). Table 2.1 depicts common systemic and biomechanical risk 

factors for knee OA. 
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Table 2.1: Risk factors for knee osteoarthritis, modified from Felson, (2000). 

Systemic Factors Local Biomechanical Factors 

Age Obesity 

Gender Joint Injury 

Ethnic Characteristics Joint Deformity 

Bone Density Sports Participation 

Oestrogen Replacement Therapy (post-

menopausal females) 

Muscle Weakness 

 

Nutritional Factors Lower Limb Mal-alignment 

Genetic  

Predisposition 

External Knee Adduction Moment (EKAM) 

Osteoporosis Coronal Plane Knee Joint Laxity 

Other Systemic Factors Proprioception deficits 

 

2.5.1 Systemic Risk Factors 

The following systemic factors are reviewed here briefly, as the majority of these are non-

modifiable: 

Age – Knee OA prevalence increases with age, meaning elderly people are much more likely 

to suffer from knee OA than younger people (Felson et al., 1987, Buckwalter et al., 2004, 

Heidari, 2011, Peat et al., 2011, Johnson et al., 2014). 

Gender – Knee OA is overall more common in women than in men; however these trends vary 

with age (Kohatsu and Schurman, 1990, Felson et al., 1997, Johnson et al., 2014). Knee OA is 

more common in women aged over 55 years and more common in men before the age of 50 

(Felson et al., 2000, Silman and Hochberg, 2001, Heidari, 2011). 

Hormonal (oestrogen) – Deficiency of the hormone oestrogen in post-menopausal women 

dramatically contributes to knee OA due to oestrogens regulating effect on bone metabolism 

(Nevitt and Felson, 1996, Johnson et al., 2014). However, pre-menopausal women also have 

an increased risk of knee OA as the hormone oestrogen causes an increase in bone mass, 

therefore increasing the loading on the knee joint and the articular cartilage (Nevitt and Felson, 

1996). 
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Osteoporosis and Bone Density – Low bone density is associated with a decreased risk of knee 

OA due to the reduced load on the knee joint. However, the presence of osteoporosis and bone 

resorption in bones surrounding an arthritic knee joint is correlated with progressive knee OA 

(Bettica et al., 2002). 

Ethnicity – The risk of OA is greater among populations of African American and Chinese 

descent when compared to the risk faced by non-Hispanic white women (Anderson and Felson, 

1988, Kington and Smith, 1997, Felson and Zhang, 1998, Zhang et al., 2001). The cause of 

this increased risk is unknown, but could be influenced by environmental factors surrounding 

these individuals and also local factors, such as nutritional intake and obesity (Zhang et al., 

2001). 

Genetic Factors – Genetic elements, specifically cartilage oligomeric protein genes can cause 

an increase in the incidence of knee OA after an injury has taken place in the knee joint 

(Loughlin, 2003). 

Biochemical Markers – The presence of certain biochemical markers, particularly cartilage 

oligomeric matrix protein when present in the synovial fluid and urine identifies those at high 

risk of developing knee OA (Felson et al., 2000). Bone turnover markers (serum OC and CTX-

I), cartilage and synovial tissue turnover were identified as being in decline in patients with 

knee OA when compared with controls. Measuring these markers is a valuable method of 

identifying the progression of OA (Garnero, 2001). 

Nutritional Factors – Dietary intake of antioxidants, for example ascorbic acid (vitamin C), 

lycopene and beta-carotene have been identified as reducing the progression of knee OA due 

to their ability to contribute towards collagen production, however a high intake of antioxidant 

nutrients does not decrease the risk or incidence of developing knee OA (McAlindon et al., 

1996).  

Clinically diagnosed deficiency of vitamin K increases the risk of progressing knee 

osteoarthritis and cartilage lesions due to the role of vitamin K in the regulation of bone and 

cartilage mineralisation (Neogi et al., 2006, Misra et al., 2013).  

Additionally, low dietary intake or low serum levels of calciferol (vitamin D) may have 

significant consequences on the development of knee OA in patients, particularly those with a 

low body mass index (BMI), leading to an increase in the incidence and progression of the 

disease, due to the role of calciferol in several aspects of bone and articular cartilage 
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metabolism with low serum levels of calciferol predicting loss of joint space and increased 

osteophyte growth within the diseased knee joint (McAlindon et al., 1996, Felson et al., 2007, 

Johnson and Hunter, 2014). Conversely, randomised controlled trials have identified the 

relationship between knee OA and vitamin D to be somewhat conflicted, concluding that no 

cartilage loss is present in subjects with low levels of vitamin D (McAlindon et al., 2010). 

Further studies are necessary in order to achieve an enhanced understanding of the association 

between knee OA and dietary factors.  

The majority of systemic risk factors are non-modifiable and therefore it is paramount that 

modifiable risk factors are investigated through biomechanical factors. 

2.5.2 Local Biomechanical Risk Factors 

Obesity – There is considerable evidence indicating that the increased load on the knee joint 

due to an obese individual’s elevated body mass is a major risk factor of knee OA leading to 

antedated development of the disease, and causing an increased risk of radiographic knee OA 

progression (Cooper et al., 2000, Silman and Hochberg, 2001, Felson, 2004, Zhang and Jordan, 

2010, Aaboe et al., 2011, Heather et al., 2012, Muraki et al., 2012, Johnson and Hunter, 2014, 

Murphy et al., 2016), with a single-limb stance phase of a normal gait cycle showing the force 

through the knee to increase by 2-3lbs for every 1lb increase in body weight (Felson et al., 

2000). This can lead to cartilage breakdown, ligamentous malfunction and knee instability due 

to increased joint loading (Felson et al., 2000, Aaboe et al., 2011).  

A study by Cicuttini et al., (1996) identified the risk of knee OA to increase by 9-13% for every 

2 pound increment in body weight. Likewise, a meta-analysis by Jiang et al., (2012) identified 

a 35% increased risk of knee OA for every 5-unit increase in body mass index (BMI), 

additionally, Messier et al., (2005) identified that for each unit of weight loss, a four unit 

reduction in knee joint forces was observed during walking in overweight and obese individuals 

with knee OA, and with each 1kg of weight loss, a 1.4% reduction in the knee adduction 

moment was achieved, meaning a dose-response relationship can be identified between the risk 

of knee OA and obesity, particularly in females and weight loss resulting in a reduction of load 

exerted on the knee joint per step, accumulating each day gives a clinically meaningful 

reduction, and benefits to the individual (Messier et al., 2005).  

Consequently, weight loss is advocated as an ideal first treatment for overweight and obese 

individuals with knee OA as it has been reported to yield clinically significant improvements 
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in knee joint function and activity, and reductions in pain and inflammation, therefore reducing 

the disability of overweight and obese individuals with knee OA (Messier et al., 2000, Messier 

et al., 2004, Christen et al., 2005, Messier et al., 2005, Miller et al., 2006, Zhang et al., 2009, 

Messier et al., 2010, Richette et al., 2010, Aaboe et al., 2011, Heather et al., 2012).  

Various methods of achieving weight loss and a subsequent reduction in the BMI of overweight 

and obese individuals with knee OA are available, with the most common methods involving 

combinations of energy deficit controlled diets, and exercise. Although, exercise can be 

difficult for individuals with knee OA due to pain, disability and reduced knee function, 

particularly if they are older and are of a higher BMI, and adherence to exercise and diet 

prescriptions can be difficult to control and ensure, a high number of studies have reported 

successful outcomes of trials using diet and exercise to reduce individuals weight for the 

treatment of knee OA (Messier et al., 2000, Messier et al., 2004, Christen et al., 2005, Messier 

et al., 2005, Miller et al., 2006, Zhang et al., 2009, Messier et al., 2010, Richette et al., 2010, 

Aaboe et al., 2011, Heather et al., 2012).  

A study by Messier et al., (2010) examined weight loss in knee joint loads during walking in 

participants with knee OA, and reported that a 10% reduction in weight in overweight and 

obese participants led to a reduction in knee joint compressive forces during walking, compared 

to a non-weight loss group. The difference in knee joint compressive forces is mostly due to 

reductions in hamstring muscle co-contraction during early stance phase, similarly, an 

additional study by Messier et al., (2004) found that modest weight loss combined with 

moderate exercise led to better improvements in knee function, pain, and performance 

compared to either intervention alone.  

Likewise, Christensen et al., (2005) also examined the effects of a diet induced 10% reduction 

in body weight and concluded the 10% reduction resulted in 28% improved function of the 

knee joint. A 16 week intensive combination treatment consisting of a hypo-energetic diet and 

nutritional education conducted by Aaboe et al., (2011) in overweight and obese individuals 

with knee OA aimed to reduce body mass by at least 10%. The average weight loss achieved 

by participants was 13.7kg from baseline weight. Weight loss was found to significantly reduce 

knee joint loads during walking, however as weight decreased walking speed increased which 

caused an interference in the reduction of joint loads. Each kilogram of weight loss reduced the 

peak knee joint load by 2.2kg (a reduction factor of 2.2), and the EKAM reduced by 12% 

(Aaboe et al., 2011).  
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Miller et al., (2006) reported similar findings after conducting a trial involving intensive weight 

loss in older, obese and overweight individuals concluding that greater improvements were 

observed in those with the highest percentage of weight loss. 

A reduction of two units of BMI in obese women with symptomatic knee OA was found to 

decrease the risk of developing knee OA by 50% (Felson et al., 1992). Similarly, the 

Framingham study states a weight loss of 5kg delivers a 50% reduction in the risk of developing 

knee OA (Felson et al., 1992). 

Weight loss is therefore an excellent short term investment in terms of biomechanical joint 

loading, knee function and pain for patients with knee OA and obesity (Aaboe et al., 2011). 

Obesity is increasing in prevalence and therefore it is likely that a large number of individuals 

will be affected by knee OA in the future (Johnson and Hunter, 2014). Heather et al., (2012) 

advocates the screening of individuals who are at risk of developing knee OA at an early age, 

and the education of individuals and their family members, as weight loss and maintenance can 

reduce the exposure of load bearing joints to obesity induced stress to ensure successful long 

term disease prevention. 

Joint Injury and Previous Lower Limb Injury – The knee joint is one of the most commonly 

injured joints, and those who have a history of knee injury have a moderate to strongly 

increased risk of knee OA symptoms, and radiographic symptoms (Silman and Hochberg, 

2001, Zhang and Jordan, 2010, Muraki et al., 2012, Johnson and Hunter, 2014, Murphy et al., 

2016). Previous lower limb injury, such as anterior cruciate ligament (ACL) rupture (often 

considered the most significant lower limb injury concerning knee OA) may cause synovitis 

and knee joint instability, and is often accompanied by damage to subchondral bone, articular 

cartilage, the menisci, and collateral ligaments (Slauterbeck et al., 2009). An injured and non-

functional ACL causes alterations in the static and dynamic loading of the affected knee joint 

initiating changes in the joint cartilage and therefore impacting joint loading (Chaudhari et al., 

2008). 

An increased incidence of radiographic knee OA was identified in women who had experienced 

an ACL tear through sport injury (Lohmander, 1994). The tissue damage leading to knee OA 

is thought to be due to the large forces required to injure the ACL (Buckwalter, 2002). 

Unfortunately, most patients with ACL tears are aged 30 years or less, leading to an early onset 

of knee OA, usually between the ages of 30-50 years of age, which in turn leads to a reduced 
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quality of life (Lohmander et al., 2007, Friel and Chu, 2013). Knee joint changes indicative of 

knee OA and functional disability can be identified as early as ten years after the initial injury 

to the knee joint (Lohmander et al., 2007, Slauterbeck et al., 2009). 

Traumatic meniscal tears and articular cartilage damage as a result of injury are strongly 

correlated with the onset and development of knee OA (Johnson and Hunter, 2014), and 

therefore it can be stated that knee and other lower limb injuries often lead to an increased risk 

of early onset knee OA in individuals (Johnson et al., 2002, Friel and Chu, 2013). 

Muscle Weakness – The quadriceps femoris works to decelerate the lower limbs during 

movement, provide dynamic joint stability, and absorb limb loading. Consequently, it has been 

hypothesised that quadriceps femoris weakness could play a role in the onset and progression 

of knee OA (Bennell et al., 2013, Johnson et al., 2014). Discrepancies in muscle strength, 

activation and proprioception of the quadriceps and gluteus medial muscles often occur as a 

result of knee OA and are continuously identified in individuals afflicted with knee OA within 

the literature, postulated to be due to pain avoidance disuse of the lower limbs (Slemenda et 

al., 1998, Lewek et al., 2004, Segal and Glass, 2011, Johnson et al., 2014,), thought to be due 

to the failure of voluntary activation of muscles, with knee OA patients demonstrating 

significantly lower quadriceps strength relative to body mass index (BMI) than a group of 

control subjects (Lewek et al., 2004).  

A study by Slemenda et al., (1998) concluded that reduced quadriceps strength relative to body 

weight could possibly be a risk factor for knee OA in women. Likewise, Ikeda et al., (2005) 

identified significant reductions in the size of the quadriceps cross-sectional area in women 

with knee OA, compared with age and body mass matched healthy women. Muscle atrophy 

was identified in individuals with knee OA in a number of studies (Slemenda et al., 1997, Fink 

et al., (2007), Petterson et al., (2008) and therefore it can be assumed that muscle weakness 

associated with knee OA may be due to the loss in the muscle cross sectional area (Fink et al., 

2007, Petterson et al., 2008).  

Quadriceps muscle weakness has been reported as possibly causing the risk of structural 

damage to the lower limbs to increase, with a study by Slemenda et al., (1997) finding a 29% 

and 20% reduction in the risk of developing both symptomatic and radiographic knee OA for 

every 5kg increase in extensor strength respectively. Exercise is advocated as a means of 

improving muscle function, particularly strength, and has been reported to result in reduced 

pain and improved function in individuals with knee OA (Bennell et al., 2013). Exercise can 
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be difficult to adhere to however, due to the symptoms experienced by individuals with knee 

OA and also due to the fact that those who suffer from knee OA are usually of an older age.  

Abnormal Lower Limb Biomechanics – Lower limb mal-alignment, joint laxity, reductions in 

proprioception (often due to old age), and increased load on the knee can lead to alteration of 

normal knee biomechanics (Miyazaki et al., 2002, Johnson and Hunter, 2014). Sharma et al., 

(2001) identified a strong association between varus and valgus mal-alignment of the lower 

limbs and knee joint and the increased risk of developing medial and lateral knee OA, leading 

to progression. Medial progression of knee OA was identified to be four times more likely in 

individuals with varus alignment, whereas lateral progression of knee OA was found to be five 

times more likely in individuals with valgus alignment (Cerejo et al., 2002, Johnson and 

Hunter, 2014). Although some subjects with healthy knees have displayed varus mal-alignment 

in their lower limbs, varus knee alignment is considered to be one of the most useful factors in 

determining a high knee adduction moment (Barrios et al., 2011). Varus malalignment can 

increase a person’s risk of developing knee OA (Moreland et al., 1987, Sharma et al., 2001), 

and no study to date has reported the slowing of knee OA disease progression when the 

malalignment is corrected (Johnson and Hunter, 2014). 

Repetitive Joint Stress – Various activities involving continuous squatting, kneeling, and 

bending positions and the lifting of heavy loads can increase a person’s risk of development 

knee OA (Croft et al., 1992, Cooper et al., 1994, Messier et al., 2009). These activities are 

often related to occupation, or sports participation (for example skiing and football) (Kujala et 

al., 1995, Coggon et al., 2000, Gaudreault et al., 2012).  

Hansen et al., (2012) states physical activity may be detrimental if it places excess load on the 

knee joint, despite the recognised benefits of conditioning and strengthening the periarticular 

muscles to aid joint stabilisation, leading to disease progression. The recent review by Hansen 

et al., (2012) acknowledged that no relationship existed between running, high volume running 

and knee OA in the general population, suggesting that without injury in the knee joint, there 

is no increased risk of developing knee OA due to running. In contrast, an association was 

found to exist between elite level athletes and knee OA development, due to the highly 

repetitive nature of certain sports, intense training demands, and the high impact on the knee 

joints, when compared to non-elite sports participants (Hunter and Eckstein, 2009). The elite 

athletes had a higher incidence of knee joint and lower limb injury, so it is unknown if the 

association is due to sports participation, or injury, with studies by Von Porat et al., (2004) and 
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Lohmander et al., (2004) establishing the onset of knee OA in football players to be caused by 

knee injury, rather than due to repetitive stress caused by training loads.  

These systemic and local biomechanical factors can result in a deleterious varus angulation 

deformity present in patients with medial compartment knee OA which increases or changes 

loading patterns on the medial compartment of the knee causing damage to the articular 

cartilage and subchondral bone (Fang et al., 2006). The progression of knee OA may also be 

exacerbated by previous injuries to the knee joint and ligaments, varus malalignment and 

proximal muscle weakness, all of which are considered to increase the force transmitted by the 

medial compartment of the knee (Shelburne et al., 2008). Knee OA poses a substantial burden 

on public health, and of the modifiable risk factors discussed above, to date, only obesity and 

the avoidance of knee joint injury are accompanied by sufficient evidence to support 

intervention (Johnson and Hunter, 2014). Therefore, there is a requirement for further 

epidemiological studies in order to prevent the onset and progression of knee OA, and also pain 

and function related to knee OA.  

2.6 Pathogenesis of Knee Osteoarthritis 

Knee OA affects both the articular cartilage and underlying bone of the knee joint. Articular 

cartilage is produced by cartilage cells (chrondrocytes), which form a thin layer consisting of 

collagen and proteoglycans which covers the surface of all joints. The integrity of this layer is 

imperative for the cartilage to correctly perform its function of distributing the load across the 

knee, and reducing friction (Ryu et al., 1984).  

Knee OA instigates in areas of the joint which are continuously exposed to high and repetitive 

loading (Miyazaki et al., 2002, Amin et al., 2004), such as areas of the tibial condyle which 

are not protected by the menisci and the vertical ridge of the patella (Ryu et al., 1984). In knee 

OA patients, proteolytic degradation of the layer of collagen and proteoglycans occurs and 

chondrocyte activity increases, therefore resulting in morphological changes to the cartilage, 

such as softening, fibrillation, fissuring, ulceration and finally loss of the femoral and tibial 

articular cartilage (Wluka et al., 2002, Heinegard et al., 2003).  

Knee OA patients lose approximately 5% of their tibio-femoral articular cartilage annually 

(Wluka et al., 2002, Johnson and Hunter, 2014). The medial compartment of the knee is most 

commonly affected by OA, more so than the lateral compartment by 10-fold (Ahlbäck, 1968, 

Felson et al., 2002,  Mundermann et al., 2008, Jones et al., 2015) perhaps due to the decreased 
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thickness of the articular cartilage on the medial compartment compared to the lateral 

compartment, but mainly because of its high load bearing capacity, with the peak load on the 

medial compartment almost 2.5 times higher than the peak load on the lateral compartment 

(Prodromos et al., 1985, Schipplein and Andriacchi, 1991, Cicuttini et al., 2002, Mundermann 

et al., 2008, Jones et al., 2015) and also, due to the line of gravity and the ground reaction force 

passing medially to the knee joint in the frontal plane during walking, creating a moment 

causing adduction of the tibia relative to the femur (Schipplein and Andriacchi, 1991). 

Knee OA has no sudden onset, and is characterised by a gradual process of joint changes and 

symptoms, often making it difficult to diagnose (Barrios et al., 2009). The pathogenesis of knee 

OA requires further investigation and currently the disease is usually only detectable after 

irreversible joint damage of both cartilage and bone has taken place (Fang et al., 2006). This is 

evident in morphological joint changes, such as; loss of knee joint (hyaline) cartilage, meniscal 

maceration, loss of joint space (joint space narrowing), thickening of subchondral bone and 

osteophyte growth indicating extrusion (Brandt, 2003, Burr, 2003, Englund, 2010). Knee joint 

space narrowing contributes to capsular and ligament laxity which is characterised by 

progressive softening and breakdown of articular cartilage and eventually bone at knee joint 

margins, apoptosis of chondrocytes (breakdown of cartilage cells), muscle weakness around 

the joint leading to joint instability and deformity, and bony sclerosis (Cooke et al., 1994, 

Brandt et al., 1998, Kean et al., 2004). 

Knee OA also leads to inflammation of the joint, caused by repetitive stresses (synovitis) where 

the synovium and chrondrocytes produce cytokines that degrade the activity of the 

chrondrocytes (Abramson, 2004). Figure 2.2 illustrates the changes in the knee joint in patients 

with knee OA. 
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                                                     Figure 2.2 OA Knee Joint (Schultz, 2011). 

Knee OA is characterised by knee pain, which is known to increase with activity and reduce 

with rest. Joint swelling and stiffness after rest (especially in the mornings) and reduced ROM 

are also typical symptoms of knee OA (Bijlisma and Khahr, 2007). It is not the breakdown of 

the joint cartilage that causes pain in OA, as cartilage does not have a nerve supply, but rather 

pain is caused by repetitive stresses resulting from the reduction in cartilage, affecting the other 

structures of the joint, including the subchondral bone, ligaments, joint capsule, periosteum 

and synovium (Kidd et al., 2004). Therefore, the increased repetitive stress and load on these 

structures (other than the cartilage) cause the pain, and not the reduction in cartilage itself (Kidd 

et al., 2004).  

Pain is considered the source of functional decline in knee OA, often leading to muscle 

weakness and atrophy (Baker et al., 2004). Pain commonly increases as the disease progresses 

(Miyazaki et al., 2002) and often leads to a decrease in the patients activity levels (Fransen et 

al., 2001) causing them to become more dependent on others in their daily life (Felson et al., 

1987). 

A number of approaches can be utilised in order to reduce pain experienced as a result of knee 

OA, but firstly an understanding of the factors and changes which initiate pain resulting from 

knee OA must be gained. Alterations in the biology and biomechanics of the lower limbs can 

cause and be caused by medial compartment knee OA (Andriacchi et al., 2009, Hsu et al., 

2015). 
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2.7 Biological Consequences of Medial Compartment Knee OA 

A number of biological variations can be identified between healthy knee joints and knee joints 

affected by knee OA. It is well known that OA occurs when the dynamic equilibrium between 

the breakdown and repair of joint tissues cannot be maintained. The treatment of OA therefore 

requires knowledge and understanding of the conditions and events that contribute to the 

development of OA, as well as the structure and function of synovial joints (Garstang and 

Stitik, 2006). 

The effects of walking mechanics are an important factor in the initiation and progression of 

osteoarthritis, and have been widely reported within the literature. Knee cartilage is conditioned 

to loading and also to the large number of repetitive cycles of loading that occur during 

activities such as walking, as identified by Andriacchi et al., (2009) after investigating the 

effects of walking mechanics on healthy and diseased knee cartilage using magnetic resonance 

imaging (MRI). Andriacchi et al., (2009) compiled 3D thickness models of knee joint cartilage, 

investigating the relationship between kinematics and kinetics of the knee during walking, and 

the maintenance of cartilage health. Andriacchi et al., (2009) reports that from a biological 

context, healthy cartilage homeostasis is achieved as long as there are no changes to normal 

mechanics (including load variance and kinematics), the structure of the knee joint, and 

cartilage biology, which can be caused by the incidence of injury and other conditions, such as 

an increase in body mass index (BMI) (Andriacchi et al., 2009). 

Healthy cartilage is thickest is in the load bearing areas of the tibiofemoral articulation, which 

are usually in contact during the stance phase of the gait cycle, with the knee positioned near 

full extension. MRI of healthy knees indicates that the tibial and femoral condyles are thicker 

in the posterior load-bearing regions of the lateral compartment, which are in contact during 

walking (Andriacchi et al., 2009). The tibial cartilage and femoral cartilage are thicker in the 

anterior load-bearing regions in the medial compartment of the knee. The variation in cartilage 

thickness on the tibia was found to mirror the variation of cartilage thickness on the femoral 

condyles in each compartment of regions where the knee is in contact during walking. 

Additionally, Andriacchi et al., (2009) identified that the anterior to posterior asymmetry in 

cartilage thickness between the lateral and medial compartments of the knee joint was 

consistent with typical patterns of internal-external rotation motion of the knee during walking. 

Therefore, load patterns during walking have a considerable effect on the general 

characteristics and health of cartilage and also on the regional variation of cartilage thickness 

in the thickest load bearing areas of the knee joint. Furthermore, individual differences in local 
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load magnitudes can influence cartilage thickness within a specific load bearing region of the 

joint (Andriacchi et al., 2009). Cartilage thickness variation throughout regions of the knee 

joint has recently been related to the collagen organisation and chondrocyte morphology 

present in the central (not covered by the meniscus) and peripheral (covered by the meniscus) 

regions of the superficial zone of the tibial plateau of the articular cartilage, which vary 

significantly between regions (Andriacchi et al., 2009). 

The magnitude of the peak adduction moment during normal walking has been associated with 

medial and lateral cartilage thickness in the load bearing regions of the knee joint during 

walking. The thickness of the medial knee joint cartilage increases with the magnitude of the 

adduction moment in healthy cartilage, suggesting that healthy cartilage can adapt to higher 

repetitive loads during walking by increasing cartilage thickness in different regions. Knee OA 

patients have a relative decrease in cartilage thickness in the load-bearing regions of the medial 

compartment of the knee joint, and a higher adduction moment. The relationship between the 

higher adduction moment and thinner cartilage in patients with knee OA is consistent with the 

literature, suggesting that the adduction moment during walking can be predictive of the 

clinical outcome of treatment, disease severity, and disease progression of medial compartment 

knee OA (Andriacchi et al., 2009).  

Load on the knee joint can lead to an adaptive response (thickening and enhanced mechanical 

properties) within the knee joint cartilage. Considering the negative response of osteoarthritic 

cartilage to load compared to the positive response of healthy cartilage to load, it seems that 

degraded cartilage cannot adapt to repetitive loads during walking on a cellular level, and 

therefore degrades at a higher rate, caused by higher loads of the knee joint during walking. 

Altered contact mechanics in the newly loaded regions of the knee joint may lead to local 

degenerative changes in the articular cartilage. Cartilage in highly loaded areas of the knee 

joint indicates mechanical adaptations when compared to underused areas, in which signs of 

fibrillation can be observed even in healthy knees in relatively young subjects. Alterations in 

mechanics could therefore cause the shifting loads on to areas of cartilage that may respond 

poorly and fail to adapt well to increases in load, leading to degenerative changes in the knee 

joint. However, Griffin and Guilak (2005) state that ‘the degeneration of articular cartilage 

leading to knee osteoarthritis is complex, involving interconnected biological, mechanical, and 

structural pathways, including a kinematic change in loading patterns during walking, of 

sufficient magnitude (due to injury, increased laxity, neuromuscular changes, or obesity) to 

transfer load to areas of knee cartilage that are not conditioned to chronic loading during 
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walking, causing degradation and negative response to load, resulting in the rapid progression 

of knee OA’ (Griffin and Guilak, 2005).  

Griffin and Guilak (2005) suggest that an imbalance between the anabolic and catabolic 

activities of chondrocytes is a key characteristic of knee OA, and therefore, alterations in 

cellular metabolism may contribute to the onset and progression of the disease. Articular 

cartilage can alter its structure and composition to accommodate the physical demands of the 

body, however has a limited ability for self-repair, due to the avascular nature of the tissue, 

which is also aneural, alymphatic, and with sparse cell population. The components of the 

extracellular matrix (ECM) slowly regenerate, and homeostasis is maintained by the catabolic 

and anabolic events of chondrocytes. Such activities are controlled by both genetic and 

environmental information and factors (for example, growth factors, cytokines, and ECM 

composition) (Griffin and Guilak, 2005). 

The normal synovial joint consists of subchondral bone, articular cartilage, the synovial 

membrane, synovial fluid, and the joint capsule, supported by the periarticular muscles, 

tendons, and ligaments, ensuring proper joint function (Garstang and Stitik, 2006). Articular 

cartilage, supported by subchondral bone and metaphyseal trabecule forms the articular 

surface. Articular cartilage has a number of roles in the normal joint, including friction 

reduction, shock absorption, and the spread and transmission of weight loads to the underlying 

bone. Articular cartilage is composed of an extracellular matrix and chondrocytes. The 

extracellular matrix is composed mainly of water (65–80% by weight), collagen, and 

proteoglycans. The other constituents of cartilage are type 2 collagen (10–20%), proteoglycans 

(4–7%), and cellular elements and proteins (1–10%) (Garstang and Stitik, 2006). 

Proteoglycans have a protein core and one or more glycosaminoglycan side chains. 

Chondrocytes are the only cells of the articular cartilage, located throughout the extracellular 

matrix. Cartilage is avascular, and therefore the chondrocytes receive nutrients and eliminate 

waste by diffusion through the synovial fluid and by facilitated imbibition. The subchondral 

bone also plays a role in normal joint protection. The deepest layer of cartilage is calcified and 

attached to the subchondral bone plate (cortical end plate). The cartilage and bone are 

interdigitated at their interface, which serves to transform shear forces into tensile and 

compressive stresses. Subchondral bone can attenuate about 30% of the loads through the joint, 

whereas articular cartilage attenuates only 1–3% of load forces (Garstang and Stitik, 2006). In 

addition to its shock-absorbing function, the subchondral bone plays a supportive role in 
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maintaining the joint environment, containing bone marrow and trabecular bone, end arteries 

and veins. The subchondral bone has marked porosity, with vessels penetrating the calcified 

cartilage zone, which helps provide nutrients to the cartilage, and facilitates the removal of 

metabolic waste products. The synovial membrane also provides protection to the joint, 

consisting of a thin synoviocyte layer, which forms synovial fluid by plasma ultrafiltration, 

producing hyaluronate. Synovial fluid is viscoelastic (providing shock absorption and friction 

reduction), provides a barrier for inflammatory cell and debris movement within the joint, and 

shields articular nociceptors from inflammatory mediators (Garstang and Stitik, 2006). 

Pathological changes present in knee OA include fibrillations and loss of the articular cartilage, 

and thickening and remodelling of the subchondral bone, also, loss of joint space. It is still 

unclear whether cartilage and bony changes occur concomitantly or whether one tissue is 

involved before the other. However, OA typically progresses to involve many or all the of 

tissues that form the synovial joint, including the articular cartilage, subchondral bone, synovial 

tissue, ligaments, joint capsule, and muscles that act across the joint. In the early stages of OA, 

fibrillation and irregularities of the superficial zone of the articular cartilage develop and extend 

into the transitional zone. After this, focal regions of cartilage loss with clefts and fissure 

develop, along with changes in the deepest layer of cartilage, the calcified cartilage layer. In 

late-stage OA, the loss of articular cartilage may be of full thickness, and the bone may become 

exposed. One of the first pathologic signs of bony involvement in OA is the formation of new 

extra bone on trabeculae in the subchondral bone. Articular cartilage degeneration is 

accompanied by subchondral sclerosis, formation of cyst like bone cavities, and development 

of osteophytes. The growth of osteophytes accompanies changes in the articular cartilage and 

in subchondral bone in most synovial joints. These fibrous, cartilaginous, and osseous 

prominences usually develop around the periphery of the joints, but may also occur along 

insertions of the joint capsule or protruding from the degenerating joint surfaces. Subchondral 

bone alterations are thought to be a result of abnormal osteoblast function (Garstang and Stitik, 

2006). 

The loss of articular cartilage leads to secondary changes in synovial tissue, ligaments, and the 

muscles that surround the involved joint. Thus, the normal protective role played by muscles 

can be diminished by these secondary effects because decreased use of the joint and decreased 

range of motion may lead to muscle atrophy, with concomitant loss of joint protection. On a 

cellular level, OA is thought to represent an imbalance between the destructive and reparative 

or synthetic processes of the articular cartilage (Huber et al., 2000, Garstang and Stitik, 2006). 
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The mechanisms responsible for progressive loss of cartilage in OA include alteration of the 

cartilage matrix, decline of the chondrocytic synthetic response, and progressive cartilage loss. 

Early changes in the cartilage include an increase in the water content, and progressive disease 

is marked by loss of the extracellular matrix (Huber et al., 2000). Initially, chondrocytes 

multiply and become metabolically active. They also produce increased quantities of collagen 

and proteoglycans, but the quality is abnormal. The type II collagen fibers in the osteoarthritic 

cartilage are smaller than normal, and the normally tight weave in the midzone becomes 

distorted (Huber et al., 2000). In addition, with advancing disease, the proteoglycan 

concentration decreases to 50% or less. As the disease worsens, less aggrecan is present and 

the glycosaminoglycan chains become shorter. These cartilage matrix changes lead to 

increased matrix permeability and decreased matrix stiffness, which then predisposes the joint 

to further damage. Failure of chondrocytic responses to restore or maintain tissue leads to loss 

of articular cartilage accompanied or preceded by a decline in chondrocytic response. This 

decline leads to the last step in the development of OA. OA is considered a non inflammatory 

arthritis, but there is evidence that as the cartilage destruction proceeds, changes in the joint 

occur that are associated with inflammation. The synovial membrane may have mild to 

moderate inflammatory reaction, which is thought to be partly attributable to the inflammatory 

effects of loose fragments of articular cartilage in the synovial fluid Meyers et al., 1992, Huber 

et al., 2000, Garstang and Stitik, 2006). Once the synovium is inflamed, the synoviocytes 

produce cartilage-degrading enzymes, such as matrix metallotoproteins, and cytokines, 

including interleukin-1, interleukin-6, and tumor necrosis factor alpha. These stimulate the 

chondrocytes to produce more degrading enzymes. Enzymatic degradation contributes to 

further decreased cartilage volume (Guilak et al., 2004). In addition to the catabolic processes 

described above, potent inflammatory mediators are also released into the joint. Additionally, 

joint impact has been shown to cause upregulation of arachadonic acid, interleukin-1, tumor 

necrosis factor-alpha, and matrix metallotoprotein-3, even in the absence of fracture (Pickvance 

et al., 1993). Thus, it is likely that a variety of stimuli trigger the events that lead to joint 

destruction after trauma and to OA in general (Garstang and Stitik, 2006). 

Vincent et al., (2012) Alterations in patterns of knee kinematics cause a shift from normal 

articular contact areas to articular areas that are infrequently loaded. Aberrant loading of these 

areas causes fibrillation of the collagen network, loss of matrix proteoglycans, increased 

surface friction, increased shear stress, upregulation of catabolic factors (e.g., matrix 

metalloproteinases and interleukins), and ultimately cartilage degradation (Andriacchi et al., 
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2004, Andriacchi et al., 2006, Andriacchi et al., 2009). ACL injury, ligament laxity or stiffness, 

decreased muscle strength, and altered muscle activation patterns can alter normal joint 

kinematics (Andriacchi et al., 2004, Andriacchi et al., 2006, Andriacchi et al., 2009, Vincent 

et al., 2012). 

The pathogenic role of biomechanical dysfunction in OA is well established (Egloff et al., 

2012). For weight-bearing joints altered loading mechanisms, increased mechanical forces and 

changed biomechanics are significant contributing factors for initiation and progression of OA. 

Thus, OA is a disease of the whole joint, including muscles, tendons, ligaments, synovium and 

bone, with a multifactorial etiology, including increased mechanical stress, ligament 

derangements, cartilage degradation, subchondral bone changes and muscular impairments. 

Furthermore, secondary synovial inflammation plays a role in OA, notably in the early stage. 

Epidemiological studies of the last decades tried to define risk factors such as age, genetic 

predisposition, obesity, joint congruency, increased mechanical stress and greater bone density. 

OA may evolve as a consequence after an antecedent incidence, such as intraarticular fractures 

and ligament lesions, systemic diseases like rheumatoid arthritis, hemochromatosis, 

haemophilia, or post infectious arthritis, or as a result of a congenital or developmental 

anatomic abnormality. OA occurs when the dynamic steady state between destructive forces 

and repair mechanisms destabilises the joint homeostasis (Andriacchi et al., 2004, Andriacchi 

et al., 2006, Andriacchi et al., 2009, Vincent et al., 2012, Egloff et al., 2012). 

Muscle atrophy can cause OA, but is also seen as a consequence of OA. Synovitis with 

secretion of proinflammatory cytokines into the joint space correlates with pain and 

radiological progression. Cartilage degradation is the hallmark of OA. Subchondral bone 

pathology is also observed in OA, ultimately leading to osteosclerosis. Currently it is not clear 

whether subchondral bone changes occur as cause or consequence of cartilage damage 

(Andriacchi et al., 2009, Vincent et al., 2012, Egloff et al., 2012). Other contributing factors 

are muscle weakness and somatosensory deficits which are consistently accompanied by OA. 

Muscle weakness is one of the first and most frequent symptoms in OA. However, while 

muscle weakness and atrophy accompanies OA it is still not clear whether it is caused by OA 

or precedesit. Muscle weakness is linked to to narrowing of joint space, increased knee pain 

and elevated development of OA in elderly women. Furthermore, decreased isokinetic 

quadriceps muscle strength in women have been found to be an indication of increased lower 

limb loading during the gait cycle. Joint inflammation is a well-recognised feature of OA, 

notably in the early stage. Inflammation in OA can be triggered by malalignment, overuse, 
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trauma, crystal formation, trauma or idiopathy. Pathobiologically, synovitis leads to the 

secretion of pro inflammatory cytokines such as tumor necrosis factor (TNF) –alpha, 

interleukin (IL)-1 or 6. This impaired cytokine balance in the synovial fluid leads to the 

induction of proteinases such as metalloproteinases or aggrecanase with subsequent cartilage 

degradation and an inflammatory reaction once the fluid has contact with the subchondral bone, 

for example, by subchondral cyst formation. The current consensus based on in-vitro 

mechanical loadings experiments is that injurious compression leads to proteoglycan depletion, 

destruction of the collagen network and cartilage degradation (Punzi et al., 2010). In response, 

proinflammatory products are released and are postulated to activate the synovium and to cause 

synovitis (Selam and Berenbaum, 2010, Goldring et al., 2011, Egloff et al., 2012). 

Biology and biomechanics of knee OA are related, and the contribution of biomechanical 

factors to aetiology, pathogenesis and to disease progression require further research in order 

to reduce the enormous socioeconomic and personal impact of this disease (Vincent et al., 

2012, Egloff et al., 2012). Similarly, Andriacchi et al., (2009) states that the mechanics of 

walking can play an important role in the consideration of new methods for prevention and 

treatment of osteoarthritis. 

Biological changes present in knee OA are linked to the biomechanics of knee OA (Vincent et 

al., 2012), new methods of treatment and research are therefore needed. MRI is the most 

accurate and therefore ideal method of viewing biological changes associated with knee OA, 

as utilised within the literature. However, MRI is costly and not accessible to all patients. 

Furthermore, MRI is not widely available for use within clinical or research purposes. X-ray is 

perhaps therefore a more suitable and consequently a more widely used option for the 

investigation and assessment of the presence and severity of knee OA, despite presenting some 

limitations. 

2.8 Biomechanical Changes in Medial Knee OA 

The term ‘biomechanics’ literally means ‘life mechanics’, and describes the science of 

movement of a living body and the effect of forces and motion on bones, muscles, tendons and 

ligaments within that body to produce movement when Newtonian mechanics are applied (Rau 

et al., 2000, Rose and Gamble, 2006). 

Before an understanding of altered biomechanics due to knee OA can be gained, it is imperative 

to firstly understand typical biomechanical features of the normal lower limbs and the normal 

gait cycle. 
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2.8.1 The Normal Gait Cycle 

The term ‘gait cycle’ describes the period of time and events between two footsteps, and 

commences from the heel strike of one foot, ending at the subsequent heel strike of the same 

foot (Perry, 1992). The gait cycle comprises of two phases; phase one consists of stance, where 

the foot is in contact with the supporting surface and phase two, known as swing describes the 

forward swinging motion of the limb losing contact with the supporting surface. The gait cycle 

is divided into four sections: early-stance (0-20% of the gait cycle), mid-stance (21-40% of the 

total gait cycle), late-stance (41-60% of the total gait cycle) and swing phase (61-100% of the 

total gait cycle) (Mundermann et al., 2004).  

The stance phase of gait comprises of approximately 60% of the total gait cycle and allows 

weight bearing and provides stability. There are five individual actions which occur during the 

stance phase: heel strike, foot flat, mid stance, heel rise and toe off (Mary, 1988). The swing 

phase prepares and aligns the foot for the heel strike, ensures the swinging foot clears the floor, 

and provides forward momentum of the leg. The swing phase comprises of approximately 40% 

of the total gait cycle (Mary, 1988). Ground contact commences with the heel strike and 

continues to foot flat during the single limb support and forefoot contact phase (Mary, 1988, 

Perry, 1992). The double support phase concludes with toe-off (Mary, 1988).  

Stance phase and swing phase can be separated into eight phases. These eight phases are as 

follows: Weight acceptance, which allows initial contact and loading response to take place, 

mid and terminal stance, which occur during the single limb support phase, the final phase of 

the stance is pre-swing, which allows the limb to commence the forward motion (Perry, 1992, 

Perttunen, 2002). This forward motion of the limb continues and forms three swing phases. 

The leg accelerates forward due to hip and knee flexion and dorsiflexion takes place at the 

ankle joint during initial swing. The swinging leg is then aligned with the stance limb which is 

at the mid stance phase, during the mid-swing. During terminal swing, the foot is prepared for 

controlled, smooth ground touch using the support of eccentric hamstring muscle activity 

(Mary, 1988, Perry, 1992, Perttunen, 2002).  
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    Figure 2.3 – Graphs showing sagittal angle displacement for the hip, knee and ankle joints during the normal 

gait cycle. 

During a typical gait cycle, external ground reaction forces act on the lower limbs due to the 

foot striking or pushing off from the ground and acceleration or deceleration of the body 

creating moments. A moment can be defined as a turning force created by a force applied at a 

distance from a turning point (Richards, 2008). The use of 3D gait analysis allows better 

understanding of biomechanics and any alterations that may take place in the presence of knee 

OA or other lower limb pathologies (Zeni and Higginson, 2009). Gait speed is an important 

consideration when measuring gait parameters based on the magnitude of the GRF and 

segmental accelerations. More rapid accelerations of the centre of mass of the body may result 

in a higher GRF and higher joint moments, and both healthy and knee OA individuals 

experience increases in joint moments when walking at faster speeds. Similarly, reductions in 

walking speed lead to reductions in knee joint loads (Munderman et al., 2004). Larger joint 

moments are indicative of increased joint loads, and increased joint loads are often implicated 

in the disease progression of medial compartment knee OA (Miyazaki et al., 2002, Lelas et al., 

2003, Mockel et al., 2003, Bejek et al., 2006, Zhao et al., 2007, Zeni and Higginson, 2009).  

Numerous biomechanical alterations are present in knee OA patients, meaning several 

significant changes to the normal gait cycle can be observed. Medial knee OA is associated 

with adjustments to normal biomechanics in gait, balance, muscle strength, and muscle co-

contraction in an attempt to accommodate the condition and decrease pain (Rau et al., 2000). 

The following sub-sections describe and discuss biomechanical alterations in gait, knee joint 

loading, muscle strength, balance and muscle co-contraction, which are evident in knee OA 

patients. 
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2.8.2 Medial Knee Osteoarthritis and Gait 

As mentioned previously, certain alterations exist between the normal gait of healthy 

individuals and the gait of individuals with medial compartment knee OA. Individuals with 

knee OA across varying radiographic severities of the disease have been reported in the 

literature to adopt slower walking speeds. This is associated with; shortened step lengths, larger 

double support times, decreased hip and knee ROM angles, reduced cadence and stride length 

and increased stance times when compared to age matched healthy (non-arthritic) populations 

(Andriacchi et al., 1977, Kaufman et al., 2001, Al Zahrani and Bakheit, 2002, Baliunas et al., 

2002, Messier et al., 2005, Landry et al., 2007). Mundermann et al., (2004) implies that the 

reduction in walking speed observed in knee OA populations to be an adaptation in order to 

reduce the load on the knee joint. 

Individuals with medial compartment knee OA exhibit greater mid stance knee adduction 

moments, decreased stance phase sagittal plane peak knee flexion moments (Lewek et al., 

2004) reduced peak hip adduction moments, and decreased peak hip extension moments when 

compared to individuals in the same age groups (Lewek et al., 2004, Astephen et al., 2008). 

Mundermann et al., (2005) observed secondary gait alterations among knee OA patients 

indicating an adaptive strategy to shift the body’s mass more hastily from the contralateral limb 

to the support limb. This alteration appears successful in reducing the load at the knee in 

patients with mild to moderate knee OA. The overloading of lower extremity joints could 

possibly lead to rapid progression of OA symptoms and the onset of OA in joints contiguous 

to the knee joint (Mundermann et al., 2005). This finding indicates the importance of thorough 

research into possible knee OA interventions. Interventions should be assessed not only on 

their ability in the treatment of OA, but for their effects on surrounding lower limb joint 

mechanics (Mundermann et al, 2005). 

In patients with knee OA, both early stance knee flexion and external rotation moment are 

decreased (Lewek et al., 2004, Childs et al., 2004, Rudolph et al., 2007, Landry et al., 2007, 

Astephen et al., 2008) perhaps due to a more fixed position during heel strike (Childs et al., 

2004), an increase in stiffening assumed in the presence of knee instability (Schmitt and 

Rudolph, 2007), a highly flexed position at initial contact (Childs et al., 2004), quadriceps 

weakness (Fisher et al., 1997), and finally pain (Kaufman et al., 2001). Both early and late 

stance peak knee flexion moments have also been observed as decreasing (Kaufman et al., 

2001, Baliunas et al., 2002, Astephen et al., 2008). In unilateral knee OA, early stance peak 
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knee and hip flexion angles on the OA limb were significantly lower than the angles observed 

on the contralateral side (Briem and Snyder-Mackler, 2009).  

The strategy of reducing knee flexion moments is most likely adopted by knee OA patients as 

a way of reducing forces on the knee joint and therefore reducing pain (Costigan et al., 2002, 

Astephen et al., 2008). The reduction in pain can be attributed to fewer eccentric contractions, 

as decreasing knee flexion moments requires less eccentric contractions during knee extension 

(Kaufman et al., 2001, Mundermann et al., 2005). Astephen et al., (2008) identified the 

maximum knee flexion angle in knee OA patients to be 49.9°, whereas the maximum knee 

flexion angle for healthy subjects was found to be 68.5°, indicating a large variation. 

Nevertheless, mid-stance knee extension moments have presented conflicting outcomes in 

studies of knee OA populations given that they were found to increase (Al Zahrani and Bakheit, 

2002) decrease (Huang et al., 2008) and remain constant (Messier et al., 2005, Mundermann 

et al., 2005) when compared with healthy subjects. Possible explanations for these differences 

in findings could be; variances in walking speed, pain levels experienced and muscle strength.  

The findings of increased mid stance knee extension moments, coupled with an observed 

prolonged biceps femoris activity may be an attempt by knee OA patients to increase stability 

during gait (Al Zahrani and Bakheit, 2002). Knee flexion aids in shock absorption during early 

stance. An increase in walking speed results in surplus forces acting on the knee joint and 

therefore requiring a higher amount of shock absorption in the knee, shifting the knee into 

greater flexion (Winter, 1991). Therefore, lower knee flexion is an adaptive strategy adopted 

by knee OA patients in order to reduce pain and maintain functional activity (Kaufman et al., 

2001). The drawn out mid stance knee extension moment may increase stability during gait 

due to amplified biceps femoris activity (Al-Zahrani and Bakheit, 2002). Conflicting results 

have emerged regarding mid stance knee extension moments, with Huang et al., (2008) stating 

a decrease, Al Zahrani and Bakheit (2002) implying an increase, and Messier et al., (2005) 

declaring the mid stance knee extension moment to remain constant in comparison to healthy 

subjects (Mundermann et al., 2005). Interestingly, early stance peak knee and hip flexion 

angles on the limb affected by knee OA were considerably less than those on the contra-lateral 

side in unilateral knee OA (Briem and Snyder-Mackler, 2009). Al Zahrani and Baheit, (2002) 

identified knee OA patients to display a decreased ROM at the hip, knee and ankle joints during 

walking. Gok et al., (2002) reported knee varus in stance to increase, and knee valgus during 

swing to also increase. 
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Muscle Co-contraction 

Muscle co-contraction involves the co-ordinated activity of synergistic muscles (agonist and 

antagonist) (Sirin and Patla, 1987) which are involved in the creation of force moments around 

joints during movement (Nigg et al., 2003). Knee OA patients experience increased co-

contraction of both the medial and lateral (quadriceps to hamstring) muscles surrounding the 

knee joint when walking compared to healthy individuals (Lewek et al., 2004, Childs et al., 

2004), and co-contraction of the knee muscles allows alteration of stability, knee joint stiffness, 

and increased articular joint loading on the medial compartment of the knee (Fisher et al., 1997, 

Lewek et al., 2004, Hubley-Kozey et al., 2006, Hubley-Kozey et al., 2008). The increased co-

contraction affects varying muscles surrounding the knee joint, and it is believed that patients 

with knee OA adopt variable strategies in order to stiffen the leg and reduce pain (Childs et al., 

2004, Hortobagyi et al., 2005, Schmitt and Rudolph, 2007, Ramsey et al., 2007, Hubley-Kozey 

et al., 2009). Muscle co-contraction occurs between; Vastus Lateralis (VL) and lateral 

hamstring (LH), VL and medial hamstring (MH), VL and semimembranosus (SM), VL and 

biceps femoris, medial quadriceps and MH, and vastus medialis (VM) and MH (Childs et al., 

2004, Schmitt and Rudolph, 2007, Ramsey et al., 2007, Hubley-Kozey et al., 2009). 

Knee joint internal moments on the lateral aspect of the joint deliver a valgus resistance against 

the EKAM, which attempts to move the knee into a more varus position. The activity of 

antagonist muscles alone (for example the quadriceps) is not great enough to resist the EKAM, 

and therefore the co-contraction between agonist and antagonist muscles (for example the 

hamstring and the quadriceps) allows the joint to be stabilised (Schipplein and Andriacchi, 

1991). This theory is supported by a study by Hubley-Kozey et al., (2009) which identified 

early stance muscle co-contraction between VL-LH increased in patients with moderate to 

severe knee OA, when compared to asymptomatic individuals. Results may have been affected 

by overlapping of the Kellgren and Lawrence grading scale within the study groups (moderate 

OA K/L grade 1-3, severe OA K/L grade 3-4, and asymptomatic individuals), which may have 

concealed some present differences between the groups. Furthermore, the asymptomatic group 

were not assessed using radiography, and therefore some undiagnosed degenerative changes 

may have been present within the knee joint, possibly affecting results obtained. Additionally, 

a study by Schmitt and Rudolph, (2007) identified co-contraction between the lateral 

quadriceps and LG to be considerably higher in patients with knee OA with a Kellgren and 

Lawrence grading of 2-4 (moderate to severe) compared to healthy study participants. 

Similarly, co-contraction of the medial aspect of the knee joint was found to increase in mild, 
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moderate and severe knee OA patients when compared to healthy age and gender matched 

individuals (Lewek et al., 2004, Schmitt and Rudolph, 2007, Hubley-Kozey et al., 2009). 

Furthermore, higher co-contraction was identified during early stance between VM and MH in 

the medial aspect of the knee joint, compared with the lateral aspect of the knee joint in patients 

with severe knee OA, allowing a distinction to be made between moderate and severe knee OA 

(Hubley-Kozey et al., 2009).  The increased co-contraction causes the knee joint to be exposed 

to more compressive forces (Lewek et al., 2004) and may be caused by knee joint instability 

in the OA afflicted knee due to medial knee joint laxity, suggested as a main contributor to the 

increased co-contraction, which is present in OA groups significantly more than in healthy 

participants, leading to a decreased ROM in the osteoarthritic knee (Lewek et al., 2004, Schmitt 

and Rudolph, 2007, Rudolph et al., 2007). 

An effective method to reduce knee joint laxity involves increasing the strength of the muscles 

surrounding the knee joint, providing knee joint stability (Slemenda et al., 1997). The GRF rate 

of loading may be increased during gait in the presence of quadriceps weakness (Mikesky et 

al., 2000) due to alteration of the load distribution across the knee, leading to changes in the 

mechanical axis of the knee joint and consequently, the development and progression of knee 

OA (Andriacchi et al., 2004, Shelburne et al., 2006). Conversely, enlarged quadriceps muscle 

may lead to the presence of an abduction moment that reduces the EKAM by providing a 

counteracting force (Shelburne et al., 2006). The knee adduction moment (KAM) is the 

primary outcome measure used in biomechanical intervention studies and needs further 

consideration and investigation within the literature. 

2.8.3 Knee OA, Loading and the External Knee Adduction Moment (EKAM) 

 

Knee OA is a mechanical disease which is highly influenced by the extent of load placed on 

the knee joint (Brandt et al., 2008). The medial compartment of the knee joint is four times 

more frequently afflicted with OA than the lateral compartment (Ledingham et al., 1993, Jones 

et al., 2014). Dynamic knee joint loading is associated with the pathogenesis of medial knee 

OA, and is the central biomechanical factor (Sharma et al., 1998, Miyazaki et al., 2002, 

Andriacchi et al., 2004, Mundermann et al., 2005) therefore, observation and treatment of 

medial knee OA must appraise dynamic loading of the knee joint (Hurwitz et al., 2002), and 

treatment methods should aim to decrease the load on the joint to potentially slow disease 

progression and lessen symptoms experienced. 
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The knee joint is subjected to both internal and external moments, and knee implants are an 

accurate and reliable method of measuring knee forces, however they are invasive. Therefore, 

the external knee adduction moment (EKAM) has been identified as a valid and reliable 

predictor of medial load distributions (Schipplein and Andriacchi, 1991, Zhao et al., 2007, 

Trepczynski et al., 2014, Jones et al., 2015) and the presence (Baliunas et al., 2002), severity 

(Sharma et al., 1998) and rate of progression (Miyazaki et al., 2002, Kean et al., 2012, Chehab 

et al., 2014, Hatfield et al., 2015, Arnold et al., 2015, Chang et al., 2015, Hatfield et al., 2016) 

of medial knee OA, and also the reduction in cartilage thickness (Erhart et al., 2011, Jones et 

al., 2014). Additionally, the EKAM has been correlated with higher levels of pain in 

individuals with medial compartment knee OA, and reduction of medial loading may result in 

pain relief (Sharma et al., 1998, Miyazaki et al., 2002, Thorp et al., 2006, Maly, 2008, Kito et 

al., 2010, Erhart et al., 2011, Arnold et al., 2015). The EKAM is the principal mechanism 

causing compressive load on the knee joint (Zhao et al., 2007, Trepczynski et al., 2014, Jones 

et al., 2015) and may be calculated using the external forces acting on each body segment (for 

example ground reaction force (GRF)), and is measured using force platforms, joint motion of 

the specific segment using kinematic data and from anthropometric data in order to calculate 

the inertial and mass properties of the segment.  

The detrimental consequences of increased medial knee loading are most evident during the 

mid-stance phase of gait, where 70-80% of the total knee load is distributed through the medial 

compartment of the normal knee (Schipplein and Andriacchi, 1991, Barrios et al., 2009, Segal, 

2012, Jones et al., 2014). The incidence of asymmetric load distribution is due to the EKAM 

throughout stance (Jones et al., 2012) with increasing emerging evidence illustrating the 

EKAM during walking (assessed using motion analysis tools and force plates) to be a reliable 

predictor of OA onset, severity and progression (Miyazaki et al., 2002, Baliunas et al., 2002, 

Mundermann et al., 2004, Birmingham et al, 2007, Henriksen et al., 2010). Assessing the 

magnitude of EKAM peaks can therefore be used as an indirect measure of medial 

compartment joint loading and is measured during activities (Schipplein and Adriacchi, 1991, 

Miyazaki et al., 2002, Amin et al., 2004, Bennell et al., 2011, Chang et al., 2015, Arnold et al., 

2015). The EKAM characteristically displays an early stance peak (first), and a late stance peak 

(second). The first peak of the EKAM in individuals with knee OA is constantly higher 

compared with healthy controls, regardless of knee OA disease severity, however the second 

peak EKAM is only higher in those individuals with more severe knee OA (Mundermann et 

al., 2005, Jones et al., 2015).  
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Conservative management techniques of medial knee OA are most suitable and effective when 

used on individuals with mild to moderate medial knee OA, and therefore the first peak in the 

EKAM is of interest, and has been identified as relating to disease severity and progression, 

and also structural features of medial knee OA and could therefore mean reducing the EKAM 

leads to a delay in medial knee OA progression (Stefanyshyn et al., 2006, Kito et al., 2010, 

Creaby et al., 2010, Bennell et al., 2011, Jones et al., 2015).  

Similarly, Shelburne et al., (2008) stated that the high incidence of medial compartment knee 

OA in patients with knee OA was due to an existing adduction moment and therefore a 

concomitant increase in load in the medial compartment of the knee. Contrariwise, several 

studies have reported early-stance peak EKAM to be comparable in patients with varying 

severities of knee OA compared to healthy individuals of matching age and gender, perhaps 

due to compensatory mechanisms such as trunk lean or pelvic list towards the stance leg in an 

attempt to lower the EKAM by decreasing the moment lever arm (Landry et al., 2007, Huang 

et al., 2008). Furthermore, in mild knee OA (Kellgren and Lawrence grade 1-2), conflicting 

results have emerged concerning late-stance peak EKAM, with Mundermann et al., (2005) 

reporting it to be significantly smaller when compared with both age and gender matched 

patients with severe knee OA, and healthy individuals. Additionally, Huang et al., (2008) 

observed the EKAM to be similar between OA patients and healthy participants.  

The majority of investigations have identified an increase in the EKAM in patients with knee 

OA compared to healthy participants, and therefore the EKAM can be considered a reliable 

indication of knee OA (Henriksen et al., 2010). Results should be carefully considered 

however, as error can be present within investigations, particularly during the use of gait 

analysis, and varying biomechanical models and techniques, where markers are placed on 

certain anatomical landmarks and error can be present in the form of skin and soft tissue 

movement artefacts, often introducing some small variability to the results.  

The EKAM is created during normal walking, where the resultant ground reaction force (GRF) 

passes medial to the centre of the knee joint, applying an external adduction moment about the 

knee joint throughout stance, creating a turning effect (Shelburne et al., 2008, Jones et al., 

2014). The perpendicular distance from the line of action of the GRF is the lever arm for this 

force. This lever arm, along with the product of this force produces a moment which causes the 

knee joint to adduct (Kim et al., 2004). The EKAM results in the tibia rotating medially with 

respect to the femur in the frontal plane and therefore, a large proportion of the force is 
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transferred by the medial compartment of the knee (Shelburne et al., 2008, Reeves and 

Bowling, 2011).  

The magnitude of EKAM is influenced by the magnitude of the GRF (Reeves and Bowling, 

2011). Andriacchi, (1994) implied that EKAM increases the load on the medial compartment 

of the knee, therefore stretching soft tissues on the lateral side of the joint to balance the load. 

Continuous stretching of the soft tissues can result in lateral laxity, which affects the lateral 

compartment, causing unloading due to lifting of the lateral epicondyle. This therefore causes 

increased loading on the medial compartment relative to the lateral compartment (Andriacchi, 

1994, Baliunas et al., 2002). Reducing the EKAM has therefore become the objective of early 

conservative treatment of medial knee joint OA in an attempt to reduce pain, maintain function 

and to slow and possibly prevent disease progression (Jones et al., 2012). Coronal plane 

external moments, such as the EKAM, along with additional external forces acting on the knee 

can be calculated using a motion analysis system and a force platform, using the external forces 

acting on each body segment (for example; GRF), the joint motion of the segment using kinetic 

data and anthropometric data, used to calculate the inertial and mass properties of the segment. 

To achieve stability and equilibrium during movement, the EKAM must be balanced by an 

equal internal moment (Shelburne et al., 2006). Consequently, the net internal moment in the 

knee joint, produced predominantly by muscle, soft tissue and contact forces is equal and 

opposite to the EKAM (Shelburne et al., 2006). In the absence of reduced antagonist muscle 

activity, a larger EKAM can be attributed to a larger contact force (Baliunas et al., 2002). A 

large EKAM is suggestive of increased loads on the medial compartment of the knee, relative 

to the lateral compartment, with EKAM being the primary factor in determining both medial 

and lateral load distribution on the joint (Baliunas et al., 2002, Kim et al., 2004).  

The EKAM is made up of two peaks and one trough. The first and second peaks arise in the 

early and the late stance phase of the gait cycle, (0-20% and 41-60% respectively), while the 

trough occurs in mid stance (21-40%) (Hurwitz et al., 2002) (figure 2.4). 
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Figure 2.4: Knee moment in the coronal plane: 1 = early stance peak external knee adduction moment (EKAM); 

2 = mid-stance trough EKAM; 3 = late stance peak EKAM. *Early, mid and late stance phases are represented 

as a percentage of stance phase.  

Both cartilage defects and subchondral bone area are related to peak EKAM in medial knee 

OA patients, signifying that enlarged mechanical loading may lead to pathological changes to 

knee joint articular cartilage and subchondral bone in medial knee OA (Creaby et al., 2010).  

Knee OA patients displaying radiographical medial joint space narrowing have been identified 

as demonstrating greater peak knee adduction moments (Baliunas et al., 2000). Varying 

relationships have been observed in medial knee OA patients with regards to dynamic knee 

joint loading and pain intensity during walking; this differs further when patients altering knee 

OA disease severity classifications are considered (Henriksen et al., 2012). Sharma et al (1998) 

identified a substantial relationship between the size of the EKAM and medial knee OA disease 

progression. Furthermore, Miyazaki et al., (2002) concluded that the disease progression of 

medial compartment knee OA could be predicted from the size of the EKAM at baseline, with 

logistic regression analysis showing that the risk of knee OA disease progression increased 

6.46 times with every 1% increase in the EKAM. Varus alignment was identified as increasing 

both the risk of medial compartment knee OA, and the progression of the disease (Sharma et 

al., 2001), which suggests that the size of the EKAM can be associated with radiographically 

identified joint space narrowing of the medial compartment of the knee (Sharma et al., 2001). 

Not surprisingly therefore, extensive previous investigations have reported the EKAM to be 

larger in medial compartment knee OA patients, when compared with healthy subjects during 

early stance. Similar results were identified during mid-stance, and also throughout late stance, 

where the EKAM was found to be significantly higher. These findings were identified across 
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all severities of knee OA and investigation was carried out on age and gender matched, healthy 

subjects (Wiedenhielm et al., 1994, Kaufman et al., 2001, Hurwitz et al., 2002, Mundermann 

et al., 2005, Thorp et al., 2006, Landry et al., 2007, Rudolph et al., 2007, Huang et al., 2008, 

Astephen et al., 2008). 

The findings of greater EKAM in medial compartment knee OA patients has been suggested 

to perhaps be due to increased lateral trunk sway or pelvis lean alterations towards the stance 

leg as an adaptive mechanism in order to reduce the moment level arm and therefore the 

EKAM, providing some symptom (pain) relief (Landry et al., 2007, Huang et al., 2008). 

Conversely however, a number of contradictory findings concerning EKAM and late stance 

exist (Chapman et al., 2015) and some report EKAM in medial compartment knee OA patients 

to be similar to healthy subject groups (Mundermann et al., 2005, Huang et al., 2008). 

However, reducing the EKAM has become the main objective of early conservative treatment 

of medial knee joint OA (Jones et al., 2012) with many researchers using this surrogate measure 

as a target for biomechanical treatments. The following section will discuss varying options for 

the treatment and management of medial compartment knee OA. 

2.9 Treatment Strategies and Management of Medial Knee OA 

Current treatment of medial compartment knee OA aims to relieve symptoms enabling quality 

of life to be maintained, focusing on minimising pain, maintaining joint ROM and mobility 

and decreasing functional impairment (Fang et al., 2006). Treatment options include 

conservative, surgical and pharmacological methods. 

2.9.1 Pharmacological 

The most common management method for knee OA is pharmacological (Urwin et al., 1998), 

with the most frequently prescribed treatment being analgesics (for example Acetaminophen, 

more commonly referred to as Paracetamol), non-steroidal anti-inflammatory drugs (NSAIDs) 

(for example Ibuprofen and Naproxen) and COX-2 inhibitors which are fairly effective in 

reducing mild to moderate pain (Bradley et al., 1991) (NICE, 2008). Long term use of these 

drugs can cause severe side effects in some patients, such as gastrointestinal ulceration and 

bleeding, electrolyte imbalances, abnormal results in liver function tests, and hypertension 

(Richy et al., 2004, Hippisley-Cox et al., 2005, Machado et al., 2015). Care should therefore 

be taken by health professionals in the use of pharmaceuticals for pain reduction (Sum et al., 

1997). However, the evidence base supporting the recommendations of paracetamol when used 
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as a first line analgesic method for osteoarthritis in clinical guidelines has recently been called 

into question, with a recent study by Machado et al., (2015) concluding that paracetamol 

provides a small but not clinically significant reduction in pain and disability in patients with 

knee OA. Results of the Machado et al. (2015) study have prompted the National Institute for 

Health and Clinical Excellence (NICE) to review their advice regarding the use of paracetamol 

as an analgesic for the treatment of knee OA in the form of a planned full review of evidence 

on the pharmacological management of OA (NICE, 2014). 

Intra-articular injections using steroids such as corticosteroids provide effective, however short 

term pain relief. Similarly, intra-articular injections of hyaluronan (a component of healthy 

joint fluid) provide significant pain relief and increases in function in patients with knee OA 

(Arroll and Goodyear-Smith, 2004, Goldberg and Buckwalter, 2005), however the effects are 

temporary (Bradley et al., 1991). Nevertheless, the most recent guidance published by NICE 

states that intra-articular injections of hyluronan should be avoided (NICE, 2014). 

The above medications provide pain reduction, an increase in quality of life and allow an 

increase in activity level (Hurwitz et al., 2000). However, they fail to address the 

biomechanical causes and only manage symptoms of the disease (Walsh and Hurley, 2009) 

possibly leading to increased joint loading (Schnitzer et al., 1993) and accelerated disease 

progression (Huskisson et al., 1995) due to an increase in pain free activity (Jones et al., 2012).  

Disease modifying osteoarthritis drugs (DMOADs), more commonly known as food 

supplements are a further pharmacological treatment method for knee OA, such as glucosamine 

(taken in the form of a food supplement and usually self-prescribed by knee OA patients) which 

do not have negative side effects (Towheed et al., 2005, Qvist et al., 2008). Other DMOADs 

currently under investigation for suitability when used for the treatment of OA include; 

compounds inhibiting matrix-metalloproteinases (MMPs), bisphosphonates, cytokine 

blockers, inhibitors of inducible nitric oxide synthase (iNOS), doxycycline, calcitonin, and 

diacereine (Qvist et al., 2008). However, evidence supporting the use of DMOADs to change 

the metabolism of bone and cartilage on the progression of knee OA is conflicting (Towheed 

et al., 2005) with a meta-analysis concluding that diet supplementing with glucosamine did not 

have a significant effect on knee joint space, when compared with a placebo. Nevertheless, a 

statistically valid, however small consequence on pain was identified using visual analogue 

scales. This finding was considered clinically insignificant however; with a mean different of 

only 0.4cm (Wandel et al., 2010) prompting NICE and the American College of Rheumatology 
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(ACR) to produce guidelines discouraging their use for the treatment of OA (Zhang et al., 

2008, NICE, 2014). Conversely, Osteoarthritis Research Society International (OARSI) 

published guidelines recommending the use of DMOADs for six months, with consumption 

ending if no clinical symptom improvement is identified after this time (Zhang et al., 2008).  

Knee OA causes severe pain, disability and a decrease in the patient’s quality of life due to 

irreversible joint damage and alterations to normal biomechanics of the lower limb. Therefore 

after more conservative methods of treatment have possibly delayed the onset or progression 

of OA as much as possible, or when both pharmacological and non-pharmacological treatment 

strategies prove ineffective, surgery is performed as a last resort to decrease pain and disability, 

aiming to restore normal biomechanics of the knee joint (Dieppe et al., 1999).  

2.9.2 Surgical Treatment for Medial Compartment Knee Osteoarthritis   

Surgical intervention of knee OA is costly, and of great expense to the NHS. Surgery also 

impacts on the individual in terms of recovery time and functional independence (Griffin et al., 

2007). Numerous methods exist in providing surgical intervention for knee OA. These include: 

arthroscopic lavage, high tibial osteotomy (HTO), surgical wedge osteotomy, and knee joint 

replacement (knee arthroplasty – replacing the knee joint with a prosthetic joint) surgeries 

(Bert, 1993, Dieppe et al., 1999, Felson et al., 2000, Griffin et al., 2007). Uni-compartmental 

knee arthroplasty (UKA) and HTO are both forms of realignment surgery to correct medial 

compartment knee OA, and total knee arthroplasty (TKA) is used to replace a knee joint that 

is affected by OA on both the medial and lateral sides. 

HTO is a well-established and effective treatment option for medial compartment knee OA, 

and is used to redirect the mechanical axis from the degenerated area of the joint to the well 

preserved compartment in order to decrease the stresses and relieve a proportion of the load 

(Griffin et al., 2007). Clinicians have used surgical wedge osteotomy as a method of correcting 

varus angulation deformity by altering load away from the diseased knee compartment and 

therefore providing symptom relief (Fang et al., 2006). HTO has led to significant 

improvement in knee OA symptoms and function, instability, medial laxity, with the adduction 

moment of the knee decreasing in magnitude up to 6 months post-surgery, however this was 

found to increase again after 6 months (Wada et al., 1998, Ramsey et al., 2007, Briem et al., 

2007, El-Azab et al., 2011).  
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The disease process and progression of knee OA can result in joint debris, caused by the 

fibrillation of knee joint cartilage, tears and degeneration to the menisci, and proliferation of 

the synovium which lead to pain and inflammation, and minor mechanical obstructions. 

Arthroscopy is a minimally invasive surgical procedure where a small incision is made in the 

knee, and a fibre optic endoscope is inserted into the knee joint space. A second incision is then 

made and surgical instruments are inserted into the joint in order to carry out the lavage (joint 

washing) (Kirkley et al., 2008, Felson, 2010, Koh et al., 2015). The minimally invasive nature 

of arthroscopic surgery as an approach to treating knee OA has meant much research has been 

conducted in the area. A number of procedures may be carried out during arthroscopy of the 

knee, including; washing of the joint with saline to remove debris and crystals which are 

thought to be a cause of pain and inflammation, debridement of damaged menisci and the 

removal of joint fragments and torn ligaments, the repair of a proliferative synovium, removal 

of loose articular cartilage and smoothing of cartilage lesions, grinding, smoothing and removal 

of osteophytes that impede joint ROM, and drilling of osteochondral lesions (Felson, 2010). 

The removal of joint debris and other irregularities attempts to reduce pain and discomfort 

(Felson, 2010, Koh et al., 2015) with previous research reporting symptomatic relief reported 

after arthroscopic lavage, although it is unclear exactly how this is achieved (Moseley et al., 

2002).  

Recent research has however casted doubts over the effectiveness of knee joint arthroscopic 

lavage, and the most recent NICE clinical guidelines do not recommend arthroscopic lavage of 

the knee joint as treatment for knee OA unless joint locking is present (NICE, 2014). Similarly, 

a study by Kirkley et al., (2008) concluded that arthroscopic lavage and debridement provided 

no additional benefit to patients than physical and medical therapy when used for treatment of 

knee OA. Additionally, a randomised placebo controlled trial of 180 patients carried out by 

Moseley et al., (2002) divided patients into three groups; simulated placebo surgery, 

arthroscopic lavage, and arthroscopic debridement. Outcomes (pain and function) were 

assessed over a 24 month period, and it was established that surgery outcomes were no better 

than the placebo simulated surgery procedure. Furthermore, Felson (2010) states that knee joint 

arthroscopy only has a limited role as treatment for knee OA. Interestingly however, a study 

by Koh et al., (2015) used adipose derived stem cell therapy consisting of intra-articular 

injection of stem cells collected via liposuction from the buttocks in conjunction with 

arthroscopic lavage for the treatment of knee OA. Improvement in clinical outcomes in the two 

year final follow up exam was reported in almost all patients, with only 5 out of the 30 patients 
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showing worsening of the KL grade. The study concluded that the treatment was effective in 

cartilage healing and decreased pain and improved knee function. Results indicated that the 

more fat cells injected into the knee joint, the greater the positive outcome of the treatment was. 

The treatment is however very invasive, requiring both liposuction and arthroscopic surgery, 

and is also costly (Koh et al., 2015). Likewise, a study by Smith et al., (2002) also identified 

improvement in outcomes of arthroscopic lavage when used in conjunction with other 

treatments after administering intra-articular corticosteroids alongside the arthroscopic lavage 

surgery. The improvement in pain and function was short lived however, and benefits only 

lasted for 2-4 weeks in all patients. 

Unicompartmental knee arthroplasty (UKA) is widely recognised as an effective treatment for 

unicompartmental knee OA, and allows the preservation of joint components in the unaffected 

side of the knee joint, including articular cartilage, menisci, bone, and cruciate ligaments, 

therefore allowing more normal joint range of motion, function, proprioception and kinematics 

compared to a TKA. Weidenhielm et al., (1993) reported improvements in step frequency, 

walking speed, single support stance phase ratio (indicating increased symmetry of gait) and 

step length after treating medial knee OA patients with a UKA. A faster weight transfer was 

identified during walking due to double support stance phase of both legs decreasing. UKA is 

often considered for use before TKA wherever possible, and may be offered to patients until a 

TKA becomes necessary (Lonner et al., 2009). 

A systematic review by Griffin et al., (2007) compared the safety and efficacy of UKA, HTO, 

and TKA in patients with knee OA. The results of two controlled trials, three randomised 

controlled trials and three cohort studies were reviewed for function, complications, 

postoperative pain, and revision rates. Outcomes concerning function following HTO, UKA, 

and TKA were similar, however fewer complications (such as infection and deep vein 

thrombosis) were experienced by patients who received UKA, and UKA was associated with 

a lower incidence of revision than HTO (Griffin et al, 2007). 

Surgical procedures are invasive, and have multiple disadvantages. Complications of surgery 

can arise such as deep venous thrombosis and wound and infection complications following 

high HTO and knee replacement surgeries (Griffin et al., 2007). Surgery also requires constant 

revision depending on the age and activity level of the patient. Therefore, knee OA surgery is 

expensive and as mentioned previously, is only used as the last line of treatment (Griffin et al., 

2007); therefore more conservative methods of treatment are needed. 
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Some knee OA patients are often not suitable for surgery (too young, for medical reasons, or 

no access to NHS funding), or do not want surgery. For these reasons, considerable research 

has been invested into more conservative treatments of knee OA as non-invasive methods are 

considered valuable approaches. It is important to understand which conservative techniques 

bring the most benefits and improvements in knee OA symptoms to the most patient types both 

in terms of pain reduction and improvements in functional independence. If patients report 

improvements in pain and functional improvement with the use of conservative techniques, 

they may delay or negate the need for surgery altogether.  

A number of conservative management techniques exist for the treatment of medial knee OA. 

A brief overview of each of these treatments will be discussed below. 

2.9.3 Conservative (Non-Pharmacological) Treatment for Medial Compartment Knee 

Osteoarthritis 

Different conservative approaches exist for treating medial knee OA including; exercise, 

alterations to gait, knee bracing and footwear modification to realign the weight-bearing load, 

providing symptom relief (Fang et al., 2006). Advantages of conservative treatment include 

cost and recovery duration benefits, meaning costly surgery is delayed due to slowing of 

disease progression and recovery times are rapid due to the non-invasive approach.  

NICE clinical guidelines recommend numerous non-pharmacological core treatments to 

manage knee OA, including exercise and activity (including local muscle strengthening and 

aerobic fitness), weight loss (where patients are overweight or obese), and patient self-

management and education (NICE, 2008, NICE 2014). NICE guidelines are based on the 

evidence available from reliable systematic reviews demonstrating the non-pharmacological 

treatments effectiveness and safety as treatments for knee OA (Warsi et al., 2003, Christensen 

et al., 2007, NICE, 2008). Additional non-pharmacological treatments are recommended in 

adjunct to the core treatments advocated by NICE, these include; local thermotherapy, 

manipulation and stretching, the use of transcutaneous electrical nerve stimulation (TENS), 

assistive devices, and in the case of joint pain and instability; braces, footwear, insoles, supports 

and orthoses (Brosseau et al., 2003, Brouwer et al., 2005, Reilly et al., 2006, NICE 2008, 

Rutjes et al., 2009, NICE 2014). 
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2.9.3.1 Exercise  

Evidence based clinical guidelines for the management of OA recommend exercise as a core 

treatment for knee OA (Scott et al., 1998, Zhang et al., 2008, NICE, 2008, Arthritis Research 

UK, 2010). The types of exercises recommended to knee OA patients are walking, tai chi, 

gentle exercise classes, strengthening, balance and proprioception exercise programmes. An 

individual approach to exercise is recommended, with programmes ideally specifically tailored 

to both individual abilities and preferences, and progressed according to the individuals 

development (Pelland et al., 2004), meaning the programme is both more beneficial to the 

individual patient with a better adherence to home exercise programmes. 

However, a systematic review carried out by Fransen and McConnell (2009) concluded that 

exercise has minimal effect on pain and physical function; this was attributed to the fact that 

participants were only in the early stages of knee OA with low pain and disability and therefore 

did not experience the full benefits of completing the prescribed exercise. Conversely, aerobic 

and strengthening exercises have been found to reduce pain and improve function in knee OA 

patients, and also reduce the effects of respiratory conditions (Brosseau et al., 2004, Focht, 

2006). Brosseau et al., (2004) identified aerobic exercises to have improved long term effects 

when compared with strengthening exercises. In opposition, a systematic review by Pisters et 

al., (2007) concluded strengthening and aerobic exercises to only have short term effects on 

pain and physical function in knee OA patients. The included studies contained high dropout 

rates however which could have influenced results. ROM exercises and stretching have both 

been proposed as possibly being effective in pain reduction and increasing ROM, reducing soft 

tissue inflammation, improving cell repair, improving stability, facilitating movement, 

reducing stiffness, inducing relaxation, improving stability of tissues, and improving function 

(Deyle et al., 2000).  

The optimal exercise type and dosage is yet to be determined, perhaps due to the fact that 

exercise programmes ideally should be tailored to meet the needs of individual patients based 

on assessment of impairments, patient preference, co-morbidities and accessibility, as it is well 

known that knee OA patients experience pain, disability and a decline in ROM and function 

which can make exercising difficult.  

An individualised, supervised moderate intensity exercise program may reduce the peak knee 

adduction moment in patients with mild to moderate knee OA (Thornstensson et al., 2007). 

Variations in the literature of the degree of exercise effectiveness is reliant on participants’ 
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degrees of effective adherence and compliance to designated programmes, and long term 

continuation of nominated home exercises (Van Baar et al., 2001). Bennell et al., (2011) 

recommends using supervised exercise sessions, ideally in class format to ensure maximal 

adherence, ensuring success of exercise therapy, as home based exercises can cause programme 

adherence issues (Van Baar et al., 2001).  

Variation in exercise effectiveness could possibly be linked to at home exercise compliance, 

and also high drop-out rates with the use of supervised exercise sessions (Van Baar et al., 

2001). Research surrounding exercise and knee OA primarily focuses on pain and dynamic 

function of the knee joint, with only a small quantity of investigations exploring the effect of 

exercise on medial knee load, specifically the EKAM, with studies by Thorstensson et al., 

(2007), King et al., (2008), Lim et al., (2009), Sled et al., (2010), Thorp et al., (2010), Bennell 

et al., (2010), and Foroughi et al., (2011) reporting no major reductions in the EKAM after the 

observance of varying exercise programmes. Thorpe et al., (2010) is the only investigation 

within the literature that reported a reduction in the EKAM after following an exercise 

programme, however, Thorpe et al (2010) did not report a change in the strength of the hip and 

knee muscles, perhaps due to the short duration of the exercise programme followed, meaning 

the EKAM perhaps reduced due to improved motor control of the muscles of the lower limbs 

(Sale, 1988). 

The EKAM and the axial forces on the knee may be increased following an exercise 

programme (Schipplein and Andriacchi, 1991, Mundermann et al., 2004) due to strengthening 

of the muscles surrounding the knee joint taking place, particularly the quadriceps muscle, 

which could lead to an increase in walking speed, therefore increasing the EKAM, and an 

increase in the EKAM is linked to the onset and progression of knee OA (Miyazaki et al., 2002, 

Lim et al., 2009). An increase in quadriceps muscle strength could however decrease the 

EKAM due to an abduction moment being created which counteracts the EKAM (Shelburne 

et al., 2006). In the presence of quadriceps weakness however, Mikesky et al., (2000) identified 

the GRF rate of loading to increase during walking, which could alter the distribution of load 

on the knee joint, leading to further progression of knee OA (Andriacchi et al., 2004). A 

systematic review and meta-analysis carried out by Lowe et al., (2007) concluded that 

physiotherapy functional exercises carried out following total knee arthroplasty can lead to 

minimal short term benefits in knee joint function. No long term benefits were reported 

however. Rooks et al., (2006) also investigated the effects of an exercise programme alongside 
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total knee arthroplasty, however the exercises (strength training, cardiovascular fitness 

activities and flexibility exercises) were carried out prior to the TKA. Study findings reported 

an increase in muscle strength and function, which led to a reduction in the use of inpatient 

rehabilitation service post TKA, meaning recovery times were shorter. This method could lead 

to cost savings, and therefore reducing the burden of knee OA on public services. Furthermore, 

Frost et al., (2002) acknowledged an increase in mobility, leg extensor power and a reduction 

in pain following an exercise programme aimed to promote mobility and function of the knee 

joint post TKA. 

Thus, research in favour of exercise for the treatment of knee OA has no effect on reducing the 

EKAM, with the previously mentioned studies providing conflicting results regarding 

alterations in the EKAM after exercise programmes have been followed by participants. 

Exercise programmes used in conjunction with surgery have provided more positive results, 

however further investigation is required.  

Findings indicate the use of exercise based intervention for the treatment of knee OA to be 

difficult in terms of reducing the EKAM and whilst clinical results are positive, the long term 

effectiveness of these is questioned. Biomechanical load modifying, conservative treatment 

methods may therefore be more reliable in order to identify effective methods of reducing the 

public health impact that knee OA presents (Kim et al., 2004, Sled et al., 2010, Al-Khlaifat, 

2012).  

2.9.3.2 Patient Education and Advice 

Self-management of knee OA may offer the least burdensome treatment for knee OA, 

especially in the early stages of the condition. NICE have recommended education of OA 

patients to be paramount, therefore, patient education can be considered a conservative 

treatment method (NICE, 2014). Patient education and advice aims to inform patients of self-

management methods and also seeks to alter health behaviour, encouraging patients to partake 

in exercise (Holman and Lorig, 2004, Heuts et al., 2005, NICE, 2014).  

Walsh et al., (2006) carried out a systematic review into the effectiveness of patient education 

and advice programmes on pain and knee function in patients diagnosed with hip or knee OA 

and concluded that integrated advice programmes significantly improved pain and function.  
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Dependence on healthcare systems may be decreased by making patient education and advice 

the first course of treatment in the treatment of OA and may reduce the economic burden of 

knee OA (Heuts et al., 2005, Hurley and Walsh, 2009). 

2.9.3.3 Gait Altering Strategies in the Treatment of Medial Compartment Knee OA 

Gait modifications and retraining have been investigated within the literature as a possible 

conservative treatment strategy for medial compartment knee OA, with an objective of 

reducing the EKAM (Hunt et al., 2011, Kuroyanag et al., 2012, Shull et al., 2013, Van den 

noort et al., 2013, Gerbrands et al., 2014) and therefore delaying, slowing or preventing knee 

OA progression, by altering the load distribution in the knee joint (Shull et al., 2013). Changes 

in certain kinematic or kinetic factors during gait could possibly reduce medial load and 

therefore reduce the EKAM (Chang et al., 2007, Gerbrands et al., 2014). Identifying, 

understanding and managing those factors may lead to a reduction in the risk of knee 

osteoarthritis progression over time (Chang et al., 2004, Chang et al., 2007, Shull et al., 2013, 

Gerbrands et al., 2014).  

Biomechanical factors affecting the EKAM include walking with a greater toe-out angle 

(Chang et al., 2007), which shifts the ground reaction force (GRF) vector closer to the knee 

joint centre decreasing the moment arm and thereby reducing the EKAM (Gerbrands et al., 

2014). Chang et al., (2007) identified greater toe-out angle was inversely related to the EKAM 

during the late stance of gait in subjects with both healthy and osteoarthritis stricken knees 

(Andrews et al., 1996, Hurwitz et al., 2002). Further biomechanical factors affecting the 

EKAM include walking with a narrow gait, which significantly reduces the EKAM during 

early stance (Street and Gage, 2013), increased mediolateral trunk sway (Hunt et al., 2011, 

Street and Gage, 2013) and walking speed (Wilson, 2012).  

Walking Speed and Knee OA 

Previous research has indicated that walking speed is significantly decreased in knee OA 

patients when compared to healthy participants (Kaufman et al., 2001, Al-Zahrani and Bakheit, 

2002, Zeni et al., 2010) associated with a decreased stride length (Al-Zahrani and Bakheit, 

2002), shortened step lengths, larger double support times, decreased hip and knee ROM angles 

(Andriacchi et al., 1977, Kaufman et al., 2001, Messier et al., 2005), reduced cadence, and an 

increase in stance time (Al-Zahrani and Bakheit, 2002, Landry et al., 2007, Astephen et al., 

2008). Interestingly, this decrease in walking speed is thought to be a gait adaptation by 

individuals with knee OA in order to reduce symptoms of knee OA (Wilson, 2012).  
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During early-stance, knee flexion aids in shock absorption, consequently, an increase in 

walking speed results in more force travelling through the knee joint and therefore requiring 

more shock absorption in the knee, moving the knee into greater flexion (Winter, 1991). The 

increase in knee flexion requires a higher eccentric contraction of the knee extensors (Winter, 

1983), however quadriceps muscle weakness, often present in knee OA patients (Slemenda et 

al., 1997) causes patients to walk at slower speeds.  

Muscle co-contraction, which greatens the compressive forces acting on the knee joint, is 

increased in osteoarthritic knees (Lewek et al., 2004) and has been found to increase further 

when subjects increase their walking speed. Knee OA patients are therefore likely to reduce 

walking speed, as a slower walking speed requires lower levels of knee flexion and therefore 

lower levels of shock absorption are required to help reduce the load on the knee joint 

(Mündermann et al., 2004) which can be described as an adaptive mechanism, providing some 

symptom relief (Lewek et al., 2004, Foroughi et al., 2010).  

The effect of walking speed is a fundamental concern in gait studies when measurements are 

based on the level of GRF and acceleration, due to the effects of walking speed on the EKAM 

and the subsequent impact on knee joint loading (Zeni and Higginson, 2009, Wilson, 2012). 

The load on the knee joint will increase due to an increase of the dynamic ground reaction 

forces that is proportional to the walking speed (Wilson, 2008, Zeni and Higginson, 2009, Zeni 

and Higginson, 2010, Foroughi et al., 2010). Zeni and Higginson, (2009) identified variances 

in gait parameters to be due to slower walking speeds, when walking speeds were freely chosen 

in a study, rather than a result of knee OA disease progression. 

Walking at slower speeds may be an effective method of reducing knee OA symptoms, 

however maintaining a reduced walking speed as a treatment for knee OA could be difficult 

for individuals to maintain over long periods of time, due to the demands of everyday life. 

Walking speed is also difficult to control or interpret without gait laboratory or other specialist 

equipment, again making walking at a constant reduced walking speed difficult during 

everyday activities (Wilson, 2012). 

The Foot Progression Angle 

The normal gait progression angle is approximately 5º, therefore indicating that the toes point 

slightly outward during normal gait (Shull et al., 2013). The toe out angle of the foot was found 

to increase during walking in patients with knee OA (Hurwitz et al., 2002, Chang et al., 2007) 

and has been found to reduce the EKAM during walking. The toe out angle is proposed as a 
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compensatory mechanism to unload the knee, achieved by transforming a proportion of the 

EKAM into a flexion moment in early stance phase and therefore partially shifting the load at 

the knee joint away from the medial compartment to other structures (Jenkyn et al., 2008). The 

toe out occurs with lateral placement of the centre of pressure of the foot (COP) which shifts 

GRF nearer to the knee joint centre. This leads to a decreased GRF moment arm length at the 

knee, which in turn reduces the EKAM (Hurwitz et al., 2002). The toe out angle reduces the 

overall magnitude of the EKAM in knee OA patients (Mundermann et al., 2008) with a greater 

toe out angle during walking causing a lesser second peak EKAM (Andrews et al., 1996). 

Similarly, toe in gait has been identified as a promising non-surgical treatment option for 

patients with medial knee OA (Shull et al., 2013). Toe in gait which can be defined as, 

‘decreased foot progression angle from baseline through internal foot rotation’ (Shull et al., 

2013) has been found to significantly reduce the first peak EKAM during walking. A study by 

Shull et al., (2013) required patients to undertake a six week gait retraining programme and 

reported a decrease in the EKAM and an improvement in symptoms and pain. Similar results 

were observed in a further study by Shull et al., (2013). Furthermore, Simic et al., (2013) 

observed a reduction in early stance peak EKAM when patients walked with a modified, toe in 

gait. Greater results were detected in patients with more varus knees. 

Gait pattern modifications are simple and low cost options which are easy to perform, giving 

immediate results when used to cause increased medialisation of the knee, however they may 

prove difficult for patients to adhere to, and could possibly feel unnatural and uncomfortable 

due to the alteration in the foot progression angle. This unnatural sensation has been reported 

as decreasing over time (Shull et al., 2013). Although fairly easy to learn and perform, 

individuals may need lengthy and costly training programmes in order to become accustomed 

to the modification from their normal gait cycle (Shull et al., 2013). Another factor affecting 

patient adherence to gait modification is individual patient’s perceived appearance to others in 

social situations, which could affect the long term compliance of an adapted gait pattern (Shull 

et al., 2013). The effect of altering gait on other areas of the body has not been explored within 

the literature. 

Lateral Trunk Sway 

Lateral trunk sway has been investigated within the literature as a possible gait modification to 

reduce the load on the knee joint (Baliunas et al., 2002, Esfandiari et al., 2013, Gerbrands et 

al., 2014). By increasing lateral trunk sway towards the affected weight bearing limb (affected 
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with knee OA) in individuals with medial compartment knee OA, the body’s centre of mass 

(COM) shifts laterally and the GRF shifts nearer to the knee joint centre, causing the length of 

the GRF moment at the knee joint to decrease (Mundermann et al., 2005, Hunt et al., 2008, 

Mundermann et al., 2008, Chang et al., 2011). The EKAM can therefore be reduced by 

approximately 65% during walking in healthy subjects by increasing lateral trunk sway towards 

the weight bearing limb (Mundermann et al., 2005). Consequently, lateral trunk sway 

alterations have been recommended as a gait style to lower the EKAM in knee OA patients, 

and to therefore reduce knee instability and pain (Hurwitz et al., 2002, Lewek et al., 2004, 

Chang et al., 2011, Esfandiari et al., 2013, Gerbrands et al., 2014). Interestingly, a higher 

degree of lateral trunk sway has been found to be present in patients with severe knee OA 

compared to patients with mild knee OA, which can be described as an innate adaptation to 

decrease the EKAM and therefore knee joint loading, and knee OA symptoms (Hunt et al., 

2008, Chang et al., 2011).  

Although a fairly simple and low cost treatment option for medial knee OA, again; increasing 

lateral trunk sway in individuals with knee OA may require costly and lengthy training 

programs, may be difficult to maintain, and may lead to adherence issues due to social 

acceptance. Therefore, more consistent and unobtrusive treatment methods are needed. 

Altering Foot Position (Foot Posture) 

Individuals with knee OA display a more pronated foot type when compared to controls, 

(Vinicombe et al., 2001, Redmond et al., 2006, Wrobel and Armstrong, 2008, Levinger et al., 

2010, Levinger et al., 2012, Abourazzak et al., 2014). Modifications to foot posture and 

position can lead to alterations in the static and dynamic alignment of the lower limbs and 

therefore changes in the GRF (Donatelli, 1987, Tiberio, 1987, Guichet et al., 2003). Knee OA 

patients with pronated feet have displayed a reduction in EKAM during walking (Levinger et 

al., 2010, Lidtke et al., 2010) meaning a strong association has been identified between the 

alteration of foot COP and knee OA (Reilly et al., 2009, Barton et al., 2010, Lidtke et al., 2010) 

and pronating the foot can lead to a reduction in the EKAM (Levinger et al., 2010).  

Barefoot Gait 

Walking barefoot has provided a significant reduction in joint loading in patients with medial 

knee OA compared to measurements obtained when patients were walking in their everyday 

normal footwear (shod) (Shakoor and Block, 2006, Shakoor et al., 2008 Jones et al., 2015). 

Using gait analysis methods, Shakoor and Block (2006) evaluated the effects that modern 
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everyday footwear has on gait and lower extremity joint loads in knee OA, compared to 

barefoot. It was reported that peak joint loads on the knee were significantly reduced during 

barefoot walking, compared to walking wearing everyday footwear. An 11.9% reduction in 

EKAM was identified when individuals walked barefoot, compared to walking with their 

everyday footwear. Stride, cadence and ROM at lower extremity joints also changed 

significantly (Shakoor and Block, 2006). It can be concluded that shoes may increase the loads 

on lower extremity joints and therefore modern footwear may need to be re-evaluated (Shakoor 

and Block, 2006) as along with other factors, modern footwear may be contributing to the high 

incidence of knee OA within the population. It is hypothesised that the heel present on most 

modern footwear, and the lift that such heels create, could have caused the peak knee torques, 

and therefore the lack of a heel and lack of sole stiffness in the barefoot condition caused the 

reduction in the peak knee torques within the Shakoor and Block (2006) study. Additionally, it 

is thought that the increased proprioceptive input that takes place when the foot touches the 

ground during barefoot walking compared with the insulated foot when wearing footwear 

allows a reduction in peak knee loads (Shakoor and Block, 2006). This requires further 

investigation. 

However, although an effective way of reducing the EKAM, barefoot walking is neither a 

convenient nor a practical treatment option for knee OA, due to the demands of everyday life 

and social acceptance issues. Knee OA patients could however be advised to remain barefoot 

wherever it is possible, in order to receive the benefits of the reduction in the EKAM.  

Medial Thrust Gait 

Medial thrust during gait has been identified as reducing the EKAM (Fregly et al., 2007, 

Schache et al., 2008, Gerbrands et al., 2014), and was found to be the most effective EKAM 

reducing gait modification in 43% of participants in a study by Gerbrands et al., (2014) which 

compared the reduction in EKAM using various gait alteration strategies (trunk lean, medial 

thrust, lateral trunk sway, and toe out) in 37 healthy participants.  

To summarise, gait alteration and retraining methods are effective ways of reducing the EKAM 

and therefore knee joint loads in both healthy individuals and individuals with knee OA, 

however the consistency and long term benefits of gait alterations in reducing the EKAM are 

unknown (Hunt et al., 2011, Kuroyanag et al., 2012, Van den noort et al., 2013, Shull et al., 

2013, Gerbrands et al., 2014). The effects of gait strategies on the EKAM also vary and are 

subject specific, meaning individual selection of specific strategies is required in order for 
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benefits to be seen and for optimal reduction of dynamic knee joint loading during gait to be 

achieved (Gerbrands et al., 2014). Further investigation is therefore required, and more 

definitive, reliable and universal assistive devices which provide long term reductions in the 

EKAM may be more ideal for the treatment of medial compartment knee OA (Shelburne et al., 

2008). 

Numerous strategies exist in order to treat knee OA conservatively, and approaches can be both 

direct and indirect (Jones et al., 2013). Footwear modifications may be used for conservative 

therapy, and include indirect assistive devices such as shock absorbing shoes with insoles and 

lateral wedged insoles (LWI), designed to alter the position of centre of pressure (COP) under 

the foot and therefore shift the GRF laterally with respect to the knee (Yasuda et al., 1987, 

Jones et al., 2013). Valgus knee braces are an additional direct approach, applying a valgus 

force directly to the knee (Lindenfeld et al., 1997, Jones et al., 2013). All have been identified 

as improving pain, stiffness and function during everyday activities (Kuroyanagi et al., 2007, 

Shelburne et al., 2008, Pagani et al., 2012, Jones et al., 2013, Jones et al., 2015). Various 

strategies used for the conservative treatment of knee OA will be discussed in the following 

paragraphs. 

2.9.3.4 Valgus Knee Braces 

Valgus knee braces are patient administered, load modifying devices used for the conservative 

treatment of medial compartment knee OA. They comprise of an adjustable knee brace, worn 

externally around the knee joint (Reeves and Bowling, 2011, Pagani et al., 2012, Jones et al., 

2013). Valgus knee braces aim to realign the knee joint, and therefore reduce a proportion of 

the load acting on the medial compartment, providing pain and OA symptom relief 

(Duivenvoordem et al., 2015). The reduction in load on the medial compartment of the knee 

joint is achieved with the application of an opposing external valgus moment about the knee 

brought about with the use of a three point pressure exerted on the knee joint, meaning the knee 

brace provides force at three locations of the knee joint (Reeves and Bowling, 2011, Pagani et 

al., 2012, Jones et al., 2013). 

Adjustable straps fitted on to the valgus knee brace provide an external corrective force to the 

knee joint, allowing a shift in knee alignment which shortens the moment arm, therefore 

lowering the external adduction, or varus moment causing a transfer of load away from the 

medial compartment of the knee and dispersing load across the knee joint more evenly, 
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alleviating stress from the medial compartment and providing some symptom relief (Ramsey 

et al., 2009).  

A number of studies investigating the efficiency of valgus knee braces have identified 

reductions in pain (Ramsey et al., 2007, Gaasbeek et al., 2007, Russell and Ramsey, 2009, 

Hurley et al., 2012, Jones et al., 2013), improvements in proprioception (Birmingham et al., 

2001), static and dynamic balance ability (Chuang et al., 2007), knee instability control and 

muscle co-contraction during gait (Ramsey et al., 2007) and reductions in muscle activation 

and co contraction levels, possibly slowing disease progression of knee OA (Fantini Pagani et 

al., (2012). The literature surrounding valgus knee braces indicates they may be responsible 

for improvements in knee function and an improvement in quality of life when used for the 

treatment of medial compartment knee OA. However, Jones et al., (2013) identified a reduction 

in the early stance EKAM with the use of a valgus knee brace, however the reduction in EKAM 

with the use of a valgus knee brace (7% from baseline) was significantly lower than the 

reduction in EKAM obtained with the use of a LWI (12% from baseline) in individuals with 

knee OA. An increase in walking speed was identified within the Jones et al., (2013) trial 

during the use of both valgus knee braces and LWI, indicating a reduction in pain and an 

increase in function in individuals with knee OA. 

Conversely, the literature also provides evidence of poor patient acceptance of valgus knee 

braces compared to other devices, such as LWI used for the conservative treatment of medial 

compartment knee OA (Jones et al., 2013). A recent study by Jones et al., (2013) compared 

the biomechanical effects of both LWI and valgus knee braces, establishing that valgus knee 

braces were worn for less than 4 hours per day by 71% of users within the trial. Conversely, 

LWI were worn for longer than 4 hours per day by 71% of users. The LWI were deemed more 

comfortable, and more easily accepted by individuals within the trial, with the valgus knee 

braces presenting adherence issues by users. Similarly, a trial by Duivenvoorden et al., (2015) 

reported LWI as more easily accepted by participants than a valgus knee brace. Additionally, 

valgus knee braces have been described as uncomfortable and cumbersome, and users have 

reported issues with slippage of the device. Furthermore, valgus knee braces require specialist 

fitting, and are indiscreet, they can also often be complicated to wear, and therefore difficult to 

fasten by knee OA sufferers, they may also prove difficult and uncomfortable to wear with in 

certain social situations (Duivenvoorden et al., 2015). 
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Valgus knee braces exhibit some benefits when used for the treatment of medial compartment 

knee OA, however low acceptance of the device means benefits would not be seen in 

individuals, due to the unwillingness to wear the valgus knee brace (Jones et al., 2013). 

Furthermore, clinical outcomes of LWI and valgus knee braces are the same, however the LWI 

reduced the EKAM further than the valgus knee brace (Jones et al., 2013). Lateral wedge 

insoles therefore may be a more ideal solution and are therefore an attractive option for 

individuals with medial knee OA as they are simple, easy and quick to apply, can be worn with 

different footwear types, and do not require fitting, unlike valgus knee braces. 

2.9.3.5 Lateral Wedged Insoles  

LWI are inexpensive, discreet, self-administered mechanical interventions used as a 

conservative form of treatment of medial knee OA comprising of a shoe insert with a thicker 

border on the lateral side compared to the medial side (figure 2.5) with good adherence to 

treatment (Shakoor et al., 2008, Kean et al., 2013, Jones et al., 2013, Jones et al., 2014, Arnold 

et al., 2015, Jones et al., 2015, Hatfield et al., 2016). LWI are a management technique 

advocated by NICE for the conservative treatment of medial compartment knee OA (NICE, 

2014). LWI can also be added into the sole of the shoe (lateral wedge shoe) via modification 

of shoe designs (Zamosky, 1964, Shakoor et al., 2008). The simplicity of LWI means they can 

be easily and safely used by medial knee OA patients, and are fairly accessible to the majority 

of people, due to their low cost (Kerrigan et al., 2002, Baker, 2006, Jones et al., 2015). 
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Figure 2.5: Posterior view of a lateral wedge shoe for the left foot (left). Posterior view of a lateral wedge insole 

for the left foot (right). Adapted from Toda et al., (2004) and Van Raaij et al., (2010). 

 

LWI are mentioned extensively within the literature for the treatment of medial compartment 

knee OA (Jones et al., 2012, Pagani et al., 2012, Jones et al., 2013, Jones et al., 2014, Jones et 

al., 2014, Duivenvoorden et al., 2015, Jones et al., 2015, Yamaguchi et al., 2015, Arnold et 

al., 2015, Hatfield et al., 2016) and aim to modify load at the knee joint by altering the 

kinematics and kinetics of the subtalar ankle joint (Sasaki and Yasuda, 1987) with research 

indicating LWI to cause slanting of the calcaneus into an everted (valgus) position (Abdallah 

and Radwan, 2011) (figure 2.5). LWI provide a reduction in lateral knee thrust, ligamentous 

tension and pain and therefore increase or maintain function of the knee (Fang et al., 2006, 

Shimada et al., 2006, Barrios et al., 2009) as observed with the use of LWI in patients with 

mild to moderate medial compartment OA of the knee. 

LWI have been suggested as an effective intervention in reducing the EKAM during early and 

latter stance (Butler et al., 2007, Hinman et al., 2008, Hinman et al., 2009, Bennell et al., 2011, 

Jones et al., 2012, Zhang et al., 2012, Skou et al., 2013, Jones et al., 2013, Arnold et al., 2015, 

Jones et al., 2015, Yamaguchi et al., 2015) and aim to minimise pain and increase or maintain 

activity levels by alleviating a proportion of the force transmitted by the medial compartment 

of the knee joint (Shelburne et al., 2008). This is achieved by pronating the foot to provide a 

valgus moment at the ankle, with the resultant valgus moment causing the centre of pressure 

in the foot to shift laterally up to 5mm (Shelburne et al., 2008), leading to a reduction in the 

EKAM (Kerrigan et al., 2002, Hinman and Bennell, 2009, Jones et al., 2013, Jones et al., 2015, 

Yamaguchi et al., 2015).  
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Pronation is a combination of eversion, (the calcaneus shifts into a lateral position in the frontal 

plane) dorsiflexion and abduction, (which aligns the femur and tibia into an upright position 

which subsequently leads to reduced medial loading) (Sasaki and Yasuda, 1987, Kakihana et 

al., 2005, Hinman et al., 2009, Levinger et al., 2010, Bennell et al., 2011, Zhang et al., 2012, 

Skou et al., 2013, Jones et al., 2013, Jones et al., 2015, Arnold et al., 2015). Shifting the centre 

of pressure laterally reduces the moment arm at the knee, thus it was established that EKAM 

and medial compartment loading reduced linearly with lateral displacement of the centre of 

pressure (for every 1mm lateral displacement of the centre of pressure, the peak of EKAM and 

medial compartment load decreased by 2% and 1% respectively (Shelburne et al., 2008). 

LWI are designed to modify the centre of pressure under the foot by shifting the knee GRF and 

a proportion of the load laterally therefore reducing the EKAM and knee adduction angles 

(Butler et al., 2007, Hinman et al., 2008, Jones et al., 2013, Jones et al., 2014, Jones et al., 

2015, Hatfield et al., 2016). Kakihana et al., (2005) states the wearing of full length lateral 

wedge insoles resulted in an enlarged ankle joint valgus moment, which was implied as a way 

of reducing the EKAM (figure 2.6). 

 

 

 

 

 

 

 

 

Figure 2.6: The biomechanical effects of wearing LWI during walking (GRF: ground reaction force, MA; moment 

arm) (Reeves and Bowling, 2011). 

A number of studies report no improvement in pain (Pham et al., 2004, Bennell et al., 2011, 

Parkes et al., 2013). Baker et al., (2007) reported little differences between an intervention with 

LWI and control group with regards to pain, concluding that the effect of intervention with 

LWI for medial compartment knee OA produced non-significant results that proved clinically 
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unimportant. Additionally, Bennell et al., (2011) reported no symptomatic, structural benefits, 

or effects on disease progression after wearing LWI for a period of 12 months when compared 

with wearing flat control insoles. The study did however identify clear biomechanical benefits 

and reduced medial knee load (Bennell et al., 2011). Moreover, Parkes et al., (2013) found no 

consensus regarding the efficacy of LWI as a treatment for pain in medial knee OA when 

compared to a neutral wedge, however when assessed against baseline, positive findings were 

identified.  

Results of previous trials have indicated there are differing biomechanical effects between 

individuals with regards to LWI and their effect on the EKAM, and surprisingly, individual 

EKAM response is varied, and as much as 30% of individuals with knee OA displaying an 

increase in the EKAM during walking (Chapman et al., 2015). A recent study by Chapman et 

al., (2015) investigated whether dynamic ankle joint complex coronal plane biomechanical 

measures could categorise and provide insight into medial compartment knee OA patients that 

experienced an increase or decrease in the EKAM whilst wearing LWI compared to control 

shoes. Reported findings identified 33% of participants increased their EKAM and 67% 

decreased their EKAM whilst wearing LWI, compared to a control shoe. Therefore it can be 

stated that coronal plane ankle and subtalar joint complex biomechanics influence the EKAM 

with the use of LWI.  

Findings from the Chapman et al. (2015), trial may further the understanding of why some 

individuals respond better to LWI than others in terms of EKAM reduction, and may allow 

identification of individuals who would experience optimal effects from the use of LWI 

(Chapman et al., 2015). Similarly, Chapman et al., (2011) identified 39% of individuals taking 

part in a trial concerning LWI were classified as biomechanical non-responders, meaning the 

individual did not demonstrate a reduction in knee loading when wearing a LWI. Similarly, 

Kakihana et al., (2007) identified some variability in the results of a trial using LWI, with 18% 

of patients with medial compartment knee osteoarthritis not responding to the LWI (showing 

no reduction in the knee joint varus moment). Jones et al., (2014) and Chapman et al., (2015) 

concluded that coronal plane foot and ankle biomechanical measures are key mechanisms 

causing a reduction or increase in the EKAM when wearing LWI. Knee OA patients who 

demonstrated a higher peak ankle eversion angle or a higher eversion angle at peak EKAM 

during the control (shod) condition than the LWI condition were more likely to be classified as 

biomechanical responders to the LWI (Jones et al., 2014). Within the Jones et al., (2014) trial 
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using LWI, of the 70 participants studied, 20% increased their EKAM, indicating an incidence 

of biomechanical non-response within the trial. Further research into the incidence of 

biomechanical non-response in terms of the EKAM within the literature surrounding LWI is 

needed. The type of LWI used may impact on the efficacy of the LWI itself. 

Extensive research has been conducted concerning LWI, and a number of variations of LWI 

exist within the literature, including; heel only LWI, full length LWI, and full length LWI with 

medial arch support (Jones et al., 2015). Additions can be made to the LWI, such as subtalar 

strapping worn with a LWI. Full length LWI are the most typically used within the literature, 

and investigations have concluded that full length LWI are more effective in reducing the 

EKAM than rearfoot only LWI (Hinman et al., 2008). 

A study by Jones et al., (2015) examined the differences between varying shoe types and LWI 

on the EKAM, pain and comfort when walking in individuals with medial knee OA. The 

randomised trial tested five different walking conditions; barefoot, a flat soled shoe (control), 

two different LWI (both full length with 5º lateral wedges, one with medial arch support and 

one without), and a mobility shoe (a flexible and grooved shoe). The study concluded that both 

LWI showed significant and comparable reductions in medial knee loading, however the 

medial support LWI reduced pain more, and was perceived as being more comfortable by 

individuals. Similarly, a previous trial by Jones et al., (2013) concluded that medial support 

LWI were better in terms of function for the foot and ankle, and also investigations by 

Nakajima et al., (2009) identified arch support to improve the biomechanical effects of LWI.  

Furthermore, an additional trial by Jones et al., reported that both types of LWI had significant 

effects on the early stance peak EKAM (Jones et al., 2014). A further randomised cross over 

trial by Jones et al., (2013) investigated the effects of a full length LWI compared to the same 

LWI accompanied by the use of an off the shelf anti-pronatory device in shoes whilst walking 

in fifteen healthy subjects.  

Both intervention conditions provided significant reductions in the EKAM, which were 

reported as 8.5% in the LWI with anti-pronatory device condition, and 9.1% in the LWI only 

condition. The LWI with anti-pronatory device was perceived to be more comfortable by 

participants (Jones et al., 2013) and therefore, the addition of an anti-pronatory device to a 

standard, full length LWI may lead to increased adherence of the intervention in patients with 

medial compartment knee OA, whilst offering an effective reduction in medial compartment 
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joint loading and therefore could lead to slowed knee OA disease progression (Jones et al., 

2013). Moreover, Nakajima et al., (2009) carried out an investigation to discover whether arch 

support could improve the biomechanical effects of a LWI when used simultaneously and 

concluded that the EKAM was reduced with the use of LWI and LWI with arch support by 

7.7% and 13% respectively. The decrease was due to an alteration in the progression angle 

between the insoles. When used alone, LWI were identified as increasing step width, however 

the addition of arch support to LWI negated the increase, and therefore the use of arch support 

with LWI is a possible simple mechanism for further reducing the EKAM (Nakajima et al., 

2009). Furthermore, Toda et al., (2004) identified LWI with 8mm or 12mm elevation, along 

with subtalar strapping to be the most effective in terms of reducing knee loading, and also to 

be the most comfortable elevation as perceived by participants. Subtalar strapping causes 

realignment and therapeutic effects, similar to a high tibial osteotomy by causing varus 

angulation of the talus, leading to correction of the femerotibial angle which causes further 

reduction of medial joint loads, identified when used in conjunction with LWI to be more 

effective than LWI alone (Toda et al., 2004, Hinman et al., 2009). 

It appears as though the addition of support worn simultaneously with LWI could offer both 

biomechanical and perceived patient comfort benefits, working synchronously to improve the 

effectiveness of LWI. The addition of extra support used concurrently with LWI should 

therefore be investigated further within the literature.  

The most common angulation of LWI used for the treatment of medial compartment knee OA 

is 5º (Jones et al., 2015, Yilmaz et al., 2015), with the angulation design features of the LWI 

influencing the biomechanical effects of the LWI on the lower limbs (Hinman et al., 2009, 

Hinman et al., 2012, Chapman et al., 2015). Although shown to be effective in reducing medial 

knee loads, an inclination exceeding 10º has been found to cause foot discomfort for subjects 

within trials, and therefore the majority of trials use the optimal comfort wedge inclination of 

5º (Kerrigan et al., 2002, Hinman et al., 2009, Hinman et al., 2012, Chapman et al., 2015, 

Yilmaz et al., 2015). 

A number of trials have investigated the effects of footwear based treatments as an additional 

option available which aim to reduce medial loads and the EKAM (Shakoor et al., 2008, 

Hinman et al., 2009, Shakoor and Block, 2013, Keen et al., 2013, Jones et al., 2015). Although 

a vast amount of research concerning LWI has reported reductions in the peak EKAM in both 

healthy individuals and individuals with medial compartment knee OA, surprisingly, LWI have 
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proven ineffective at improving symptoms or slowing disease progression in some clinical 

trials, and reductions in the peak EKAM are occasionally not consistent across all study 

findings. A number of trials report that LWI had no effect on the EKAM (Pham et al., 2004, 

Baker et al., 2007, Hinman et al., 2008, Barrios et al., 2009, Bennell et al., 2011, Chapman et 

al., 2015). It has been postulated that the inconsistencies in LWI effectiveness could be due to 

the varying types of LWI available, and the differences in design and materials used, with a 

higher density manufacturing material (providing a varying sole stiffness) potentially affecting 

the EKAM reduction percentage, and also the length of which LWI are worn by trial 

participants, with 5-10 hours per day considered optimal (Hinman et al., 2008, Hinman et al., 

2009).  

The most apparent difference in varying types of LWI is the length (Hinman et al., 2008), and 

full length insoles (heel to forefoot) have been identified as the most effective in reducing the 

EKAM due to the orientation of the subtalar joint axis which is inclined upwards at an anterior 

angle and medially from the lateral calcaneus to the first metatarsal head. A full length LWI 

extends under the metatarsal head which causes an increase in the lever arm for rearfoot 

eversion, compared with a rearfoot (heel) only wedge which has a smaller lever arm. The 

reduction in EKAM is associated with an increased subtalar joint valgus moment via a more 

laterally shifted location of the COP of the foot. A full length LWI extends along the length of 

the entire foot, and the whole foot makes contact with the ground during the gait cycle, not just 

the rearfoot. The heel strike phase of the gait cycle makes contact with the ground for 

approximately 30-40% of the gait cycle. The second peak EKAM occurs at approximately 40-

50% of the gait cycle. It is therefore not surprising that full length LWI are more effective at 

reducing the magnitude of the EKAM than heel only LWI (Inman, 1976, Crenshaw et al., 2000, 

Kerrigan et al., 2002, Kakihana et al., 2004, Kakihana et al., 2005). Full length LWI, rather 

than heel only LWI should therefore be used for the treatment of individuals with medial 

compartment knee OA.  

Results from trials using LWI in knee OA patients have been somewhat inconsistent with 

regards to reduction of the EKAM and pain improvement (Hinman et al., 2008, Chapman et 

al., 2015), and it could be stated that the varying findings concerning reduction of the EKAM 

within the literature surrounding LWI could be due to the choice and utilisation of sub-optimal 

LWI (length, type, material and fit) and also the interaction of the individuals body type with 

the LWI, with Chapman et al., (2015) concluding that coronal plane ankle subtalar joint 
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complex biomechanical measures influence the effect on the EKAM when wearing LWI. 

Further investigation is therefore paramount in order to identify individuals that may 

experience optimal benefits from the use of LWI for the treatment of medial compartment knee 

OA (Chapman et al., 2015). Findings of the Chapman et al., (2015) trial were based on shoe 

marker data collection, and therefore, whether barefoot walking can predict the response to 

LWI is unknown.  

EKAM reductions when placing LWI in a person’s own shoe can vary, and flat footwear or 

socks (although not practical) are the most ideal footwear for the use of LWI (Hinman et al., 

2009). A study by Kean et al., (2013) compared a modified shoe incorporating a variable 

stiffness sole and lateral wedging with a standard sole shoe (control) and concluded that an 

individual’s choice of shoe could impact the effectiveness of LWI (Kean et al., 2013). 

Moreover, concern has been reported about the compromise in shoe space when LWI are 

inserted into shoes, which could impact the effectiveness of the LWI, and could lead to 

discomfort (Bennell et al., 2011). Furthermore, no pain reductions have been reported with the 

use of typical LWI (full length and without medial support), although it has been reported that 

a change in EKAM is not significantly associated with a reduction in knee pain, pain reduction 

would be a desirable effect of LWI (Jones et al., 2014). Accordingly, research has been 

undertaken into the design of shoes which aim to reduce the mechanical loading at the knee 

joint (Erhart et al., 2002, Shakoor et al., 2009, Hinman et al., 2009).  

Variable stiffness soled shoes and lateral wedged shoes (with a LWI inserted into the shoes 

sock-liner, integrated into the shoes design, complementing the sole) have been investigated 

for their ability to reduce the EKAM in patients with knee OA (Kean et al., 2013, Bennell et 

al., 2013). Modified shoes have been found to result in alterations to lower extremity 

biomechanics, specifically reductions in the knee GRF lever arm and the frontal plane GRF 

magnitude caused a reduction in the EKAM in people with knee OA (Bennell et al., 2011, 

Kean et al., 2013). Likewise, Erhart-Hledik et al., (2012) investigated the possible load 

modifying effects and clinical efficacy of variable stiffness shoes designed to reduce loading 

at the knee after 12 months of wearing by individuals with medial compartment knee OA, and 

identified that long term wearing of the specialised footwear led to a reduction in the EKAM, 

thereby reducing the load on the medial compartment of the knee. 

Mobility shoes are another strategy designed specifically for the treatment of knee OA, 

surprisingly showed no effect on medial loading within the Jones et al., (2014) trial, however 
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led to significant immediate knee pain reduction and improved comfort scores compared to all 

other walking conditions (Jones et al., 2015). It was hypothesised that perceived comfort of the 

mobility shoes may have influenced pain scores, which may change over time given that the 

pain scores were recorded immediately after participants first put the shoes on (Jones et al., 

2015). Shakoor et al., (2013) postulate that medial loading reductions may occur over time 

with the mobility shoe. The same mobility shoe (designed to lower dynamic loading at the 

knee) was included within a trial by Shakoor et al., (2008), and interestingly, when compared 

to self-chosen (by participants) commercially available walking shoes (control) the specialised 

footwear effectively reduced joint loading in subjects with knee OA.  

Mobility shoes are designed to mimic barefoot walking during gait, and consist of flat soled, 

flexible footwear. Mobility shoes have been found to lead to a reduction in knee loading in 

knee OA subjects and also an adaptation in gait, with sustained and long term impacts on knee 

joint loading identified even when the mobility shoe was removed (Shakoor et al., 2013). 

Mobility shoes may therefore may serve as a biomechanical training device to achieve 

beneficial alterations in gait patterns and mechanics for the treatment of medial compartment 

knee OA (Shakoor et al., 2008, Shakoor et al., 2013). Barefoot walking has been identified as 

the most effective walking style for reducing the EKAM and medial knee loading within the 

literature for treatment of medial knee OA (Jones et al., 2015), (hence the design of mobility 

shoes to emulate barefoot walking), however barefoot walking is neither convenient nor 

possible to maintain during everyday activities for the majority of the population, and therefore 

a more ideal intervention such as a LWI is needed. Mobility shoes have been designed with the 

aim of providing a safe and suitable alternative to barefoot walking, whilst still providing a 

reduction in knee loading (Shakoor and Block, 2006, Shakoor et al., 2013). Similarly, barefoot 

walking provided a significant reduction in medial loading during the first part of stance phase 

during the Jones et al., (2015) trial. However, Jones et al., (2015) identified barefoot walking 

to increase the medial loading during the latter period of stance and therefore stated that 

barefoot walking may not be the most effective solution for medial loading reduction. 

Therefore, LWI look to be an attractive solution for the treatment of medial compartment knee 

OA as reductions in medial loading were seen during both the first part of stance phase, and 

the late periods of stance phase (Jones et al., 2015). 

Research comparing the effects of footwear types specifically aimed to reduce medial knee 

loading and the EKAM) and LWI is limited, thus further investigation is needed in order to 
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discover which treatment is most ideal, providing the largest and longest lasting reduction in 

the EKAM, also which treatment reduces pain most effectively and reduces medial knee 

loading. To date, the literature points to LWI being the most suitable and effective method of 

reducing medial knee loads. Mobility shoes and other specialised footwear types are more 

expensive than LWI, and are also less discreet and provide varying and limited effects in terms 

of knee joint load modification (Hinman et al., 2009). 

The kinetic and kinematic effects of wearing LWI have been reported as being most effective 

in mild to moderate medial compartment knee OA (Marks and Penton, 2004, Shimada et al., 

2006). An investigation by Shimada et al., (2006) aimed to determine the efficacy of LWI on 

knee kinetics and kinematics during walking in subjects with knee OA, according to severity 

of the disease when measured using the Kellgren and Lawrence (KL) grading scale. The effects 

of the LWI were identified as being significant towards lowering knee joint loading in subjects 

with knee OA graded as I and II on the Kellgren and Lawrence grading scale. The findings of 

the study therefore support the recommendation that LWI are most ideal for patients with mild 

to moderate knee OA (Shimada et al., 2006). 

Further investigation into LWI is needed to establish the effectiveness on biomechanical and 

clinical parameters in patients with symptoms of medial knee OA (Fang et al., 2006). Reilly et 

al., (2009) identified foot posture as a possible influence on the effectiveness of orthotic 

interventions in patients with medial knee OA. The study established that use of LWI to treat 

osteoarthritis of the knee may further increase the pronation of an already pronated foot, 

therefore causing further deviation from normal gait. Further investigation is needed therefore, 

in order to determine whether foot posture may have influenced this incidence of 

biomechanical non-response within trials carried out by Chapman et al., (2011).  

The above literature fails to investigate the use of LWI in the treatment of medial knee 

osteoarthritis in relation to foot posture. However, a number of articles infer that foot posture 

would be studied in future research in their discussion (Hinman et al., 2008, Butler et al., 2009, 

Levinger et al., 2010, Levinger et al., 2012, Buldt et al., 2015, Buldt et al., 2015). 

2.10 Foot Posture and Medial Compartment Knee Osteoarthritis  

Foot posture assessment is important to consider when using LWI for the treatment of medial 

compartment knee OA, as foot posture variations are associated with the development of some 

lower limb abnormalities and musculoskeletal conditions (Reilly et al., 2009, Levinger et al., 
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2010, Abourazzak et al., 2014, Buldt et al., 2015, Buldt et al., 2015,) and altering of the 

mechanical alignment and dynamic function of the lower limbs (Levinger et al., 2010), 

therefore possibly reducing the effectiveness of various interventions such as LWI in the 

treatment of medial knee OA. For example, low arched (pes planus) and pronated (everted) 

feet have been associated with medial compartment knee OA within the literature (Levinger et 

al., 2010, Levinger et al., 2012, Buldt et al., 2015). However, despite this observation, the 

underlying mechanics linking foot posture and medial compartment knee OA are somewhat 

unclear. Therefore, Levinger et al., (2010) advocates an in depth knowledge of foot structure 

to be paramount in fully understanding the effect of interventions on the knee and lower limb 

joints in order to identify participants who will most likely benefit from intervention (Levinger 

et al., 2010). Currently however, there is a lack of research surrounding medial knee OA and 

foot structure and therefore greater investigation is required (Levinger et al., 2010, Levinger et 

al., 2012, Levinger et al., 2013).  

Accurate foot assessment can provide an appreciation into how foot postures may influence or 

be influenced by reducing the loading on the medial knee compartment (Reilly et al., 2009, 

Levinger et al., 2012). Levinger et al., (2012) identified subjects with medial compartment 

knee OA to demonstrate altered foot kinematics during gait that are symptomatic of a less 

mobile, more everted foot type. Similarly, Reilly et al., (2009) compared navicular height in 

sitting and standing positions in 60 subjects with hip OA, 60 subjects with knee OA and in 60 

controls. No difference was found between the knee OA and control groups; however, there 

was a considerable difference in frontal plane calcaneal angle, indicating a more everted 

(pronated) rearfoot in the knee OA group.  

Foot pronation has been suggested to potentially reduce the adduction moment by shifting the 

centre of pressure laterally indicating an adaptation by the foot to reduce the load on the medial 

compartment of the osteoarthritic knee (Desal et al., 2007, Levinger et al., 2010, Levinger et 

al., 2013, Abourazzak et al., 2014).  

It is well known LWI can alter foot motion (Levinger et al., 2013, Jones et al., 2015), 

specifically leading to an increase in rearfoot pronation (Nester et al., 2003, Kakihana et al., 

2005, Abourazzak et al., 2014, Jones et al., 2015). Tibial malalignment and the extent of 

rearfoot range of motion identified within OA subjects was hypothesised to affect individual 

responses to load-altering interventions, such as LWI (Levinger et al., 2012). Accentuating 

pronation using a lateral wedged insole on an already pronated foot could potentially contribute 
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to detrimental changes to lower limb kinematics and therefore the development of 

musculoskeletal disorders in other areas (Levinger et al., 2010, Abourazzak et al., 2014). 

However, there is currently a lack of research assessing foot posture and the effect on the 

EKAM and effectiveness of LWI concurrently (Levinger et al., 2012). 

One of the most validated methods for assessing foot posture is the foot posture index (FPI) 

(Redmond et al., 2008). The FPI was developed to provide an efficient and reliable method for 

assessing static foot position, and is routinely used for clinical and research assessment 

(Redmond et al., 2008). A study compared FPI scores between 20 patients with medial knee 

OA and 20 controls and reported a considerably elevated average score in those with medial 

knee OA. This indicates a more pronated foot posture type in the medial knee OA population 

(Reilly et al., 2009, Levinger et al., 2010). A more recent study by Buldt et al., (2015) 

investigated the differences in the EKAM in healthy individuals with normal cavus (high 

medial longitudinal arch) or planus (low medial longitudinal arch) foot postures using the FPI. 

Results indicated that foot posture does not considerably influence the EKAM in healthy 

individuals whilst walking at a comfortable pace, suggesting the biomechanics of the knee are 

not substantially influenced by foot posture in healthy individuals. This finding proposes that 

foot posture may be altered by medial compartment knee OA. Also that the incidence of 

pronated feet within the medial compartment knee OA population presented within the 

literature may be a mechanism adapted by the individual to reduce disease symptoms (Buldt et 

al., 2015), instead of the presence of a pronated foot being the cause of medial compartment 

knee OA. Likewise, Gross et al., (2011) found that planus foot morphology is associated with 

medial compartment knee OA. 

The use of the FPI may allow further detailed analysis of the EKAM primary outcome measure 

by grouping the subjects using these classifiers (Keenan et al., 2007, Redmond et al., 2008, 

Wrobel and Armstrong, 2008).  

Levinger et al., (2012) also advocates an insight into the dynamic function of the foot during 

gait to be important in understanding the effect of foot kinematics on loading of the knee, thus 

providing an appreciation into the factors affecting the EKAM, aiding the design of knee OA 

treatment strategies. Several previous investigations have examined dynamic function of the 

foot during gait using three dimensional (3-D) motion analysis systems with infra-red cameras 

and force platforms in order to capture and analyse the motion of the lower limbs, ground 

reaction forces and also to identify gait cycle events (Landry et al., 2007, Levinger et al., 2012, 
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Jones et al., 2014, Jones et al., 2012, Shultz and Jenkyn, 2012). The FPI and dynamic foot 

motion results can be used to gain an understanding into possible relationships between clinical 

and biomechanical foot measurements and their influences on the loading on the medial 

compartment of the knee. 

2.11 Gaps in the Literature  

Recent literature suggests that foot posture can potentially influence the magnitude of the 

EKAM (Levinger et al., 2010), and that a pronated foot can reduce the EKAM in medial 

compartment knee OA patients (Levinger et al., 2010), although the underlying mechanisms 

connecting foot posture and function remain unclear within the literature (Buldt et al., 2015). 

Therefore, further research is needed to understand the role of both static and dynamic foot and 

ankle posture/motion on the EKAM. There is currently a lack of literature surrounding non-

response to LWI intervention in knee OA patients which has been implied within the literature 

as possibly relating to rearfoot position and motion (Hinman et al., 2008, Butler et al., 2009, 

Chapman et al., 2011, Chapman et al., 2015). Chapman et al., (2015) highlighted that rearfoot 

motion in a control shoe could predict biomechanical response to lateral wedge insoles in a 

group of medial compartment osteoarthritis patients. However, it is unknown whether barefoot 

motion which is more used in clinical situations can successfully predict biomechanical 

response to lateral wedge insoles when worn in shoes. Additionally, it is unknown whether 

static measures of the foot and rearfoot (FPI - a common assessment in clinics), are useful 

indicators for biomechanical response to lateral wedge insoles. 

Previous literature has assessed the change in rearfoot motion when wearing lateral wedge 

insoles but this has only been examined with intra-cortical bone pins (Jones et al., 2012). This 

approach is invasive and therefore quantification of rearfoot motion when wearing lateral 

wedge insoles needs to be analysed with a new approach in the shoe condition. This will help 

to determine the changes that lateral wedge insoles inflict upon the rearfoot rather than 

incorporating the motion of the shoe and also make further advancements in the literature. 

Therefore, whilst previous studies have demonstrated the effects of using LWI and their effects 

on the knee joint, the precise underlying mechanisms of foot posture and its effects on the 

EKAM, and the impact of LWI on the foot and ankle remain unclear within the literature.  

2.12 Thesis Objectives 

The primary objectives of this thesis are:  
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a) To determine whether clinical static foot posture (quantified using the FPI), can 

represent the dynamic rearfoot. 

b) To determine if any relationship exists between clinical static foot posture (quantified 

using the FPI) and the magnitude of the EKAM. 

c) To determine whether the rearfoot kinematics have any relationship with the 

magnitude of the external knee adduction moment. 

d) To determine whether foot posture impacts on the effectiveness of lateral wedged 

insoles and the reduction of EKAM in patients with OA of the knee. 

e) To examine the accuracy of rearfoot kinematic measurements using novel methods 

barefoot and inside the shoe. 

f) To examine the effect of lateral wedge insoles on rearfoot motion using in-shoe 

measurement techniques. 
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Chapter Three 

Methodology and Repeatability 

 

3.1 Introduction 

In this chapter, the biomechanical methods that define the 3D motion data capture, force 

measurement and segment modelling and computation are presented, also a test-retest study 

that was conducted by the investigator to ensure repeatability of the investigators reflective 

marker placement to determine the error within the future planned studies. 

 

3.2 Data Collection 

In order to calculate the biomechanical variables of the lower limbs in the biomechanical 

model, both motion data and force data need to be captured during the designated locomotion. 

Both the motion and force data need to be synchronised so to build up the relationship between 

kinematic variables and forces acting on the foot and at each joint. 

3.2.1 Kinematic data capturing using infra-red cameras 

Kinematic data were collected by a Qualisys motion capture system with sixteen computerised 

infra-red Oqus cameras (Qualisys AB, Gothenburg, Sweden) at 100Hz which reflect red light 

from the markers, back to the cameras to provide the 2-D position (coordinate image) of each 

marker (the position of the marker is found by a beam of light reflected from the marker, back 

to the cameras). Each marker must be seen by at least two cameras (two light beams) at any 

one time during capture time in order for its 3-D location to be determined within the global 

coordinate system (Cappozzo et al., 2005, Kaufman and Sutherland, 2006, Payton and Bartlett, 

2008). At least three non-co-linear reflective markers are required on a segment to define its 

position and orientation accurately in a 3-D space (Cappozzo et al., 1996).  

When the position and orientation of the body segment is determined in the same way, the 

angle between the two segments can then be calculated (ROM) (Kaufman and Sutherland, 

2006). 
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3.2.2 Ground reaction force measurements using force plates 

The ground reaction force which was used in the calculation of the kinetic output was measured 

with floor embedded force plates (BP400x600, AMTI Watertown, MA, USA) at 1000Hz. In 

total, four force plates were used in the study (figure 3.1). The measurement of the ground 

reaction force was synchronised and collected in Qualisys Track Manager (QTM) software that 

operated the motion capture system. The force plates were set up and calibrated by the centre 

engineers using CalTester software, a quality assurance tool for the purpose of validating the 

laboratory settings of force plates by corroborating the spatial synchronisation of the force 

plates and forces (C-Motion, 2016). Based on the CalTester test results, the accuracy of the 

force vector orientation ≤1° and COP location ≤3mm, which was equally true for each force 

plate (CMAS University of Salford lab standards). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: The Gait Laboratory at the University of Salford. Floor embedded force plates are depicted in the 

centre of the image numbered 1-4. 
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3.2.3 Calibration of the motion capture system 

In order to collect complete, accurate and reliable data in the measurement volume (the space 

around the force plates) during walking, the camera system must be adjusted, aligned and 

calibrated before use. The system is firstly calibrated statically in order to identify the 

orientation and position of each camera in relation to the global coordinates system of the gait 

laboratory, and secondly dynamically to ensure all motions within the measurement volume 

are captured. 

The tool used to carry out static calibration of the 3-D motion capture system was an L-shaped 

rigid metal frame (figure 3.2), with four reflective markers attached in the designated positions. 

Before calibration, the L-shaped frame was placed on the corner of the first force plate, and the 

outside surface of the L-Frame was aligned with the side surface of the force place. The fixed 

markers of the L-frame were used to define the X and Y axis of the laboratory coordinate 

system (Global system). The positive X axis points forward, the positive Y axis points to the 

left when facing forward, and the axis defined with X and Y represented the positive Z axis 

(upwards). 

The origin of the force platform is in the centre of the force plate below the top surface, by 

manufactural design. The origin of each force plate was automatically calculated in the 

laboratory frame based on its parameters and settings. 
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Figure 3.2: The position of the L-shaped frame for calibration.     Figure 3.3: The calibration wand. 

  

A separate tool was used to calibrate the space used during dynamic trials. This tool was a T-

shaped metal frame (figure 3.3) with reflective markers positioned in fixed points along the 

length of the structure at a distance of 750.43mm. A capture time of 60 seconds was used to 

enable the space to be fully calibrated and the T-shaped wand tool was randomly moved around 

the testing space ensuring that both the lower floor level and higher level were covered 

completely. Concurrently, the L-shaped tool was placed on the force platform. This determined 

the location (position and orientation) of the 16 cameras relative to the gait laboratory 

coordinate system (Payton and Bartlett, 2008).  

In the calibration, the distance between the origin of the coordinate system of the motion 

capture, i.e. the laboratory coordinate system, and the optical centre of each camera would be 

determined, which was represented with the three coordinates of X, Y and Z. For wand 

calibrations, the default origin of the coordinate system is in the centre of the corner marker.  

After the calibration process was complete and passed, both the calibration residual results for 

each camera and the standard deviation of the wand length were recorded to be below 1mm, 

meaning any markers position in the trial will be located to within 1mm of its true position. 
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The lower the residual result, the more accurate the calibration and the 3-D marker coordinate 

from the measurement. 

Following the completion of calibration, the setting up of the system and force plates followed. 

The settings of other devices such as the amplifier and analogue board were checked and all 

force plates were reset to remove the signal offset before the test commenced. An offset 

removal manoeuvre was performed between each trial and condition in order to minimise the 

noise level, by resetting the force plates. 

3.2.4 The test protocol 

As knee OA was the focus of the study, the lower limbs including; the pelvis, left and right 

thighs, legs and feet were the main body segments for the biomechanical analysis. To define 

each segment, the predefined anatomical markers were placed on the landmark position of each 

segment. To track the three dimensional motion of each segment, a minimum of three markers 

per cluster were firmly attached to each segment for tracking the movement during dynamic 

tests. The main test for determining the biomechanical variables of each involved segment and 

joints were walking tests. In order to define the model of each segment, a static test was 

performed in each test session or condition, during which all markers (both anatomical and 

tracking markers) were recorded when the subject stood still in the motion capture space. The 

dynamic walking tests were performed until a minimum of five good walking trials were 

achieved. Walking trials were conducted along a walkway (15 metres long, 6 metres wide) 

with force platforms (AMTI: Advanced Medical Technology Incorporation, Watertown, USA) 

embedded within. A good walking trial meant successful marker capture had taken place, and 

at least a clean stance phase on one force plate was achieved.  

3.2.5 Participants 

Healthy participants were recruited from within the staff and student population at the 

University of Salford, and the patients with medial compartment knee osteoarthritis were 

recruited from within NHS patient lists. Testing was conducted in the clinical gait laboratory 

at The University of Salford.  

3.2.6 Procedure 

On arrival at the clinical laboratory, all test procedures and equipment used within each 

particular study were briefly explained to each subject and he or she was given the opportunity 
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to ask any questions. Individuals then signed the informed consent form. Participants then 

donned shorts after changing in a private area, and several anthropometric measurements were 

taken for later use in data analysis (height and mass). 

3.2.6.1 The Foot Posture Index 

Firstly, individual participant’s foot posture was assessed, and the foot was statically and 

clinically measured using the Foot Posture Index (FPI) scale (a 6 criteria foot posture 

assessment) (table 3.1, figure 3.4) in order to determine the degree to which the participants 

foot was pronated, supinated or in a neutral position, to establish if any relationship existed 

between dynamic and static foot posture.  

The subject stood in a relaxed bipedal position. The six criterion of the FPI include the 

following assessment items which were carried out on both limbs of each subject within the 

study: talar head palpation - the head of the talus is palpated on the medial and lateral side of 

the anterior aspect of the ankle. Supra and infra lateral malleolar curvature – the curves above 

and below the lateral ankle malleoli are observed and compared. Calcaneal frontal plane 

position – the inversion/eversion of the calcaneus is observed (angular measurements are not 

required, only visual appraisal). Bulging in the region of the talo-navicular joint – the area is 

observed. Bulging in this area is associated with a pronated foot, and a flat appearance of the 

skin directly over the talo-navicular joint indicates a neutral foot. Height and congruence of the 

medial longitudinal arch – the area is observed, taking both the arch height and the arch 

congruence into consideration, as both the height and shape of the arch can indicate foot 

function. Abduction and adduction of the forefoot on the rearfoot – requires the observation of 

the foot from the posterior aspect, in line with the long axis of the calcaneus (not the long axis 

of the whole foot) (table 3.1, figure 3.4). 

Each item was scored on a 5-point scale (between -2 and +2), providing a sum of all items 

between -12 (highly supinated) and +12 (highly pronated), with a score of 2 to 12 indicating a 

pronated foot, a score of -2 to -12 indicating a supinated foot, and a score of +1 to -1 indicating 

a neutral foot (Redmond et al., 2006, Levinger et al., 2010, Barton et al., 2012, Lee et al., 2015) 

(table 3.1, figure 3.4). The total FPI score was then used later in the data analysis. The FPI was 

assessed solely by the same examiner (the investigator), who had previous experience in taking 

these measurements. 
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Figure 3.4 – Figure depicting the locations of the six criteria of the Foot Posture Index (Lee et al., 2015). 
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Table 3.1 – An explanation of the six criteria of the Foot Posture Index (FPI). 

FPI Score -2 -1 0 1 222 

Talar Head 

Palpation. 

Talar head 

palpable on 

lateral side 

but not on 

the medial 

side 

Talar head 

palpable on 

lateral side 

and slightly 

palpable on 

the medial 

side 

Talar head 

equally 

palpable on 

lateral and 

medial side 

Talar head 

slightly 

palpable on 

lateral side 

and palpable 

on medial 

side 

Talar head 

not palpable 

on lateral 

side but 

palpable on 

medial side 

Supra and infra 

lateral malleolar 

curvature  

Curve below 

the 

malleolus 

either 

straight or 

convex 

Curve below 

the malleolus 

concave but 

flatter or 

more 

shallow than 

the curve 

above the 

malleolus 

Both infra and 

supra 

malleolar 

curves 

roughly equal 

Curve below 

malleolus 

more 

concave 

than curve 

above 

malleolus 

Curve below 

malleolus 

markedly 

more 

concave 

than curve 

above 

malleolus 

Calcaneal frontal 

plane position 

More than 

an estimated 

5̊ inverted 

(varus) 

Between 

vertical and 

estimated 5 ̊

inverted 

(varus) 

Vertical Between 

vertical and 

estimated 5 ̊

everted 

(valgus) 

More than 

an estimated 

5 ̊ everted 

(valgus) 

Bulging in the 

region of the talo-

navicular joint (TNJ) 

Area of TNJ 

markedly 

concave 

Area of TNJ 

slightly, but 

not definitely 

concave 

Area of TNJ 

flat 

Area of TNJ 

bulging 

slightly 

Area of TNJ 

bulging 

markedly 

Height and 

congruence of the 

medial and 

longitudinal arch 

Arch high 

and acutely 

angled 

towards the 

posterior 

end of the 

medial arch 

Arch 

moderately 

high and 

slightly acute 

posteriorly 

Arch height 

normal and 

concentrically 

curved 

Arch 

lowered 

with some 

flattening in 

the central 

portion 

Arch very 

low with 

severe 

flattening in 

the central 

portion-arch 

making 

ground 

contact 

Abduction/adduction 

of the forefoot on 

the rearfoot 

No lateral 

toes visible. 

Medial toes 

clearly 

visible 

Medial toes 

clearly more 

visible than 

lateral 

Medial and 

lateral toes 

equally 

visible 

 

Lateral toes 

clearly more 

visible than 

medial 

No medial 

toes visible. 

Lateral toes 

clearly 

visible 

 



80 

 

3.2.6.2 Gait Analysis  

Participants were then prepared to commence the walking trials. Subjects were then given 

appropriately sized standard footwear (Ecco Zen) and reflective markers were directly placed 

on to the skin, attached using hypoallergenic double sided adhesive tape, fixed to the base of 

the reflective markers. Footwear conditions varied for each study, and participants were 

therefore asked to remain barefoot or were given a pair of lateral wedged insoles (LWI) 

(Salford Insole Lateral Wedge Technology) (figure 3.5) at specific times.  

 

 

 

 

 

 

                                                                        

Figure 3.5: Salford Insole Lateral Wedge Technology 

 

All test procedures within the studies were carried out within two hour time slots over single 

test sessions. Prior to the commencement of data collection, subjects were given the 

opportunity to become familiar with all equipment and interventions used within the studies. 

Participants were asked to walk across the testing area for 5 minutes in order to ensure the 

footwear and LWI (where used) had an exact fit, were comfortable and were not causing the 

subject any discomfort or annoyance. Also, to ensure that the wrap bandages and pelvis belt 

were not wrapped too tightly. Prior to each test condition (barefoot, shod, and shod with 5° 

LWI) subjects were requested to stand stationary over one of the force platforms so that a static 

3-D image could be gained by the sixteen infrared cameras. The investigator then ensured all 

reflective markers were present and unobstructed and the walking trials commenced in a 

randomised order. 
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3.2.6 The placement of reflective markers (anatomical and technical) 

Flat based reflective markers measuring 14.5mm in diameter (figure 3.6) were attached to bony 

landmarks on both limbs and fixed cluster pads were attached to the lateral aspect of each 

segment at the shank, thigh and pelvis for the trials. The reflective markers were used to 

calculate 3-D kinematic data allowing the position and orientation of body segments and 

underlying bones to be represented (Van Sint, 2007). Marker locations varied depending on 

the study (additional or varying markers used within different studies are detailed in individual 

chapters). 

 

 

 

 

 

  

Fig. 3.6: 14mm Reflective marker 

The reflective markers are lightweight to ensure the weight of the marker itself does not cause 

skin movement artefact, and are composed of a reflective sphere and plastic base. The reflective 

markers reflect infrared light which is emitted from light emitting diodes (LED’s) which are 

located around the lenses of the 16 cameras within the gait laboratory. The reflective markers 

were attached to each individual’s skin over bony anatomical landmarks on both upper and 

lower limbs using hypoallergenic adhesive tape.  

For each study, the foot segment was different, and reflective marker placement varied. 

Therefore, the exact placement of the reflective markers will be detailed within the individual 

study chapters. 

The locations of the reflective markers in the barefoot condition in both healthy participant and 

medial knee OA patient studies were as follows: on the foot (1st, 2nd and 5th metatarsal head and 

calcaneal tubercle, styloid and navicular), ankle (medial and lateral malleolus), knee (lateral 

and medial femoral condyle, tibial tuberosity and fibular head), thigh (greater trochanter), 

pelvis (right and left anterior superior iliac spine, right and left posterior and superior iliac 
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spine, and right and left iliac crest) and the shoulder (left and right acromial). Within the shod 

footwear condition, the shoes were assumed as a rigid body, as with previous research and the 

reflective markers were glued on to shoes (on the 1st and 5th metatarsal heads, 5th metatarsal 

base, superior and inferior calcanei, medial and lateral calcanei, and the toe cap) (figure 3.7).  

 

 

 

 

 

 

 

 

 

 

 

 

                                      

Figure 3.7: Anatomical and technical reflective markers (anterior and posterior). 

In addition to individual reflective markers, fixed cluster pads (figure 3.7, figure 3.8), made of 

rigid plastic plates, with four markers attached to each were utilised for the study and were 

attached to the shank, thigh and pelvis (also the rearfoot and forefoot during barefoot walking 

conditions only) using both double sided adhesive tape (figure 3.8) and non-migratory Fabio 

Foam Super Wrap bandages (figure 3.8). An overwrap technique was utilised in order to attach 

the clusters pads to the segment to minimise migration of these planes down the limbs when 

compared to skin mounted clusters as demonstrated by Manal et al., (2000) due to the inability 

of intra-cluster marker movement to occur during the trials.  
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                               Fig.3.8: Cluster pads, double sided adhesive tape, Fabio Foam Super Wrap. 

Movement can take place due to the skin and soft tissues moving over the underlying bone 

(skin and soft tissue movement artefacts), and could cause significant error within the study 

(Cappozzo et al., 1996). For this reason, the calibration anatomical systems technique (CAST) 

was utilised in the study which allowed the determination of the movement of individual 

segments and their anatomical significance during the movement trials, whilst accounting for 

measurement error (Cappozzo et al., 1996, Buczek et al., 2010).  

Although a variety of marker sets have been suggested, CAST provides superior anatomical 

relevance when compared with the modified Helen Hayes (HH) marker set (Kadaba et al., 

1989). HH was a previously adopted model with the primary advantage of being a simple 

model with a small number of markers, although it has a number of disadvantages, namely 

because it only utilises three rotational degrees of freedom (DOF) for the hip and knee, and 

two DOF for the ankle, with the foot represented as a vector omitting important coronal plane 

ankle motion. A small number of markers are used, with large distances between each marker 

present meaning the model is less advanced with low resolution imaging systems (Della Croce 

et al., 2005, Collins et al., 2009). In the HH model, the anatomical markers are used to track 

movement, resulting in the shifting of distal segments depending on the movement of proximal 

segments. This introduces error to the measurements obtained (Schwartz et al., 2004, Cereatti 

et al., 2007).  

CAST attempts to reduce soft tissue artefact, which are major limitations in kinematic gait 

analysis along with landmark identification (Collins et al., 2009). Skin movement and soft 
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tissue artefact can cause errors as large as the range of motion (ROM) of the joint and more 

accurate tracking may be achieved with clusters of markers on rigid plates, placed away from 

bony landmarks in the centre of segments, rather than close to the joints whilst still allowing 

for segment reconstruction (Collins et al., 2009) as demonstrated by Manal et al., (2000). Apart 

from displacement of rotation axes and skin movement artefacts, the position and orientation 

of joint mounted markers should remain the same. The CAST utilises 6 degrees of freedom 

(DOF) and the technical markers track the movement of each segment independently, allowing 

6 DOF (rotational and translational) at each joint (Cappozzo et al., 2005, Cereatti et al., 2007) 

and has been shown in previous research to reduce a number of errors presented by previous 

models (Cereatti et al., 2007). A model using 6 DOF is favoured over the HH as it illustrates 

comparable performance and improves on HH and overcomes a number of theoretical 

limitations (Collins et al., 2009) whilst allowing for detailed ankle coronal plane motion. 

3.2.7 Walking Conditions 

The walking conditions (barefoot, standard footwear (shod) and shod with lateral wedge insole) 

varied from study to study and therefore the footwear conditions specific to individual studies 

will be detailed within each study methodology. 

 

For all walking conditions the order of testing was randomised to ensure that any possible 

carry-over effects were minimised and to prevent bias. A trial was considered good only when 

the foot was placed completely on the force platform during the stance phase of the gait cycle. 

Walking trials were conducted until a minimum of five good trials were achieved. The five 

best walking trials for each condition were selected and used for data processing. 
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3.3 Data Processing 

Following data collection, all joint kinematic and kinetic data was processed using Qualysis 

Track Manager Software where each marker was identified, labelled and digitised (figure 3.9). 

           

Figure 3.9– Qualysis Track Manager                           Figure 3.10 Visual 3D Model 

All successful trials were then exported to Visual 3D (V3D) (figure 3.10) software (version 

4.91, C-Motion Inc, Rockville, MD, USA). Dynamic skeletal graphics created in V3D (figure 

3.10) using the marker set depicted in figure 3.7, controlled by subject kinematics were used 

to assist with the interpretation of results (Buczek et al., 2010). A V3D model comprises of a 

collection of rigid segments, each of which relates to a subjects particular body segment (major 

bone structures). The position and orientation of a segment with six variables is known as a 

segment POSE (3 variables describe the position of the origin, 3 variables describe the rotation) 

in 3-D space, normally 3 variables describe the segment translation in three perpendicular axes 

(vertical, medial-lateral and anterior-posterior), and 3 variables describe the rotation about each 

axes of the segment (sagittal, frontal and transverse). The positions of reflective markers are 

translated into the pose of the corresponding model, identified using motion tracking equipment 

by V3D (Visual 3D, 2015). The motion-tracking apparatus tracks the reflective markers which 

are applied to specific locations on or near the subject’s body, and not the actual body segments. 

The body segments which are tracked are defined by proximal and distal endpoints located 

inside the subject’s body (Visual 3D, 2015). As mentioned previously, markers and sensors 

can be placed inside the subject’s body, however for this study, markers were attached over 

bony (anatomical) landmarks, on each subject’s skin. 



86 

 

The model is referred to as a six degree of freedom (DOF) model due to having six variables 

that describe its position and orientation in 3-D space (3 variables describe segment translation 

in three orthogonal axes, and 3 variables describe the rotation about each axis). Individual 

subjects anthropometric measurements (height and body mass) were entered into the software 

to calculate the length and the centre of mass of the segment for use in kinetic data analysis. 

Pelvis, thigh, leg and foot segments were then modelled using anatomical landmarks or joint 

centres and the radius of the proximal and distal end of the segment and the tracking markers, 

with the interpretation of results (Buczek et al., 2010).  

The VISUAL3D model segments and tracking markers are detailed in table 3.2. 

Table 3.2: Visual 3D building of the biomechanical model segments. 

Segment Proximal radius/joint Distal radius/joint Tracking markers 

Pelvis 

- Right anterior superior 

iliac spine 

- Left anterior superior 

iliac spine 

- Right posterior superior 

iliac spine 

- Left posterior superior 

iliac spine 

Pelvis cluster pad (4 

tracking markers) 

Left and right 

anterior posterior 

iliac spine 

Thigh 
- Hip joint centre* 

- Greater trochanter 

- Medial femoral condyle 

- Lateral femoral condyle 

Thigh cluster pad (4 

tracking markers) 

Shank 
- Medial femoral condyle 

- Lateral femoral condyle 

- Medial malleolus 

- Lateral malleolus 

Shank cluster pad (4 

tracking markers) 

Foot 
- Medial malleolus 

- Lateral malleolus 

- 1st metatarsal head (in 

barefoot and shod) 

- 5th metatarsal head (in 

barefoot and shod) 

  

Superior/inferior 

calcaneus, 

medial/lateral 

calcaneus (in shod) 

Heel cup cluster (4 

markers) (barefoot) 

Hallux in barefoot 

and shod 

* Hip joint centre is automatically calculated by using anterior and posterior superior iliac spine markers using 

the regression equation by Bell and Brand (1990) 

The maximum gaps of marker data was filled with polynomial interpolation algorithms. Motion 

and force plate data was filtered using a Butterworth 4th order bi-directional low pass filter with 
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cut off frequencies of 6Hz for kinematics as used previously by Winter (2009) and 25Hz for 

kinetics as used previously by Schneider and Chao (1983) based on a residual analysis (Yu et 

al., 1999). Joints kinematics were calculated using an X-Y-Z Euler rotation sequence, where 

X represented flexion/extension, Y adduction/adduction or varus/valgus, and Z 

internal/external rotation. Joint kinetic data were calculated using 3-D inverse dynamics and 

the joint moment data was normalised to body mass and presented as external moments 

referenced to proximal segment. Automatic gait event definition was utilised in all trials, which 

captured data when the vertical GRF exceeded 20 Newtons (N) in value. The gait cycle was 

defined as the movement and events from heel strike of the foot on the force platform, to the 

subsequent heel strike of the same foot. Stance phase was defined as heel strike of the foot to 

the subsequent toe-off of the same foot. Each gait parameter of interest for each of the studies 

was then exported from V3D to Microsoft Excel 2010 (Microsoft Washington, USA) for 

further analysis.  

The thesis aims to gain a more thorough understanding of loading at the knee joints in both 

healthy individuals and knee OA patients, considering the effects of wearing lateral wedge 

insoles (LWI) on the loading at the knee joint. For such a study to be accomplished sufficiently, 

the reliability of the investigator must be assessed prior to the collection of the study data. A 

test-retest reliability study was therefore conducted in order to enable the researcher to 

appreciate the measurement error present in the results, which would entirely arise from the 

placement of the reflective markers. 

3.4 Test-Retest Reliability Study - Kinetics and Kinematics in Barefoot and Shod 

Clinical gait analysis is a both a valuable and reliable technique when used for the purpose of 

establishing the consequences of orthotic interventions on kinematic and kinetic data (Schwartz 

et al., 2004), however the results obtained can be affected by certain factors.   

Several factors that are paramount in ensuring measurement errors are reduced, and can be 

controlled include: accuracy and consistency of marker positioning, walking speed, faulty or 

inaccurate equipment, and data processing inaccuracies (Schwartz et al., 2004). Cappozzo et 

al., (1996) implies that the placement of reflective markers on bony landmarks can lead to 

variability and greater measurement error, with these locations being more difficult to palpate 

and identify due to covering by adipose tissue and muscle layers (Baker, 2006). The precise 

placement of reflective markers is imperative in accurately calculating and determining the 

positioning of joints, with inaccuracies and mistakes in the location of these joints (due to the 
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incorrect placement of reflective markers) having the potential to cause significant errors in the 

calculation of joint kinetic and kinematic data (Della Croce et al., 1997, Stagni et al., 2000, 

Baker, 2006).  

After carrying out test-retest reliability of gait data in previous studies, encouraging results 

(high repeatability) were achieved in healthy individuals (Kadaba et al., 1989, Andrews et al., 

1996). Birmingham et al., (2007) conducted a repeatability study on individuals with knee OA 

and included the EKAM within assessments. It was concluded that the EKAM was highly 

repeatable with the ICC measuring 0.86, indicating excellent test-retest reliability. The 

Birmingham study utilised a modified Helen Hayes marker set however, and therefore results 

should be treated with caution due to the HH model having a number of disadvantages (Kadaba 

et al., 1990), namely due to it only adopting three rotational DOF for the hip and knee, and two 

DOF for the ankle. The HH marker set utilises low resolution imaging systems, due to a small 

number of markers used, with large distances between them (Della Croce et al., 2005). 

Additionally, in the HH model, anatomical markers are used to track movement, resulting in 

the movement of distal segments, depending on the movement of proximal segments, 

introducing error to the measurements (Schwartz et al., 2004, Cereatti et al., 2007).  

In this study the CAST reflective marker placement technique will be used in order to target 

some of these limitations, aiming to reduce measurement error by using a six DOF marker set 

which utilises technical markers which track the movement of each segment independently, 

allowing three rotational and three translational degrees of freedom (six DOF in total) at each 

joint (Cappozzo et al., 2005, Cereatti et al., 2007), thereby reducing a number of errors 

presented by previous models, and also showing comparable performance to and overcoming 

limitations of previously used models (for example the HH method) (Cereatti et al., 2007, 

Collins et al., 2009). 

The overall aim of the thesis is to gain a more thorough understanding of loading at the knee 

joints in both healthy individuals and knee OA patients, considering the effects of wearing 

lateral wedge insoles (LWI) on the loading at the knee joint. Therefore, in order for such a 

study to be accomplished sufficiently, the reliability of the investigator in placing reflective 

markers needed to be assessed prior to the collection of the study data. This study was therefore 

conducted in order to enable the researcher to understand the measurement error present in the 

results. The placement of these markers should be as identical as possible over subsequent 

subject gait laboratory visits to ensure that any difference observed after the use of 
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interventions is from the intervention itself and not from the experimenter error in marker 

placement.  

Some errors present in experimental biomechanics can be contributed to test design and control 

and data processing, however the aim of this study is to focus on the test-retest reliability of 

reflective marker placement by the investigator. Between day test-retest repeatability of kinetic 

and kinematic waveform data within the study was quantified using the correlation of multiple 

coefficient (CMC) and the standard error of the measurement (SEM). The CMC is a measure 

of the strength of the association between two variables (independent explanatory and 

dependant prediction) and was used to measure the accuracy and statistical difference in the 

placement and replacement of the reflective markers within the study between days. Kadaba et 

al., (1989) and Growney et al., (1997) used the CMC in previous similar studies. The value of 

the CMC aims to be greater than 0.70 (which can be considered as indicating acceptable 

repeatability, with 1 indicating identical results and 0 indicating no association) (Growney et 

al., 1997, Queen et al., 2006, Collins et al., 2009). The SEM represents a standard deviation of 

errors of measurement present within the study allowing quantification of error and the extent 

to which individual trials provide accurate results. Low levels of SEM indicate high levels of 

accuracy, and therefore high levels of SEM indicate low levels of trial accuracy. The SEM is 

calculated by carrying out a standard deviation of the trials multiplied by the square root of gait 

cycle figures (Growney et al., 1997).  

A systematic review conducted by McGinley et al., (2008) concluded that reliability varied 

widely across studies and gait variables reviewed, however the majority of studies reported 

error of 5˚ and less for all gait variables, excluding hip and knee rotation. It was stated that 

error ranging between 2˚ and 5˚ is likely to be regarded as reasonable, and error of less than 2˚ 

is considered acceptable. McGinley et al., (2008) suggested that error in excess of 5˚may be 

large enough to influence clinical interpretation and therefore, should be carefully considered. 

Data reviewed within the paper identified the majority of studies and gait variables reported 

errors that ranged from 2˚ and 5˚. High errors were present within some reviewed studies, 

however generally low CMC values were reported within the same studies. Therefore, for some 

gait variables, error magnitudes did not reflect CMC indices (McGinley et al., 2008). 
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3.4.2 Test-Retest Study Aims 

The study aimed to determine the inter-trial and intra-trial reliability of walking whilst under 

two conditions (barefoot and shod), both of these footwear conditions will be utilised within 

future experiments. The study also aimed to assess the reliability of using a heel cup cluster 

marker set to establish and verify the ability of the researcher in applying and using cluster 

markers over subsequent subject visits to the gait laboratory. 

It was hypothesised that the marker replacement by the investigator would be reliable, however 

small error would exist due to skin movement artefact occurring between the skin and 

underlying bones, and anatomical landmark location. 

3.4.3 Methods for repeatability assessment 

After approval from the Research Ethics Panel of the academic audit and governance 

committee at The University of Salford (ethical approval number HSCR13/42), participants for 

the repeatability assessment were recruited from three different populations. For the kinematic 

and kinetic data, six healthy subjects were recruited, and for the FPI (Foot Posture Index) data, 

four healthy subjects were recruited from within the staff and student population at the 

University of Salford. For the imageJ data, five NHS patients with medial compartment knee 

OA were recruited. 

Prior to the commencement of testing, each participant read and signed a written informed 

consent statement and individual demographic information (date of birth, height, mass and shoe 

size) for each participant was recorded. Table 3.3 summarises the demographic characteristics 

of all participants. 
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       Table 3.3: Mean demographic measurements for all reliability study participants. 

 

 

 

 

 

 

 

                         Healthy participants (N=6) Kinetics and Kinematics  

Age (years)                31.5±9.29  

Height (m)             1.72±0.09  

Mass (kg)             82.17±15.17  

                       Healthy participants (N=4) Foot Posture Index (FPI)  

Age (years)                30.2±5.56  

Height (m)             1.68±0.07  

Mass (kg)             78.17±19.64  

                                    OA  patients (N=5) ImageJ   

Age (years)                62±10.03  

Height (m)             1.73±0.04  

Mass (kg)             85.90±6.29  
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Table 3.4 – Inclusion and exclusion criteria 

 

In order to assess the test-retest reliability (repeatability) of gait data, each participant visited 

the gait laboratory on two separate occasions, two weeks apart. The shapes of the waveforms 

demonstrating different gait parameters were explored in detail. Kinetic and kinematic data 

were collected by the 16 infrared cameras, and force platforms which allow inverse dynamics 

to be performed in order to calculate the hip, knee, and ankle external moments (Winter et al., 

1990) (Please refer to the methodology at the beginning of this chapter (3.2.1) for the full 

methodology, including; system calibration, reflective marker placement and model building).  

3.4.4 The repeatability assessment results 

Overall, the repeatability results demonstrated high reliability between gait laboratory visits on 

different days, two weeks apart, in both conditions (barefoot and shod) after five successful 

walking trials were conducted in each condition. 

The following figures present the SEM (for both visits), and the standard deviation (SD) of the 

CMC results for individual subjects for kinematics and kinetics, which include: joint angle, 

GRF, and the heel cup cluster, in both left and right limbs in sagittal, frontal, and transverse 

planes. The SEM was used within this study for individual subjects. Therefore, the possible 

error that could exist within the study is presented.  

Inclusion Criteria Exclusion Criteria 

Good general condition of health, aged 18 

years or over and able to walk without aids 

or assistance.  

Experience or evidence of lower limb 

injuries (including bone fracture and 

ligament injury to the hip, knee, ankle and 

foot) within the six months prior to testing. 

No previous surgeries on the lower limbs (for 

example total knee arthroplasty or 

unicompartmental knee arthroplasty). 

Has disabilities or lower limb deformities 

which influence normal gait. 

Has no known history of osteoarthritis or 

other bone diseases (for example 

osteoporosis). 

Does not agree to the study conditions or 

protocol, and does not give consent. 
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3.4.4.1 Repeatability of kinematics during barefoot walking 

Results obtained during each session indicate highly reliable repeatability of test-retest marker 

placement during normal walking, in both limbs under the barefoot condition. The CMC was 

between 0.88 and 0.99 indicating the repeatability is high with a very low error as the SEM 

indicates a low degree of error. 

Table 3.5 depicts the mean and STD of the CMC of joint ROM for all participants in the 

barefoot condition. 

 

Table 3.5– The repeatability of the joint angle in barefoot walking. 

 

 

 

 

 

 

 

 

 

 

 

 

X = Flexion/Extension Y = Abduction/Adduction Z = Internal/External Rotation).Max: Maximum, SEM: Standard 

Error of Measurement, CMC: Coefficient of Multiple Correlation, SD: Standard Deviation. 

 

 

 

 

 

 

 

 

 

 

 Left Limb Right Limb 

Barefoot Visit 1-2 Visit 1-2 

Angles SEM º  CMC SD º SEM º  CMC SD º 

Hip Angle X 1.88 0.98 0.03 1.79 0.96 0.04 

Hip Angle Y 1.62 0.96 0.02 1.70 0.94 0.02 

Hip Angle Z 2.15 0.89 0.04 1.69 0.91 0.04 

Knee Angle X 1.28 0.98 0.02 1.73 0.94 0.01 

Knee Angle Y 1.87 0.90 0.06 1.34 0.91 0.02 

Knee Angle Z 2.47 0.91 0.03 2.10 0.99 0.04 

Ankle Angle X 1.69 0.97 0.01 1.15 0.96 0.02 

Ankle Angle Y 1.45 0.88 0.07 1.42 0.92 0.03 

Ankle Angle Z 1.48 0.92 0.02 1.86 0.91 0.03 
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3.4.4.2 Repeatability of kinematics during shod walking 

The results attained under the shod condition again demonstrated high repeatability. Table 3.6 

depicts the CMC to be between 0.86 and 0.99. The SEM is low, and therefore the error is 

minimal, indicating good marker placement repeatability 

Table 3.6 – The repeatability of the joint angle in shod walking. 

 

 

 

 

 

 

 

 

 

 

 

 

Max: Maximum, SEM: Standard Error of Measurement, CMC: Coefficient of Multiple Correlation, SD: Standard 

Deviation. 

3.4.4.3 Knee flexion moment and knee adduction moment (EKAM) repeatability 

Table 3.7 demonstrates high repeatability results for both the knee flexion moment and the 

EKAM. The CMC was between 0.88 and 0.95 which indicates high repeatability. 

Table 3.7 - The knee flexion and adduction moment (EKAM). 

 

 

 

 

 

 

 

 

 

 

Max: Maximum, SEM: Standard Error of Measurement, CMC: Coefficient of Multiple Correlation, SD: Standard 

Deviation, V: Visit.  

 Left Limb Right Limb 

Shod Visit 1-2 Visit 1-2 

Angles SEM º  CMC SD º SEM º  CMC SD º 

Hip Angle X 1.67 0.97 0.02 1.31 0.98 0.02 

Hip Angle Y 1.70 0.95 0.02 1.41 0.94 0.02 

Hip Angle Z 1.33 0.90 0.03 2.38 0.89 0.01 

Knee Angle X 1.76 0.98 0.01 1.78 0.99 0.01 

Knee Angle Y 1.69 0.94 0.04 1.85 0.94 0.04 

Knee Angle Z 2.68 0.89 0.03 2.21 0.89 0.06 

Ankle Angle X 1.12 0.97 0.01 1.05 0.97 0.01 

Ankle Angle Y 0.90 0.86 0.08 1.49 0.92 0.04 

Ankle Angle Z 2.42 0.91 0.02 1.69 0.90 0.05 

 Knee Flexion Moment (sagittal Plane) Visit 1-2 

Condition Left Knee Right Knee 

 CMC SD º SEM Nm/kg CMC SD º SEM Nm/kg 

Barefoot 0.94 0.05 0.09 0.93 0.03 0.06 

Shod 0.91 0.04 0.07 0.94 0.03 0.04 

 Knee Adduction Moment (Coronal Plane) Visit 1-2 

Condition Left Knee Right Knee 

 CMC SD º SEM Nm/kg CMC SD º SEM Nm/kg 

Barefoot 0.88 0.05 0.05 0.94 0.03 0.09 

Shod 0.93 0.04 0.06 0.94 0.02 0.09 
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3.4.4.4 Repeatability of a heel cup during barefoot walking 

Results for the heel cup cluster relative to the tibia and relative to the lab (gait laboratory) tests 

identified the between day testing as reliable. On both test days, the CMC was highly reliable, 

and measured between 0.78 and 0.99. The SEM demonstrated a low error, which indicates the 

test-retest as being reliable (table 3.8). 

Table 3.8 – Heel Cup Cluster Angular Movement Repeatability (X = Dorsiflexion/Plantarflexion, Y = 

Eversion/Inversion, Z = Abduction/Adduction) 

 Left Limb Right Limb 

Heel Cup Cluster Visit 1-2 Visit 1-2 

Angles SEM º  CMC SD SEM º  CMC SD 

Heel Cup Cluster X 1.84 0.93 0.04 1.31 0.96 0.02 

Heel Cup Cluster Y 1.37 0.89 0.08 1.64 0.91 0.05 

Heel Cup Cluster Z 1.19 0.88 0.04 1.75 0.88 0.08 
 

Max: Maximum, SEM: Standard Error of Measurement, CMC: Coefficient of Multiple Correlation, SD: Standard 

Deviation, V: Visit, Lab: Gait Laboratory, Heel Cup: Heel Cup Cluster. 

 

3.4.4.5 Repeatability of the Foot Posture Index 

Table 3.9 depicts data obtained during a pilot study for assessing the foot posture index (FPI) 

in healthy subjects. The pilot study was carried out to ensure repeatability of the use of the FPI 

assessment by the researcher. The FPI assessment was carried out twice, with a two week break 

in between each assessment. The data was identified as non-parametric, and therefore, the 

Wilcoxon Signed-Rank test was performed on the data. Results indicate similarities in the 

results between score 1 and score 2, therefore indicating no significant differences in the left 

(p=0.102) and right feet (p=0.180) between days. 
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Table 3.9 –FPI repeatability pilot study results. 

Participant ID 

Number 

FPI Final Score 1 FPI Final Score 2 Difference 

 Left Right Left Right Left Right 

1. 7 6 6 6 1 0 

2. 7 8 5 6 2 2 

3. 2 2 2 2 0 0 

4. 5 6 4 5 1 1 

 

FPI: Foot Posture Index, ID: Identification. 

Table 3.10 depicts data obtained for the rearfoot which was analysed using ImageJ software. 

The analysis was carried out to ensure test-retest repeatability of the investigator when using 

ImageJ analysis software. The ImageJ analysis was carried out three times in both left and right 

feet for five knee OA patient’s rearfoot photographs. Results indicate similarities between the 

first, second and third analysis, and no significant differences in both the left (p=0.994) and 

right rearfoot (p=0.996). 

    Table 3.10 –Rearfoot ImageJ repeatability results 

 ImageJ  Repeatability Results (Rearfoot) 

Right Rearfoot Left Rearfoot 

Patients 1st 

Measure 

(º) 

2nd 

Measure 

(º) 

3rd 

Measure 

(º) 

1st 

Measure 

(º) 

2nd 

Measure 

(º) 

3rd 

Measure 

(º) 

1 82.18 82.74 82.72 86.18 86.46 86.7 

2 90.72 89.16 89.7 94.69 94.25 94.81 

3 85.51 85.72 85.56 95.67 95.01 95.35 

4 88.12 88.18 88.28 87.68 87.4 87.47 

5 95 94.62 95 93.91 93.91 93.99 
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3.4.5 Discussion of repeatability results 

The high repeatability within the study concurs with previous findings by Kadaba et al., (1990) 

and Growney, (1997). The majority of previous studies have investigated test-retest reliability 

of hip, knee and ankle angles in healthy subjects; however they have utilised a different marker 

set. The most commonly utilised is the HH marker set which only adopts three rotational DOF 

for the hip and knee, and two DOF for the ankle, meaning measurement systems were less 

advanced, with a higher possibility of error and inaccurate results than when using a CAST 

marker set (which was utilised within this study), which allows 6 DOF (rotational and 

translational) at each joint (Kadaba et al., 1989, Andrews et al., 1996, Growney et al., 1997, 

Tsushima et al., 2003). Growney et al., (1997) conducted gait test-retest reliability on 5 

subjects, whereas Tsushima et al., (2003) utilised 6 subjects for gait test-retest reliability. 

Therefore, six subjects were utilised in order to carry out repeatability of marker placement in 

this study. The small sample size could be considered a limitation of the study, however similar 

previous studies have used 5 to 6 subjects also (Growney et al.. 1997, Tsushima et al., 2003). 

The primary outcome measures within this thesis would be related to rearfoot motion and knee 

loading and the results regarding the knee flexion moment and the EKAM can be described as 

indicating good test-retest reliability of EKAM in healthy subjects. The CMC indicated the 

knee flexion moment be 0.92-0.94. The EKAM CMC was recorded at 0.88-0.95. These 

findings indicate high repeatability, and are in agreement with previous similar reliability 

studies that have evaluated healthy subjects (Kadaba et al., 1989, Andrews et al., 1996, 

Tsushima et al., 2003, Growney et al., 2007), and other studies which have evaluated OA 

patients (Birmingham, 2007) during walking. The previously mentioned studies imply that the 

EKAM is acceptable for use in subjects when evaluating varying interventions and carrying 

out clinical examinations.  

Previous studies have identified a high degree of repeatability when subjects are instructed to 

walk at self-selected (within normal) speeds (Kadaba et al., 1990, Growney, 1997), therefore 

during test-retest reliability, subjects were directed to walk at self-selected speeds (within 

normal walking speeds) which resulted in measurable time of gait to be highly repeatable.  

The results between-day in barefoot CMC were identified as between 0.88 and 0.99 during 

walking, in shod CMC varied from 0.86 to 0.99. These findings are indicative of good test-

retest reliability in joint kinematics and kinetics represented by GRF, and are comparable to 
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findings of similar previous repeatability studies that have evaluated healthy subjects (Kadaba 

et al., 1989, Andrews et al., 1996, Growney et al., 1997).  

Additionally, repeatability of the heel cup cluster during test-retest varied between 0.78 and 1 

which indicates good repeatability. Repeatability results of the heel cup cluster are important 

to obtain and evaluate in order to quantify error present with the use of the device, to ensure 

accurate assessment of rearfoot can be conducted in healthy subjects and osteoarthritis patients 

in further investigations. Although the repeatability study was carried out on healthy 

individuals, one can assume the results would be the same for individuals with knee OA. In 

previous studies, the variability of between day measures and error has been attributed to 

marker reapplication (Kadaba et al., 1989). Several factors are known to influence both within 

and between day reliability, such as skin marker movement, referenced static alignment and 

task difficulty (Ferber et al., 2002, Ford et al., 2007). During the repeatability study, the 

investigator worked alone in solely attaching the reflective markers to the participants in all 

trials in an attempt to create a highly repeatable study, which may have contributed to the high 

reliability. The maximum SEM for kinematic and kinetic data was reasonably low within the 

study, indicating low error to be present within the investigation. A systematic review by 

McGinley et al., (2008) investigated the reliability of three-dimensional gait measurements and 

recommended that error of 2° or less is widely considered as acceptable, as such errors are 

likely to be of small magnitude and therefore do not require explicit consideration within data 

interpretation. McGinley et al., (2008) also stated that error between 2° and 5° should be 

regarded as reasonable, and suggested that errors in excess of 5° may be large enough to 

mislead clinical interpretation. Furthermore, the paper by McGinley et al., (2008) stated that 

the highest error present within reviewed studies was often greater than 2°, and frequently 

occurred within the transverse plane of motion. It was therefore concluded that error of between 

2-5° is acceptable in the transverse plane (McGinley et al., 2008). The highest error present 

within this investigation was found in the transverse plane of motion. The largest error present 

was 2.47°. According to McGinley et al., (2008) this is an acceptable level of error. 

The data obtained within the study was used to calculate the maximum error. The maximum 

error within the study is less than 2° for all kinematic and kinetic data, and therefore can be 

considered as acceptable when considering the recommendations made by McGinley et al., 

(2009). 
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It is impossible to remove all error from a study, and therefore there will always be some error 

present within measurements. However, the investigator can gain an understanding of the 

effects that the error present has. 

Differences between sessions have been identified in previous similar studies, along with a 

number of researchers demonstrating varying results in reliability. Trends can be identified 

across particular planes of motion. The sagittal plane has frequently been identified as 

providing the greatest stability across measurements during gait (Kadaba et al., 1989, Ferber 

et al., 2002, Queen et al., 2006). This tendency was clearly evident in findings of the 

repeatability study, and can be seen in the above graphs. Frontal and transverse planes of 

movement are recurrently documented as being more susceptible to errors in marker placement 

throughout the literature (Kadaba et al., 1989) which may explain the tendency for lower 

between-session reliability values. This finding was identified within repeatability results in 

this study, with frontal (Y) plane values indicating the largest occurrence of error in all three 

conditions (barefoot (0.88) and shod (0.86). In the heel cup cluster results, the transverse (Z) 

plane was identified as having the largest incidence of error, at 0.78. Although some error was 

present within the study, with the frontal and transverse planes indicating the largest error, the 

study still demonstrates high repeatability in marker placement due to all results being close to 

1, with 1 signifying identical gait traces.  

Small variances were identified within the between visit results of the FPI repeatability 

investigation. However, the variance within the FPI score was minimal, and the overall FPI 

classification was still the same (for example pronated), therefore the investigators ability at 

conducting research using the FPI can be considered consistently good, providing accuracy 

within results obtained. 

Results of the ImageJ investigation identified similar results between all limbs, for both the left 

and right rearfoot, indicating good repeatability and investigator competence when analysing 

photographic evidence of the rearfoot using ImageJ software.  

3.5 Conclusion and Indications for the Methodology 

In conclusion, the study undertaken demonstrates that certain variables indicate high 

consistency within test and retest sessions in the gait laboratory with a relatively low standard 

error of measurement identified within the variables. Furthermore, results show that the 

repeatability of marker placement in all conditions was good and can be used to quantify 
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kinematics and kinetics accurately by the investigator in future studies. Additionally, results 

obtained after conducting a repeatability pilot test on the researcher’s ability to assess the foot 

posture index and ImageJ analysis indicate that the researcher can accurately assess foot 

posture and can also accurately analyse the rearfoot using ImageJ. 
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Chapter Four 

The Role of Static and Dynamic Foot Posture and Rearfoot 

Motion on the Magnitude of the EKAM  

 

Chapter Summary  

This chapter consists of two sections, the first section assessed static foot posture using the 

Foot Posture Index (FPI) in order to identify any association between rearfoot motion and foot 

posture relative to the magnitude of the EKAM, aiming to provide an understanding of foot 

posture in barefoot and whether there is a relationship to the EKAM. The second section of this 

chapter examines and analyses previously collected data from a population of 100 healthy 

participants in order to establish any relationship between the FPI scores, FPI static eversion 

and inversion, and dynamic rearfoot motion, related to the magnitude of the EKAM, in order 

to determine the association between the outcome parameters of clinical examination and the 

magnitude of the EKAM. It was anticipated that this investigation would give some 

understanding into whether clinical foot parameters have a role in the magnitude of the EKAM.  

4.1 General Introduction 

Static foot posture has been discussed in previous research as possibly contributing to the onset 

and progression of a number of lower limb musculoskeletal conditions (Donatelli, 1987, 

Tiberio, 1987, Reilly et al., 2009, Levinger et al., 2010, Gross et al., 2011, Levinger et al., 

2012, Abourazzak et al., 2014, Buldt et al., 2015) as it may alter the mechanical alignment and 

dynamic function of the lower limbs (Guichet et al., 2003, Levinger et al., 2010). Little is 

known about the consequences of abnormal foot morphology (pes planus and pes cavus) and 

the risk of knee and lower limb tissue damage and symptoms despite the central role foot 

posture plays in lower extremity biomechanics (Gross et al., 2011, Buldt et al., 2015).  

A study by Gross et al., (2011) investigated the relation between foot posture, knee pain and 

compartment specific knee cartilage damage in 1903 older adults using the Staheli Arch Index 

(SAI) and concluded that a pes planus foot posture is associated with knee pain, medial 

tibiofemoral, and patellofemoral cartilage damage in older adults. Findings indicated a 
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biomechanical link between an excessively pes planus foot posture and mechanical stress on 

the tibiofemoral and patellofemoral compartments of the knee (Gross et al, 2011). 

However, there has been little investigation into foot posture and function as an outcome 

measure for predicting the EKAM. The precise underlying mechanism articulating foot posture 

and function to the aetiology of knee injury has not been identified within the literature, and 

therefore it remains unclear (Gross et al., 2011, Buldt et al., 2015). Reilly et al., (2009) 

advocates that foot posture and function possibly play a role in the pathogenesis of medial knee 

OA as previous investigations have identified differences in the foot postures of healthy 

individuals and individuals with medial compartment knee OA. The effectiveness of certain 

orthotic interventions such as lateral wedge insoles (LWI) when used in the treatment of a 

number of musculoskeletal conditions may be influenced by foot posture (Reilly et al., 2009).  

Previous research has recommended an in depth knowledge of foot posture and also 

investigator competency in the assessment of foot posture in order for a full understanding of 

the effect of interventions used to treat musculoskeletal conditions and their effects on the knee 

and lower limb joints to be attained when conducting future research into the lower limbs and 

orthotic interventions (Levinger et al., 2010, Levinger et al., 2012). A comprehensive 

understanding of orthotic interventions would enable investigators of future research projects 

to identify participants who are most likely to benefit from these types of interventions 

(Levinger et al., 2010, Levinger et al., 2012). Accurate and reliable assessment of foot posture 

can provide an appreciation into how foot postures may influence or be influenced by certain 

musculoskeletal conditions, for example reducing the loading on the medial compartment of 

the knee in patients with knee osteoarthritis (OA) and an understanding of the effects of foot 

posture on the efficacy of certain interventions can be gained (Redmond et al., 2006, Reilly et 

al., 2009), for example the biomechanical response and non-response (the increase or decrease 

in the magnitude of the EKAM) to LWI, which may vary according to specific foot types. 

In healthy limbs, foot pronation in the coronal plane of motion (eversion) relates to low arched 

(planus) feet and a more medial centre of pressure (COP) (Chiu et al., 2013) with the level of 

low arch depending on an individual’s subtalar joint/ankle complex motion. If excessive 

subtalar joint/ankle complex motion is present, the foot is more planus and has more contact 

with the supporting surface on the medial/plantar aspect of the foot. However, in patients with 

medial compartment Knee OA, rearfoot pronation (eversion) has been suggested to potentially 

reduce the adduction moment by shifting the centre of pressure laterally, indicating an 
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adaptation by the foot in the presence of certain musculoskeletal conditions (such as medial 

compartment knee OA) to reduce the load on the medial compartment of the knee (Levinger et 

al., 2010, Buldt et al., 2015).  

In medial compartment knee OA patients, evidence of altered foot kinematics have been 

identified during gait that are symptomatic of a more everted foot type, including a reduction 

in the rearfoot frontal plane range of motion (Reilly et al., 2009, Levinger et al., 2010, Gross 

et al., 2011, Abourazzak et al., 2014). A proportion of the load is shifted away from the medial 

compartment of the knee during foot pronation (eversion) by shifting the centre of pressure 

laterally, providing some symptom relief (Desal et al., 2007, Levinger et al., 2010, Levinger et 

al., 2012, Levinger et al., 2013).  

Lateral wedge insoles have been reported to alter foot motion within the literature; leading to 

an increase in rearfoot pronation (the subtalar joint valgus moment) (Nester et al., 2003, 

Kakihana et al., 2005, Levinger et al., 2013). Tibial malalignment (valgus and varus) and the 

extent of rearfoot range of motion (ROM) may affect individual responses to load altering 

interventions, such as LWI (Levinger et al., 2012). Using a LWI to increase rearfoot pronation 

on an already pronated foot could potentially lead to unfavourable alterations to lower limb 

kinematics and therefore the development of musculoskeletal disorders in other areas of the 

body and at proximal joints (Levinger et al., 2010, Levinger et al., 2012, Resende et al., 2015).  

Currently, the literature investigating foot posture and its effects on the EKAM and efficacy of 

LWI in shod concurrently is limited. Understanding the effects of LWI on the subtalar ankle 

joint complex is paramount in identifying why individuals respond differently to LWI. A study 

by Chapman et al., (2015) investigated the relationship between response to LWI, and 

evaluated whether dynamic ankle joint complex coronal plane biomechanical measures could 

identify participants that were classified as biomechanical non-responders (showing an 

increase in the EKAM), and participants that were classified as biomechanical responders 

(showing a decrease in the EKAM) with the use of LWI compared to a control shoe, and explain 

why such results were attained. Chapman et al., (2015) concluded that coronal plane ankle joint 

complex biomechanics play an essential role in reducing the EKAM when using LWI, which 

may assist in the identification of those individuals who benefit from LWI intervention. 

However, no clinical data was obtained during the Chapman et al., (2015) trial, and therefore 

further investigation using clinical assessment techniques is required in order to identify if any 
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relationship exists between clinical static foot posture and dynamic foot motion, and their 

effects on the magnitude of the EKAM. 

The Foot Posture Index (FPI) is a valid, efficient and reliable clinical method of assessing static 

foot posture (Redmond et al., 2008, Abourazzak et al., 2014) and allows the assessor to 

quantify the degree to which a foot is pronated, supinated or neutral (Abourazzak et al., 2014). 

Certain musculoskeletal disorders (for example; knee OA) cause an elevated average FPI score 

when compared to healthy subjects, indicating a more pronated foot posture in the knee OA 

population, as identified in a study by Reilly et al., (2009) which aimed to identify if the FPI 

can effectively describe the foot posture of individuals with medial compartment knee OA 

compared to healthy age-matched controls. The study by Reilly et al., (2009) only assessed 

static foot posture however, and did not investigate dynamic rearfoot or the magnitude of the 

EKAM. The rearfoot was therefore investigated, as rearfoot motion may influence the 

effectiveness of LWI intervention due to the rearfoot contacting the ground first and the first 

peak in EKAM relating to this time period. 

Therefore, the first section in this chapter will assess static foot posture in subjects using the 

FPI in order to identify any relationship between rearfoot motion (dynamic) and foot posture 

(static), relative to the magnitude of the EKAM. This will provide an understanding of foot 

posture in barefoot and whether there is a relationship between the static and dynamic rearfoot 

and the magnitude of the EKAM. 

4.2 Chapter Aims 

The aim of this investigation was to determine whether varying static and dynamic foot posture 

has any association with the magnitude of the EKAM in healthy subjects. The research question 

and hypothesis for this chapter is: 

Does a relationship exist between clinical static foot posture, dynamic rearfoot 

motion, and the magnitude of the external knee adduction moment? 

Therefore, the statistical hypotheses for this chapter will be: 

 There is no significant relationship between static foot posture (assessed using the FPI), 

and the magnitude of the EKAM in healthy subjects.  

 There is no significant relationship between dynamic rearfoot motion and the 

magnitude of the EKAM in healthy subjects.  
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 There is no significant relationship between clinical static foot posture (assessed using 

the FPI), and dynamic rearfoot posture in heathy subjects. 

4.3 Methods 

Approval was obtained from the Research Ethics Panel of the academic audit and governance 

committee at The University of Salford (ethical approval number - HSCR13/42).  

A poster that explained the study and contained contact details was placed onto notice boards 

in buildings around the University of Salford to attract potential subjects, and information 

sheets and questionnaires were sent to those individuals who were interested in taking part to 

ensure they fulfilled the inclusion criteria. Participants were required to be ‘asymptomatic’ 

defined as, ‘free of symptoms or not causing symptoms’ (Youngson, 2004), and therefore free 

from lower limb injury for a period of at least six months prior to testing (injury was defined 

as any musculoskeletal complaint that prevented the participant from undertaking their normal 

exercise or daily routine), and to have no history of lower limb surgery (table 4.1). Following 

this, an appointment was made with the individual to attend the gait laboratory at the University 

of Salford, after they agreed to take part in the study. 

 

Table 4.1: Inclusion and exclusion criteria 

Inclusion Criteria Exclusion Criteria 

Good general condition of health, aged 18 

years or over and able to walk without aids 

or assistance.  

Experience or evidence of lower limb 

injuries (including bone fracture and 

ligament injury to the hip, knee, ankle and 

foot) within the six months prior to testing. 

No previous surgeries on the lower limbs (for 

example total knee arthroplasty or 

unicompartmental knee arthroplasty). 

Has disabilities or lower limb deformities 

which influence normal gait. 

Has no known history of osteoarthritis or 

other bone diseases (for example 

osteoporosis). 

Do not agree to the study conditions or 

protocol, and does not give consent. 
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4.3.1 Participants 

Fifteen healthy participants (7 males, 8 females) were recruited from within the staff and 

student population at The University of Salford to take part in the study. Testing was carried 

out in the clinical gait laboratory at The University of Salford. On arrival at the gait laboratory, 

individual participants were firstly briefed on the study. The investigations objectives and what 

was required of the participant were explained in full and the participant was then shown the 

equipment that would be used for the duration of the investigations. Consent forms were then 

read and signed, demographical information was recorded (summarised the mean and standard 

deviation (SD) in table 4.2), and participant’s general information and medical history were 

recorded using a questionnaire. 

Table 4.2: Summarised mean and standard deviation (SD) demographic measurements for all 15 study 

participants. 

        Gender                                                             Males (N=7)                    Females (N=8) 

Age (years) ± (SD)  34.43 ± (7.16)          36.25 ± (13.29) 

Height (m) ± (SD)  1.75 ± (0.07)          1.64 ± (0.05) 

Mass (kg) ± (SD)  88.57 ± (13.16)        69.38 ± (12.55) 

 

Participants were then directed to a private changing area to change their clothing into fitted 

shorts and a comfortable t-shirt that they were previously requested to bring with them.  

4.3.2 Data Collection Procedures  

The following assessments were carried out on each participant in order to assess clinical static 

foot posture, and also to assess lower limb kinetics and kinematics; 

4.3.2.1 The Foot Posture Index 

Individual participant’s foot posture was assessed using the Foot Posture Index (FPI), a 6 

criteria foot posture assessment (Lee et al., 2015). The subject stood in a relaxed bipedal 

position. The six criterion of the FPI include the following assessment items, which were 

carried out on both limbs of each subject within the study: talar head palpation curves above 

and below the lateral malleoli, calcaneal angle, talonavicular bulge, medial longitudinal arch, 

and forefoot to rearfoot alignment. Each item was scored on a 5-point scale (between -2 and 

+2), providing a sum of all items between -12 (highly supinated) and +12 (highly pronated), 

with a score of 2 to 12 indicating a pronated foot, a score of -2 to -12 indicating a supinated 
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foot, and a score of +1 to -1 indicating a neutral foot (Redmond et al., 2006, Levinger et al., 

2010, Barton et al., 2012, Lee et al., 2015).  

The total FPI score, and also the rearfoot classification of the FPI score were then used later in 

the data analysis within this study to determine if the foot and the rearfoot of individual 

participants were everted, neutral, or inverted. The FPI scores were used to provide inferences 

to whether a relationship existed between static rearfoot posture, dynamic rearfoot posture and 

the magnitude of the EKAM in healthy subjects, and also to establish whether the total FPI 

score represents rearfoot motion, and if the rearfoot FPI classification can represent the rearfoot 

motion and the magnitude of the EKAM. 

A similar study previously conducted by Buldt et al., (2015) assessed the total FPI score 

amongst other measures to statically measure the whole foot, and concluded that the FPI 

displayed the strongest association with kinematic variables compared with the other foot 

measurements. Therefore, this study provides novelty by specifically assessing both static 

rearfoot posture, and rearfoot motion.  

The FPI was assessed by the same examiner, who was experienced at taking these 

measurements.  

4.3.2.2 Gait analysis 

Qualisys motion analysis systems with sixteen computerised infra-red OQUS cameras 

(Qualisys, AB, Gothenburg, Sweden) and two AMTI force platforms (AMTI BP400X600, 

AMTI, USA) were used to collect kinematic and kinetic data as per Chapter 3 (section 3.2). 

Marker data were captured by sixteen OQUS infrared cameras (Qualysis, Sweden) and 

Qualysis Track manager (Qualysis, Sweden), in order to capture the 3D positions of the retro 

reflective markers that were attached to each subject’s skin, over bony landmarks in both lower 

limbs. 

Individual retroreflective markers were placed on the lower limbs as described within chapter 

3 (section 3.2.6), on the foot (1st, 2nd, and 5th metatarsal head and calcaneal tubercle, styloid 

and navicular), ankle (medial and lateral malleolus), knee (lateral and medial femoral condyle, 

tibial tuberosity and fibular head), thigh (greater trochanter), and the pelvis (right and left 

anterior superior iliac spine, right and left posterior and superior iliac spine, and right and left 

iliac crest). Fixed cluster pads, each holding four retroreflective markers were attached to the 
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shank, thigh, pelvis, and the forefoot. Rearfoot data was captured using a heel cup cluster 

tracking marker set with three retroreflective markers attached to it. 

The methodology within this chapter utilised biomechanical data collection procedures in order 

to define the 3D motion data capture, force measurement and segment modelling and 

computation which are explained in detail within the methodology chapter of this thesis 

(chapter 3, section 3.2). Any deviation or additional materials or techniques used within this 

study are detailed below. Individual participants were requested to stand with both feet on a 

force platform for 10 seconds whilst a static 3-dimensional image was obtained. A successful 

trial was one when the foot was placed completely on the force platform during stance phase. 

Each individual completed five walking trials for each foot at a self-selected speed. 

4.3.3 Data Processing 

All collected joint kinetic and kinematic data for the 30 lower limbs (both left and right lower 

limbs of all 15 participants) were processed using Qualisys Track Manager software. Individual 

reflective markers were labelled and digitised, and any anomalies in movements in marker 

trajectories were corrected. The data were then exported directly from Qualisys Track Manager 

software to Visual3D software (version 4.91, C-Motion Inc, USA). The raw marker tracking 

data were filtered using a Butterworth 4th order bi-directional low pass filter with a cut-off 

frequency of 6Hz. The analogue data were filtered with a cut-off frequency of 25Hz. Dynamic 

skeletal graphics created in Visual3D, controlled by subject kinematics were used in the 

interpretation of results (Buczek et al., 2010). Kinematic and force plate data were filtered to 

prevent noise interference in the results, and gaps and breaks in the data were filled using 

polynomial interpolation algorithms within Visual3D software to prevent error within the 

results. 

The lower limbs were treated as seven segments modelled as rigid bodies, which were; the 

pelvis, left and right thighs, shanks and feet. A right-handed local coordinate system of each 

segment was defined by landmarks placed on the anatomical points. The CODA pelvis model 

was used, which was defined using the anatomical locations of the ASIS (Anterior Superior 

Iliac Spine) and the PSIS (Posterior Superior Iliac Spine). The motion was tracked by four 

reflective markers on a rigid plastic plate fixed with an elastic belt to the back of the pelvis. 

Each segment was treated as a free rigid body with six degrees of freedom. The joint kinematics 

were calculated using an X–Y–Z Cardan sequence. The external joint moment data were 

calculated using three-dimensional inverse dynamics and normalised to body mass (Nm/kg). 
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Automatic gait event definition was utilised in all trials, which captured data when the vertical 

GRF exceeded 20 Newtons (N) in value. The gait cycle was defined as the movement and 

events from heel strike of the foot on the force platform, to the subsequent heel strike of the 

same foot. Stance phase was defined as heel strike of the foot to the subsequent toe-off of the 

same foot.  

The measurement of both the motion of the lower limbs and the forces acting upon them whilst 

each subject walked was conducted in order to collect kinematic and kinetic data of the lower 

limbs. Direct measurement of loading on the medial compartment of the knee is difficult, 

therefore the EKAM provides an indirect measure of the knee joint loading (Wang et al., 1990, 

Maly et al., 2002). Resulting alterations in the EKAM signify changes to the load distribution 

across the knee joint (Maly et al., 2002). The EKAM was extracted during the first peak of 

early stance phase (0-20% of the gait cycle, 0-33% of the stance phase), which has been shown 

to be the most directly related to medial compartment loading (Sharma et al., 1998, Baliunas 

et al., 2002, Miyazaki et al., 2002, Birmingham et al., 2007, Henriksen et al., 2010, Erhart et 

al., 2011). 

The positions of reflective markers are translated into the pose (position and orientation) of the 

corresponding model (a collection of rigid segments, with each segment corresponding to a 

body segment and major bone structure), identified using motion tracking equipment within 

V3D. The body segments which are tracked are defined by proximal and distal endpoints 

located inside the subject’s body (Visual 3D, 2015). The model is referred to as a six degree of 

freedom (DOF) model due to having six variables that describe its position and orientation in 

3-D space (3 variables describe segment translation in three orthogonal axes, and 3 variables 

describe the rotation about each axis). The anthropometric measurements of individual subjects 

(height and body mass) were entered into the software for usage in kinetic calculations. Pelvis, 

thigh, leg and foot segments were then modelled using anatomical landmarks or joint centres 

and the radius of the proximal and distal end of the segment and the tracking markers (Buczek 

et al., 2010). The Visual3D model segments and tracking markers are detailed in chapter three 

(table 3.2). 

Cluster tracking markers (with four retroreflective markers fixed to each rigid cluster pad) 

between the shank segment and the foot segment were used to define the rearfoot. Peak EKAM 

and peak flexion/extension moment (sagittal moment) data were exported from Visual3D to 

Microsoft Excel software, with the peak representing early stance phase of the gait cycle. 
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Additionally, range of motion (ROM) of the rearfoot (inversion and eversion) data in stance 

phase were exported for all trial participants, and analysed using SPSS software. 

The mean and standard deviation (SD) of each variable that was exported was calculated using 

Microsoft Excel software. Data was then transferred to SPSS software, to apply normality 

testing and the correlation coefficient. Normality testing allows the identification of normal or 

abnormal distribution (parametric or non-parametric) of data. For parametric data, the Pearson 

test was applied, and for non-parametric data, the Spearman correlation coefficient test was 

applied. Statistical analysis, specifically normality testing was performed on the variables in 

order to identify the most suitable correlation coefficient test to apply. The Kolmogorov-

Smirnov test and the Shapiro-Wilks test were utilised (section 4.5.3.1). 

4.3.3.1 Statistical analysis 

Statistical analysis was performed with SPSS (Statistical Package for the Social Sciences) 

software programs (IBM SPSS Statistics, IBM Corporation), specifically normality testing was 

performed on each variable in order to identify the most suitable correlation coefficient test to 

apply. The Kolmogorov-Smirnov test (ideal for use on sample sizes of 50 or more subjects or 

the Shapiro-Wilks test (ideal for use on sample sizes of less than 50 subjects) were utilised. A 

p<0.05, indicates non-normal distribution. For the 15 healthy subjects, the Shapiro-Wilks test 

was used.  

The normality test allows the researcher to identify whether these data in each of the variables 

to be tested was different than that of normal distribution (parametric) or abnormally distributed 

(non-parametric). For parametric data, the Pearson correlation coefficient test is most suited 

and was applied, and for non-parametric data, the Spearman correlation coefficient test is most 

suitable, and was applied. 

The parametric testing was applied when three assumptions were met, including; normalcy of 

data or normal distribution, independence of data (one group did not influence another) and 

homogeneity of data (where variances in each group are similar). 

Within table 4.4 correlations will be noted with a ρ or an r value, with ρ indicating data to be 

non-parametric, and r indicating data to be parametric. The ‘perfect’ correlation coefficient is 

always -1 or +1, +1 indicates perfect positive correlation, and -1 indicates perfect negative 

correlation. A perfect relationship would depict all points on a scatterplot to fall on a straight 

line. Correlation can be considered ‘strong’ when falling between -0.7 and -0.9 or +0.7 and 
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+0.9, moderate when between -0.4 and -0.6 or +0.4 and +0.6, weak when between -0.1 and -

0.3 or +0.1 and +0.3, and no correlation or association is present when the correlation 

coefficient is 0 (Dancey and Reidy, 2011). The level of significance of the results data was 

p<0.05, indicating significant association between the variables. If p>0.05, non-significant 

association was present between the variables.  

4.4 Results 

Fifteen heathy subjects were analysed in this study (7 males and 8 females). The average age 

for males was 34.43 (±7.16) years, and for females was 36.25 (±13.29) years, the average 

height for males was 1.75 (±0.07) m, and for females was 1.64 (±0.05) m, the average mass for 

males was 88.57±13.16 kg, and for females was 69.38 (±12.55) kg.  

The average self-selected barefoot walking speed for all 15 healthy participants (30 healthy 

limbs) was 1.214 (±0.13) m/s. The average EKAM value for all 15 participants was 0.413 

(±0.112) Nm/kg. The average rearfoot range of motion was 10.06 (±2.59) º. The average 

rearfoot eversion was -1.78 (±2.25) º. The average rearfoot inversion was 8.28 (±3.19) º. The 

average total FPI for all 15 participants was 2 (±5.1). The average rearfoot FPI was 0 (±1.1), 

and the FPI range was -6-10 (table 4.3). All measurements for all 15 individual participants are 

depicted in table 4.3. 
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Table 4.3 – The mean and standard deviation (SD) for all measurements for both left and right limbs of all 15 

participants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EKAM: External Knee Adduction Moment, FPI: Foot Posture Index, SD: Standard Deviation. 

 Frontal Plane Motion   

Limbs 

EKAM 

Nm/kg 

Rearfoot 

ROM(º) 

Rearfoot 

Minimum(º)  

Rearfoot 

Maximum(º)  

Total 

FPI 

Rearfoot 

FPI 

1 0.474 8.126 -1.179 6.947 7 1 

2 0.355 11.978 0.458 12.437 -6 1 

3 0.413 9.913 -1.940 7.972 3 1 

4 0.623 8.248 -0.403 7.845 -6 2 

5 0.434 6.742 -0.399 6.343 2 -1 

6 0.413 11.691 -4.274 7.416 6 1 

7 0.344 10.764 -2.091 8.673 4 -1 

8 0.456 9.400 1.826 11.227 -6 0 

9 0.406 13.632 -5.517 8.114 1 0 

10 0.194 9.351 -2.594 6.756 -3 -1 

11 0.552 12.675 -1.199 11.475 9 1 

12 0.391 7.348 0.047 7.395 4 2 

13 0.260 13.001 1.311 14.312 8 -1 

14 0.484 9.199 0.075 9.274 0 -1 

15 0.573 6.937 -2.425 4.512 4 -2 

16 0.431 10.471 0.705 11.176 7 1 

17 0.257 10.081 1.399 11.481 -6 1 

18 0.244 8.961 -1.761 7.199 4 1 

19 0.460 7.450 -1.058 6.391 -5 1 

20 0.473 4.424 -2.879 1.545 0 -1 

21 0.356 12.378 -3.460 8.917 4 1 

22 0.407 8.321 -3.562 4.758 3 1 

23 0.472 11.578 -5.718 5.859 -6 1 

24 0.216 16.647 -3.337 13.309 0 0 

25 0.270 10.164 -3.808 6.356 1 -1 

26 0.550 12.460 -0.532 11.927 10 2 

27 0.411 8.711 -2.082 6.629 4 1 

28 0.469 12.878 1.096 13.975 9 -1 

29 0.372 11.725 -7.249 4.475 -2 -2 

30 0.602 6.76 -2.926 3.833 9 -1 

Mean 0.413 10.068 -1.783 8.285 2 0 

SD 0.112 2.594 2.255 3.199 5.1 1.18 
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Figure 4.1 – Mean external knee adduction moment (EKAM) in the frontal plane for 30 healthy limbs. Error bars 

represent ± 1 standard deviation. 

 

 

Figure 4.2 – Mean dynamic rearfoot angle motion in the frontal plane for 30 healthy limbs. Error bars represent 

± 1 standard deviation. 
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When used to assess foot posture (statically), the total FPI score and the inversion and eversion 

rearfoot FPI concluded that no relationship exists between static FPI scores and dynamic foot 

motion results (when using 3D cameras and reflective markers within the gait laboratory) in 

both left and right limbs (table 4.4). 

 

Table 4.4 – The relationship between FPI, rearfoot motion and the EKAM. 

  

 

             

 

 

 

 

 

 

 

FPI: Foot Posture Index, EKAM: External Knee Adduction Moment, ROM: Range of Motion, Max: Maximum.  

r: Pearson Coefficient Correlation (parametric), ρ: Spearman Coefficient Correlation (non-parametric), Calc: 

Calcaneus, Inv: Inversion, Ev: Eversion. 

No statistically significant relationship was identified between the FPI and the EKAM, p=0.23. 

Also, no statistically significant relationship was found between the FPI and rearfoot inversion, 

p=0.42 (table 4.3). In addition, no statistically significant correlation was established between 

the FPI and rearfoot ROM p=0.46.  

Results do show near significant correlation between the EKAM and the rearfoot ROM to be 

ρ=0.358 (p=0.052), however, the acceptable threshold level of statistical significance was not 

quite achieved. Additionally, no statistically significant relationship was identified between the 

EKAM and inversion and eversion rearfoot motion, p=0.20, p=0.70 respectively. 

No significant association was found between eversion and inversion rearfoot FPI scores and 

the EKAM, and the eversion and inversion rearfoot FPI scores and the rearfoot range of motion, 

p=0.62, p=0.87 respectively. Finally, no relationship was identified between eversion and 

Rearfoot (Barefoot) Correlations  P-Value 

FPI vs EKAM ρ= 0.225  P= 0.23 

FPI vs inversion ρ= 0.153 P= 0.42 

FPI vs eversion ρ= 0.047 P=0.80 

FPI vs ROM ρ= 0.138 P= 0.46 

Inv/Ev Calc FPI vs EKAM ρ= 0.094 P= 0.62 

Inv/Ev Calc FPI vs ROM ρ = 0.029 P= 0.87  

Inv/Ev Calc FPI vs inversion ρ= 0.248 P= 0.18 

Inv/Ev Calc FPI vs Eversion ρ= 0.190 P= 0.31 

EKAM vs ROM ρ= -0.358 P= 0.052 

EKAM vs Inversion r= -0.241 P= 0.20 

EKAM vs Eversion r= 0.072 P= 0.70 
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inversion rearfoot FPI scores and eversion and inversion rearfoot motion, p=0.18, p=0.31, 

respectively.  

4.4.1 Summary and Discussion of Results 

This investigation aimed to determine whether a relationship exists between static foot posture, 

assessed using the FPI, dynamic rearfoot motion, and the magnitude of the EKAM. The 

hypothesis stated that no significant relationship would exist between static foot posture, 

dynamic rearfoot motion, and the magnitude of the EKAM.  

Results concerning the analysis of the data from the initial 15 subjects (30 healthy limbs) 

collected by the investigator indicated that overall, no statistically significant relationship was 

identified between the FPI and EKAM, the FPI and rearfoot motion in the coronal plane, and 

also rearfoot motion and the EKAM. The one finding which was close to significance was 

between the EKAM and the ankle/subtalar joint complex ROM ρ=-0.358. The p-value of 

p=0.052 approached acceptable levels of statistical significance. Therefore, it can be stated that 

a marginal trend towards significance was present between the EKAM and ankle subtalar joint 

complex ROM, which indicated some, albeit poor association between the two variables, 

meaning a decrease in the ROM of the ankle subtalar joint complex led to an increase in the 

EKAM, or vice versa. A study by Chapman et al., (2015) identified that ankle/subtalar joint 

complex biomechanical parameters play an important role in reducing peak EKAM after 

investigating dynamic ankle/subtalar joint complex coronal plane biomechanical measures and 

the EKAM with the use of a LWI compared to a control shoe in 70 individuals with medial 

compartment knee OA. The Chapman et al., (2015) trial concluded that LWI result in the centre 

of pressure of the foot shifting laterally, a greater degree of eversion at the ankle/subtalar joint 

complex, and a greater eversion moment compared to control. Also, that coronal plane ankle 

subtalar joint complex biomechanical measures under the control (shod) condition correlate 

with the likelihood that participants would experience a reduction in peak EKAM when 

wearing LWI Chapman et al., (2015). However, it was once more concluded that the exact 

mechanism and relationship between the ankle subtalar joint complex and the EKAM is not 

fully understood. Furthermore, a study by Jones et al., (2014) concluded that coronal plane foot 

and ankle biomechanical measures are key mechanisms for producing a reduction in the EKAM 

in patients with medial compartment knee OA when wearing a LWI. 

Therefore, the results indicate that simple correlation can be utilised to explain the relationship 

between the variables, however it does not lead to an explanation of the complexity of 
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biomechanical relationships which may exist between the ankle subtalar joint complex and the 

EKAM (Buldt et al., 2015). A study by Buldt et al., (2015) concluded joint rotations of the 

rearfoot were not related to the magnitude of first peak EKAM in healthy individuals, 

suggesting that foot posture and the ankle subtalar joint complex do not substantially influence 

the biomechanics of the knee joint in healthy individuals. Consequently, findings from this 

study suggest the ankle subtalar joint complex may play a role in the magnitude of the EKAM 

in healthy subjects, however the exact mechanisms of this relationship are not fully understood, 

and therefore further investigation is warranted. Increasing the sample size within the study 

may lead to greater understanding of potential association between the variables. Therefore, 

further investigation with a larger data set could determine if a relationship exists between 

clinical static and dynamic rearfoot posture and the magnitude of the EKAM and confirm if 

the trend to significance of the EKAM association with the range of motion moves to 

significance. 

Within previous investigations in the literature, healthy lower limbs have been assumed to be 

symmetrical on both right and left sides, in order to simplify data collection and analysis. Lower 

limb asymmetry is frequently associated with pathology, where significant differences in 

kinetic and kinematic parameters can be observed between left and right lower limbs (Sadeghi 

et al., 2000, Gouwanda and Senanayake, 2011). Additionally, several studies have identified 

no significant differences between left and right limbs, or dominant and non-dominant limbs 

in healthy participants (Hertel et al., 2002) which could perhaps suggest that collecting a single 

limb (either left or right) for all participants would be ideal for this investigation, albeit meaning 

the data of only 15 limbs would be collected. Conversely, Hertel et al., (2002) suggests that 

different foot postures or foot shapes (different architectural foot types) present between left 

and right limbs of individuals causing differences in the interface between the foot and the 

force plate could influence the ground reaction force and also measures in clinical research 

settings (Hertel et al., 2002). Additionally, differences between the right and left limbs of 

individuals are frequently reported within the literature, and it has previously been stated that 

the lower limbs are not used equally during ambulation, with Sadeghi et al., (2000) concluding 

that gait is asymmetrical.  

Furthermore, the notion of limb dominance, or limb preference, defined as the preferential use 

of one limb during voluntary motor acts, where the dominant or preferred limb is used in 

activities, for example kicking, and the non-dominant, or non-preferred limb provides postural 

and stabilising support, could cause differences in biomechanics and gait measurements 
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(Sadeghi et al., 2000). Therefore, differences may be present between individual’s limbs, 

providing rationale for collecting and analysing both the left and right limbs of all 15 

participants (30 limbs in total). 

As with any study, there are limitations which could have hampered the findings. It is important 

to mention that FPI assessment was conducted solely by the investigator who is experienced in 

carrying out such examinations and who also carried out an FPI repeatability pilot study in 

order to ensure accurate FPI assessment (chapter 3, section 3.4.4.6), therefore adding credibility 

to the FPI scores within this investigation. One of the limitations is the relatively small sample 

of the population represented within the study (15 subjects, 30 healthy limbs), which could be 

considered too small to accurately determine whether foot posture is related to the EKAM and 

rearfoot motion. Therefore, in an effort to determine whether any relationship would exist with 

a much larger sample, a larger data set of 137 healthy limbs was undertaken (Nester et al., 

2014) in order identify if any association is seen between clinical static foot posture and 

biomechanical dynamic rearfoot motion and the EKAM.  

 

4.5 Examination of 137 healthy limbs using previously collected data 

In order to answer the research question of whether a relationship exists between the clinical 

static foot posture, dynamic rearfoot motion and the magnitude of the EKAM, the following 

investigation was conducted on previously collected data to establish if any relationship existed 

between the FPI scores, FPI eversion and inversion (static) and dynamic rearfoot motion, and 

the magnitude of the EKAM, in order to determine the association between the outcome 

parameters of clinical examination and the magnitude of the EKAM.  

The analysis aimed to establish if a link was present between foot posture and knee loading, 

therefore allowing an understanding to be gained into the role of static foot and ankle 

measurements on the magnitude of the EKAM. Furthermore, the investigation aimed to gain 

an appreciation into the role of dynamic rearfoot eversion on the magnitude of the EKAM. The 

value of this work is that it aims to provide some inferences into whether clinical foot 

parameters have a role in the magnitude of the EKAM.  

Clinical foot data; (including the FPI, eversion and inversion in individual participants) 

dynamic ankle eversion data, and the resulting EKAM were examined using previously 

collected data (Jarvis PhD thesis, 2013) from a population of 137 healthy limbs. 
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4.5.1 Methods (these are modified from Jarvis’ PhD Thesis, 2013) 

One hundred healthy subjects (71 female, 29 male) were originally recruited by a former PhD 

student at the University of Salford after ethical approval had been gained from the research 

and ethics panel at the University of Salford (ethical approval code – RGE C08/090) (Jarvis 

PhD thesis, 2013). Participants (demographics are depicted in table 4.5) were asymptomatic, 

and were aged between 18-45 years. This was to ensure physiological and skeletal maturity 

had been reached and to decrease the incidence of health conditions (including osteoarthritis) 

associated with individuals over the age of 45, which can lead to structural changes in the lower 

limbs and foot; such as reduced range of motion at the subtalar and ankle joint (Nigg et al., 

1992, Jarvis PhD thesis, 2013). Therefore, data obtained by Jarvis can be considered as 

collected solely from healthy participants.  

 

Screening of participants and data collection including the Foot Posture Index (FPI) was 

undertaken in the podiatry clinic at the University of Salford by a single experienced podiatrist; 

ensuring consistent data collection. Symptomatic participants not meeting the inclusion criteria 

were excluded from the study, and no further data was collected from them. These screening 

data were recorded on a Microsoft Excel spreadsheet and stored anonymously. 

 

Gait instrumented analysis of the foot and leg was conducted in the gait laboratory at the 

University of Salford, where 3D foot and leg kinematic data was obtained using a 12 infra-red 

camera OQUS system (Qualisys system, Qualisys, Gothenburg, Sweden) with retro reflective 

markers. Walking trials were carried out where participants were requested to walk at a self-

selected walking speed. Qualisys Track Manager (QTM) was used for collection and 

processing (digitisation) of data obtained (Jarvis PhD thesis, 2013).  

 

4.5.1.1 Data Processing 

Kinetic and kinematic data re-processing of the original data was carried out by the investigator 

of this thesis. In brief, data were checked by reviewing individual subject data using Visual3D 

software, where kinematic and force plate data were filtered to prevent noise interference in 

the results, and gaps and breaks in the data were filled using polynomial interpolation 

algorithms within Visual3D software to prevent error within the results. The model was rebuilt 

using Visual3D to the same specifications as the previous model used within Chapter 3 (section 

3.3) in order to identify segments. A new results report pipeline was then applied using 
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Visual3D. The data previously collected by Jarvis only used kinematic data (Jarvis PhD thesis, 

2013), and therefore the results report pipeline enabled the investigator to determine kinetic 

data (the moment) for each subject. After data checking had been performed, the following 

data were excluded from processing: data with a low number of walking trials considered 

inadequate to obtain an accurate result, data which did not depict the moment in results, data 

which showed an inaccurate moment with noise interference, and data where the foot was not 

fully placed on at least one force plate, meaning kinetic data could not be achieved. 

From the original 100 healthy subjects collected during the Jarvis trial (Jarvis PhD Thesis, 

2013), the data concerning 90 subjects (26 males and 64 females) were used for this 

investigation, and 43 limbs were identified as being unsuitable for further exploration. 

Therefore, data concerning 137 limbs were identified as being suitable for further exploration 

by the investigator. Suitable data (with a minimum of 5 successful trials) were exported from 

Visual 3D to Microsoft Excel and prepared for analysis. The positions of reflective markers 

are translated into the pose (position and orientation) of the corresponding model (a collection 

of rigid segments, with each segment corresponding to a body segment and major bone 

structure), identified using motion tracking equipment by V3D (Visual 3D, 2015). The body 

segments which are tracked are defined by proximal and distal endpoints located inside the 

subject’s body (Visual 3D, 2015). The model is referred to as a six degree of freedom (DOF) 

model due to having six variables that describe its position and orientation in 3-D space (3 

variables describe segment translation in three orthogonal axes, and 3 variables describe the 

rotation about each axis). The anthropometric measurements of individual subjects (height and 

body mass) were entered into the software for usage in kinetic calculations. Pelvis, thigh, leg 

and foot segments were then modelled using anatomical landmarks or joint centres and the 

radius of the proximal and distal end of the segment and the tracking markers (Buczek et al., 

2010). The Visual3D model segments and tracking markers are detailed in chapter three (table 

3.2). The model segments were consistent with the model segments used within section 4.5.3 

of this chapter. 

Kinematic and kinetic data were filtered using a Butterworth 4th order bi-directional low pass 

filter with cut off frequencies of 6Hz for kinematics (Winter, 2009) and 25Hz for kinetics 

(Schneider and Chao, 1983) (Yu et al., 1999). Joints kinematics were calculated using an X-

Y-Z Euler rotation sequence, where X (sagittal plane) represented flexion/extension, Y 

(coronal plane) adduction/abduction or eversion/inversion, and Z (transverse plane) 

internal/external rotation. Joint kinetic data were calculated using 3-D inverse dynamics and 
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the joint moment data was normalised to body mass and presented as external moments 

referenced to proximal segment. Each gait parameter of interest for each of the studies was 

then exported from V3D to Microsoft Excel 2010 (Microsoft Washington, USA). The rearfoot 

was defined using cluster tracking markers (with four retroreflective markers fixed to each rigid 

cluster pad) between the shank segment and the foot segment. 

Peak EKAM and peak flexion/extension moment (sagittal moment) data were exported from 

Visual3D to Microsoft Excel software, with the peak representing early stance phase of the gait 

cycle. Additionally, range of motion (ROM) of the rearfoot (inversion and eversion) and ankle 

subtalar joint data during stance phase were exported for all trial participants, and analysed 

using SPSS software. 

Microsoft Excel software was used to collect the mean and standard deviation (SD) of each 

variable that was exported. Data was then transferred to SPSS software, to apply normality 

testing and the correlation coefficient. Normality testing allows the identification of normal or 

abnormal distribution (parametric or non-parametric) of data. For parametric data, the Pearson 

test was applied, and for non-parametric data, the Spearman correlation coefficient test was 

applied. Statistical analysis, specifically normality testing was performed on the variables in 

order to identify the most suitable correlation coefficient test to apply. The Kolmogorov-

Smirnov test and the Shapiro-Wilks test were utilised (section 4.5.3.1).  

4.5.2 Results 

The data analysis was undertaken in order to further explore any possible link between static 

and dynamic foot posture and the magnitude of the EKAM using a larger data set to identify if 

any relationship existed between the FPI and rearfoot motion, and FPI and the magnitude of 

the EKAM, and rearfoot FPI classifications and rearfoot motion, and the magnitude of the 

EKAM.  

 

Ninety healthy subjects participated in the study. The mean age for all participants was 30.2 (± 

9.17) years, age range 18-45 years; mean height 1.67 (±0.08) m; height range 1.54-1.84 m; 

mean mass 71.7 kg (±14.0); mass range 47-107 kg; mean body mass index (BMI) 25.14 (±5.05) 

kg/m2 (table 4.5). The average self-selected walking speed of all participants was 1.292 

(±0.146) m/s.  
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Table 4.5: Demographic measurements and standard deviation for all study participants. 

  Gender                                                                 Males (N=26)                Females (N=64) 

Age ± (SD) (years)  28.2 ± (8.9)   29.5 ± (10.4) 

Height ± (SD) (m)  1.76 ± (0.07)   1.64 ± (0.05) 

Mass ± (SD) (kg)  80.6 ± (12.6)   68.1 ± (13.1) 

 

Results for all participants including; the mean EKAM, mean eversion and inversion dynamic 

rearfoot, mean ROM (Figure 4.3, 4.4, 4.5), mean subtalar joint eversion and inversion, mean 

FPI, and the FPI range are depicted in table 4.6. 

 

                   

     Table 4.6: The mean and standard deviation (SD) for all measurements for 137 heathy limbs.  

 

 

 

 

 

 

 

 

 

Peak EKAM: First peak maximum external knee adduction moment, Sagittal moment: Maximum first peak. FPI: 

Foot Posture Index, ROM: Range of Motion, STJ: Subtalar Joint, Ev: Eversion, Inv: Inversion, SD: standard 

deviation. 

Barefoot  

Measurements      Mean        SD (º) 

Peak EKAM (Nm/kg) 0.304 0.13  

Sagittal Moment (Nm/kg) 0.243 0.23 

Rearfoot Inv (º) 9.23 3.76 

Rearfoot Ev (º) -4.18 3.17 

ROM (º) 13.42 3.28 

Ev STJ (º) -12 3.03 

Inv STJ (º) 11 4.05 

Rearfoot FPI  0 0.85 

Total FPI 3 3.56 
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Figure 4.3 – Mean knee flexion/extension moment in the sagittal plane for 137 limbs. Error bars indicate the ± 1 

standard deviation. 

 

Figure 4.4 – Mean external knee adduction moment (EKAM) in the frontal plane for 137 limbs Error bars indicate 

the ± 1 standard deviation. 
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Figure 4.5 – Mean dynamic rearfoot angle motion in the frontal plane for 137 limbs. Error bars indicate the ± 1 

standard deviation. 

The results indicate that no relationship existed between the FPI and the max EKAM, r=-0.118 

(p=0.170) (table 4.7). Additionally, no association was identified between the FPI and rearfoot 

ROM, r=0.145 (p=0.095). Results concerning the FPI and dynamic inversion and eversion of 

the rearfoot indicate no relationship exists, r=0.116 (p=0.176) and ρ=0.040 (p=0.642) 

respectively. No relationship was identified between the FPI and subtalar joint eversion and 

inversion, r=-0.040 (p=0.643) and r=0.052 (p=0.546) respectively. Also, no association was 

found between eversion and inversion of the rearfoot in the FPI classification (static) and the 

EKAM and the ROM (dynamic) r=-0.045 (p=0.601) and ρ =0.089 (p=0.298) respectively.  

 

Conversely, eversion and inversion of the rearfoot in the FPI classification data demonstrates 

a weak negative relationship to eversion dynamic rearfoot data, ρ=-0.183 (p=0.032) (table 4.7). 

Also, a weak negative relationship was identified between the EKAM and dynamic inversion 

and eversion of the rearfoot, r=-0.259 (p=0.002), ρ=-0.201 (p=0.019) respectively (table 4.7). 

However, the relationship was very weak and therefore, it can be considered that minimal 

correlation existed between FPI inversion, eversion and dynamic rearfoot, also between the 

EKAM and dynamic rearfoot eversion and inversion (figure 4.6, 4.7 and 4.8). 
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                    Figure 4.6 – Scatterplot graphs depicting the correlation between eversion and the EKAM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 – Scatterplot graphs depicting the correlation between inversion and the EKAM. 
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Figure 4.8 – Scatterplot graphs depicting the correlation between inversion/eversion rearfoot FPI vs eversion. 
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Table 4.7 - The relationship between FPI, rearfoot motion and the EKAM in 137 healthy limbs. 

Rearfoot (Barefoot) Correlations  P-Value 

FPI vs EKAM r= -0.118 P= 0.170 

FPI vs ROM  r= 0.145 P= 0.095 

FPI vs Inversion r= 0.116 P= 0.176 

FPI vs Eversion ρ= -0.040 P= 0.642 

FPI vs STJ Eversion r= -0.040 P= 0.643 

FPI vs STJ Inversion r= 0.052 P= 0.546 

Inv/Ev Calc FPI vs EKAM ρ= -0.045 P= 0.601 

Inv/Ev Calc FPI vs ROM ρ= 0.089 P= 0.298 

Inv/Ev Calc FPI vs inversion ρ= -0.075 P= 0.384 

Inv/Ev Calc FPI vs Eversion ρ= -0.183 P= 0.032 

EKAM vs ROM r= -0.082 P= 0.341 

EKAM vs Inversion r= -0.259 P= 0.002 

EKAM vs Eversion ρ= -0.201 P= 0.019 

EKAM vs STJ Eversion  r= 0.051 P= 0.552 

EKAM vs STJ inversion r= 0.050 P= 0.562 

FPI: Foot Posture Index, EKAM: External Knee Adduction Moment, ROM: Range of Motion, STJ: Subtalar Joint, 

Calc: Calcaneus, r: Pearson Coefficient Correlation (parametric), ρ: Spearman Coefficient correlation (non-

parametric). 

The results indicated that no association exists between the FPI, EKAM and rearfoot motion 

when not classifying individuals according to foot type which can be achieved with the FPI. 

However, some results showed very weak yet still significant association, which indicates that 

further investigation is required in order to determine if any relationship exists after dividing 

the limbs into groups related to the rearfoot FPI classification and to answer the research 

question, that if any relationships exist between static foot posture (assessed using the FPI), 

dynamic rearfoot motion and the magnitude of the EKAM. 

4.5.3 Does classifying the data into foot type groups (inverted, everted and neutral) 

demonstrate a relationship between static foot posture, dynamic rearfoot motion and the 

magnitude of the EKAM? 

Analysis of the data was conducted by the investigator by dividing the 137 healthy limbs into 

three groups, classified using the measurements of the rearfoot, according to the FPI. The data 

were therefore separated into groups; inverted, neutral, and everted. The classification of the 

rearfoot type was determined using FPI scores (zero – neutral, one-two – everted, minus one – 

minus two- inverted). Of the 137 healthy limbs, 33 were identified as everted, 65 were 

identified as neutral, and 39 were identified as inverted, according to rearfoot FPI classification 

scores. The aim of the grouping of limbs and analysis was to identify if any association existed 
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between the FPI scores for each individual group (inverted, everted or neutral) and dynamic 

rearfoot motion and magnitude of the EKAM. 

Statistical analysis methods (including normality testing and the correlation coefficient) were 

similar to those used previously within this chapter (section 4.5.3.1). The Shapiro-Wilks test 

was applied for the everted and inverted FPI groups, and the Kolmogorov–Smirnov test was 

applied to the neutral FPI group, reflecting the number of limbs in each group. 

In addition, one-way ANOVA was conducted to identify if any significant differences existed 

between the three groups in the sagittal moment EKAM, rearfoot eversion and inversion, and 

subtalar joint inversion and eversion. 

4.5.3.1 Results 

After classifying the data of 137 healthy limbs in to three groups (everted (33 limbs), neutral 

(65 limbs) and inverted (39 limbs) classified using the FPI), the mean and standard deviation 

of all measurements are presented below (table 4.8). No significant differences were identified 

between the three groups in all measurements, with the exception of dynamic rearfoot 

inversion, eversion and range of motion, where significant differences were found (figures 4.9, 

4.10 and 4.11). 
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Table 4.8: The mean and standard deviation (SD) for all measurements within the three groups. 

 

Peak EKAM: First peak maximum external knee adduction moment (Nm/kg), Sagittal moment: Maximum first 

peak (Nm/kg). FPI: Foot Posture Index, STJ: Subtalar Joint, standard deviation (SD). 

 

 

Barefoot Everted Rearfoot 

Group 

Neutral Rearfoot 

Group 

Inverted Rearfoot 

Group 

 

ANOVA 

Measurement Mean SD (º) Mean SD (º) Mean SD (º)  P value 

Peak EKAM 

Nm/kg 

0.29 0.13 0.31 0.13 0.31 0.15 P=0.88 

Sagittal Moment 

Nm/kg 

0.25 0.23 0.25 0.25 0.22 0.22 P=0.76 

Rearfoot 

Inversion (º)  

4.81 2.86 3.31 2.81 3.01 3.09 P=0.02 

Rearfoot 

Eversion (º) 

-1.69 2.86 -2.17 2.75 -2.66 2.70 P=0.33 

Range of 

Motion (º) 

6.51 1.98 5.49 1.84 5.67 1.85 P=0.03 

Eversion  STJ 

(º)  

-12 3.4 -12 3.2 -12 3.1 P=0.96 

Inversion STJ 

(º) 

12 3.6 11 3.9 10 4.5 P=0.10 

Rearfoot Foot 

Posture Index 

1 0.4 0 0.0 -1 0.3  

Total Foot 

Posture Index 

6 3.02 4 2.87 1 3.24  
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Figure 4.9 – Mean dynamic rearfoot motion (eversion, neutral and inversion) between the groups. Error bars 

indicate the ± 1 standard deviation for the three groups. 

 

 

Figure 4.10 – Flexion/extension moment between the three groups (everted, neutral and inverted). Error bars 

indicate the ± 1 standard deviation for the three groups. 
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Figure 4.11 – External knee adduction moment (EKAM) between the three groups (everted, neutral and inverted). 

Error bars indicate the ± 1 standard deviation for the three groups. 

 

The results identified association existed between the different static FPI classifications and 

dynamic rearfoot motion. However, no association was identified between FPI classifications 

and the EKAM. Furthermore, no association was indicated between dynamic rearfoot, and the 

EKAM in all three groups (everted, neutral and inverted FPI classified rearfoot) (table 4.9). 

Strong negative association was found between the total FPI score and inversion rearfoot 

motion in both the neutral rearfoot group and the inversion rearfoot group (neutral r=-0.785 

(p<0.001), inverted r=-0.668 (p<0.001)). Moderate negative association was identified 

between the total FPI score and inversion rearfoot motion in the everted rearfoot group (r=-

0.451(p=0.008).  

Strong negative association was also found between the total FPI and eversion rearfoot motion 

in the three groups classified according to the FPI (inverted r=-0.705, neutral p=-0.993, and 

everted r=-0.700 (p<0.001)) (see table 4.9).  

Additionally, a strong negative relationship was found between total FPI eversion and the 

eversion rearfoot motion group (p=-0.702 p<0.001).  
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Overall, when classifying the rearfoot according to the FPI in the three groups (inverted, neutral 

and everted rearfoot), the FPI total score and rearfoot inversion and eversion FPI were found 

to have moderate to strong association with rearfoot motion (inversion and eversion).  

Table 4.9 - The relationship between FPI, rearfoot motion and the EKAM in 137 healthy limbs after grouping the 

limbs depending on their FPI classification (inverted, everted and neutral). 

Barefoot (Rearfoot)  Group 1 Ev RF-FPI  Group-2 Neu RF-FPI Group-3 Inv RF-FPI 

Correlations 

 (P-Value) 

Correlations 

 (P-Value) 

Correlations 

 (P-Value) 

FPI vs EKAM ρ= 0.069 (0.704) ρ= -0.076 (0.546) r= -0.269 (0.098) 

FPI vs ROM  r= 0.335 (0.041) r= 0.265 (0.033) r= -0.083 (0.617) 

FPI vs Max r= -0.451 (0.008) r= -0.785 (0.000) r= -0.668 (0.000) 

FPI vs Min r=- 0.700 (0.000) ρ= -0.993 (0.000) r= -0.705 (0.000) 

Inv/EvCalc FPI vs EKAM ρ= 0.173 (0.335) N/A ρ= 0.068 (0.679) 

Inv/Ev Calc FPI vs ROM ρ= 0.182 (0.312) N/A ρ= -0.188 (0.252) 

Inv/Ev Calc FPI vs Max ρ= -0.569 (0.001) N/A r= -0.342 (0.033) 

Inv/Ev Calc FPI vs Min ρ= -0.702 (0.000) N/A r= -0.462 (0.003) 

EKAM vs ROM ρ= -0.047 (0.796) r= -0.097 (0.449) r= 0.236 (0.148) 

EKAM vs Inversion r= -0.035 (0.848) r= 0.031 (0.806) r= 0.238 (0.145) 

EKAM vs Eversion r= -0.021 (0.904) r= 0.074 (0.558) r= 0.110 (0.504) 

FPI: Foot Posture Index, EKAM: External Knee Adduction Moment, ROM: Range of Motion, Max: Maximum 

(inversion), Min: Minimum (eversion), STJ: Subtalar Joint, Calc: Calcaneus, r: Pearson Coefficient Correlation 

(parametric), ρ: Spearman Coefficient Correlation (non-parametric), N/A: non-applicable (neutral/0 result). 

The hypothesis states that no significant relationship would exist between dynamic rearfoot 

motion and the magnitude of the EKAM. In order to test this hypothesis further, the dynamic 

rearfoot data were classified into 3 groups (eversion, neutral and inversion) according to 

eversion of the rearfoot in the first peak of stance phase of the gait cycle. The eversion group 

contained 32 limbs, the neutral group contained 70 limbs, and the inversion group contained 

31 limbs. The classification of eversion rearfoot motion data into three groups (inverted, 

everted and neutral) was determined by conducting the mean and standard deviation (1SD). 

Data was plotted on to a scatterplot where the SD lines were applied above and below the mean 

line. Positive plots (above the upper SD line) indicate inversion of the rearfoot, negative plots 

(below the lower 1SD line) indicate eversion of the rearfoot, and plots between the upper and 

lower SD lines, around the mean line indicate a neutral rearfoot (figure 4.12).  

The limbs were divided into three groups (inverted, everted, and neutral) according to eversion 

rearfoot motion and the EKAM in order to gain further understanding of whether specific 

rearfoot motion (inverted, neutral or everted) is associated with the EKAM in healthy subjects. 
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The mean and standard deviation of the peak EKAM and peak rearfoot motion data for the 

three groups is depicted below in table 4.10. No significant differences were identified in the 

peak EKAM within the three rearfoot motion groups. Significant differences were identified in 

dynamic rearfoot motion, between everted, neutral and inverted groups. 

         Table 4.10: The mean and standard deviation (SD) for Peak EKAM and rearfoot motion for three groups  

Peak EKAM: First peak maximum external knee adduction moment (Nm/kg), standard deviation (SD). 

Results identified no significant relationship exists between dynamic rearfoot motion 

(inversion, neutral and eversion) and the magnitude of the EKAM in healthy subjects (table, 

4.11).  

 

 

 

 

 

 

 

 

Figure 4.12 – Scatterplot graph depicting the three rearfoot motion classifications - inversion, eversion and 

neutral. Plots close to the mean line between the two SD indicate a neutral rearfoot motion, plots above the 

positive SD line indicate inverted rearfoot motion, and plots below the negative SD line indicate an everted 

rearfoot motion. 

 

 

 

 

Barefoot Everted Rearfoot 

Motion Group 

Neutral Rearfoot 

Motion Group 

Inverted Rearfoot 

Motion Group 

 

ANOVA 

Measurement Mean SD (º) Mean SD (º) Mean SD (º)  P value 

Peak EKAM 

Nm/kg 

0.32 0.12 0.30 0.14 0.27 0.13 P=0.069 

Rearfoot  

Motion (º)  

-6.13 1.23 -1.93 1.14 1.21 1.11 P=0.000 
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Table 4.11 - The relationship between rearfoot motion and the EKAM in 137 healthy limbs after dividing the limbs 

into three groups - inverted, everted and neutral rearfoot motion. 

 

 

 

 

4.6 Discussion 

The investigations within this chapter assessed whether static foot posture and dynamic 

rearfoot motion could identify if any relationships exist between rearfoot motion and foot 

posture, relative to the magnitude of the EKAM. Also, whether static foot posture and the 

dynamic rearfoot contributes to biomechanical alterations which could affect the magnitude of 

the EKAM. The hypothesis stated that no significant relationship would exist between static 

foot posture and the magnitude of the EKAM, between the dynamic rearfoot motion and the 

magnitude of the EKAM, and also between the static foot posture and dynamic rearfoot motion.  

After investigating 30 healthy limbs, the results indicated no association was present between 

the variables. Therefore, 137 limbs were investigated in order to increase the data set, aiming 

to more accurately determine results and add strength to the investigations. 

The results within the chapter found some, although minimal association, with the only 

association identified between variables present within the 137 limbs between the EKAM and 

dynamic inversion/eversion, and the rearfoot FPI and dynamic eversion of the rearfoot, where 

only weak negative association was present, and the relationship identified was minimal.  

However, significant association was identified between static foot posture and the dynamic 

rearfoot when limbs were divided into three groups according to their FPI classification. The 

FPI is a static measurement, and therefore negative association does not provide inferences into 

whether rearfoot motion increases or decreases and therefore, although association was present 

within the results, clinical FPI and rearfoot FPI classifications cannot represent biomechanical 

rearfoot motion. No relationship was identified between static foot posture and the EKAM, and 

the dynamic rearfoot and the EKAM.  

Recent literature has suggested that foot posture can potentially reduce the EKAM (Levinger 

et al., 2010), and that a pronated foot can reduce the EKAM in medial compartment knee OA 

Barefoot Rearfoot Dynamic 

1st Peak  

Correlations (P-Value) 

EKAM vs Eversion ρ= 0.137 (0.453) 

EKAM vs Neutral  r= -0.090 (0.445) 

EKAM vs Inversion r= 0.060 (0.747) 



134 

 

patients (Levinger et al., 2010), although the underlying mechanisms connecting foot posture 

and function remain unclear within the literature (Buldt et al., 2015). Results of this 

investigation, carried out using healthy subjects demonstrate that very limited weak association 

exists between foot posture and rearfoot motion relative to the EKAM in healthy subjects, and 

therefore these findings suggest that the EKAM does not vary depending on specific foot 

postures in heathy subjects. A study by Chuter, (2010) assessed the relationship between 

dynamic rearfoot motion and FPI scores in the pronated and neutral feet (classified by their FPI 

score) of 40 healthy subjects. Strong positive correlation was identified between the FPI scores 

and rearfoot eversion. Chuter (2010) therefore concluded that the FPI is a strong predictor of 

dynamic rearfoot function. However, the study by Chuter (2010) only included pronated 

(everted) and normal foot types, and excluded supinated (inverted) foot types from data 

analysis. Investigations within this chapter however, examined all FPI foot types, and 

investigated the rearfoot classification of FPI relationship with dynamic motion, with findings 

indicating no relationship exists between total FPI score and dynamic rearfoot motion. Findings 

identified some negative association between rearfoot FPI and biomechanical rearfoot motion, 

however it is not known how rearfoot motion has altered because the FPI is a static 

measurement, and consequently, the FPI cannot represent rearfoot motion. 

Buldt et al., (2015) conducted an investigation similar to this research question, which also 

used a large data set, into the association between static foot posture, the dynamic foot, and 

foot kinematics during barefoot walking in 97 healthy individuals. Some statistically 

significant associations were identified between measures of static foot posture, the dynamic 

foot and kinematic variables, concluding that the use of clinical measures of foot posture 

(including the FPI) or dynamic foot motion can only explain a minimal amount of variation in 

foot kinematics when walking in healthy participants with a range of foot postures. Therefore, 

the findings by Buldt et al., (2015) suggest that foot kinematics cannot be accurately 

determined using only observations of foot posture. 

Differences between the Buldt et al., (2015) investigation and this research question include 

the use of the FPI and the arch index, normalised navicular height, and normalised dorsal arch 

height to measure the whole foot statically within the Buldt et al., (2015) trial, whereas this 

investigation used only the FPI and focused specifically on the rearfoot, which has not been 

investigated previously, adding novelty to this investigation. Furthermore, within the Buldt et 

al., (2015) study, motion of the rearfoot, midfoot, medial forefoot, lateral forefoot, and hallux 

was measured, whereas this study again only focused on the motion of the rearfoot. Buldt et 
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al., (2015) concluded that the FPI displayed the strongest association with kinematic variables 

compared with the other foot posture measurements and foot mobility measurements, and for 

this reason, this study focused solely on collecting FPI data to assess static foot posture.  

Results pertaining to dynamic subtalar joint eversion and the EKAM indicate no association 

exists between the two variables, and similarly no association was identified between the 

subtalar joint inversion and the magnitude of the EKAM, and subtalar joint inversion and 

eversion, and the FPI. Likewise, a study by Buldt et al., (2015) states that no association existed 

between rearfoot joint rotation and the EKAM after investigating the relationship between the 

rearfoot and mid foot joint rotation and the magnitude of the EKAM in 97 healthy adults. 

However, investigations using individuals with medial compartment knee OA have provided 

converse findings. A recent study by Chapman et al., (2015) using 70 participants with medial 

compartment knee OA states that the subtalar joint complex plays a vital role in the reduction 

of the EKAM with the use of LWI. Also, that the subtalar joint complex biomechanical 

measures correlate with a reduction of the EKAM with the use of LWI, after conducting gait 

analysis to evaluate if dynamic ankle joint complex coronal plane biomechanical measures 

could identify and explain individuals who experienced a change in the EKAM when wearing 

LWI. Additionally, Levinger et al., (2010) identified that alterations in the kinetics and 

kinematics of the foot during gait can be achieved by increasing the subtalar joint pronation 

moment in the frontal plane, potentially leading to a reduction in the EKAM, initiated by 

shifting the centre of pressure laterally in individuals with medial compartment knee OA. 

Furthermore, the investigation by Levinger et al., (2010) identified a more pronated foot type 

in individuals with medial compartment knee OA classified using the FPI. 

These research findings indicate that further investigation into foot posture and the EKAM 

using medial compartment knee OA patients and LWI may be beneficial in achieving a further 

understanding of foot posture and the magnitude of the EKAM. However, it can be stated that 

no relationship exists between the foot posture, rearfoot motion and the magnitude of the 

EKAM in the overall healthy subject population within the study. 

Dividing the 137 limbs into three groups according to individual limb foot posture (classified 

using the FPI) prior to commencing further investigations allowed any existing further 

association to be identified. A number of findings indicate very weak yet still statistically 

significant association; suggesting that further investigation is required in order to determine if 
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any relationship can be identified between static foot posture (assessed using the FPI), dynamic 

rearfoot motion and the magnitude of the EKAM.  

After grouping the 137 healthy limbs according to their FPI classification (inverted, neutral 

and everted) significant association was identified between the FPI and rearfoot motion, and 

the rearfoot FPI classification and rearfoot motion. However, no association was present 

between rearfoot motion and the magnitude of the EKAM, and the total FPI and FPI rearfoot 

classifications and the EKAM. Correspondingly, Buldt et al., (2015) carried out an 

investigation into foot posture and the EKAM, and similarly grouped the subjects according to 

their total FPI score classifications. Instead of investigating rearfoot motion, navicular arch was 

analysed within the Buldt et al trial. It was concluded that foot posture does not substantially 

influence the EKAM during walking (Buldt et al., 2015), and therefore findings of this 

investigation are consistent with previous research outcomes. 

Overall, the investigation into healthy subjects identified no association between the FPI and 

the EKAM. Furthermore, no relationship was identified between rearfoot motion and the 

magnitude of the EKAM.  

Previous investigations conducted using participants with medial compartment knee OA have 

identified a relationship between the magnitude of the EKAM and foot posture in both shod (in 

shoe) and shod with the use of orthotic interventions, specifically LWI (Reilly et al., 2009,  

Levinger et al., 2010, Levinger et al., 2012, Chapman et al., 2015). Levinger et al., (2010) 

states that knee OA patient’s present altered foot kinematics during gait, including a more 

pronated (everted) foot type when compared with healthy controls, and therefore a change in 

normal foot posture. The study by Levinger et al., (2010) used the FPI to classify foot posture, 

as did this investigation. Similarly, a further investigation by Levinger et al., (2012) further 

confirmed the findings of more pronated foot types in populations with medial compartment 

knee OA. The findings of the Levinger et al., investigations therefore indicate that foot posture 

may play an important role in knee OA. However, the relationship between knee OA and foot 

posture is not clear, and a more pronated foot posture could be either a risk factor or a 

consequence of medial compartment knee OA and further investigation is therefore necessary.  

Additionally, foot posture may affect the efficacy of orthotic devices when used for the 

treatment of medial compartment knee OA. Previous investigations by Chapman et al., (2015) 

identified incidences of non-response to LWI intervention in subjects with medial compartment 

knee OA, and therefore further investigation into the foot posture of subjects who did not 
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respond to LWI is needed. By quantifying rearfoot kinetics and kinematics in LWI it may be 

established whether foot posture is related to response and non-response in LWI, and 

additionally, which specific foot posture or postures caused the incidences of response and non-

response within the Chapman study.  

As with any trial, there are limitations that have to be discussed. It is important to consider that 

in all investigations within this chapter, kinetic and kinematic dynamic data was collected using 

solely automated measurement tools, and therefore assessor bias and error was low. 

Additionally, FPI data was collected by a podiatrist, experienced in carrying out FPI 

assessments, ensuring credibility and accuracy in the FPI scores.  

Data was collected from both the left and right limbs of most participants for the investigation. 

Previous research has identified no significant differences between left and right limbs, or 

dominant and non-dominant limbs in healthy participants which could perhaps suggest that 

collecting a single limb (either left or right) for all participants may have been ideal for this 

investigation. However, differing architectural foot types present between left and right limbs 

could influence the ground reaction force and measures in clinical research settings (Hertel et 

al., 2002). Variation and limb dominance present between the right and left limbs of individuals 

could indicate the lower limbs are not used equally during ambulation, indicating gait to be 

asymmetrical. Therefore, differences may be present between individual’s limbs, meaning 

collecting and analysing both the left and right limbs of all 15 participants (30 limbs in total) 

may be advantageous. 

The recruited cohort of healthy participants may mean findings are not generalisable to a 

symptomatic population with knee OA or other lower limb pathologies and therefore further 

investigation is needed using subjects with medial compartment knee OA.  

4.7 Conclusion 

In conclusion, the investigation into healthy subjects using the initial 15 subjects (30 healthy 

limbs) identified no association between the FPI and rearfoot motion, between the FPI and the 

EKAM, and also between rearfoot motion and the EKAM. A close to significant association 

was identified between the EKAM and rearfoot range of motion within the 15 subjects, 

however this was not carried forward to the larger sample of 137 limbs. 

The investigation into the 137 healthy limbs did identify a weak relationship to exist between 

the EKAM and dynamic inversion and eversion of the rearfoot, and also between the rearfoot 
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FPI and dynamic eversion of the rearfoot when the population was examined as a whole. 

Furthermore, when classifying the 137 healthy limbs to rearfoot type according to the FPI, 

significant association between the rearfoot FPI scores and dynamic eversion and inversion, 

and rearfoot range of motion was identified. However, no relationship was identified between 

rearfoot motion and the EKAM, and the total FPI, the rearfoot FPI, and the EKAM. Therefore, 

in healthy subjects, the FPI cannot be used to represent dynamic rearfoot motion by clinicians. 

However, rearfoot posture classified using the FPI does have some association with dynamic 

rearfoot motion. Therefore, further clinical assessment methods are needed, as clinical 

measurements could represent dynamic rearfoot and subtalar ankle joint motion, which could 

lead to further understanding of the effectiveness of interventions designed for the conservative 

management of knee OA, such as LWI. 

Overall, it can be stated that the clinical total FPI scores do not entirely explain biomechanics 

of rearfoot motion in healthy subjects. 

Current literature states that individuals with medial compartment knee osteoarthritis (OA) 

exhibit altered foot kinematics during gait, including a more pronated foot type than healthy 

individuals (Levinger et al., 2010, Levinger et al., 2012). Therefore, further investigation is 

needed in individuals with knee osteoarthritis, as research indicates that foot posture may play 

an important role in both the onset and progression of knee OA (Levinger et al., 2010). 

Additionally, foot kinematics during gait including the rearfoot range of motion may influence 

individual responses to load-altering interventions such as LWI. Considering altered foot 

kinematics during gait are present in medial compartment knee OA populations, the findings 

of the Levinger et al., (2012) trial suggest altered foot kinematic patterns could have important 

clinical implications regarding the effectiveness of LWI, and could also aid in the identification 

of those individuals who would experience a reduction in their EKAM with LWI, and therefore 

benefit from the use of LWI (Chapman et al., 2015). Therefore, further investigation is 

required. 

However, the relationship between knee OA and foot posture remains unclear. Gross et al., 

(2011) investigated the relationship between foot postures, knee pain and knee cartilage 

damage, and concluded that a pes planus (pronated) foot posture is associated with knee pain, 

medial tibiofemoral and patellofemoral cartilage damage in older adults. Findings of the Gross 

et al., (2011) trial suggest a biomechanical link exists between a pes planus foot posture and 

increased load on the tibiofemoral and patellofemoral compartments of the knee. Foot posture 
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may affect the efficacy of orthotic devices when used for the treatment of medial compartment 

knee OA (Chapman et al., 2015), and incidences of non-response to LWI in subjects with 

medial compartment knee OA have been reported in previous investigations by Levinger et al., 

(2010), Chapman et al., (2011), Levinger et al., (2012) Jones et al., (2014) and Chapman et al., 

(2015). 

Further investigation into foot posture, the magnitude of the EKAM and response and non-

response to LWI in individuals with medial compartment knee OA is therefore crucial to 

establish if foot posture is related to the biomechanical response and non-response to LWI. 

This thesis consequently aims to conduct future investigations into knee OA patients with the 

use of LWI in shod to determine the causes of biomechanical non-response to LWI.  
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Chapter Five 

The role of clinical and biomechanical foot and ankle motion on 

the EKAM and response to lateral wedge insoles in patients with 

knee osteoarthritis 

 

Chapter summary 

The previous chapter focused on healthy individuals, and previous literature has identified 

differences in foot posture between individuals with medial compartment osteoarthritis and 

healthy individuals. Therefore this population needs to be examined both in terms of foot and 

ankle posture/motion associations with EKAM but also their role in the response to a common 

intervention. Therefore, in the chapter the role of clinical foot posture and barefoot rearfoot 

motion on the efficacy of lateral wedge insoles and the impact on the magnitude of the EKAM 

in patients with medial compartment knee osteoarthritis is examined. The chapter aimed to fill 

the current literature gap surrounding the concurrent collection of lateral wedge insole data and 

the assessment of clinical foot posture and barefoot rearfoot motion. This will help to determine 

if barefoot clinical and dynamic foot posture/motion influence the efficacy of lateral wedge 

insoles when used in the management of medial compartment knee osteoarthritis. The chapter 

also aimed to understand if any clinical or biomechanical measures related to the biomechanical 

response and non-response to lateral wedge insoles seen in the literature. 

5.1 Introduction 

Medial compartment knee osteoarthritis (OA) is a progressive musculoskeletal disorder, 

common in older individuals, mostly affecting populations over 70 years of age, and rarely 

before 40 years of age (Petersson, 1996, Woolf and Pfleger, 2003, Levinger et al., 2010, Jones 

et al., 2015, Chapman et al., 2015). Recent studies have focused on the role of biomechanical 

factors in the onset and progression of medial compartment knee OA (Lynn et al., 2007, 

Levinger et al., 2012), and foot posture has been proposed in the literature as a possible factor 

in the development of lower limb musculoskeletal conditions (Levinger et al., 2012, Arnold et 

al., 2014, Buldt et al., 2015, Resende et al., 2015) due to its possible influence on the 
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mechanical alignment and dynamic function of the lower limbs (Guichet et al., 2003, Resende 

et al., 2015).  

Differing foot characteristics between healthy individuals and knee OA patients have been 

acknowledged in recent literature, with OA patients displaying a more pronated foot posture, 

when compared with healthy individuals (Reilly et al., 2006, Reilly et al., 2009, Levinger et 

al., 2010, Levinger et al., 2012). The aforementioned studies fail to provide insight into the 

dynamic function of the foot during gait however, and only provide information regarding foot 

structure in knee OA patients (Levinger et al., 2012, Arnold et al., 2014). Foot motion has the 

potential to compensate for proximal malalignments, for example varus and valgus, due to 

triplantar axes of motion (Riegger-Krugh and Keysor, 1996, Levinger et al., 2012), and 

therefore, load modifying interventions have increasingly been investigated for populations 

with knee OA, with the most common interventions being footwear and orthotic devices, such 

as lateral wedge insoles (LWI) (Levinger et al., 2012).  

Biomechanical responses to LWI have been somewhat inconsistent across individuals within 

the literature to date (Yamaguchi et al., 2015) with as much as 30% of individuals with medial 

compartment knee OA displaying an increase in their EKAM during walking (Chapman et al., 

2015). Few studies have examined foot kinematics and their consequences on knee loading in 

medial compartment knee OA patients during gait (Kakihana et al., 2005, Butler et al., 2009). 

Chapman et al., (2015) investigated whether dynamic ankle joint complex coronal plane 

biomechanical measures could provide insight into why medial compartment knee OA patients 

experienced an increase or decrease in their EKAM whilst wearing LWI compared to control 

shoes. Findings indicated 33% of participants increased their EKAM and 67% decreased their 

EKAM whilst wearing LWI, compared to a control shoe, and therefore it can be stated that 

coronal plane ankle and subtalar joint complex biomechanics may influence the EKAM with 

the use of LWI. Similarly, an earlier study by Kakihana et al., (2007) identified 17.6% (9 of 

51) of patients with medial compartment knee osteoarthritis experienced an increase in their 

knee-joint varus moment with the use of a 6º LWI, and were therefore classified as 

biomechanical non-responders to LWI intervention. The incidence of biomechanical non-

response was postulated to be caused by a medially shifted location of the centre of pressure in 

the foot. Kakihana et al., (2007) concluded that further investigation is required. 

Chapman et al., (2015) concluded that coronal plane foot and ankle biomechanical measures 

are key mechanisms causing a reduction or increase in the EKAM when wearing LWI. Knee 
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OA patients who demonstrate a higher peak ankle eversion angle or a higher eversion angle at 

peak EKAM during a control (shod) condition than a LWI condition are more likely to be 

classified as biomechanical responders to LWI intervention. Of the 70 participants studied, 

20% increased their EKAM, indicating an incidence of biomechanical non-response within the 

trial. Further research into the incidence of biomechanical non-response in terms of the EKAM 

within the literature surrounding LWI is therefore necessary. However, the Chapman et al., 

(2015) investigations were only conducted in shod, and therefore, future investigations which 

assess the rearfoot in barefoot walking conditions may be more ideal to gain further 

understanding into biomechanical responders and non-responders to LWI intervention.  

Although a vast amount of research concerning LWI has reported reductions in the peak 

EKAM in both healthy individuals and individuals with medial compartment knee OA, LWI 

have proven ineffective at improving symptoms or slowing disease progression in some clinical 

trials, and reductions in the peak EKAM are occasionally not consistent across all study 

findings, with some trials reporting that LWI had no effect on the EKAM (Pham et al., 2004, 

Baker et al., 2007, Hinman et al., 2008, Barrios et al., 2009, Bennell et al., 2011, Chapman et 

al., 2015). Therefore, in order to gain a comprehensive understanding of the effect of knee OA 

interventions on the knee and surrounding lower limb joints, and to also accurately identify 

suitable patients who are most likely to benefit from these interventions, a complete 

understanding of foot posture and structure is vital (Levinger et al., 2010, Arnold et al., 2014). 

Furthermore, further investigation into LWI is needed to establish the effectiveness on 

biomechanical and clinical parameters in patients with symptoms of medial knee OA (Fang et 

al., 2006). 

Reilly et al., (2009) identified foot posture as a possible influence on the effectiveness of 

orthotic interventions in patients with medial knee OA. The study by Reilly et al., (2009) 

established that the use of LWI to treat osteoarthritis of the knee may further increase the 

pronation of an already pronated foot, therefore causing further deviation from normal gait. 

Further investigation is needed therefore, in order to determine whether foot posture may have 

influenced this incidence of biomechanical non-response within the Chapman et al., (2015) 

trial.  

Without in depth comprehension of foot function in individuals with knee OA, it is challenging 

to design interventions that act between the foot and the supporting surface, and also to measure 

their efficacy (Arnold et al., 2015). The literature fails to investigate the use of LWI for the 
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treatment of medial knee osteoarthritis in relation to foot posture (Arnold et al., 2015). 

However, a number of articles infer that foot posture would be studied in future research in 

their discussion (Hinman et al., 2008, Butler et al., 2009). Improving the understanding of foot 

posture in individuals with medial compartment knee OA is necessary and may allow the 

prevention or reduction of adverse symptoms associated with the disease. Additionally, it may 

help to tailor interventions to further suit and provide maximum benefit for individuals. 

Furthermore, refining existing knowledge of foot posture could also allow an improvement in 

the efficacy and comfort, and the lessening of negative side effects of interventions that exist 

for the treatment of medial compartment knee OA, including LWI. Moreover, investigating 

foot posture could potentially further the understanding of the incidence of biomechanical 

response and non-response to LWI intervention which exists within the literature. Currently, 

the exact mechanisms which may link foot posture and function to medial compartment knee 

loading have not been identified within the literature, and therefore remain unclear (Gross et 

al., 2011), warranting further investigation. 

The rearfoot is the first part of the foot to make contact with the ground during heel strike of 

the gait cycle, and the first peak in EKAM is related to this time period of the gait cycle. 

Therefore, this investigation assessed the role of clinical static foot posture and dynamic 

barefoot rearfoot motion in response to the wearing of LWI and the effects and impact on the 

EKAM in individuals with knee OA.  

Investigations within this chapter therefore aimed to understand how foot posture may 

influence loading on the knee joint, how foot postures may affect the efficacy of LWI, and if 

there is any relationship between clinical static foot posture, barefoot dynamic rearfoot motion, 

and the magnitude of the EKAM. Previous studies have investigated the effects of LWI as an 

intervention to reduce the loading on the medial compartment of the knee, which may be 

influenced by foot posture. There is however, a lack of research assessing clinical static foot 

posture and barefoot rearfoot motion and LWI efficacy, therefore this study is an important 

addition to the current literature. 

5.2 Aims 

The aims of this investigation were to determine if a relationship exists between clinical static 

foot posture, barefoot rearfoot dynamic motion, and the magnitude of the EKAM. Additionally, 

the chapter aimed to establish whether clinical static foot posture and barefoot rearfoot dynamic 
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motion influences the effectiveness of lateral wedged insoles and the change in the external 

knee adduction moment in patients with osteoarthritis of the knee.  

5.3 The statistical hypotheses are: 

 There is no significant relationship between static foot posture (assessed using the FPI), 

and the magnitude of the EKAM in patients with medial compartment knee OA.  

 There is no significant relationship between clinical static foot posture (assessed using 

the FPI), and barefoot rearfoot dynamic motion in patients with medial compartment 

knee OA. 

 There is no significant relationship exists between barefoot dynamic rearfoot motion 

and the magnitude of the EKAM in patients with medial compartment knee OA. 

 Clinical static foot posture and the barefoot rearfoot motion cannot predict 

biomechanical response when wearing LWI intervention. 

5.4 Methods 

5.4.1 Patients 

Twenty four patients with medial compartment knee OA (table 5.1) were assessed in the gait 

laboratory at the University of Salford. All patients had received a clinical and radiological 

diagnosis of medial compartment tibio-femoral knee osteoarthritis (MTFOA) prior to the 

commencement of trials, and the study included patients who were on the waiting list for knee 

surgery, however excluded those with grade 4 (bone on bone) MTFOA diagnosed using the 

Kellgren and Lawrence (KL) scale. Confirmation of radiological diagnosis of MTFOA was 

performed by a consultant radiologist to ensure consistency in X-ray classification of the 

patient’s knees, and to ensure they were under grade 4 of the KL scale. 

 

 

Table 5.1: Summarised mean and standard deviation (SD) demographic measurements for all 24 patients. 

        Gender                                                              Males (N=14)               Females (N=10) 

Age (years) ± (SD)  64.41 ± (10.22)          63.25 ± (8.32) 

Height (m) ± (SD)  1.73 ± (0.04)          1.64 ± (0.05) 

Mass (kg) ± (SD)  84.2 ± (12.97)        81.5 ± (15.30) 
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These individuals were part of a larger randomised trial of which the total number of 

individuals to be seen would be 50, which is still ongoing. Twenty four individual patient’s 

data was collected during the trial. All participants were aged 40-85 years old (the upper age 

limit was decided on due to the amount of walking involved in the trial). 

5.4.2 Recruitment 

Recruitment was managed by a research team with extensive experience with this patient 

population in the same geographical location, and previous success in study recruitment. 

Patients were recruited from a number of sources, whereby referring practitioners used data 

access forms, and participants were also recruited through advertising and mailing methods 

with telephone screening questionnaires. Recruitment incorporated referrals from the Salford 

Royal NHS Foundation Trust at Salford Royal Hospital, and also from local providers of 

clinical assessment and treatment services at Salford Royal Hospital, the Walkden Centre, and 

Trafford Healthcare NHS Trust. Patient identification centres at Central Manchester 

Foundation Trust, Manchester Primary Care Trust, Pennine Acute Trust, Stockport NHS 

Foundation Trust, Stockport Primary Care Trust, Bury Primary Care Trust, University 

Hospitals South Manchester, and Trafford Primary Care Trust were also used to identify 

suitable participants for the trial.  

After individuals had been clinically diagnosed as having MTFOA by clinicians, they were 

approached by the clinician and informed of the nature of the study, and were asked if they 

consented to having their details passed on to the recruitment team to take part in the trial. If 

the individual consented to having their details passed on to the recruitment team, they were 

requested to provide their details and to also to sign a data access form (DAF) which allowed 

the contact details to be passed on to the recruitment team. The practitioner forwarded the DAF 

to the recruitment team, and provided the participant with a patient information sheet, detailing 

the trial, and what was required of the patient during the trial. On receiving the completed DAF, 

the recruitment team contacted individual patients via telephone, in order to assess eligibility 

of individuals using the inclusion and exclusion criteria, and to book an appointment for the 

patient to attend the gait laboratory at the University of Salford.  

Alternatively, if a patient answered an advert, poster or a mailing by contacting the recruitment 

team using the provided contact details, the recruitment team completed a telephone screening 
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questionnaire with individual patients to assess eligibility for the trial. A patient information 

sheet was then be sent to the patient via post or email, and the need for an X-ray was assessed. 

Once the patient had read the participant information sheet, and eligibility via X-ray and the 

screening questionnaire had been assessed and confirmed, a gait laboratory appointment was 

booked.  
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Table 5.2: Inclusion and Exclusion criteria 

Inclusion Criteria Exclusion Criteria 

Has had an X-ray (weight bearing, if 

possible) within the two years prior to 

recruitment which indicates definite medial 

narrowing (KL grade 2 or 3) with no lateral 

narrowing, and evidence of OA (including 

the presence of osteophytes and or definite 

sclerosis). Also has confirmed absence of 

patellofemoral osteoarthritis (must be less 

severe OA than medial disease, and cannot 

be KL grade 3 or higher in the patella-

femoral joint). 

Has history of high tibial osteotomy or other 

realignment surgeries, or total knee 

replacement in the OA afflicted knee, or has 

had knee arthroscopy procedures within the 

past 6 months, or has had intra-articular 

injection into the afflicted knee in the past 3 

months. 

 

Aged between 40-85 Shows evidence of tri-compartmental knee 

OA or KL grade 4 medial tibio-femoral OA, 

or has inflammatory arthritis including 

rheumatoid arthritis in the afflicted knee. 

Has KL grade 2 or 3 in the tibio-femoral joint 

(TFJ) diagnosed via X-ray. 

Has any foot and ankle pathologies that may 

contraindicate the use of footwear load 

modifying interventions (particularly LWI). 

The KL grade in the TFJ is higher than the 

patella-femoral joint (PFJ) and cannot be 

equal, diagnosed via X-ray. 

A general poor condition of health, including 

mental health, and the inability to understand 

trial procedures, or the presence of severe co-

existing medical morbidities. 

The medial joint space narrowing score must 

be higher than the patella-femoral joint (PFJ) 

and cannot be equal. 

Uses or has previously used orthoses of any 

description prescribed by a podiatrist or 

orthoptist within the past two months. 

Is able to walk 100 metres without stopping. Patients with a BMI of over 35, which could 

affect the accuracy of gait laboratory 

equipment measurements. 

Has a good overall condition of health. Patients who are unable to walk unaided and 

require the use of assistive devices such as 

walking sticks, crutches or walking frames. 
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5.4.3 Data Collection 

Testing was carried out in the clinical gait laboratory at the University of Salford, and data 

collection and analysis was similar to the methods used within chapter 3 (3.2), with any 

additional materials or methods used detailed below.  

Upon arrival at the gait laboratory at the University of Salford, the individuals were briefed 

through the investigations and the objectives of the trials were explained in full, along with any 

equipment and materials that were used. Informed consent was taken, and demographic details 

(date of birth, height, mass, and shoe size) of individual participants was recorded. 

Photographic evidence of the medial, anterior, and posterior leg and foot was obtained, and 

patients were then directed to a private area and requested to change into fitted shorts and a 

comfortable t-shirt. Baseline pain scores were collected on a 10mm visual analogue scale 

noting how their knee pain was where 0 was no pain and 10 was the most pain imaginable.  

The participant was then prepared for the walking trials which utilised gait analysis methods. 

Therefore, retro-reflective markers and fixed cluster pads were attached to bony landmarks on 

the participant’s skin (chapter 3 section 3.2.6). 

Walking trials were then conducted in three conditions, and the interventions tested were; 

barefoot, shod (using the subjects own everyday shoe) and shod (using the subjects own 

everyday shoe) with a LWI (Salford Insole) inserted. Five successful self-selected speed walks 

(with full foot contact made with the force plates) in each one of the three conditions was 

performed, and patients were asked to walk over a flat surface with force plates embedded into 

the floor. To reduce the chance of a carry-over effect, individuals were given time (a few 

minutes) to adapt to each intervention before testing started. The use of a randomisation 

procedure also aids in the reduction of any carry-over effects, and therefore a randomisation 

procedure for the different walking conditions was adhered to using a randomisation plan, run 

by the trial statistician. The order of the trials was placed in sealed envelopes with participant 

numbers clearly written on. The trial was considered as single blind, as it was impossible for 

the principal investigator to be blinded to the walking conditions within the trial. 

5.4.3.1 Equipment 

Data was recorded using a motion capture system in the gait laboratory at the University of 

Salford. Sixteen infrared cameras (OQUS, Qualisys AB Sweden), Qualisys Track Manager 

(Qualisys AB Sweden) 3D reflective markers and four 400x600 floor integrated AMTI force 
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plates (Advanced Mechanical Technology, Ins. USA) were utilised to capture the 3D positions 

of the retro reflective markers that were attached to both lower limbs of each patient’s skin 

during walking trials (a full explanation of equipment utilised within the trial can be found in 

chapter 3, section, 3.2 and 3.3).  

5.4.3.2 Foot Posture Assessment 

The foot was statically and clinically measured using the FPI scale prior to commencing 

walking. The FPI score was recorded during the trial in order to assess the changes between 

different walking conditions, and static video picture evidence of the foot was taken to ensure 

foot posture assessments were accurate to determine any relationship between foot posture, 

ankle motion and the magnitude of the EKAM.  

The magnitude of change in the EKAM in the LWI walking condition was then assessed to 

determine whether each individual patient was a biomechanical responder or biomechanical 

non-responder to LWI intervention. 

5.4.4 Data Analysis 

Kinematic and kinetic data was obtained for 24 patients with MTFOA. The methodology 

within this chapter utilised biomechanical data collection procedures in order to define the 3D 

motion data capture, force measurement and segment modelling and computation which are 

explained in detail within the methodology chapter of this thesis (chapter 3, section 3.2). Any 

deviation or additional materials or techniques used within this study are detailed below. 

The EKAM and sagittal moment were assessed in the LWI walking condition to determine 

whether individual patients were biomechanical responders or non-responders to LWI. 

Responders were defined as those individual patients who displayed a reduction of at least 3% 

in their EKAM when wearing LWI (in comparison to baseline in shod) and no increase in their 

sagittal moment. 

ImageJ image processing software, which can be used to display, edit, analyse and process 

images including measuring angles and distance, was utilised to verify rearfoot (calcaneus) 

inversion and eversion using the photographs taken by the investigator of posterior coronal 

plane individual limbs, whilst participants stood immobile on both legs. The angles of deviation 

of inversion or eversion from neutral (90º) were determined using the ImageJ angle tool, with 
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measurements of less than 90º classified as everted, and angles of above 90º classified as 

inverted.  

Peak EKAM and peak flexion/extension moment (sagittal moment) data, where the peak 

represented early stance phase of the gait cycle, were exported from Visual3D to Microsoft 

Excel software. Range of motion (ROM) of the rearfoot (inversion and eversion) and ankle 

angle data in stance phase for the three walking conditions were exported from Visual3D for 

all trial patients, and analysed using SPSS software. 

The mean and standard deviation (SD) of each variable that was exported was calculated using 

Microsoft Excel software. Data was then transferred to SPSS software, where normality testing 

and the correlation coefficient was applied. Patients were categorised into two groups; 

‘responders’ and ‘non-responders’. A patient was defined as a biomechanical responder if they 

displayed at least a 3% reduction in their peak EKAM with the use of LWI intervention in 

comparison to their own shoe ‘only’ condition. Those patients who did not display at least a 

3% reduction in their peak EKAM, or exhibited an increase in their peak EKAM were defined 

as biomechanical non-responders.  

Statistical analysis, specifically normality testing was performed on the variables in order to 

identify the most suitable correlation coefficient test to apply. Normality testing allows the 

identification of normal or abnormal distribution (parametric or non-parametric) of data. For 

parametric data, the Pearson test was applied, and for non-parametric data, the Spearman 

correlation coefficient test was applied. The Shapiro-Wilks test was also applied to the data. 

For the differences were applied the t-test, paired T-test for all the population together was 

applied and unpaired t-test for the groups responder and non-responder to LWI were applied. 

Logistic regression was applied in the coronal plane in barefoot and shod (ankle subtalar joint) 

and in the clinical static measures to determine if rearfoot barefoot and ankle subtalar joint in 

shod and clinical foot posture can predict the response to EKAM. 

5.5 Results 

Twenty four patients with medial compartment knee OA participated in this study (14 males, 

10 females), mean age males 64.4 (±10.2) years, mean age females 63.2 (±8.3) years, mean 

height males 1.73 (±0.04) metres, females 1.64 (±0.05) metres, mean male mass 84.2 (±12.9) 

kg, mean female mass 81.5 (±15.3) kg, mean BMI males 27.8 (±4.08) kg/m², mean BMI 

females 29.4 (±4.9) kg/m², mean BMI of all patients 28.5 (±4.43) kg/m². 
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The average walking speed for barefoot the walking condition was 1.087 (±0.172) m/s. For the 

shod walking condition, the average speed was 1.141 (±0.191) m/s. The average walking speed 

for the LWI walking condition was 1.157 (±0.171) m/s. Results indicated walking speed 

increased in the shod walking condition compared to barefoot by 4.73% (p=0.006) (mean 

difference 0.05 m/s). Walking speed increased in the LWI walking condition compared 

barefoot by 6.49% (p<0.001) (mean difference 0.007 m/s). Results show that walking speed 

increased in the LWI walking condition compared to shod by 1.44% (p=0.203) (mean 

difference 0.01 m/s).  

The mean EKAM, mean rearfoot inversion and eversion and mean ROM are depicted below 

in table (5.3) (figures 5.1, 5.2). The mean total FPI, the rearfoot FPI, and the rearfoot ImageJ 

results are also depicted table (5.3). 

Table 5.3 – The mean and standard deviation (SD) for all measurements for all 24 patients with medial 

compartment knee OA. 

 

 

 

 

 

 

 

 

 

 

Mom: Moment, LWI: Lateral Ledge Insoles, ROM: Range of Motion, FPI: Foot Posture Index, SD: Standard 

Deviation, Calc: Calcaneus (rearfoot), In: Inversion, Ev: Eversion. 

 

The total FPI score and rearfoot inversion and eversion results indicate that in medial 

compartment knee OA patients, no relationship exists between static FPI scores and the 

dynamic rearfoot in all 24 patients during barefoot walking. Significant negative association 

was identified between the EKAM and dynamic rearfoot inversion in barefoot walking r=-

Measurements Mean SD (°) 

Barefoot EKAM Nm/kg 0.451 0.183 

Shod EKAM Nm/kg 0.471 0.169 

LWI EKAM Nm/kg 0.461 0.186 

Barefoot rearfoot eversion (°) -4.469 3.049 

Barefoot rearfoot inversion (°) 3.615 3.813 

Barefoot Rearfoot ROM (°) 8.084 3.296 

Shod ankle angle eversion (°)  -4.516 6.549 

Shod ankle angle inversion (°) 4.079 5.559 

Shod ankle angle ROM (°) 8.596 3.717 

LWI ankle angle eversion (°) -5.132 6.437 

LWI ankle angle inversion (°) 4.257 6.022 

LWI ankle angle ROM (°)  9.390 3.598 

FPI Total -1.041 4.786 

FPI Calc In/Ev -0.208 1.250 

Rearfoot ImageJ In/Ev (°) 89.338 4.544 
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0.559 (p=0.005). Similarly, significant negative association was found between the EKAM and 

ankle subtalar joint ROM r=0.462 (p=0.020). Therefore, an increase or decrease in ankle 

subtalar joint ROM may increase or reduce the EKAM. No association was identified between 

the EKAM and dynamic rearfoot eversion (p=0.302), (table 5.4). 

 

Table 5.4 - The relationship between FPI, rearfoot motion and the EKAM in barefoot walking in patients with 

medial compartment knee OA. 

Rearfoot (Barefoot) Correlations  P-Value 

FPI vs Eversion ρ= -0.071 P= 0.741 

FPI vs RF Inversion r= 0.033 P= 0.901 

FPI vs RF ROM ρ= -0.027 P= 0.642 

Inv/Ev Calc FPI vs Eversion ρ= -0.141 P= 0.512 

Inv/Ev Calc FPI vs Inversion ρ= -0.136 P= 0.525 

Inv/Ev Calc FPI vs ROM ρ= -0.156 P= 0.468 

Sagittal M vs ROM ρ= -0.338 P= 0.106 

EKAM vs RF Eversion ρ= -0.220 P= 0.302 

EKAM vs RF Inversion r= -0.559 P= 0.005 

EKAM vs RF ROM  r= -0.462 P= 0.023 

FPI: Foot Posture Index, EKAM: External Knee Adduction Moment, ROM: Range of Motion, RF: rearfoot, Calc: 

Calcaneus, r: Pearson Coefficient Correlation (parametric), ρ: Spearman Coefficient correlation (non-

parametric). 

Figure 5.1 – Mean external knee adduction moment (EKAM) during walking in the frontal plane between barefoot, 

shod and lateral wedge insoles for 24 medial Knee OA patient limbs. Error bars represent ± 1 standard deviation 

for all three walking conditions. 
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Figure 5.2 – Mean rearfoot angle motion during walking in the frontal plane in barefoot, shod and lateral 

wedge insoles for 24 medial knee OA patient limbs. Error bars represent ± 1 standard deviation for all three 

walking conditions. 

 

When looking at the reductions in the EKAM to determine biomechanical response, results 

indicate that the 12 subjects would be classified as a biomechanical responder to LWI 

intervention had a mean age of 62.1 (±9.2) years, a mean height of 1.68 (±0.06) metres, a mean 

mass of 84.7 (±13.69), and a mean Body Mass Index (BMI) of 29.6 (±3.13) kg/m². The 12 

subjects classified as biomechanical non-responders had a mean age of 66.2 (±10.3) years, a 

mean height of 1.71 (±0.06) metres, a mean mass of 80 (±14.3) kg, and a mean BMI of 27.3 

(±5.3) kg/m². Mean differences between the average BMI of biomechanical responders and 

non-responders to LWI intervention was 2.3 kg/m², which is statistically insignificant (p=0.21). 

There was no difference in pain scores between the two groups. The mean VAS pain scale 

results for walking pain in the biomechanical responders to LWI intervention group was 5.5 

(±1.6), and 5.4 (±1.7) in the biomechanical non-responders to LWI group. Pain was therefore 

not different between the two groups. 

The average walking speed of responders and non-responders is depicted in table 5.5. 

Results indicate that in the barefoot walking condition, biomechanical responders walked at a 

similar, albeit slightly slower speed than biomechanical non-responders (1.4% slower). In the 

shod walking condition, biomechanical non-responders walked at an increased speed compared 

to responders by 4.19%. In the LWI walking condition, biomechanical non- 
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responders to LWI intervention increased their walking speed compared to responders by 

2.67%. However, no significant differences were present within the results between 

biomechanical responders and biomechanical non-responders to LWI intervention.  

 

 

Table 5.5 – Walking speed between biomechanical responders and non-responders to LWI intervention. 

 

SD: Standard Deviation, LWI: Lateral Wedge Insoles. 

 

Mean measurements including EKAM, rearfoot inversion and eversion and rearfoot range of 

motion, ankle angle, eversion, inversion and range of motion for barefoot, shod and LWI 

walking conditions for both biomechanical responders and non-responders to LWI intervention 

are depicted in table 5.6. 

The mean barefoot EKAM, rearfoot ImageJ inversion and eversion, the total FPI, and rearfoot 

FPI results are depicted in table 5.6. 

No significant differences were present between biomechanical responders and non-responders 

within the variables, with the exception of rearfoot range of motion. More rearfoot range of 

motion (4.08º) 95% CI 1.88 to 6.30 was observed in biomechanical responders than in non-

responders in the barefoot walking condition. Additionally, in the shod walking condition, 

biomechanical responders to LWI showed an increased ankle angle ROM compared to non-

responders of 2.97º 95% CI 0.04 to 5.91. As expected, significant increases were identified in 

the peak EKAM of biomechanical non-responders compared to responders in all walking 

conditions (mean difference in barefoot 0.18 Nm/kg (p=0.01), mean difference in shod 0.15 

Nm/kg (p=0.03), mean difference in LWI 0.21 Nm/kg (p=0.004)) 

Walking 

Speed 

Response to 

LWI 

Non-Response Mean 

Differences 

 

Mean  

m/s−1 

SD (º) Mean  

m/s−1 

SD (º) m/s−1 % P-Value 

Barefoot 1.095 0.134 1.079 0.211 -0.016 -1.444 0.839 

Shod 1.117 0.148 1.166 0.231 0.049 4.196 0.544 

LWI 1.142 0.100 1.174 0.225 0.031 2.670 0.664 
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Table 5.6 – The mean and standard deviation (SD) for biomechanical responders and non-responders to LWI in 

all 24 patients with medial compartment knee osteoarthritis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mom: Moment, LWI: Lateral Ledge Insoles, ROM: Range of Motion,, SD: Standard Deviation, Calc: Calcaneus 

(rearfoot), In: Inversion, Ev: Eversion. 

Measurements Mean 

Response 

to LWI 

SD (°) Mean Non-

Response 

To LWI 

 

SD (°) P-Value 

Barefoot 

EKAM Nm/kg 

0.364 0.109 0.539 0.204 0.015 

Shod EKAM  

Nm/kg 

0.397 0.087 0.546 0.200 0.026 

LWI EKAM  

Nm/kg 

0.358 0.093 0.564 0.203 0.004 

Barefoot 

rearfoot 

eversion (°) 

-4.651 4.126 -4.287 1.533 0.776 

Barefoot 

rearfoot 

inversion (°) 

5.477 4.350 1.755 1.982 0.013 

Barefoot 

rearfoot ROM 

(°) 

10.128 2.793 6.042 2.413 0.000 

Shod ankle 

angle eversion 

(°) 

-4.227 9.141 -4.805 2.440 0.834 

Shod ankle 

angle inversion 

(°) 

5.856 7.068 2.304 2.789 0.119 

Shod ankle 

angle ROM (°) 

10.083 4.229 7.109 2.487 0.047 

LWI ankle 

angle eversion 

(°) 

-4.499 9.052 -5.766 1.960 0.640 

LWI ankle 

angle inversion 

(°) 

6.211 7.469 2.305 3.426 0.113 

LWI ankle 

angle ROM (°) 

10.709 3.793 8.071 2.983 0.071 

Rearfoot Image 

J In/EV (°) 

90.127 4.381 88.551 4.759 0.407 

Foot posture 

index in total 

-1.167 4.345 -0.917 5.384  

Foot Posture 

index Calc 

In/Ev 

-0.417 1.165 0.000 1.348  
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When using logistic regression to identify whether the rearfoot range of motion during barefoot 

walking could predict the biomechanical response or non-response to LWI intervention, the 

results indicated that the rearfoot range of motion can predict response to LWI intervention by 

1.786. Therefore, a patient was 1.78 times more likely to respond to LWI intervention when 

rearfoot motion increased by 1 unit (degree). The 95% CI was between 1.148 and 2.776 

(p=0.01). Additional measurements including the ankle angle range of motion in shod, the total 

FPI score, the rearfoot FPI score, Image J inversion/eversion, age, gender, and BMI indicated 

non-significant results, and therefore, when viewed in this limited sample, cannot be used to 

predict the biomechanical response and non-response of the EKAM to LWI (table 5.7). 

Table 5.6 – Logistic regression (odds ratio) for biomechanical responders to LWI. 

 

 ROM: Range of Motion, BMI: Body Mass Index, Inv: Inversion, Ev: Eversion, FPI: Foot Posture Index, CI: 

Confidence Interval. 

 

Variables Odds Ratio 

(odds of 

responding) 

95% CI 

Lower 

95% CI 

Upper 

P-Value 

Rearfoot ROM barefoot 1.786 1.148 2.776 0.010 

Ankle angle ROM shod 1.439 0.977 2.120 0.065 

Total FPI 0.989 0.833 1.173 0.896 

FPI rearfoot-In/Ev 0.753 0.385 1.474 0.409 

ImageJ-In/Ev 1.084 0.901 1.305 0.390 

Age 0.955 0.871 1.047 0.325 

Gender 0.500 0.096 2.602 0.410 

BMI 1.127 0.911 1.393 0.270 
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Figure 5.3 – Mean external knee adduction moment (EKAM) during barefoot walking in the frontal plane between 

biomechanical responders and non-responders to lateral wedge insoles in patients with medial knee OA. Error 

bars indicate the ±1 standard deviation. 

 

 

Figure 5.4 – Mean external knee adduction moment (EKAM) during shod walking in the frontal plane between 

biomechanical responders and non-responders to lateral wedge insoles in patients with medial knee OA. Error 

bars indicate the ±1 standard deviation. 
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Figure 5.5 – Mean external knee adduction moment (EKAM) during lateral wedge insoles walking in the frontal 

plane between biomechanical responders and non-responders to lateral wedge insoles in patients with medial 

knee OA. Error bars indicate the ±1 standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 – Mean rearfoot angle motion during barefoot walking in the frontal plane between biomechanical 

responders and non-responders to lateral wedge insoles in patients with medial knee OA. Error bars indicate the 

±1 standard deviation. 
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Figure 5.7 – Mean rearfoot angle motion during shod walking in the frontal plane between biomechanical 

responders and non-responders to lateral wedge insoles in patients with medial knee OA. Error bars indicate the 

±1 standard deviation. 

 
Figure 5.8 – Mean rearfoot angle motion during lateral wedge insoles walking in the frontal plane between 

biomechanical responders and non-responders to lateral wedge insoles in patients with medial knee OA. Error 

bars indicate the ±1 standard deviation. 
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5.6 Discussion  

The aim of this investigation was to determine if a relationship exists between clinical static 

foot posture, barefoot rearfoot motion, and the magnitude of the EKAM. Also, whether these 

measures influence the effectiveness of LWI and changes in the magnitude of the EKAM in 

patients with medial compartment knee osteoarthritis.  

After investigating 24 medial compartment knee OA patients, no significant association was 

identified between static foot posture and dynamic foot posture, and similarly, no association 

was identified between static foot posture and the magnitude of the EKAM.  

The results of this investigation indicate that the FPI cannot predict the potential relationship 

between the FPI and the magnitude of the EKAM in patients with medial compartment knee 

OA, or the possible relationship between the FPI and rearfoot motion in patients with medial 

compartment knee OA. In agreement with the findings of this research question, Buldt et al., 

(2015) conducted an investigation into the EKAM and knee joint rotations in varying foot 

posture groups (classified using the Foot Posture Index) to determine the relationship between 

rearfoot joint rotations and the magnitude of the EKAM in 97 healthy individuals. The study 

reported that foot posture and foot joint rotations do not substantially influence knee joint 

rotations and the EKAM when healthy individuals walked at a comfortable pace. An additional 

comparable study, also by Buldt et al., (2015) investigated the associations of clinical static 

foot posture (quantified using the Foot Posture Index) and foot mobility with foot kinematics 

during barefoot walking in healthy individuals. Findings indicated that kinematics of the foot 

cannot be accurately determined from observations of clinical foot posture (using the Foot 

Posture Index) alone in healthy subjects (Buldt et al., 2015). The Buldt et al., (2015) 

investigations used healthy subjects however, and therefore it can be stated that in both healthy 

subjects and patients with medial compartment knee OA, the FPI does not represent rearfoot 

motion. This study demonstrates that the FPI and rearfoot FPI scores cannot be used to predict 

those individuals with medial compartment knee OA who will respond and will not respond to 

LWI intervention. This finding has not previously been reported within the literature, and 

therefore this study is a novel addition to the literature. 

Some moderate association was found between the magnitude of the EKAM and dynamic 

rearfoot inversion in the barefoot walking condition within this study. Furthermore, moderate 

negative association was identified between EKAM and rearfoot range of motion in the 

barefoot walking condition. Therefore, the motion of the rearfoot may impact on the magnitude 
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of the EKAM. Lateral wedge insoles were found to increase the eversion of the ankle subtalar 

joint complex and also the eversion moment, compared to the no wedge control condition. 

Additionally, Levinger et al., (2010) identified that increasing the ankle subtalar joint complex 

pronation moment in the frontal plane led to alterations in the kinetics and kinematics of the 

foot during gait, potentially leading to a decrease in the EKAM and shifting of the centre of 

pressure in the foot in individuals with medial compartment knee OA. This study demonstrates 

that LWI resulted in a lateral shift in the centre of pressure in the foot, a more everted ankle 

subtalar joint complex, and greater eversion moment compared to shod. Findings of this study 

are consistent with those reported previously within the literature (Kakihana et al., 2005, 

Kakihana et al., 2007, Butler et al., 2009, Hinman et al., 2012, Chapman et al., 2015).  

Correspondingly, similar previous studies have identified association between ankle motion 

and the magnitude of the EKAM, presenting alike findings to this investigation. Chapman et 

al., (2015), investigated 70 patients with medial compartment knee OA, concluding that 

coronal plane ankle subtalar joint complex biomechanical measures influence the magnitude 

of the EKAM with the use of a LWI. Similar to the findings of Levinger et al., (2010) and 

Chapman et al., (2015), this study identified that association exists between the dynamic 

rearfoot and the magnitude of the EKAM in patients with medial compartment knee OA. 

However, the study by Chapman et al., (2015) only investigated the foot in shod, whereas this 

research question also assessed the barefoot. Findings of this investigation may therefore lead 

to further understanding of rearfoot and ankle subtalar joint complex motion, and their possible 

role in the magnitude of the EKAM and the response or non-response to LWI in patients with 

medial compartment knee OA.  

After grouping participants into biomechanical responders and biomechanical non-responders 

to LWI intervention, logistic regression results indicated that the probability of being a 

biomechanical responder to LWI intervention increases by 1.79 times when rearfoot motion 

increases by 1º. Therefore, patients with a larger range of rearfoot motion are more likely to 

experience a reduction in their EKAM when wearing LWI, and therefore be classified as 

biomechanical responders to LWI. 

This study investigated patients with medial compartment knee OA when walking in barefoot 

and shod, in order to identify patients who were most likely to respond to LWI intervention. 

After applying logistic regression, a significant relationship was found between barefoot range 

of motion, and the magnitude of the EKAM. Therefore, increase in the rearfoot range of motion 
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can predict the changes in the magnitude of the EKAM, and consequently, biomechanical 

response and biomechanical non-response to LWI intervention. This finding has not previously 

been reported within the literature.  

Findings indicate that biomechanical responders to LWI display higher amounts of rearfoot 

motion than biomechanical non-responders to LWI. 

Butler et al., (2009) established that peak eversion, eversion excursion, and peak eversion 

moment increased, while peak EKAM decreased when participants walked with a LWI in shod 

compared to no wedge in shod. Butler et al., (2009) therefore stated that LWI lead to increased 

rearfoot eversion, and inversion moments. Similarly, Kakihana et al., (2005) stated that 

walking with a LWI attached to a barefoot significantly reduced the EKAM and increased the 

subtalar joint valgus moment when compared to the no wedge barefoot walking condition. This 

finding indicates that an increase in the subtalar joint ankle complex range of motion could 

lead to a reduction in the magnitude of the EKAM. Both the Kakihana et al., (2005) and the 

Butler et al., (2009) studies contained major differences compared to this investigation. Firstly, 

although Butler et al., (2009) assessed rearfoot motion, the study only quantified rearfoot 

motion in shod, and not in a barefoot walking condition, whereas this investigation assessed 

rearfoot motion in barefoot, shod and LWI walking conditions. Secondly, Kakihana et al., 

(2005) did not assess the LWI in shod, only in a barefoot walking condition, whereas this 

investigation assessed LWI in shod, which seems sensible, since LWI are intended for use in 

shod walking. Finally, this investigation divided the results into two groups; biomechanical 

responders and non-responders to LWI, aiming to understand the causes of the incidence of 

biomechanical non-response identified within the results, while both Kakihana et al., (2005) 

and Butler et al., (2009) studies did not.  

LWI aim to reduce the EKAM, with the lateral wedge causing eversion of the rearfoot, and 

shifting the centre of pressure in the foot laterally (Jones et al., 2012, Chapman et al., 2015). 

The extent to which LWI can influence rearfoot motion may depend on the amount of range of 

motion available at the rearfoot. Patients with knee OA often experience reductions in frontal 

plane motion of the foot compared with healthy controls, and therefore a limited range of 

motion may impact on the effectiveness of a LWI, and thereby possibly creating an incidence 

of biomechanical non-response (Levinger et al., 2012). The available range of motion at the 

rearfoot may also affect patient acceptance of LWI, as a recent study by Bennell et al., (2011) 

reported that 47% of study participants rated LWI as less comfortable than the flat control 
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insoles also used within the investigation. However, the perceived discomfort associated with 

the LWI may have been due to the fact that the 5º lateral wedge insole was manufactured using 

a high density ethyl vinyl acetate material, whereas the flat control insole was made of easily 

compressible, low density ethyl vinyl acetate (Bennell et al., (2011). Further examination of 

patient acceptance of LWI is therefore required, as comfort perception of interventions is 

important to ensure adherence to and possibly response or non-response to LWI intervention. 

Findings of this study therefore indicate that patients with a less everted subtalar ankle joint 

complex and less rearfoot motion may display restricted frontal plane ankle range of motion. 

Therefore, when wearing LWI, the restricted ankle joint range of motion may prevent sufficient 

eversion (pronation) of the foot, and therefore the load at the knee joint remains unaltered, 

potentially causing the incidence of biomechanical non-response to LWI (Chapman et al., 

2015).  

Findings of this investigation have implications for the clinical evaluation of individuals with 

medial compartment knee OA, and also for the prescription of LWI for the conservative 

treatment of medial knee OA. Patients who display an increased rearfoot ROM are more likely 

to respond to LWI, and therefore further investigation is required. Future investigation should 

consider the use of clinical assessment to quantify and evaluate rearfoot motion in barefoot 

walking, and link clinical assessment with biomechanical analysis in order to further 

understand LWI and biomechanical response and non-response to LWI intervention, to ensure 

LWI are only prescribed to individuals who are likely to achieve a reduction in their EKAM 

with their use. 

This study identified that compared to barefoot and shod walking conditions, walking speed 

increased with the use of a LWI in patients with medial compartment knee OA. Likewise, a 

comparable study by Jones et al., (2012) using medial compartment knee OA patients, also 

identified a significant increase in walking speed with the use of a LWI. In this study, 

biomechanical non-responders to LWI intervention walked at faster speeds than biomechanical 

responders when walking in the LWI condition by 2.67%. An increase in walking speed causes 

the stance phase of the gait cycle to shorten which may prevent the centre of pressure in the 

foot from shifting laterally, despite the presence of a LWI. Therefore, the magnitude of the 

EKAM is only minimally reduced. The effectiveness of LWI could therefore be increased by 

adopting a slower walking speed, which requires reduced levels of knee flexion and thus lower 

levels of shock absorption to aid the reduction of load on the medial compartment of the knee 



164 

 

joint (Mundermann et al., 2004, Foroughi et al., 2010). Therefore, walking speed may 

influence the efficacy of LWI, and may have contributed to the incidence of biomechanical 

non-response within this study. However, no study has assessed the role of increasing walking 

speed and changes in the reduction of EKAM with lateral wedge insoles so this is unknown. 

Body mass index scores were calculated from demographic data for individual patients within 

the study. The mean BMI score of the 24 medial compartment knee OA patients within this 

study was 28.5 kg/m², and therefore indicates that the study sample is in the ‘overweight’ 

category. Although similar to the mean participant BMI of previous investigations by Levinger 

et al., (2010) and Levinger et al., (2012) (29.9 kg/m² and 29.9 kg/m² respectively), a number 

of pertinent studies within the literature have considerably higher subject mean BMI scores, 

the highest being 33.8 kg/m² (Butler et al., 2009) which are categorised as ‘obese’ (Butler et 

al., 2009, Jones et al., 2014, Chapman et al., 2015, Jones et al., 2015). Therefore, this study 

demonstrates that the sample utilised is indicative of typical medial compartment knee OA 

individuals. Considering the incidence of biomechanical non-response present within the 

results, twelve participants within this study were identified as biomechanical non-responders 

to LWI, and 12 participants were identified as biomechanical responders to LWI. The mean 

BMI of the biomechanical non-responders and biomechanical responders were 27.3 kg/m² and 

29.6 kg/m², respectively. The mean BMI score for non-responders to LWI intervention was 

therefore noticeably lower than both the mean BMI score for biomechanical responders within 

the study, and also the mean BMI scores of participants within similar previous studies (Butler 

et al., 2009, Jones et al., 2014, Chapman et al., 2015, Jones et al., 2015). 

The additional analysis was conducted to identify if any further measures existed which could 

possibly be used to predict biomechanical response to LWI intervention. However, no 

differences in findings were identified between BMI, age and gender. Therefore, BMI, gender 

and age cannot predict response and non-response to LWI intervention. 

As is the case with the majority of research, limitations existed within this study. It is important 

to consider that patients used their own shoes for both the shod and the LWI walking condition. 

Therefore, footwear may play a role on foot motion, and also peak EKAM response to walking 

conditions and LWI intervention. Recent literature by Lewinson et al., (2016) does infer that 

the control condition should be subjects own shoe so this does mitigate this limitation 

somewhat. However, further investigations are required to determine how differing footwear 

types (including rigid supportive and soft) may influence biomechanical response to LWI. 
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The sample size for the two groups was relatively small and thus increasing the sample size 

within this study may lead to further understanding of response and non-response to LWI 

intervention and help to give definitive information.  

This investigation assessed the immediate effect of LWI on the magnitude of the EKAM, and 

did not take into account the possible alteration in the reduction of the EKAM when wearing 

LWI over a longer period of time. Previous investigations by Haim et al., (2012) and Shakoor 

et al., (2013) have evaluated the effect of long term wearing of specialist footwear, concluding 

that participants exhibited reduced peak EKAM even when they were not wearing the devices 

after using individually prescribed specialist footwear for six months. Patients with medial 

compartment knee OA therefore may experience neuromuscular adaptations to knee OA 

treatment strategies (Chapman et al., 2015). Further research into the long term effects of LWI 

is therefore essential. 

Whilst foot and ankle motion were not analysed within this aspect of the study, it must be 

acknowledged that the foot together with the shoe were viewed as a rigid body within this study 

and also in the study by Chapman et al., (2015). Therefore, foot motion which may take place 

within the shoe could have possibly been underestimated or estimated. Future investigations 

with the use of a multi-segment foot model are warranted, which would allow the separate 

investigation of areas of the foot, for example the rearfoot which will ensure that the construct 

of the shoe remains intact but the information on the actual rearfoot can be examined. Therefore 

future research questions which follow will aim to gain further understanding into rearfoot 

motion in shod and with LWI intervention using a novel marker set. 

5.7 Conclusion 

In conclusion, this investigation demonstrated that a relationship exists between the dynamic 

rearfoot and the external knee adduction moment in patients with medial compartment knee 

osteoarthritis, and also that the rearfoot range of motion in the coronal plane plays an important 

role in the biomechanical response and non-response to lateral wedge insoles. An increase in 

the range of motion at the rearfoot may predict the response to lateral wedge insole intervention. 

These findings have important clinical implications, and allow the prediction of an individuals’ 

biomechanical response (an increase or decrease in the external knee adduction moment) to the 

wearing of lateral wedge insoles. Therefore, allowing the targeting of lateral wedge insoles to 

medial compartment knee OA patients that will benefit from their use. Future investigations 

should aim to establish a clinical assessment which allows the evaluation of the range of motion 
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of the foot and ankle subtalar joint complex in barefoot walking, as expensive, time consuming, 

and complex 3D motion analysis systems which are currently required to identify changes in 

foot kinematics are not available in all organisations. 

This investigation viewed the foot in shod walking conditions as rigid bodies. However, within 

this investigation, it was not possible to quantify rearfoot motion in shod. Further investigation 

is therefore needed and will be conducted in the following chapter, utilising a heel pin cluster 

marker, to quantify rearfoot motion in shod, and in shod with a LWI inserted. Furthermore, this 

chapter has indentified the differences in walking speed between biomechanical responders 

and biomechanical non-responders to LWI intervention. In this investigation, biomechanical 

non-responders walked at higher speeds than biomechanical responders to LWI intervention. 

Therefore, further investigations into walking speed will be conducted on healthy subjects to 

identify whether walking speed can influence the efficacy of LWI.  

Therefore, the following chapter will consist of investigations using a heel pin cluster marker 

to quantify rearfoot motion in barefoot and shod walking conditions, an investigation to 

identify whether differences are present between rearfoot motion in shod, and in shod with a 

LWI to gain further understanding of the effects of a LWI on the rearfoot, and finally an 

investigation to establish if increased walking speed influences the biomechanical response to 

LWI. 
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Chapter Six 

 

In the preceding chapter, rearfoot motion was acknowledged as a possible influence on the 

biomechanical response and non-response to LWI. It was concluded therefore, that further 

investigation into motion of the rearfoot is required to increase the understanding of this 

motion, and provide some insight into why some individuals do not experience a reduction in 

their EKAM with the use of LWI. However, the collection of rearfoot motion in-shoe is 

challenging, and therefore methods to understand this are needed in order to examine the 

influence of lateral wedge insoles during gait.  

This chapter aims to investigate and examine three primary research questions; 1) what are the 

kinematic differences between two different approaches to capturing rearfoot motion (a heel 

cup cluster and heel pin cluster marker set) to evaluate rearfoot motion in 3 orthogonal planes 

(sagittal, coronal, and transverse) during both barefoot and shod walking. The heel pin cluster 

was assessed between barefoot and shod (in shoe) to determine the effect of shoes on rearfoot 

motion, and whether barefoot walking represented shod walking in healthy subjects. Secondly, 

this approach was then used to examine the second research question 2) what is the effect of 

lateral wedge insoles on rearfoot motion and EKAM. Thirdly, it is common in studies assessing 

lateral wedge insoles with medial compartment OA participants that speed is increased, but it 

is unknown what happens to the biomechanical response when individuals have a change in 

speed. Therefore, the third research question 3) what is the effect of a change of speed on the 

biomechanical response with lateral wedge insoles. 

These three research questions are all novel in nature and offer an insight into rearfoot motion 

and orthotic management. 
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Participant Recruitment Process for the 15 Healthy Participants in Investigations within 

Thesis Chapter 6 
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6.1 Research Question 1: Does the heel pin cluster represent the heel cup cluster when 

used to quantify rearfoot motion, and do differences exist between barefoot rearfoot 

motion in barefoot and shod. 

6.1.1 Introduction 

Rearfoot motion can be described as, ‘the natural sequential pattern of pronation and supination 

during the stance phase of gait’ (McGinnis, 1999, McGinnis, 2013) at the calcaneus and 

subtalar/ankle joint, and is an important component of the gait cycle (Winkelmeyer et al., 

2006). Rearfoot motion is commonly quantified in the frontal (coronal) plane of motion for 

clinical and research purposes, and is ‘the angle between the foot segment and the lower leg 

(shank) segment’ (Winkelmeyer et al., 2006). Foot mobility is vital in absorbing the GRF of 

the body (Cavanagh, 1990, Wernick and Volpe, 1996), and therefore subtalar pronation during 

the gait cycle aids in shock absorption during initial heel contact, and the adaptation of the foot 

and lower limbs to varying surfaces. Additionally, pronation allows rotation and the absorption 

of this rotation in the lower limbs (Cavanagh, 1990, Wernick and Volpe, 1996). Subtalar 

pronation leads to eccentric control of the supinators, and aids in the weight bearing capacity 

of the foot, allowing it to perform as a stable lever to propel the body forwards during the gait 

cycle (Cavanagh, 1990, Wernick and Volpe, 1996). 

Motions of the foot associated with pronation include; dorsiflexion (of the talocrucal joint), 

eversion (of the calcaneus), and abduction (of the forefoot) (Winkelmeyer et al., 2006). The 

rearfoot plays an important role in the reduction of the EKAM during the early stance phase of 

gait due to the role of the ankle subtalar joint complex in the mechanical mechanisms of medial 

knee loading (Chapman et al., 2015). Hinman et al., (2012) identified that a lateral shift in the 

centre of foot pressure caused the ground reaction force (GRF) to move towards the centre of 

the knee, reducing the ground reaction force (GRF) distance and the EKAM. Furthermore, the 

use of a LWI intervention causes a lateral shift in the centre of force pressure, which causes an 

increase in the ankle eversion moment, and shortening of the knee GRF lever arm, therefore 

reducing the EKAM (Kakihana et al., 2005, Kakihana et al. 2007, Barrios et al., 2009, Butler 

et al., 2009, Jones et al., 2013, Chapman et al., 2015). The EKAM has been found to be linked 

to both the progression and severity of medial compartment knee osteoarthritis (Jones et al., 

2012, Chapman et al., 2015). 

Foot motion has the potential to compensate for proximal malalignments for example varus 

and valgus due to triplantar axes of motion of the subtalar and midtarsal joints (Michaud, 1993, 
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Riegger-Krugh and Keysor, 1996, Levinger et al., 2012). It is therefore fundamental that a 

complete and accurate understanding of foot motion both in shod and barefoot is gained in 

order to address any effects foot posture may have on the lower limbs (Levinger et al., 2012).  

Various methods of measuring rearfoot motion have been utilised within the literature for both 

barefoot and in shod footwear conditions, such as the use of intra-cortical bone pins fixed into 

the bones of the foot, which have been reported as the most accurate method available in order 

to determine rearfoot motion (Westblad et al., 2002, Shultz and Jenkyn, 2012, Jones et al., 

2012). The use of the bone anchored markers accurately quantifies skeletal motion, and aims 

to overcome inaccuracies identified within experiments reported within the literature, such as 

movement of the foot within the shoe with the use of other techniques such as shoe mounted 

markers, and skin motion occurring between markers and underlying bone when using markers 

attached to the skin of the foot (Reinschmidt et al., 1992, Reinschmidt et al., 1997, Sinclair et 

al., 2013). However, the use of bone anchored markers has been considered too invasive and 

therefore application of this technique is limited (Sinclair et al., 2013), consequently improved 

non-invasive methods of quantifying rearfoot motion are still required and this warrants further 

investigation.  

The most commonly adopted non-invasive technique of determining rearfoot motion makes 

use of reflective markers fixed directly on to the skin of the foot and lower limbs (in barefoot 

conditions) and fixed on to the skin through windows cut out into the footwear (in shod 

conditions) (Sinclair, 2014, Bishop et al., 2015).  

Previous research has also investigated the placement of reflective markers upon the surface of 

the shoe, directly over the site of bony landmarks assuming the shoe to be a rigid body (Sinclair 

et al., 2013). A study conducted by Sinclair et al., (2014) investigated whether 3D reflective 

markers attached to the skin in order to represent the movement of the foot using a three 

segment foot model (midfoot-calcaneus, forefoot-midfoot and forefoot-calcaneus articulations) 

provide differing foot kinematics when compared with reflective 3D markers attached to the 

surface of the shoe. Results indicated that shoe mounted markers do not accurately represent 

foot motion within the shoe due to the limited space and high possibility that interaction 

between the heel and the shoe takes place during gait. Various parameters of rearfoot motion 

(eversion ROM, peak eversion, peak transverse plane ROM, velocity of external rotation and 

peak eversion velocity) in shod were concluded as being significantly underestimated with the 

use of shoe mounted markers, compared to results using holes (windows) cut into the shoe with 
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markers attached to the skin. Therefore, it can be stated that kinematics of the foot derived from 

the use of shoe mounted markers do not accurately capture, and therefore consequently do not 

represent the true motion of the underlying skeletal frame (Stacoff et al., 1991, Stacoff et al., 

2000, Bishop et al., 2012, Bishop et al., 2013, Sinclair et al., 2014). However, within the 

investigations by Sinclair et al., (2013) and Sinclair et al., (2014), rearfoot kinematics were 

captured using markers placed externally on the shoe and on the skin through windows cut in 

the shoe simultaneously, whilst participants walked in shod. Therefore, rearfoot motion in shod 

walking compared to barefoot walking and the effect of the shoe on rearfoot motion remains 

unclear  

Skin movement artefact could easily affect these inaccuracies further (Sinclair et al., 2014). A 

similar study by Stacoff et al., (2001) used shoe mounted markers to represent heel motion and 

concluded that heel motion was not accurately represented by shoe mounted markers. The 

study also recommended attaching markers directly to the skin in order to obtain more accurate 

representations of rearfoot kinematics (Stacoff et al., 1991). Recent research has therefore 

increasingly criticised the efficacy of shoe mounted reflective markers for the use of obtaining 

rearfoot motion data (Stacoff et al., 1991, Stacoff et al., 2000, Shultz and Jenkyn, 2012, Sinclair 

et al., 2013, Bishop et al., 2013, Sinclair et al., 2014) and research has led to the foot in the 

shoe no longer being viewed as a rigid body (Sinclair et al., 2013). There is a need therefore, 

to discover whether the method of attaching reflective markers to the skin through windows in 

the shoes in order to obtain rearfoot motion data in shod is accurate when compared to barefoot 

conditions, which has not been previously addressed within the literature. Concern has been 

highlighted in recent research about the possible impacts of the type of shoe used when 

assessing rearfoot motion in shod, as foot kinematics may vary depending on varying shoe 

types (Shultz and Jenkyn, 2012).  

A study by Morio et al., (2009) concluded that wearing of footwear (specifically open sandals) 

constrains natural barefoot motion during walking and running, and can even impose a specific 

foot motion pattern on the feet, therefore affecting rearfoot motion and potentially leading to 

lower limb pathologies. The study also discovered, similar to previous research that the stiffer 

the shoe structure, the more the natural motion of the foot was modified (Stacoff et al., 1991, 

Freychat et al., 1996, Morio et al., 2009). Therefore, data collected during barefoot walking 

does not represent shod walking, and the use of a heel pin cluster marker may allow an insight 

into rearfoot motion in shod, and also the effect of differing shoe types on rearfoot motion.  
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Concerns have also been highlighted regarding the effects that cutting holes in the footwear 

may have on the integrity of the shoe structure. Therefore, rearfoot motion within the shoe 

(Shultz and Jenkyn, 2012, Bishop et al., 2015) becomes more difficult to measure whether or 

not the shoe is functioning as it would in its pre-modification state (Bishop et al., 2015). A 

study by Shultz and Jenkyn, (2012) investigated the maximum diameter of a window that could 

be cut into three different shoe uppers without significantly compromising the shoes structural 

integrity or altering the kinematics of the foot within the shoe during walking. Holes made in 

footwear when investigating rearfoot motion must be large enough to avoid interfering with 

markers during gait, but small enough to retain the shoes structural integrity (Shultz and 

Jenkyn, 2012). Previous investigations by Johanson et al., (1994) and Butler et al., (2007) 

similarly concluded that applying markers to the skin of the foot, rather than the shoe could be 

more accurate than markers attached to the external surface of shoes. However, Johanson et 

al., (1994) completely removed the back of the shoe in order to measure rearfoot motion, which 

could potentially affect rearfoot motion by altering the structure of the shoe, and Butler et al., 

(2007) found a 10% reduction in the shoes stability after cutting two holes into the heel counter, 

and therefore take should be taken when modifying footwear for the purposes of quantifying 

rearfoot motion in shod. 

Several additional studies have also used holes made in shoes, however little or no validation 

of the shoes structural integrity was conducted after making the holes in order to place markers 

on the skin (Clarke et al., 1983, Stacoff et al., 1991, Stacoff et al., 1992, Reinschmidt et al., 

1992, Nawoczenski et al., 1995, Butler et al., 2007, Eslami et al., 2007 Shultz and Jenkyn, 

2012). No method to systematically assess changes in structural integrity as a result of shoe 

modification currently exists within the literature (Bishop et al., 2015).  

After using heel pin cluster and heel cup cluster marker sets to assess rearfoot motion, it was 

concluded that the shoe hole size should not affect shoes structural integrity in a study by Shultz 

and Jenkyn (2012). Therefore, a maximum shoe hole size of 2.7 cm x 2.3 cm should be used 

in future studies utilising cluster markers in order to determine representative rearfoot motion 

in shod (Shultz and Jenkyn, 2012). It is worth noting however that the study by Shultz and 

Jenkyn (2012) which investigated the maximum diameter for holes in shoes without 

compromising shoe integrity and consequently possibly influencing rearfoot motion, used a 

multi segment foot model, and five holes were made in each shoe utilised within the trials to 

allow the insertion of pin cluster markers. Therefore, the number of holes made within the shoe, 

in addition to the size of the holes on the shoe may have affected the structure of the shoe, and 
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led to changes in rearfoot motion. Perhaps therefore, a slightly larger diameter of a single hole 

made in a shoe on the lateral aspect of the calcaneus in order to quantify rearfoot motion using 

a heel pin cluster would lead to a lesser effect on rearfoot motion and shoe integrity. 

Furthermore, Shultz and Jenkyn (2012) speculated that the shoe aperture size limit may depend 

on both the design and brand of the shoe. Since the study by Shultz and Jenkyn (2012) utilised 

three differing training type shoes with soft material mesh uppers (Saucony Grid), perhaps a 

shoe type constructed using a stiffer upper material, such as leather would allow a slightly 

larger aperture diameter to be made in the shoe, without compromising shoe integrity. 

A number of trials have used heel cups with clusters of reflective markers attached to them in 

order to determine barefoot rearfoot motion, with the heel cup usually attached directly to the 

skin (Findlow et al., 2011, Nester et al., 2014). Utilising a heel cup cluster marker to obtain 

rearfoot motion data has been used as a reliable method in previous research (Findlow et al., 

2011, Nester et al., 2014), however a heel cup cluster marker is not possible within shod, and 

therefore a heel pin cluster marker may be more ideal. Therefore, heel pin cluster markers 

(three rigid steel pins with a reflective marker glued to each pin, attached to a plastic screw bolt 

with a fourth marker fixed to the top of the plastic bolt) (figure 6.1) are ideal for this task. Heel 

pin cluster markers only require a small aperture in the shoe in order to be attached to the heel 

skin, independent of the shoe, and can be used for both barefoot and shod trials.  

Theoretically, the pin cluster marker can be attached to the medial, posterior, or the lateral side 

of the heel. The medial side attached pin cluster marker often has an interference with the 

contralateral foot, and the posterior attached pin marker cluster involving an aperture on the 

seam of the medial and lateral heel quarter may damage the integrity of the shoe body, also the 

vertical position can be a problem. When the pin cluster is attached too high, it is the top skin 

surface of the achilles tendon and not stable. When the pin cluster is attached to the lower part 

of the heel, the long pin strut and cluster can hit the floor during heel strike due to the landing 

angle of the foot and make the individual aware of this so their gait may alter. Therefore, the 

lateral pin marker cluster placement becomes an obvious good option to track the heel 

movement within the shoe. It is not known however, whether the heel pin cluster, which only 

attaches to the lateral aspect of the calcaneus can accurately represent rearfoot motion as 

adequately as the heel cup cluster, which surrounds the heel from the medial to lateral aspect 

does, needs to be investigated to determine its usefulness in future studies. 
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The differences between heel cup cluster markers and heel pin cluster markers when 

determining rearfoot motion in barefoot walking have not been previously addressed within 

the literature. Therefore, the first aim of the study was to examine the differences between the 

kinematic results from heel cup cluster and heel pin cluster markers during barefoot walking. 

Furthermore, the heel pin cluster was assessed between barefoot and shod walking to determine 

the effect of shoes on rearfoot motion, and whether the barefoot heel pin cluster rearfoot motion 

represented shod heel pin cluster rearfoot motion in healthy subjects. 

6.1.2 The statistical hypotheses for this study 

 There is no significant difference present between the heel cup cluster marker and the 

heel pin cluster marker when used to evaluate rearfoot motion in healthy subjects in 

barefoot and shod walking conditions.  

 There is no significant difference between the heel pin cluster marker in barefoot and 

the heel pin cluster marker in shod. 

6.1.3 Methods 

6.1.3.1 Participants 

After approval from the Research, Innovation and Academic Engagement Ethical Approval 

Panel at The University of Salford (ethical approval number – HSCR13/42), fifteen healthy 

participants (7 males, 8 females) were recruited from within the staff and student population at 

The University of Salford to take part in the experiment. Mean and standard deviation 

participant demographics are depicted in table 6.1. Participants for all research questions 

contained within this chapter are the same, and therefore they will only be presented here. 

Participants were required to be free from lower limb injuries for a period of at least six months 

prior to testing (injury was defined as any musculoskeletal complaint that prevented the 

participant from undertaking their normal exercise or daily routine), with no history of lower 

limb surgeries or deformities. Prior to the commencement of testing, the study was explained 

in full to each participant. Each participant was then required to read and sign a written 

informed consent statement and individual demographic information (date of birth, height, 

mass and shoe size) for each participant was recorded. Table 6.1 summarises the mean and 

standard deviation (STD) demographic characteristics of all fifteen participants. 
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Table 6.1: Demographic measurements and standard deviation (SD) for all participants for all studies in this 

chapter. 

        Gender                                                             Males (N=7)                    Females (N=8) 

Age (years) ± (SD)  34.43 ± (7.16)          36.25 ± (13.29) 

Height (m) ± (SD)  1.75 ± (0.07)          1.64 ± (0.05) 

Mass (kg) ± (SD)  88.57 ± (13.16)        69.38 ± (12.55) 

 

 

Table 6.2: Inclusion and exclusion criteria 

 

6.1.4 Data Collection   

6.1.4.1 Equipment Set up 

Testing was carried out in the clinical gait laboratory at The University of Salford. The 

kinematic and kinetic data were collected using a Qualisys system (16 OQUS infrared cameras 

at 100Hz, Qualysis AB, Sweden) and the four integrated 4 BP400600 AMTI force plates 

(Advanced Mechanical Technology, Ins. USA) at 1000Hz. A seven-segment lower limb model 

was chosen for the study, where all segments, including the pelvis were tracked with a rigid 

marker cluster with 4 retro reflective markers attached to reduce the skin movement artefact. 

Four anatomical markers, which are Anterior Superior Iliac Spine (ASIS) and Posterior 

Anterior Superior Iliac Spine (PSIS) of both sides, were used to define the pelvis model, the 

Inclusion Criteria Exclusion Criteria 

Good general condition of health, aged 18 

years or over and able to walk without aids 

or assistance.  

Experience or evidence of lower limb 

injuries (including bone fracture and 

ligament injury to the hip, knee, ankle and 

foot) within the six months prior to testing. 

No previous surgeries on the lower limbs (for 

example total knee arthroplasty or 

unicompartmental knee arthroplasty). 

Has disabilities or lower limb deformities 

which influence normal gait. 

Has no known history of osteoarthritis or 

other bone diseases (for example 

osteoporosis). 

Does not agree to the study conditions or 

protocol, and does not give consent. 
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markers placed on the medial/lateral femur epicondyle, malleolus were used to establish the 

thigh and shank model, markers on the malleolus and on the head of the 1st and 5th metatarsal 

were used to define the segment foot model. The rearfoot was tracked using a heel cup cluster 

marker (figure 6.2, 6.3) (consisting of three reflective markers) and the heel pin cluster (figure 

6.1) marker set in barefoot, and in shod, rearfoot motion was tracked using three markers 

attached to a heel pin cluster marker. The heel pin cluster has a total of four markers attached 

to it, however only three reflective markers were analysed so that the same number of markers 

were evaluated for both the heel cup cluster and the heel pin cluster. Both the movement 

trajectory of the retro reflective markers attached to each selected segment and the 

synchronised ground reaction force were captured simultaneously.  

6.1.4.2 Trial Procedure for Barefoot and for Shod  

Based on the gait test protocol, each subject, wearing all reflective markers was requested to 

walk in the gait lab at his own natural walking speed back and forth along a marked out passage 

until five good trials were achieved. Walking trials were firstly carried out barefoot with the 

heel pin cluster and heel cup cluster marker to quantify the differences between both devices. 

Secondly, walking trials were conducted in the shod condition using the heel pin cluster to 

compare rearfoot motion in barefoot and shod.  

The standard, size appropriate footwear (Ecco, Zen) used in the shod condition was provided 

for each participant. Walking trials were considered to be successful (good) if no tracking 

markers dropped, and the foot was placed completely on the force platform during stance 

phase.  

6.1.4.3 Heel Pin Cluster Markers – Barefoot Examination 

The four-marker heel pin cluster used within this study to track and quantify the calcaneus 

segment was mounted on to the lateral side of the calcaneus (figure 6.1). As explained 

previously, three markers of the four were utilised. Due to the limited space, the heel cup cluster 

and the pin cluster shared a small area on the lateral side of the calcaneus bone. In order to 

avoid any interference between the two clusters, a small aperture (measuring 1cm in diameter) 

large enough to allow the pin and base to go through and move with the heel bone 

independently was made on the lateral aspect of the heel cup. Three of the four markers of the 

heel pin cluster were fixed on three rigid steel pins that were inserted and glued in a plastic 

screw bolt and the fourth marker was fixed to the head of the top of the plastic bolt (figure 6.1) 

(figure 6.2) (figure 6.3). Each cluster was attached to the heel skin with the double sided tape 
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(figure 6.2) (figure 6.3) representing the calcaneus (rearfoot segment) independently with the 

local coordinate system aligned with the local coordinate system of the foot. 

 

Fig 6.1: Heel Pin Cluster           Fig 6.2: Heel Cup Cluster (lateral)       Fig 6.3: Heel Cup Cluster (Posterior) 

6.1.4.4 Heel Pin Cluster Markers – Shod Examination 

The heel pin cluster marker used within this study represented the calcaneus segment using a 

four marker cluster attached to the lateral aspect of the calcaneus with a 2.5 cm x 2.5 cm 

aperture made in the lateral aspect of the shoes (Ecco. Zen) allowing attachment to the skin 

using double sided tape (figure 6.4). The size of the aperture allowed for the heel pin cluster to 

easily pass through, whilst remaining as close as possible to the maximum dimensions of 2.7 

cm x 2.3 cm which had no effect on rearfoot motion and training shoe function as stated in an 

investigation by Shultz and Jenkyn (2012). 

The skin attachment base as suggested by Schultz and Jenkyn (2012), Majumdar et al., (2013), 

Sinclair et al., (2014) and Bishop et al., (2015) allowed ease when wearing shoes for study 

subjects and is therefore easily transferable to a shod walking condition. 
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Fig. 6.4 - The heel pin cluster marker in the shod walking condition. 

The heel pin cluster was removed from the rearfoot after barefoot data collection was carried 

out by unscrewing the heel pin cluster marker from the skin attachment base, to ensure 

participants could easily place shoes on their feet. The skin attachment base was left on the 

skin to ensure minimal error was present in the results, which could affect the reliability of the 

heel pin cluster marker, as removal of the skin attachment base would mean replacing it in an 

identical position and location would be difficult. Care was therefore taken to ensure the skin 

attachment base remained attached, and consequently the investigator placed taped over the 

base to add increased stability whilst the participant was putting on the shoes. Participants 

placed their feet in shoes, with the aid of the investigator to ensure the position of heel pin 

cluster marker skin attachment based was not altered. The heel pin cluster was then screwed 

back into the skin attachment base through the aperture made in the lateral aspect of the shoe 

(figure 6.4). Markings made on the skin attachment base and the heel pin cluster marker 

allowed the investigator to ensure the heel pin cluster marker was screwed into the same 

position in shod as it was in barefoot, to ensure minimal error was present in the results.  

6.1.5 Data Analysis 

Kinematic data was obtained for all 15 participants. Following data collection, all joint kinetic 

data was processed using Qualysis Track Manager software where each marker was labelled 

and digitised, and any anomalies in movements in marker trajectories were corrected. The 

kinematic data collected and digitised with Qualisys were exported directly to Visual3D 

software (version 4.91, C-Motion Inc, USA). The raw marker tracking data were filtered with 
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a Butterworth 4th order bi-directional low pass filter; the cut-off frequency was 6Hz. Using the 

similar method, the analogue data were filtered with a cut-off frequency of 25Hz.  Dynamic 

skeletal graphics created in V3D controlled by subject kinematics were used to assist with the 

interpretation of results (Buczek et al., 2010).  

The lower limbs were treated as seven segments modelled as rigid bodies, which were; the 

pelvis, left and right thighs, shanks and feet. A right-handed local coordinate system of each 

segment was defined by landmarks placed on the anatomical points. The CODA pelvis model 

was used, which was defined using the anatomical locations of the ASIS (Anterior Superior 

Iliac Spine) and the PSIS (Posterior Superior Iliac Spine). The motion was tracked by the four 

markers on a rigid plastic plate fixed with an elastic belt to the back of the pelvis. Each segment 

was treated as a free rigid body with six degrees of freedom. The joint kinematics were 

calculated using an X–Y–Z Cardan sequence. The external joint moment data were calculated 

using three-dimensional inverse dynamics and normalised to body mass (Nm/kg). 

The model is referred to as a six degree of freedom (DOF) model due to having six variables 

that describe its position and orientation in 3-D space (3 variables describe segment translation 

in three perpendicular axes, and 3 variables describe the rotation about each axis of the 

segment). Individual subjects anthropometric measurements (height and body mass) were 

entered into the software in order to calculate kinetics. Pelvis, thigh, shank and foot segments 

were then modelled by determining the proximal and distal joint radius and the tracking 

markers. 

In terms of the modelling, the heel was defined using the tibia as a virtual segment for proximal 

and distal markers and was tracked using both the heel pin cluster marker and the heel cup 

cluster marker. The angular movement of the heel relative to the tibia segment in a gait cycle 

were calculated when it was tracked with two different marker clusters set in Visual 3D.  

Automatic gait event definition was utilised in all trials, which captured data when the vertical 

GRF exceeded 20 Newtons (N) in value. The gait cycle was defined as the movement and 

events from heel strike of the foot on the force platform, to the subsequent heel strike of the 

same foot. Stance phase was defined as heel strike of the foot to the subsequent toe-off of the 

same foot. Each gait parameter of interest was then exported from V3D to Microsoft Excel 

2010 (Microsoft Washington, USA). 

Maximum and minimum angles were calculated in three planes, which were sagittal 

(dorsiflexion and plantarflexion), coronal (inversion/eversion), and transverse 
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(abduction/adduction) was analysed relative to the tibia, and were exported for further 

statistical analysis. 

Data for all variables in the chapter were reviewed before analysis to determine if distribution 

was normally (parametric) or non-normally distributed (non-parametric) in order to perform 

statistical analysis. The majority of the data were normally distributed. The Shapiro-Wilks test 

was used for the 15 healthy subjects. Parametric tests were conducted within this chapter and 

included the mean, standard deviation and paired t-tests. Non-parametric tests utilised within 

the study included the median, range and the Wilcoxon Signed-Rank test, carried out using 

SPSS software. 

Statistical analysis was carried out on the data obtained during the stance phase of the gait 

cycle, after the rearfoot was tracked by both the heel cup cluster marker and the heel pin cluster 

marker, and the differences between the kinematic results of the two clusters were statistically 

assessed in barefoot and shod. The differences between the heel pin cluster in barefoot and in 

shod waking conditions was also statistically assessed. A 95% confidence interval (CI) was 

applied to the data and is depicted within graphs representing the gait cycle within the results.  

For the barefoot walking condition only, the differences during stance phase were analysed to 

determine the error between the heel segment, tracked using the heel cup cluster and the heel 

pin cluster markers during barefoot walking. Root mean squared deviation (RMSD) was 

calculated to determine the error magnitude between the two motion tracking methods. The 

RMSD is a frequently used quantitative measurement of the mean difference between two 

values or variables (the heel cup cluster and the heel pin cluster markers), and represents the 

standard deviation of the differences between predicted and observed values. The RMSD 

allows the collective of the magnitude of the errors in predictions between two variables into a 

single measure, and in this instance was used to compare the differences between two values 

that vary, however neither is accepted as standard. The RMSD is a good measure of accuracy, 

however only serves to compare forecasting errors of different measures of variable, and not 

the error present between the variables. The RMSD is the square root of the mean square error, 

or the square root of variance, known as the standard deviation. The RMSD was calculated 

using the following equation: 
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In order to understand the agreement between the two different cluster markers, the Bland-

Altman method was applied to the data obtained during the barefoot walking condition within 

this investigation to analyse the agreement between the heel pin cluster and the heel cup cluster 

markers. The Bland-Altman method measures the mean differences between two sets of 

measurements (the heel pin cluster and the heel cup cluster markers) where there is potential 

for error to be present. The Bland-Altman method also measures the standard deviation (SD) 

of any differences to measure random fluctuations around the mean differences, and show that 

if two measurements do not agree well, they do not measure the same agreement consistently. 

A good correlation may indicate similar variance in measurements, but does not necessarily 

imply good agreement between the two measurements, and therefore Bland-Altman plots are 

advantageous to determine this level of confidence.  

6.1.6 Results 

The average self-selected walking speed for the participants in the barefoot walking condition 

was 1.214 m/s, and for the shod walking condition was 1.223 m/s. 

The angular movement of the rearfoot about the tibia in three planes are presented in figure 

6.5, figure 6.6 and figure 6.7 which was represented by the heel cup cluster and heel pin cluster 

during barefoot walking. The curves represent the mean value and the 95% confident interval 

of each component in a gait cycle.  The results demonstrated that the two different clusters 

followed the same pattern of angular movement in the three planes when they were used to 

track the heel motion. The relative errors between the two cluster marker devices could be 

found to be higher in the movement of frontal and transverse plane due to their smaller range 

of motion. 

The RMSD absolute error of the heel angle (table 6.3) indicated that the maximum error was 

0.88° degrees in the sagittal plane, 1.37° in the coronal plane, and 1.21° in the transverse plane. 

These results also indicated fairly small and acceptable overall error. The differences in same 

directional angular movement between the heel pin cluster and the heel cup cluster were very 

small, with 0.8°/0.01° of plantar-/dorsiflexion in the sagittal plane, 0.08°/0.95° of 

eversion/inversion in the frontal plane and 0.36°/0.67° of abduction/adduction in the transverse 

plane. All p values of the T-test indicated the differences were statistically insignificant. 

Agreement was identified using Bland-Altman plots between the heel pin cluster and the heel 

cup cluster markers in dorsiflexion and also in plantarflexion (figure 6.8, figure 6.9), in 
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inversion and eversion (figure 6.10, figure 6.11), and likewise in adduction and abduction 

(figure 6.12, figure 6.13) respectively, relative to the tibia (table 6.3). 

Table 6.3 indicates minimal differences between the heel cup cluster and the heel pin cluster 

with regards to inversion and eversion rearfoot motion. The small differences present were 

recorded the during stance phase of the gait cycle. Table 6.3 represents the differences between 

the heel cup cluster and the heel pin cluster within the transverse plane of motion (adduction 

and abduction). 

 

 

Table: 6.3 – Differences between the heel pin cluster and the heel cup cluster and the RMSD between the heel 

pin cluster marker and the heel cup cluster marker in the three planes of motion. Full stance phase, and 

therefore both minimum and maximum rearfoot motion are reflected. 

 

SD = Standard Deviation) (Heel Cup = Heel cup cluster marker) (Relative_Tibia = Relative to the tibia) (Pin 

Cluster = Heel pin cluster marker) (Cup = Heel cup cluster marker) (Mean min = mean minimum) (Dorsi Flex 

= Dorsi flexion) (RMSD =Route mean square deviation) (Plantar Flex = Plantar flexion). 

 

The angular movement of the rearfoot in three planes are presented in figure 6.5, figure 6.6, 

and figure 6.7 represented by the heel cup cluster and the heel pin cluster during barefoot 

walking. The curves represent the mean value and the 95% confident interval of each 

component in a gait cycle. The results demonstrated that the two different cluster markers 

followed the same pattern of angular movement in the three planes when they were used to 

track the heel motion. 

Figure 6.5 depicts small differences were identified between the heel cup cluster and the heel 

pin cluster in relation to rearfoot motion (dorsiflexion/plantar flexion) in the sagittal (X) plane. 

These findings represent low error between the heel cup cluster and the heel pin cluster.  

Relative_Tibia Relative_Tibia

Barefoot Heel Cup Pin Cluster SD Cup SD Pin(°) P value Barefoot Heel Cup Pin Cluster SD Cup (°) SD Pin(°) P value RMSD

Plantar Flex (X) -1.21 -2.01 2.29 2.86 0.133 Dorsi Flex    (X) 15.31 15.30 3.45 3.41 0.984 0.88

Eversion       (Y) -2.35 -2.43 2.43 2.13 0.897 Inversion     (Y) 7.86 8.81 3.75 4.32 0.068 1.37

Abduction   (Z) -0.75 -1.11 5.26 4.44 0.662 Adduction   (Z) 8.27 8.94 4.87 4.63 0.470 1.21

Mean (°) Mean (°)
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Figure: 6.5 – Sagittal plane rearfoot motion in barefoot represented by the heel cup cluster and the heel pin 

cluster reflective markers. Error bar represent the ±95% CI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: 6.6 - Coronal plane rearfoot motion in barefoot represented by the heel cup cluster and the heel pin 

cluster reflective markers. Error bar represent the ±95% CI.
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Figure: 6.7 - Transverse plane rearfoot motion in respect of the tibia in barefoot represented by the heel cup 

cluster and the heel pin cluster reflective markers. Error bar represent the ±95% CI. 

 

The Bland-Altman method was conducted in order to quantify the agreement between the heel 

cup cluster marker and the heel pin cluster marker. A number of variables indicated no 

significant differences were present between the two marker methods, and therefore the Bland-

Altman method allowed an understanding of the correlation between the heel pin cluster and 

the heel cup cluster markers to be achieved.  

The below figures and table 6.4 depict the Bland-Altman plots. Results indicate no significant 

differences were present between the heel cup cluster marker and the heel pin cluster marker, 

and therefore agreement was present between the two marker devices in the coronal, sagittal, 

and transverse planes.  

 

Linear regression indicated no significant differences to be present, therefore showing 

agreement to be present between the heel cup cluster marker and the heel pin cluster marker 

(table 6.4). 
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Table 6.4 – Bland-Altman agreement results for the heel pin cluster and the heel cup cluster markers in 3 planes 

of motion. 

CI: Confidence Interval, SD: Standard Deviation, Plantar Flex: Plantarflexion, Dorsi Flex: Dorsiflexion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Relative_Tibia Regression Relative_Tibia Regression

Barefoot Mean SD (°) Upper Lower P value Barefoot Mean SD (°) Upper Lower P value 

Plantar Flex (X) 0.80 1.94 3.00 -3.00 0.247 Dorsi Flex    (X) 0.01 1.02 1.99 -1.99 0.887

Eversion       (Y) 0.58 1.43 2.22 -2.22 0.904 Inversion     (Y) -1.25 1.16 3.52 -3.52 0.896

Abduction   (Z) 0.37 3.19 5.89 -5.89 0.329 Adduction   (Z) -0.68 3.53 5.59 -5.59 0.802

Bland Altman Plot Agreement Results for the Pin & Cup Clusters in Barefoot

Mean differences 95% CI Mean differences 95% CI
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Figure 6.8 – Rearfoot dorsiflexion relative to the tibia. Upper and lower lines (light blue lines) indicate the 95% 

confidence interval. The middle line (dark blue) indicates the mean differences between the heel pin cluster and 

the heel cup cluster markers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.9 – Rearfoot plantarflexion relative to the tibia. Upper and lower lines (light blue lines) indicate the 

95% confidence interval. The middle line (dark blue) indicates the mean differences between the heel pin cluster 

and the heel cup cluster markers. 
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Figure 6.10 – Rearfoot inversion relative to the tibia. Upper and lower lines (dark blue lines) indicate the 95% 

confidence interval. The middle line (dark blue) indicates the mean differences between the heel pin cluster and 

the heel cup cluster markers. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11– Rearfoot eversion relative to the tibia. Upper and lower lines (light blue line) indicate the 95% 

confidence interval. The middle line (dark blue) indicates the mean differences between the heel pin cluster and 

the heel cup cluster markers. 
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Figure 6.12– Rearfoot adduction relative to the tibia. Upper and lower lines (light blue lines) indicate the 95% 

confidence interval. The middle line (dark blue) indicates the mean differences between the heel pin cluster and 

the heel cup cluster markers. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13– Rearfoot abduction relative to the tibia. Upper and lower lines (light blue lines) indicate the 95% 

confidence interval. The middle line (dark blue) indicates the mean differences between the heel pin cluster and 

the heel cup cluster markers. 
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6.1.7 Summary of findings 

The results indicate agreement between the heel pin cluster and the heel cup cluster, suggesting 

that the heel pin cluster marker can be used to represent rearfoot motion in three planes with 

acceptable accuracy. The results show no statistically significant differences with very low 

error (less than 1.5 degrees), and therefore the heel pin cluster marker is as effective as the 

previously utilised heel cup cluster marker set used in chapter 3 and 4. Small and insignificant 

differences present may have been caused by skin movement artefact. The null hypothesis has 

therefore been accepted.  

Based on the results achieved from the study it can be assumed that the heel pin cluster marker 

arrangement may be an effective and accurate method to track the heel movement within shoes. 

However, it not known whether the barefoot movement captured using the heel pin cluster 

marker represents the same movement when wearing a shod condition.  

6.1.8 Comparison of barefoot shod and walking 

The second part of the section aimed to understand whether barefoot rearfoot motion was 

reflected when individuals wore a shod condition. During both examinations (barefoot and 

shod), there was no difference in speed between the different conditions (P = 0.311). The 

average self-selected walking speed for the participants was 1.214 ±0.132m/s in barefoot, 1.223 

±0.135m/s in shod. 

The results of this section indicate a difference between the heel pin cluster in shod compared 

to barefoot. Table 6.5 depicts the findings in the sagittal plane (plantarflexion and dorsiflexion), 

the coronal plane (inversion and eversion) and the transverse plane (adduction and abduction). 

The results demonstrate that in the sagittal plane (dorsiflexion and plantarflexion) rearfoot 

motion in shod relative to the tibia both increased by approximately 4 to 5° compared to the 

barefoot condition. The P Value indicated differences between the barefoot and shod footwear 

conditions (P<0.01) (P<0.01). Regarding rearfoot motion, in the coronal plane (inversion and 

eversion), relative to the tibia in shod, an increase was observed for both inversion and eversion 

compared with the barefoot condition by approximately 5 to 10° (P=0.004). In the transverse 

plane (abduction and adduction) relative to the tibia in shod, results proved inconsistent. A 

decrease in abduction was observed, as well as a decrease in adduction in shod, compared to 

barefoot. However, rearfoot adduction in the right limb increased relative to tibia. 
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A similar finding was also identified when examining the range of motion (ROM) when 

comparing between the heel pin cluster marker in barefoot and shod condition relative to the 

tibia in the coronal plane indicated significant differences p=0.006 (4.4º). However, in the 

sagittal and transverse plane of motion, no significant differences were identified (table 6.6). 

Table: 6.5 - Differences between the heel pin cluster in shod and barefoot conditions. 

SD: Standard Deviation, Relative_Tibia: Relative to the tibia, Mean min: mean minimum, Mean max: Mean 

maximum, Dorsi Flex: Dorsi flexion, Plantar Flex: Plantar flexion. 

 

    Table: 6.6 - Differences between the heel pin cluster in shod and barefoot conditions for the range of motion. 

 

 

 

 

                   

SD: Standard Deviation, ROM: Range of motion, BF: Barefoot. 

 

Relative_Tibia Relative_Tibia

Shod Shod Barefoot SD Shod(°) SD BF (°) P value Shod Shod Barefoot SD Shod(°) SD BF(°) P value

Plantar Flex (X) 1.37 -2.01 3.28 2.91 0.002 Dorsi Flex    (X) 20.58 15.30 3.54 5.21 0.000

Eversion       (Y) 2.08 -2.43 2.68 2.87 0.004 Inversion     (Y) 18.47 8.81 4.62 4.74 0.000

Abduction   (Z) -3.25 -1.11 6.21 7.91 0.090 Adduction   (Z) 7.98 8.94 4.93 5.48 0.248

Mean min (°) Mean max (°)

ROM

Planes Barefoot Shod SD BF SD Shod P value

Sagittal       (X) 17.740 19.213 4.402 3.815 0.077

Coronal       (Y) 11.946 16.393 3.177 5.070 0.006

Transverse (Z) 11.750 11.234 3.662 4.111 0.331

Rearfoot relative to tibia (°)
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Figure: 6.14 - Rearfoot motion Sagittal plane (dorsiflexion/plantarflexion) in shod represented by a heel cup 

cluster and a heel pin cluster reflective marker. Error bars represent the 95%CI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: 6.15 - Rearfoot motion coronal plane (eversion/inversion), in shod represented by a heel cup cluster 

and a heel pin cluster reflective marker. Error bars represent the 95%CI.
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Figure: 6.16 - Rearfoot motion transverse plane (adduction/abduction) in shod represented by a heel cup cluster 

a heel pin cluster reflective marker. Error bars represent the 95%CI. 

 

6.1.9 Discussion 

This research question aimed to investigate the differences between heel cup cluster markers 

and heel pin cluster markers when used to evaluate rearfoot motion in three planes of motion 

(sagittal, coronal and transverse), in barefoot walking. The second research question was to 

assess the efficacy of the heel pin cluster in both barefoot and shod to determine the effect of 

shoes on rearfoot motion to conclude if barefoot rearfoot motion represents shod barefoot 

motion during walking in healthy subjects.  

Results concerning the use of a skin mounted heel cup cluster when compared with a skin 

mounted heel pin cluster during barefoot walking suggest no significant differences in rearfoot 

motion were present between the heel pin cluster and the heel cup cluster in three planes of 

motion. The very low RMSD indicates that the heel pin cluster is an acceptable method when 

used to quantify rearfoot motion. 

Small and insignificant differences present between the heel cup cluster and the heel pin cluster 

do not affect the overall efficacy of the heel pin cluster. The low error present within the results 

(less than 1.5 degrees) is most likely due to skin movement artefact taking place between the 

skin attachment and the underlying bones. This study finding agrees with previous research by 

Sinclair et al., (2013) who stated that error may be present in data obtained using skin mounted 

markers due to skin motion taking place between the reflective markers attached to the skin, 
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and the underlying bones. Skin movement artefact may vary between the heel pin cluster 

marker and the heel cup cluster marker. The heel cup cluster marker is attached to the entire 

surface of the calcaneus, whereas the heel pin cluster marker is only attached to a small area 

on the lateral aspect of the calcaneus. Therefore, it is possible that more skin movement artefact 

is present with the use of the heel pin cluster marker. 

An effective way of removing the skin movement artefact occurrence from the results would 

be to use intra-cortical bone pins to assess rearfoot motion (Jones et al., 2012) as previously 

utilised by Westblad et al., 2002, who conducted a study to identify differences between intra-

cortical bone pin reflective markers and skin mounted reflective markers attached to the lower 

limbs and calcaneus when used to quantify rearfoot motion in three healthy participants. The 

skin mounted markers provided good results, which were comparable to the intra-cortical bone 

pin marker results, and root mean squared (RMS) differences to describe discrepancies between 

the intra-cortical pin and skin mounted reflective markers of tibio-calcaneal rotations, 

inversion/eversion, plantar/dorsiflexion, and abduction/adduction were 2.5º, 1.7º, and 2.8º 

respectively. Additionally, inversion/eversion about the talocalcaneal joint showed an RMS 

difference of 2.1º (Westblad et al., 2002). The discrepancies identified between the intra-

cortical bone pin reflective markers and the skin mounted reflective markers may have been 

caused by skin movement artefact between the skin and underlying bones. However, the study 

by Westblad et al., (2002) indicates that skin mounted reflective markers are an acceptable 

method of quantifying rearfoot motion, and since the RMS error was considered to be low 

within the Westblad et al., (2002) trial, the results of this section of the study using heel cup 

cluster and heel pin cluster reflective markers can be considered very good as the RMSD was 

less than 1.5 º in three planes of motion. The RMSD result therefore indicates that the 

differences present within the results of the heel cup cluster and heel pin cluster markers were 

likely due to skin movement artefact occurrence. However, the use of intra-cortical bone pins 

to quantify rearfoot motion is considered too invasive. Therefore, it is difficult to remove the 

incidence of skin movement artefact when quantifying rearfoot motion and results should be 

interpreted with this in mind. 

When assessing the difference between barefoot and shod walking, the data obtained indicated 

significant differences between the heel pin cluster in barefoot and the heel pin cluster within 

the shod condition. Utilising a heel pin cluster marker attached to the skin in shod to quantify 

rearfoot motion can be considered more accurate than the use of reflective markers fixed to the 

outside of the shoe surface during shod. Motion of the rearfoot may take place within the shoe, 
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and previous research has indicated that various parameters of rearfoot motion are significantly 

underestimated with the use of shoe mounted markers compared to heel pin cluster results 

attached to the skin through apertures in the shoes, meaning the shoe cannot be viewed as a 

rigid body (Stacoff et al., 1991, Stacoff et al., 2000, Bishop et al., 2012, Bishop et al., 2013). 

Similarly, Sinclair et al., (2013) concluded that shoe mounted markers do not fully represent 

true foot movement in shod, and that the foot in shod cannot be viewed as a rigid body, after 

comparing 3-dimensional tibiocalcaneal kinematics between reflective markers fixed 

externally on shoes and also on to the skin, attached through apertures made in the shoe 

(Sinclair et al., 2013). The heel cup cluster marker has been proven as an accurate method of 

quantifying rearfoot motion previously within the literature. However, no validation of the heel 

pin cluster has yet been conducted. Therefore, this research question compared the differences 

between the heel pin cluster and the heel cup cluster markers concurrently whilst participants 

walked in barefoot. 

Data from this research question suggests that eversion and inversion both increased in shod, 

demonstrating an increase in inversion and eversion compared to barefoot. This result 

represents a higher ROM of the rearfoot in shod than in barefoot. This finding may be due to 

the footwear used in the shod condition. Footwear was standard for all subjects involved in the 

study; however the sole of the shoe provides a larger amount of cushioning than when walking 

barefoot. The cushioning, footwear type and footwear material all influence rearfoot motion, 

and therefore this finding could possibly change depending on the type of footwear used, as 

implied in previous research by Stacoff et al., (1991), Morio et al., (2009), Tsai and Powers, 

(2009), Blanchette et al., (2011) who concluded that the type, structure and stiffness of 

footwear used within trials can affect rearfoot motion. Furthermore, the walking condition itself 

could have affected individual’s gait, and consequently rearfoot motion. Barefoot walking has 

previously been associated with decreased walking speed, decreased stride length, and 

decreased hip and knee joint moments, furthermore, increased cadence, and knee flexion and 

ankle plantarflexion angles, compared to walking in shod (Lythgo et al., 2009, Sacco et al., 

2010, Tsai and Lin, 2013). Changes in gait patterns in barefoot walking compared to shod 

walking coincide with cautious gait, suggesting that walking barefoot affects the confidence of 

individuals, and that footwear can affect gait stability (Menant et al., 2008, Tsai and Powers, 

2009, Blanchette et al., 2011) and barefoot walking is likely to be associated with increased 

balance in individuals (Tsai and Lin, 2013). Therefore, confidence of walking between barefoot 

and shod could influence rearfoot motion.  
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Additionally, individual participants may have been more aware of the cluster marker set when 

walking in barefoot, but less so in the shod walking condition, which may have influenced 

rearfoot motion. Results obtained for rearfoot abduction motion within the shod condition were 

variable, implying significant differences were present between the rearfoot motion in shod 

compared to barefoot when using a heel pin cluster marker. However, adduction and abduction 

in shod indicated no significant differences compared to barefoot data. Overall, the majority of 

the rearfoot abduction results indicated no significant differences between shod and barefoot. 

However, with regards to rearfoot motion, abduction decreased in shod compared to the 

barefoot condition. These findings indicate the foot is somewhat constricted by the shoe in the 

shod condition, as abduction decreased in shod, which further confirms findings by Stacoff et 

al., (1991) and Morio et al., (2009). 

The use of a heel pin cluster marker allows rearfoot motion to be represented and obtained in 

both shod and barefoot conditions, and also allows the differences between footwear conditions 

to be identified. Using a heel pin cluster marker therefore overcomes some difficulties 

experienced in previous research, such as allowing rearfoot motion to be accurately quantified 

in both barefoot and shod using the same device. The heel pin cluster marker provides an 

acceptable alternative to invasive intra-cortical bone markers and is more acceptable than shoe 

mounted reflective markers. Additionally, the heel pin cluster marker aims to ensure (as much 

as possible) the integrity of footwear used in shod conditions due to the small circumference 

of the heel pin marker device, requiring only a minimal alteration to the shoes, as opposed to 

requiring the removal of the entire heel counter. Furthermore, the heel pin cluster marker allows 

the foot to be quantified in segments, where the rearfoot can be quantified separately by 

attaching the heel pin cluster marker to the skin of the rearfoot through windows made in the 

shoes. Previous investigations within the literature used reflective markers fixed to the external 

surface of the shoes, where the foot and shoe were viewed as one rigid body, and possible foot 

motion inside the shoe was not entirely explored. However, the heel pin cluster marker does 

not allow the comparison between barefoot and shod walking, and therefore further research is 

needed.  

6.10 Conclusion 

These findings have important clinical implications regarding the efficacy of heel pin cluster 

markers, as results have indicated it was an accurate and acceptable method when compared 
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with heel cup cluster markers for determining the 3D motion of the rearfoot in three planes of 

motion (sagittal, frontal and transverse) in healthy subjects.  

With regards to the shod footwear condition, results identified differences between rearfoot 

motion in shod when compared to barefoot in three planes of motion (sagittal, frontal and 

transverse) in healthy subjects. Barefoot walking therefore cannot be viewed to be the same as 

shod, due to the effects of footwear on rearfoot motion and further research to understand these 

factors is required. These findings have important clinical implications for future research. 

Specifically in the understanding of rearfoot motion and its effects on the efficacy of 

interventions designed to reduce the loading on the medial compartment of the knee for the 

treatment of medial compartment knee osteoarthritis, such as lateral wedge insoles.  

However, the heel pin cluster is an acceptable method of quantifying both barefoot and shod 

rearfoot motion data. The footwear used within this study was a flat shoe, meaning there is 

little for the foot to be changed by a midsole. Therefore, the heel pin cluster marker can be 

considered an appropriate method to confidently determine rearfoot motion within variations 

of the shod footwear conditions in clinical research, to assess rearfoot motion in shod versus 

different orthotics in shod walking. Therefore, allowing challenges within previous literature 

concerning interventions in shod which used reflective markers on the outside of the shoe 

surface to be overcome.  

The findings of this section of the study will allow an advance in the understanding of 

investigations into orthotic interventions (particularly lateral wedge insoles) specifically 

designed for the conservative treatment of lower limb musculoskeletal conditions, such as 

medial compartment knee osteoarthritis on rearfoot motion, and their effects on the lower limbs 

in shod walking. Previous studies have investigated either barefoot walking, LWI attached to 

a barefoot with subtalar strapping (Kuroyanagi et al., 2007), or LWI in shod. With the 

exception of a study by Jones et al., (2012) no in-shoe data collection using a heel pin cluster 

marker examining the effect of a LWI on rearfoot motion in shod has been conducted. 

Quantifying rearfoot motion in shod with lateral wedge insole intervention using the heel pin 

cluster marker may provide inferences into the response and non-response to lateral wedge 

insoles on the external knee adduction moment in individuals with medial compartment knee 

osteoarthritis.  
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6.2 Research Question 2: What are the effects of a lateral wedge insole on rearfoot 

motion and the EKAM 

6.2.1 Introduction  

Measuring rearfoot kinematics in shod can be considered an effective tool to identify alterations 

in foot posture, allowing comparison between shod, varying insoles, and footwear conditions 

(Arnold and Bishop, 2013, Chapman et al., 2015). However, limited studies within the 

literature to date have investigated in-shoe rearfoot motion when wearing LWI. 

Hatfield et al., (2016) conducted an investigation which assessed the immediate alterations in 

ankle subtalar joint biomechanics with the use of two types of LWI (standard LWI and LWI 

with arch support) inserted into sandals, compared to a control sandal (no LWI) in 26 

participants with medial compartment knee OA, quantified using reflective markers attached 

to the skin of the foot around the sandal straps. Both the standard LWI and the LWI with arch 

support led to a significant reduction in the EKAM. The wearing of the standard LWI also 

resulted in small increases in eversion angles and moments at the ankle subtalar joint, however 

the LWI with added arch support did not (Hatfield et al., 2016). The use of sandals within the 

study may have led to different findings than with the use of a fully structured shoe. 

Furthermore, the foot was modelled as a rigid body within the study meaning only ankle 

subtalar joint biomechanics were assessed. Assessing the rearfoot as a separate segment may 

provide further understanding into rearfoot motion in shod and shod with a LWI. Therefore, 

further investigation using a fully structured shoe, with a heel pin cluster marker attached to 

the skin of the foot through apertures made in the shoe, meaning the foot would no longer be 

viewed as a rigid body is required in order to examine possible differences in rearfoot motion 

between shod and shod with LWI. 

Similarly, Chapman et al., (2015) conducted a study using reflective markers fixed onto the 

exterior of shoes to quantify rearfoot motion in a control shoe and in shod with LWI in 70 

patients with medial compartment knee OA, and viewed the foot as a rigid, single segment 

inside the shoe. Chapman et al., (2015) concluded that coronal plane ankle subtalar joint 

complex biomechanical measures play a key role in reducing the EKAM when wearing LWI 

after identifying that LWI shifted the centre of foot pressure laterally and caused an increase in 

eversion at the ankle subtalar joint complex and also the eversion moment compared to the 

control walking condition. The peak eversion ankle subtalar joint complex angle and the ankle 

peak EKAM angle in the control condition led to a prediction of individual EKAM reduction 
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in the LWI walking condition. However, it was stated that the use of a more sophisticated foot 

model allowing the differentiation between the rear and the forefoot would be more ideal to 

accurately quantify rearfoot motion in shod.  

Kakihana et al., (2005) assessed the biomechanical effects of LWI on the knee and subtalar 

joint moments of 13 elderly healthy individuals and 13 elderly knee OA patients during gait 

using a neutral insole and a LWI. Results demonstrated a significant decrease in knee joint 

varus moments and an increase in subtalar joint valgus moments in both healthy individuals 

and knee OA patients with the use of the LWI when compared to a neutral insole. The LWI 

caused a lateral shift in the centre of pressure during stance phase of the gait cycle, which may 

explain the decrease in the knee joint varus moment, indicating that the knee joint varus 

moment in OA patients is associated with the angle and moment of the subtalar joint during 

gait with the use of LWI (Kakihana et al., 2005). However, the study by Kakihana et al., (2005) 

used LWI attached directly to the barefoot of participants, and did not quantify the rearfoot 

motion of individuals in shod with LWI, therefore results must be interpreted with caution, as 

it is difficult to compare findings to those studies that quantified rearfoot motion with the use 

of a LWI in shod due to the possible effects of shoe structure, soles, and stiffness on rearfoot 

motion.  

Recent investigations by Butler et al., (2009) examined the effects of LWI when used for the 

conservative treatment of medial compartment knee OA on the frontal plane mechanics of the 

rearfoot and hip during walking in 30 patients with medial compartment knee osteoarthritis. 

Rearfoot motion was quantified using 3D reflective markers attached to the skin over the 

calcaneus, through windows made in the heel counter of training shoes (Butler et al., 2009), as 

opposed to markers fixed to the external surface of the shoes, which can lead to 

underestimations of rearfoot motion (Stacoff et al., 2001). Results showed that peak eversion, 

eversion excursion, and the peak eversion moment increased in LWI compared to no wedge, 

and also that the peak knee adduction moment decreased in the LWI walking condition 

compared to the no wedge walking condition. The study concluded that LWI result in increased 

rearfoot eversion and inversion moments, increased movement and joint moments at the 

rearfoot, and reducing joint moments at the knee. However, LWI used within the Butler et al., 

(2009) investigations were not standard ‘off the shelf’ insoles, but were semi-customised to 

individual participants, and the level of lateral wedging added to shoes varied from 5-15º 

between participants. Therefore, findings are not clear, due to the variation within the 

interventions used within the study. An investigation into rearfoot motion, quantified using a 
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heel pin cluster marker in shod utilising standard, ‘off the shelf’ identical LWI in varying shoe 

sizes has not been carried out previously within the literature, and is therefore needed. The 

study by Butler et al., (2009) states that findings were in agreement with those of Kakihana et 

al., (2005), however the variation in walking conditions within the two studies mean the 

findings are difficult to compare.  

In terms of accuracy and gold-standard marker collection, Jones et al., (2012) utilised intra-

cortical bone pins to determine the alterations in frontal plane foot and ankle motion and 

moments, eradicating the possible incidence of skin movement artefact, and observed an 

increase in subtalar joint eversion with LWI in shod. However, the kinematic response of some 

individuals was found to vary, potentially providing an insight into why an incidence of 

biomechanical non-response (no reduction in the EKAM) to LWI intervention exists. 

This study will therefore expand on research conducted by Kakihana et al., (2005), Butler et 

al., 2009, and Jones et al., (2012) and will quantify rearfoot motion in shod compared with 

LWI in shod using a heel pin cluster reflective marker device fixed to the skin of the foot on 

the lateral aspect of the calcaneus through small windows made in the shoe. Therefore, the aim 

of this investigation is to determine if a LWI alters rearfoot motion, and also, if a relationship 

exists between rearfoot motion and the EKAM when quantified using a heel pin cluster marker. 

6.2.2 The statistical hypotheses for this study: 

 There is no significant difference in rearfoot motion (quantified using a heel pin cluster) 

in LWI walking conditions compared to shod walking conditions in healthy subjects. 

 There is no relationship between rearfoot motion (quantified using a heel pin cluster) 

in shod and the EKAM in healthy subjects. 

 There is no relationship between rearfoot motion (quantified using a heel pin cluster) 

in LWI and the EKAM in healthy subjects. 

The methods used within this research question are identical to those used in section 6.1.3. 

Therefore, the heel pin cluster marker appraised above will be utilised in further investigations 

within this chapter.  

6.2.3 Data Collection  

Testing was carried out in the clinical gait laboratory at The University of Salford using 16 

OQUS infrared cameras (Qualisys AB Sweden), Qualisys Track manager (Qualisys AB 



200 

 

Sweden), and four integrated AMTI force plates (Advanced Mechanical Technology, Ins. 

USA) in order to capture the 3D positions of the retro reflective markers that were attached to 

each subject’s skin, over bony landmarks in both lower limbs.  

The methodology applied to this section was identical to the methodology described earlier 

within the chapter (section 6.1.3). 

Five successful walking trials were conducted on each participant at a self-selected speed. 

Walking trials were firstly carried out in the shod condition and secondly in shod with a 5° 

lateral wedge insole (LWI) (SalfordInsole) inserted into the shoe. Standardised, size 

appropriate footwear (Ecco, Zen) was provided for each participant for use within the study. 

Walking trials were only considered to be successful when the foot was placed completely on 

the force platform during stance phase. 

The heel pin cluster marker used within this study which represented the calcaneus segment 

using a four marker cluster attached to the lateral side of the calcaneus with a window made in 

the lateral aspect of the shoe measuring 2.5 x 2.5 cm (figure 6.4), allowing attachment to the 

skin using double sided tape. 

After the shod condition walking trials were completed, the heel pin cluster markers were 

removed in order to conduct further walking trials in the shod with LWI condition. The heel 

pin clusters were therefore removed (from both limbs) in order for the participant to be able to 

remove and replace the shoes on their feet. The skin attachment was left on the skin and was 

not removed, to ensure minimal error was present in the results, which would have affected the 

reliability of the cluster marker. If the skin attachment base of the cluster pin was removed, 

replacing it in the exact same position would be difficult. The investigator therefore took care 

to ensure it remained attached and placed tape over the skin attachment base to provide 

increased stability. The pin cluster markers are unscrewed from the skin attachment base, and 

the foot was carefully inserted into the shoe with the LWI inside by the participant with the aid 

of the investigator, to minimise the risk of the skin attachment base moving. Once the 

participant was in the shod with LWI condition, the pin cluster was screwed back into the skin 

attachment base through an opening made in the shoe. The walking trials in shod with LWI 

were then continued. 
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6.2.4 Data Analysis 

Kinematic and kinetic data was obtained for 15 healthy participants. A full explanation of 

building of the model and data analysis steps can be found earlier within the chapter (section 

6.1.7). The identical static model was used for both sets of walking, as no markers changed 

their location with the insertion of the LWI. Maxima and minima of the rearfoot motion were 

analysed in three planes; sagittal (dorsiflexion/plantarflexion), coronal (inversion/eversion) 

and (abduction/adduction)) and the two were compared using statistic test. The difference over 

the stance phase of the gait cycle mean value was then analysed in order to determine the 

differences between rearfoot motion represented by heel pin clusters in the shod and the shod 

with LWI footwear conditions. The rearfoot was defined as between the shank segment and 

the foot segment, and was tracked using the heel pin cluster marker. Data were calculated using 

the heel pin cluster in shod and shod with LWI in three planes of motion in order to determine 

if there were any differences between the two conditions. Statistical analysis including paired 

T-tests were conducted on the data obtained within the study after checking the data for 

normality. Also the normality testing was performed on each variable in order to identify the 

most suitable correlation coefficient test to apply. The Shapiro-Wilks test was applied for the 

15 healthy subjects Error bars depicted on the graphs within the results section represent the 

95% confidence interval (CI). 

6.2.5 Results 

This research question aimed to investigate rearfoot motion in healthy subjects in shod 

compared to shod with a LWI using a heel pin cluster device to determine if a LWI alters 

rearfoot motion. After conducting walking trials under both footwear conditions (shod and shod 

with a LWI inserted), no significant differences in speed between the two footwear conditions 

were observed (P = 0.311), (shod 1.22 ±0.14 m/s, shod with LWI 1.23 ±0.14 m/s). 

Results indicate significant differences in rearfoot motion were present during stance phase 

between the shod and LWI walking conditions in the three planes of motion (sagittal, coronal 

and transverse), with the exception of rearfoot abduction, which indicated significant 

differences. 

Results indicated significant differences in rearfoot motion were present between shod and 

LWI within the three planes of motion. Significant differences were also present in rearfoot 

plantarflexion and dorsiflexion in the sagittal plane of motion (p=0.04) (p=0.03), respectively. 

LWI led to an increase in plantarflexion by 2.95º and a decrease in dorsiflexion by 2.93º during 
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the stance phase of the gait cycle. In the coronal plane of motion, significant differences were 

also identified in rearfoot motion between shod and LWI. Eversion significantly increased by 

1.95º with the use of a LWI compared to shod (p=0.005), and inversion significantly decreased 

by 3.8 º in LWI compared to shod (p=0.01). 

Rearfoot abduction in LWI increased when compared to shod by 1.33 º (p = 0.04). However, 

rearfoot adduction indicated no significant differences between shod and LWI (p=0.45). 

The mean peak frontal plane minimum and maximum rearfoot motion and the EKAM in both 

shod and LWI walking conditions for individual subjects are depicted in table 6.7. 

Significant differences were identified in the first peak of stance phase (early stance) frontal 

plane minimum rearfoot motion between the shod and LWI walking conditions. LWI increased 

rearfoot eversion by 1.38 º (p=0.02). Conversely, no significant differences were found in first 

peak frontal plane maximum rearfoot inversion motion (p=0.36) (table 6.7). 
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Table 6.7 – The mean and standard deviation (SD) for all measurements for 15 participants in first peak. 

First Peak Frontal Plane (Inversion(+) Eversion (-) 

Subject 
Minimum 

Shod (°) 
Maximum 

Shod (°) 
Minimum  

LWI (°) 
Maximum 

LWI (°) 

EKAM 

Shod 

(Nm/kg) 

EKAM 

LWI 

(Nm/kg) 

1 1.879 8.143 -2.311 7.810 0.362 0.384 

2 -1.226 3.717 -1.954 3.893 0.376 0.182 

3 12.889 16.171 12.920 14.147 0.448 0.206 

4 -0.125 6.983 -3.021 6.915 0.621 0.603 

5 1.933 8.974 1.665 10.340 0.437 0.412 

6 0.012 7.447 -2.064 8.540 0.500 0.472 

7 2.065 8.526 1.302 6.641 0.377 0.362 

8 0.241 8.393 -3.829 7.226 0.342 0.379 

9 -2.875 6.300 -5.973 5.144 0.436 0.382 

10 -1.888 12.784 -2.237 10.614 0.300 0.242 

11 1.075 11.551 1.919 10.165 0.417 0.379 

12 -0.412 7.412 -1.535 8.350 0.387 0.277 

13 -3.757 8.877 -8.227 5.038 0.409 0.339 

14 5.735 11.925 5.457 11.431 0.453 0.457 

15 3.214 6.615 5.993 10.675 0.582 0.578 

Mean 1.251 8.921 -0.126 8.462 0.430 0.377 

SD (°) 3.884 2.966 5.089 2.688 0.086 0.121 

 

LWI: Lateral Wedge Insoles, EKAM: External Knee Adduction Moment, SD: Standard Deviation. Results in bold 

indicate biomechanical non-response (no reduction in the EKAM) to LWI intervention. – (negative): eversion, 

positive: inversion. 
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Figure 6.17: Rearfoot motion in shod and wedge in the sagittal plane, represented by a heel pin cluster. Error 

bars represent the mean 95%CI. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18: Rearfoot motion in shod and wedge in the coronal plane, represented by a heel pin cluster. Error 

bars represent the mean 95%CI. 
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Figure 6.19: Rearfoot motion in shod and wedge in the transverse plane, represented by a heel pin cluster. Error 

bars represent the mean 95%CI. 

External knee adduction moment (EKAM) was calculated during the walking trials, and a 

reduction in the EKAM was identified in the LWI condition compared to in shod (p=0.018) 

(shod EKAM 0.430 (±0.086) Nm/kg, LWI EKAM 0.377 (±0.121) Nm/kg) (figure 6.20) (table 

6.6). 

Of the 15 subjects, 12 subjects were biomechanical responders to the LWI walking condition, 

and 3 (subject numbers 1, 8, and 14) were biomechanical non-responders to LWI, and therefore 

did not show a reduction in the EKAM (table 6.6). 
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Figure 6.20 – Graph depicting the EKAM in both shod and lateral wedge insoles walking conditions. Error bars 

represent the 95%CI for the shod and LWI walking conditions. 

 

Table 6.8: Differences between rearfoot motion in shod and LWI relative to the laboratory frame and the tibia. 

 

SD: Standard Deviation, Relative_Tibia:  Relative to the tibia, Mean min:  mean minimum, Mean max: Mean 

maximum, (Wedge, W: Lateral wedge insoles, Dorsi Flex: Dorsi flexion, Plantar Flex: Plantar flexion. 

 

Results indicated no association was present between the EKAM and rearfoot eversion, and 

the EKAM and inversion of the rearfoot in shod (p=0.903) (p=0.891) respectively (table 6.9). 

Furthermore, no association existed between the EKAM and rearfoot eversion and the EKAM 

and rearfoot inversion when wearing LWI (p=0.475) (p=0.492) respectively (table 6.9).  
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Wedge Shod Wedge SD Shod (°) SD W (°) P value Wedge Shod Wedge SD Shod (°) SD W (°) P value

Plantar Flex (X) 1.69 -1.26 3.87 5.32 0.048 Dorsi Flex    (X) 19.43 16.50 3.73 6.50 0.035

Eversion        (Y) 1.25 -0.70 4.02 4.88 0.005 Inversion     (Y) 16.03 12.23 2.52 4.63 0.015

Abduction    (Z) -4.06 -5.39 3.49 4.00 0.045 Adduction   (Z) 7.03 7.58 3.71 5.33 0.458

Wedge Shod Wedge SD Shod (°) SD W (°) P value Wedge Shod Wedge SD Shod (°) SD W (°) P value

Eversion       (Y) 1.25 -0.13 3.88 5.09 0.02 Inversion     (Y) 8.92 8.46 2.97 2.69 0.360

Rearfoot angle at first peak EKAM

Mean min (°) Mean max (°)
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Table.6.9 The relationship between EKAM and the rearfoot motion in shod and lateral wedge insoles in healthy 

subjects 

 

 

 

 

 

EKAM: External Knee Adduction Moment, LWI: Lateral Wedge Insoles, r: Pearson Coefficient Correlation 

(parametric) 

6.2.6 Discussion  

This research question aimed to investigate differences in rearfoot kinematics between shod 

and shod with LWI, represented by a heel pin cluster marker. The heel pin cluster marker has 

been verified as a reliable method of quantifying rearfoot motion in shod in previous 

investigations by the researcher (section 6.1) and thus, was utilised within this research 

question. 

Results of in-shod versus LWI in-shod identified significant differences between the two 

conditions to be present in all three planes of motion in stance phase. Additionally, during the 

first peak of minimum frontal plane rearfoot motion, significant differences were present 

between shod and LWI, this may have been caused by the influence of the LWI on the rearfoot 

during the stance phase and the first peak of heel strike. The rearfoot makes contact with the 

ground during heel strike of the gait cycle, and the first peak in EKAM is related to this time 

period of the gait cycle. The LWI causes the centre of pressure in the foot to shift laterally, 

causing eversion of the foot, and a reduction in EKAM (Kakihana et al., 2005). In agreement 

with Kakihana et al., (2005), Butler et al., (2009) similarly stated that walking with a LWI 

increases the eversion moment, peak eversion, and eversion excursion at the rearfoot. 

The rearfoot motion in shod compared with LWI in shod during stance phase indicated 

statistically significant differences of approximately 1 to 3°. In the sagittal, frontal and 

transverse planes, minimum plantarflexion, eversion and abduction increased in the shod with 

LWI condition compared to the shod condition. In addition, dorsiflexion and inversion 

decreased in the shod with LWI condition compared to shod. Plantarflexion and eversion may 

have increased due to the LWI being higher on the lateral side, causing lifting of the lateral 

Measurements in First Peak  Correlations (P-Value) 

EKAM vs Eversion Shod r= -0.035 (0.903) 

EKAM vs Inversion Shod r= 0.039 (0.891) 

EKAM vs Eversion LWI r= 0.200 (0.475) 

EKAM vs Inversion LWI r= -0.192 (0.492) 
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side of the foot. Dorsiflexion and inversion perhaps decreased due to the medial side of the foot 

being lower within the shoe than the lateral side when the LWI was inserted, which may have 

led to the decrease in the EKAM.  

The EKAM results indicate that the LWI had an effect on joint loading, and the use of a LWI 

led to small differences in the kinematics of the rearfoot. Therefore, a slight change in 

kinematics of the rearfoot appears to cause a change in the EKAM. Similarly, Chapman et al., 

(2015) suggested that coronal plane ankle-subtalar joint complex biomechanical parameters 

contribute to the reduction of the EKAM when wearing LWI. Alterations in rearfoot kinematics 

with the use of a LWI in this study were minimal, and therefore some differences may have 

been caused by skin movement artefact occurring around the LWI due to differences in the sole 

of the shoe caused by the LWI itself.  

Rearfoot motion during stance phase in the sagittal and coronal planes indicated significant 

differences between the shod and shod with LWI conditions. In the transverse plane of motion, 

abduction and adduction provided inconsistent results, perhaps due to the footwear used within 

the study and possible skin movement artefact occurrence. It can be concluded that the LWI 

causes a better fit of the shoe to the foot, therefore constricting the rearfoot motion of the foot 

within the shoe. Abduction and adduction in shod compared to the barefoot condition provided 

inconsistent results. However, the findings indicate the foot is somewhat constricted by the 

shoe with LWI, which further confirms findings by Stacoff et al., (1991) and Morio et al., 

(2009). 

The increased amount of eversion identified within the trial was correspondingly reported by 

Butler et al., (2009). The Butler et al., (2009) study examined the effects of LWI when used 

for the conservative treatment of medial compartment knee OA on the frontal plane mechanics 

of the rearfoot and hip during walking in 30 patients with medial compartment knee 

osteoarthritis. Three-dimensional reflective markers attached to the skin over the calcaneus, 

through windows made in the heel counter of training shoes were utilised. Findings of the 

Butler et al., (2009) study suggested that the increased amount of rearfoot motion identified 

with the use of a LWI requires greater muscle torques in order to control the increased rearfoot 

motion with the use of LWI. Furthermore, variation in results regarding eversion when wearing 

a LWI in shod was stated in previous studies by Kakihana et al., (2005) and Kakihana et al., 

(2007), who observed an increase in eversion and also an increase in the frontal plane moment 

with the use of a 6º LWI attached directly to the barefoot of participants, implied as being 
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related to the centre of pressure of the foot and the subtalar joint. The study by Butler et al., 

(2009) states that findings were in agreement with those of Kakihana et al., (2005), however 

the variation in walking conditions between the studies mean the findings are difficult to 

compare. 

Chapman et al., (2015) conducted a trial using 70 patients with medial compartment knee OA 

who underwent gait analysis whilst walking in a control shoe and a LWI. An increase in 

eversion at the ankle/subtalar joint complex, and greater eversion moments were identified in 

the LWI condition compared to the control condition. These biomechanical responses to LWI 

could be key in reducing medial compartment knee joint loading, especially when considering 

that Hinman et al., (2012) identified that a shift in the centre pressure in the foot caused a shift 

in the GRF towards the centre of the knee, therefore reducing the EKAM (Chapman et al., 

2015). 

However, in healthy subjects, when using a heel pin cluster marker to quantify rearfoot motion 

in shod and shod with LWI walking conditions, the rearfoot did not show any statistically 

significant relationship to rearfoot inversion and eversion and the magnitude of the EKAM in 

shod. Additionally, no statistically significant association existed between rearfoot inversion 

and eversion and the magnitude of the EKAM in shod with LWI. 

Inconsistent findings were identified in results concerning inversion and eversion rearfoot 

motion in shod and in shod with LWI in both biomechanical non-responders and biomechanical 

responders in individuals. Therefore, no specific differences were detected in rearfoot motion 

between responders and non-responders. This could be because the subjects within the study 

were healthy, and presented no lower limb pathologies. 

Considering these findings, it can be stated that rearfoot motion cannot predict the magnitude 

of the EKAM in healthy subjects. Therefore, further investigation is required to understand 

biomechanical response and non-response to LWI intervention.  

Foot motion, specifically pronation is commonly accepted as influencing the kinematic pattern 

of the lower extremities, including the tibia (Reischi et al., 1999). Therefore, further 

investigation concerning the tibia may provide an insight into biomechanical response and non-

response to LWI intervention. However, a study by Reischi et al., (1999) concluded that the 

magnitude and timing of peak foot pronation was not predictive of the magnitude and timing 

of tibial rotation, indicating that the tibia may move independently of the rearfoot, and that the 

motion of the tibia varies when compared to the motion of the rearfoot. For example, if the 
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centre of foot pressure shifts laterally, and the GRF moves closer to the centre of the knee joint 

a reduction in the EKAM occurs and an individual is classified as a biomechanical responder 

to LWI. However, in a number individuals the tibia may move differently, away from the 

moment arm for example, which would cause an increase in the EKAM, causing an individual 

to be classed as a biomechanical non-responder to LWI intervention. The motion of the tibia 

may therefore affect the efficacy of LWI in individuals, and therefore further investigation 

using both healthy subjects and patients with medial compartment knee OA is required. 

6.2.7 Conclusion 

In conclusion, significant differences existed between shod and LWI walking conditions with 

regards to rearfoot motion when represented using a heel pin cluster marker during stance phase 

of the gait cycle. Moreover, significant differences were present between shod and LWI in 

minimum frontal plane rearfoot motion in the first peak of stance phase. The changes in rearfoot 

motion with the use of a LWI compared to shod identified within the walking trials may allow 

a change in kinetics, leading to a reduction in the EKAM, and therefore reducing the load at 

the medial compartment of the knee joint. Findings imply that rearfoot motion may be 

considerably influenced by LWI. However, no relationship exists between rearfoot motion and 

the EKAM, and the minimum and maximum frontal plane rearfoot motion of individuals was 

inconsistent with magnitude the EKAM. Therefore rearfoot motion cannot independently 

predict the magnitude of the EKAM (biomechanical response and non-response to LWI) in 

healthy subjects. 

Rearfoot motion may therefore be important in initiating alteration in the EKAM. Further 

research is therefore required using a heel pin cluster marker in patients with medial 

compartment knee osteoarthritis, which may lead to increased understanding of rearfoot motion 

and biomechanical response and non-response to LWI. 
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6.3 Does walking speed affect the biomechanical response when wearing lateral wedge 

insoles? 

6.3.1 Introduction 

Certain musculoskeletal conditions, specifically osteoarthritis (OA) of the knee, cause a 

reduction in walking speed compared to healthy participants (Kaufman et al., 2001, Al-Zahrani 

and Bakheit, 2002, Mundermann et al., 2003, Zeni et al., 2010, Mills et al., 2013, Henderson 

et al., 2015) associated with a decreased stride length and an increase in stance time during the 

gait cycle (Al-Zahrani and Bakheit, 2002, Landry et al., 2007).  

Previous research has concluded that the clinical state of a patient is reflected in his or her 

walking speed, with slower walking speeds related to the further disease progression of medial 

compartment knee OA (Andriacchi et al., 1977, Brinkmann et al., 1985, Mills et al., 2013). A 

number of musculoskeletal conditions cause deviations from a normal gait cycle (Mundermann 

et al., 2003). In patients with knee OA, an altered gait style is adapted, which differs from the 

walking style of healthy controls. Mundermann et al., (2003) observed medial compartment 

knee OA patients to adopt a walking style that reduced the EKAM when walking at slower 

speeds, which is likely to reduce the load on the knee joint, therefore providing some symptom 

(pain) relief (Robon et al., 2000, Mundermann et al., 2003, Mundermann et al., 2004). 

The consequences of varying walking speed are a fundamental concern in gait studies when 

measurements are based on the level of GRF and acceleration, due to the effects of walking 

speed on the EKAM and the subsequent impact on knee joint loading (Zeni and Higginson, 

2009, Wilson, 2012). An increase in walking speed often causes an increase in the load at the 

knee joint, caused by an increase in the dynamic ground reaction forces that are proportional 

to the walking speed (Wilson, 2008, Zeni and Higginson, 2009, Zeni and Higginson, 2010, 

Foroughi et al., 2010). In addition, a study by Zeni and Higginson, (2009) identified alterations 

in gait parameters to be caused by slower walking speeds, when walking speeds were freely 

chosen by participants, rather than a result of knee OA disease progression. 

It is well known that LWI cause a reduction in the EKAM compared to flat, or neutral (non-

wedged) insoles, and they have been suggested as an effective intervention method to achieve 

a reduction in the EKAM therefore shifting a proportion of the load away from the medial 

compartment of the knee joint to the lateral compartment and providing some OA symptom 

relief (Hinman et al., 2008, Hinman et al., 2009, Bennell et al., 2011, Zhang et al., 2012, Jones 

et al., 2012, Skou et al., 2013). It is not known whether an increase in walking speed (which 
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would increase the vertical ground reaction force) would reduce the effectiveness of a LWI. A 

number of studies have identified an increase in walking speed with LWI intervention, 

however, it is unknown if the increase in walking speed would reduce the effectiveness of the 

LWI. Chapman et al., (2015) conducted a trial involving 70 patients with medial compartment 

knee OA using a control shoe (shod) and a LWI inserted into the shoe. A small and insignificant 

difference was identified between conditions (mean shod – 1.163m/s, mean wedge – 1.166m/s).  

Similarly, Hsu et al., (2015) investigated the effects of a 6 week LWI intervention on 10 female 

medial compartment bilateral knee OA patients. Patients were required to wear the LWI for at 

least 6.5 hours a day for the 6 week period. Results presented not statistically significant 

differences in walking speed between the barefoot and shod with LWI conditions at both 

baseline and follow up (mean walking speed for all participants at baseline barefoot – 0.77m/s, 

baseline LWI – 0.78m/s, mean walking speed for all participants at follow-up barefoot – 

0.90m/s, follow-up LWI – 0.85m/s).  

Moreover, Hinman et al., (2009) identified an immediate increase in walking speed of 0.6% 

using a LWI inserted into the shoes (personal shoes) of 20 patients with medial compartment 

knee OA, compared to shod. After 1 month however, the increase in walking speed between 

shod and shod with LWI was only 0.1%. Findings were therefore insignificant.  

However, Jones et al., (2012) identified significant increases in walking speed after the two 

week use of a LWI for four or more hours per day in patient’s own shoes in 28 patients with 

medial compartment knee OA. Walking speed was significantly increased with the use of a 

LWI (1.18m/s) compared to baseline. Reductions in pain were also reported with the use of the 

LWI (WOMAC pain score post LWI – 38.6 against baseline).  

In addition to the reductions in pain identified within the Jones et al., (2012) trial, Hinman et 

al., (2008) reported an immediate reduction of 24% in pain during walking with the use of a 

LWI in shod versus shod in 40 knee OA patients. However, walking speed was similar across 

conditions (0.14m/s in shod and 0.15m/s in shod with a LWI). In contrast, a long term trial by 

Bennell et al., (2011) using 200 medial compartment knee OA patients found no reduction in 

pain with the use of a LWI compared to a neutral insole in shod. Similar findings were reported 

by Baker et al., (2007) who identified no significant or clinically important pain reductions in 

90 knee OA patients after using a LWI for six weeks, compared to a neutral insole.  

LWI reduce the EKAM (Jones et al., 2012) but an increased walking speed increases the 

EKAM (Zeni and Higginson, 2009, Zeni and Higginson, 2010, Foroughi et al., 2010). No study 
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exists within the literature which investigates the role that increased walking speed has on the 

magnitude of the EKAM when wearing LWI compared to the role that increasing the walking 

speed has on the magnitude of the EKAM in shod.  

Therefore, the aim of this research question was to investigate the possible effects and impact 

of varying walking speeds on the magnitude of the EKAM when wearing LWI in healthy 

subjects. Given that interventions such as LWI reduced the EKAM in previous studies, it is 

unknown if an increase in walking speed could influence the efficacy and therefore 

biomechanical response to LWI, meaning that the possible reduction in the EKAM caused by 

the LWI in the initial baseline assessment may be diminished, or negated. 

In the previous chapter with medial compartment osteoarthritis individuals (Chapter 5) it was 

seen that there was a difference albeit small in walking speed between the responders and non-

responders. Furthermore, previous research has also identified a change in walking speed once 

an intervention is worn. However, it is unknown how walking speed affects the reduction of 

the EKAM and whether the reductions are consistent with speed changes. Individuals with 

medial compartment knee osteoarthritis walk at different speeds and therefore it is unknown if 

the ones who walk faster have a smaller reduction in their EKAM on treatment and may mask 

the overall % reduction in the sample. Unfortunately, the data is not available to be able to 

examine this question and therefore examining these speed changes is needed. 

Due to the amount of walking and the dynamic impact at higher walking speeds, most patients 

would find it extremely challenging to complete the required walking trials. It is also unwise 

to ask individuals to walk at greater speeds in an intervention that they are not accustomed to, 

and therefore, the research question was performed on the healthy subjects. However, given 

that the majority of studies on lateral wedge insoles do cross over the healthy-OA paradigm, 

the outcome from the analysis will be equally as effective in gaining an understanding of the 

joint effect of walking speed and LWI on the magnitude of the EKAM. 

6.3.2 The statistical hypotheses for this research question 

 There is no significant difference in reduction of the EKAM between self-selected and 

increased walking speeds with the use of lateral wedge insole intervention compared to 

shod in healthy subjects. 
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6.3.3 Methodology 

Fifteen healthy participants (7 males, 8 females) were recruited to take part in the study. 

Participants were required to be free from lower limb injury for a period of at least six months 

prior to testing (injury was defined as any musculoskeletal complaint that prevented the 

participant from undertaking their normal exercise or daily routine), and to have no history of 

lower limb surgery. The protocol of the study was reviewed and approved by the ethic 

committee at the University of Salford. All subjects provided informed consent before 

participation. The mean and standard deviation (SD) demographic characteristics of all fifteen 

participants are depicted in table 6.1. 

For each subject, five successful walking trials were captured for each walking condition (shod 

and shod with a LWI), firstly at a self-selected speed, and then at 20% faster than the self-

selected speed. The 20% increased walking speed was chosen as this was deemed large enough 

an increase to examine the response of the lateral wedge insoles to this change in speed. Whilst 

this maybe higher than differences in speeds in patients, it was felt that in individuals who walk 

with a higher speed may mask some of the differences due to a lower reduction in the EKAM. 

Walking speed was controlled with timing gates, with the 20% greater speed calculated from 

individual subjects self-selected speeds (using the maximum increased by 0.5% for error, and 

the minimum, reduced by 0.5% for error, calculated by finding the average of three walking 

trials). All walks that did not fall into the cut off points calculated using the minimum and 

maximum (too fast or too slow) were excluded from the data analysis. Participants were 

advised to adjust the walking speed to make it within the controlled range.  

A walking trial was only considered successful after participants full feet made contact with 

both force plates (embedded into the floor in the gait laboratory) during the stance phase of the 

gait cycle. Walking trials were firstly conducted in the shod condition and secondly, in shod 

with a 5° LWI (SalfordInsole) inserted into the shoe. Standardised, size appropriate footwear 

(Ecco, Zen) was provided for each participant for use within the study. Five successful walking 

trials were recorded for each trial condition. Overall, six different conditions were undertaken 

within the study (shod at a self-selected speed and shod at a 20% greater than self-selected 

speed, shod with LWI at a self-selected speed and shod with a LWI at a 20% greater speed). 

All walking trials were carried out during a single visit to the gait lab. 

Data collection, equipment used and the trial procedures were the same as those utilised 

previously within this chapter (sections 6.1.3 and 6.1.4). 
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6.3.4 Data Analysis 

Kinetic data was obtained for 15 lower limbs. Following data collection, all joint kinetic data 

was processed using Qualysis Track Manager software where each marker was labelled and 

digitised, and any anomalies in movements in marker trajectories were corrected. A full 

explanation of the data analysis steps employed within this section are presented within (section 

6.1.7). 

Statistical Analysis 

The first peak EKAM during stance phase was analysed for both shod and shod with LWI 

walking conditions. Normality testing was applied to determine the distribution of the data. 

The Shapiro-Wilks test was applied for the 15 healthy subjects (both left and right limbs). The 

majority of the data were normally distributed (parametric), and therefore paired T-tests were 

performed in order to identify any statistically significant differences between the shod and 

shod with LWI interventions, carried out using SPSS software. 

6.3.5 Results 

The average self-selected walking speed for the participants was 1.22 m/s (±0.135) in shod, 

and 1.23 m/s (±0.139) in the LWI condition (p=0.159) indicating no significant differences 

between the two walking conditions at self-selected walking speeds. The average 20% 

increased walking speed for participants was 1.50 m/s (±0.164) in shod, and 1.51 m/s (±0.171) 

in the LWI condition (p=0.195), indicating no significant differences between the two walking 

conditions at 20% increased walking speeds. Unsurprisingly, when comparing between the 

self-selected walking speed and increase 20% walking speed in shod and LWI indicated 

significant differences between the two different walking speed (p=<0.001) (p=<0.001) 

respectively. 

The results also indicated, that unsurprisingly, a reduction in the EKAM was observed when 

wearing a LWI compared to shod. Expectedly, the results showed that in both footwear 

conditions (shod and shod with LWI), a 20% increase in walking speed from self-selected 

speed led to an increase in the vertical ground reaction force and the first peak of EKAM in 

stance. The GRF and EKAM normalised to body mass are presented in table 6.11 and table 

6.12. 
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Table 6.10 – Mean EKAM in shod and LWI walking conditions in limbs of all 15 subjects 

. 

 

 

 

 

 

 

 

 

 

 

EKAM: External Knee Adduction Moment, Wedge: Lateral Wedge Insole, Fast: Faster walking speed, SD: 

Standard Deviation.  

                                      

 

 

 

 

 

 

 

 
Knee EKAM (Nm/kg) 

Subject Shod Shod Fast Wedge Wedge 

Fast 

1 0.362 0.456 0.384 0.434 

2 0.376 0.291 0.182 0.196 

3 0.448 0.396 0.206 0.362 

4 0.621 0.708 0.603 0.641 

5 0.437 0.564 0.412 0.552 

6 0.500 0.511 0.472 0.496 

7 0.377 0.404 0.362 0.391 

8 0.342 0.430 0.379 0.533 

9 0.436 0.522 0.382 0.473 

10 0.300 0.341 0.242 0.349 

11 0.417 0.461 0.379 0.469 

12 0.387 0.457 0.277 0.432 

13 0.409 0.423 0.339 0.379 

14 0.453 0.530 0.457 0.533 

15 0.582 0.686 0.578 0.618 

Mean 0.430 0.479 0.377 0.457 

SD 0.086 0.114 0.121 0.114 
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 Table: 6.11 - The EKAM (Nm/Kg) of all walking conditions. 

 

 

 

 

                                  (SD = Standard deviation, EKAM = External knee adduction moment). 

 

Table: 6.12 -Vertical GRF of all walking conditions. 

 

 

 

(F = Fast, SD = Standard deviation, GRF = Ground Reaction Force). 

The results indicate that at self-selected walking speed, the walking condition (shod, and shod 

with LWI) did not alter the GRF, which allows comparison between the two conditions. When 

walking speed increased, the dynamic force between foot and ground would increase 

accordingly. The vertical GRF results for the 15 limbs indicated an increase of 8.1-10.1% in 

the first peak, i.e. from 1.1 times of body weight to 1.2 times which were the same amount of 

increase in the two conditions. 

 

When walking speed was increased by 20% from self-selected walking speed, significant 

differences were identified in both shod and LWI. When walking at a 20% increased speed 

with LWI compared to a self-selected speed with LWI, the EKAM increased by 21.3% 

(p=<0.001) (mean difference 0.08 Nm/kg). The 20% increase in walking speed led to an 

increase in the EKAM in the shod condition (P<0.001). 

 

 
                 Knee EKAM 

Conditions EKAM (Nm/Kg) SD (°) 

Shod 0.43 0.086 

Shod Fast 0.479 0.114 

Wedge 0.377 0.121 

Wedge Fast 0.457 0.114 

Conditions GRF SD (°) 

Shod 1.11 0.07 

Shod F 1.22 0.09 

Wedge 1.12 0.07 

Wedge F 1.22 0.09 
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When walking at self-selected speeds, the use of a LWI led to a significant decrease of 12.3% 

(p=0.018) in the EKAM compared to shod in (mean difference 0.05 Nm/kg). 

 

The results indicate that when walking at the 20% increased speed, the reduction in the EKAM 

in LWI compared to shod was 4.46% (p=0.09) (mean difference 0.02 Nm/kg). However, the 

reductions in the EKAM were not statistically significant (figure 6.21) (table 6.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: 6.21 - The EKAM in shod versus wedge at self-selected speeds and shod fast versus shod with LWI 20% 

increased walking speed in the left knee. 

 

When looking at the individual subject response to the lateral wedge insoles at the two different 

speeds, it was seen that 12 individuals had a reduction in EKAM at the self-selected speed, and 

three individuals did not have a reduction in EKAM. At the faster walking speed, 10 individuals 

had a reduction in EKAM, and 5 individuals did not have a reduction in EKAM. 

Therefore, in alignment with chapter 5 on biomechanical response and non-response, it can be 

seen that 12 individuals would have been classed as biomechanical responders at the self-

selected walking speed. 

 

6.3.6 Discussion 

The research question aimed to gain an understanding of the effect of walking speeds and LWI 

on the magnitude of the EKAM. Results indicate that LWI are an effective intervention for 
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initiating a reduction in the EKAM when walking at both a self-selected walking speed, and a 

walking speed 20% faster than self-selected walking speed. The use of LWI can result in a 

reduction of the EKAM as the results demonstrated. Previous investigations by Butler et al., 

(2007), Hinman et al., (2008) and Jones et al., (2012) also identified a reduction in the EKAM 

with the use of LWI, suggesting that LWI could be an effective intervention in reducing the 

EKAM by alleviating a proportion of the force transmitted through the medial compartment of 

the knee joint (Shelburne et al., 2008). The reduction in EKAM is theorised to be achieved by 

moving the centre of pressure laterally up to 5mm, which would result in the reduction of the 

resultant valgus moment arm (Kerrigan et al., 2002, Shelburne et al., 2008, Hinman and 

Bennell, 2009). However, in the previous chapter, it was identified that there are inconsistent 

reductions in EKAM when wearing lateral wedge insoles, linking in the biomechanical 

responders and non-responders. One of the factors for these individuals may have been their 

overall walking speed, and this is demonstrated here where the overall reduction decreases 

once a change in speed (albeit quite a reasonable increase) is seen.  

Findings show that the use of a LWI when walking at self-selected speeds compared to shod 

leads to a reduction in the EKAM. Results identified that when increasing walking speed by 

20%, a reduction in the EKAM was achieved in the LWI walking condition compared to shod. 

However, the reduction in the EKAM was not statistically significant.  

The minimal reduction in the EKAM identified in the LWI walking condition when walking 

speed was increased by 20% from self-selected speed may suggest that faster walking speeds 

reduce the efficacy of LWI. When subjects walked at a 20% increased speed in shod with LWI, 

compared to a self-selected speed in shod with LWI, the EKAM increased by 21.3% 

(p=<0.001) in the left limb. Therefore, an increase in walking speed may affect the response to 

LWI in patients with medial compartment knee OA.  

 

An increased walking speed results in a shortening of the stance phase of the gait cycle, perhaps 

not providing enough time for the centre of foot pressure to shift laterally, even with the use of 

a LWI, therefore only affecting the magnitude of the EKAM minimally, subsequently leading 

to a small reduction in the EKAM.  

 

Adopting a slower walking speed could therefore increase the effectiveness of LWI, as a slower 

walking speed requires reduced levels of knee flexion, and consequently lower levels of shock 

absorption to help reduce the load on the knee joint (Mundermann et al., 2004, Foroughi et al., 
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2010). However, a slower speed of walking was not assessed in this chapter as the majority of 

the literature with interventions demonstrates increases rather than decreases in speed. Hinman 

et al., (2009) identified insignificant increases in walking speed after one month of using a LWI 

in shod, compared to shod only. Additionally, Jones et al., (2012) identified a reduction in pain 

and a significant increase in walking speed after comparing walking with a LWI to shod only 

in 28 patients with medial compartment knee OA after a two week intervention period.  

However, LWI have proven ineffective at improving symptoms or slowing disease progression 

in some clinical trials, and reductions in the peak EKAM are occasionally not consistent across 

all study findings, with some trials reporting that LWI had no effect on the EKAM (Pham et 

al., 2004, Baker et al., 2007, Hinman et al., 2008, Barrios et al., 2009, Bennell et al., 2011, 

Chapman et al., 2015).  

The above results note that 3 individuals would have been classified as biomechanical non-

responders and 12 individuals as biomechanical responders to LWI when walking at the self-

selected speed. When at the faster speed, 10 individuals were biomechanical responders and 5 

were biomechanical non-responders. This raises questions in terms of the LWI construction. 

The inconsistencies in LWI effectiveness could be due to the varying types of LWI available, 

and the differences in design and materials used, including; thickness, length, wedge gradient, 

and presence of arch support. A higher density, firmer manufacturing material (providing a 

varying sole stiffness and varying firmness when compressed during weight bearing) could 

potentially affect the EKAM reduction percentage (Hinman et al., 2008, Nakajima et al., 2009, 

Hinman et al., 2009, Jones et al., 2015). 

Whilst a full length LWI extends along the length of the entire foot, and the whole foot makes 

contact with the ground during the gait cycle, not just the rearfoot. Full length LWI, rather than 

heel only LWI should therefore be used for the treatment of individuals with medial 

compartment knee OA, and within this research question, a standard full length tapered LWI 

(SalfordInsole) was used. The most common angulation of LWI used for the treatment of 

medial compartment knee OA within the existing literature is 5º (Jones et al., 2015, Yilmaz et 

al., 2015). Tipnis et al., (2014) investigated the effect of incrementally increasing LWI wedge 

degrees on the EKAM and individuals subjective comfort. The Tipnis et al., (2014) study 

concluded that wedge amounts greater than 6º generated little additional mechanical changes 

or benefits, and wedge amounts greater than 8º negatively affected individual’s subjective 

comfort. Lateral wedging between 4-6º was considered optimal to produce desirable 
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biomechanical changes and higher comfort perception in individuals (Tipnis et al., 2014). 

Although shown to be effective in reducing medial knee loads, an inclination exceeding 10º 

has been found to cause foot discomfort for subjects within trials, and therefore the majority of 

trials use the optimal comfort wedge inclination of 5º (Kerrigan et al., 2002, Hinman et al., 

2009, Hinman et al., 2012, Chapman et al., 2015, Yilmaz et al., 2015). This research question 

therefore utilised a 5º LWI for all LWI footwear conditions within walking trials, however 

further investigation surrounding differing LWI gradients is required as it might be that 

different amounts throughout the length of the lateral wedge (e.g., 10 degrees more distally 

from the heel) would allow a reduction in first peak EKAM as the foot became plantigrade but 

would still allow comfortable fitting inside the shoe. 

When walking at a 20% increase of self-selected walking speed in shod, compared to a 20% 

increase of self-selected walking speed in shod with a 5º LWI inserted, a reduction of 3.15% 

in the EKAM was identified when individuals walked at the faster speed in shod with LWI. 

The reduction in the EKAM was not statistically significant however. In addition to the 

combination wedge idea, a further reduction in the EKAM could potentially be achieved by 

using LWI of varying wedge gradients or material density in future study.  

6.3.7 Conclusion 

The use of LWI in the study provided a reduction in the EKAM compared to the shod condition 

at self-selected walking speeds. This finding indicates LWI to be a beneficial intervention when 

used in healthy subjects to reduce the EKAM at normal walking speed. Minimal insignificant 

reductions in the EKAM when walking speed was increased by 20% when wearing LWI, 

compared to the shod condition were identified. Therefore, walking at increased speeds 

impacted the efficacy of LWI within this study. These findings have not previously been 

reported within the literature and have significant clinical implications for future research 

surrounding conservative treatment methods for knee OA and increased walking speeds when 

pain is reduced in individuals. Walking speed therefore requires further research, and future 

investigations should utilise varying gradients and designs of LWI at varying walking speeds 

in patients with medial compartment knee OA as these may be a factor affecting the 

biomechanical response of individuals to LWI intervention. 
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6.4 Chapter Summary     

Investigations conducted within chapter six firstly identified the heel pin cluster marker to be 

an accurate and acceptable method for determining the 3D motion of the rearfoot in three planes 

of motion (sagittal, frontal and transverse) in healthy subjects when compared with a heel cup 

cluster marker. Findings have important clinical implications regarding the efficacy of heel pin 

cluster markers. Since the heel pin cluster marker was recognised as an acceptable method of 

quantifying rearfoot motion in barefoot, the heel pin cluster marker was utilised to assess 

rearfoot motion in shod. Differences were identified between rearfoot motion in shod when 

compared to barefoot in three planes of motion (sagittal, frontal and transverse) in healthy 

subjects. Barefoot walking therefore cannot be viewed to be the same as shod, due to the effects 

of footwear on rearfoot motion. These findings have important clinical implications for future 

research, specifically in the understanding of rearfoot motion and its effects on the efficacy of 

interventions designed to reduce the loading on the medial compartment of the knee for the 

treatment of medial compartment knee OA, such as LWI. The use of a heel pin cluster will 

enable future investigations to assess varying shoe designs and structure on the efficacy of and 

biomechanical response to LWI.  

Quantifying rearfoot motion in shod with lateral wedge insole intervention using the heel pin 

cluster marker may provide inferences into the biomechanical response and non-response to 

LWI on the EKAM in individuals with medial compartment knee OA. Therefore, the heel pin 

cluster was assessed in shod and in shod with LWI to determine if any differences in rearfoot 

motion were present between the two conditions. 

Significant differences existed between shod and LWI walking conditions with regards to 

rearfoot motion. Furthermore, significant differences were present between shod and LWI in 

minimum frontal plane rearfoot motion in the first peak of stance phase of the gait cycle. The 

small changes in rearfoot motion with the use of a LWI compared to shod identified within the 

walking trials may allow a change in kinetics, potentially leading to a reduction in the EKAM. 

Rearfoot motion cannot independently predict the magnitude of the EKAM, and therefore 

biomechanical responders and non-responders to LWI in healthy subjects. Further 

investigations into the motion of the foot and the tibia, and their effects on the magnitude of 

the EKAM in both healthy subjects and patients with medial compartment knee OA are 

required. Furthermore, investigation into factors during gait which may play a role in the 

efficacy of LWI intervention, such as walking speed, have not been previously addressed 

within the literature. Therefore, increasing walking speed in healthy subjects was assessed to 
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determine if walking speed affected the biomechanical response to LWI. It was concluded that 

LWI provided a reduction in the EKAM compared to the shod condition at self-selected 

walking speeds. Minimal insignificant reductions in the EKAM were identified when walking 

speed was increased by 20% when wearing LWI, compared to when walking speed was 

increased by 20% in the shod condition. This finding has not previously been reported within 

the literature and has significant clinical implications for future research surrounding the design 

of conservative treatment methods for medial compartment knee OA, including LWI. 
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Chapter Seven 

Overall conclusions and future investigations 

7.1 Summary and conclusion 

The overall aim of this thesis was to determine the role of the foot and ankle on the magnitude 

of the external knee adduction moment, and the impact on the effectiveness of lateral wedge 

insoles in both healthy subjects and patients with medial compartment knee osteoarthritis.  

The initial focus of this thesis was a review of the existing literature surrounding knee 

osteoarthritis (OA), the external knee adduction moment (EKAM), lateral wedge insoles (LWI) 

and foot posture, presented in chapter two. The literature review identified that the following 

gaps were evident; a lack of investigation into the role of static and dynamic foot and ankle 

posture and motion on EKAM existed. Additionally, a lack of investigations into the 

biomechanical non-response to LWI intervention in knee OA patients was identified, which 

could possibly be related to rearfoot posture and motion. Furthermore, the literature failed to 

investigate whether barefoot rearfoot motion could successfully predict the biomechanical 

response to LWI when medial compartment knee OA patients walk in shod. Within the 

literature, it was not known if static measures of rearfoot and ankle motion, such as the Foot 

Posture Index are useful at indicating individual biomechanical response to LWI. Furthermore, 

only limited in shod and shod with LWI rearfoot motion data was found to exist within the 

literature. Finally, foot posture and its effects on EKAM, and the impact of LWI on the foot 

and ankle remain unclear within the literature.  

The literature review allowed the researcher to gain a more profound understanding of the 

current state of research pertaining to the topic, and additionally, enabled the researcher to 

identify existing gaps within the literature from previous studies. A theoretical base justifying 

the need for further investigation concerning knee OA and foot posture was discussed.  

Clinical guidelines recommend LWI, amongst other treatments as effective conservative 

management techniques for the treatment of medial compartment knee OA, however results 

from previous trials using LWI intervention have provided inconsistent results concerning 

reductions in the EKAM and therefore knee joint loading, and incidences of biomechanical 
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non-response have been reported within the literature. Further investigation was therefore 

warranted. 

Therefore, the aim of chapter four was to assess static foot posture in order to identify if a 

relationship existed between rearfoot motion and foot posture relative to the magnitude of the 

EKAM (a predictor of knee load), allowing future investigations to assess responders and non-

responders to LWI intervention after an appreciation of foot posture in barefoot in healthy 

subjects was attained. The investigation aimed to determine whether the rearfoot (static and 

dynamic) is related to the magnitude of the EKAM in healthy subjects. Overall, no relationship 

was identified between the FPI and the EKAM, and also between the FPI and rearfoot motion. 

However, results indicated the relationship between rearfoot ROM and the EKAM was close 

to significant. Previous investigations within the literature have also identified a relationship 

between rearfoot motion and the EKAM. The investigation population was considered too 

small however, and therefore further investigation was undertaken in the form of exploration 

of a previously collected larger data set. FPI scores, dynamic ankle eversion data, and EKAM 

data from 137 healthy limbs was analysed to determine association between outcome 

parameters of clinical examination and the magnitude of the EKAM in order to identify a link 

between foot posture and knee loading, and to understand the role of static foot and ankle 

measurements and the magnitude of the EKAM. The investigation allowed an understanding 

to be gained into the role of dynamic rearfoot eversion on the magnitude of the EKAM. The 

value of this investigation was that it allowed inferences into whether clinical foot parameters 

have a role in the magnitude of the EKAM to be gained. No relationship was identified between 

variables, with the exception of the EKAM and dynamic rearfoot inversion and eversion, where 

a weak relationship was identified. Findings therefore imply that in healthy subjects, rearfoot 

motion may play a role in the magnitude of the EKAM. 

Data from the 137 healthy limbs was then grouped into foot posture classifications (inverted, 

everted and neutral) in order to identify if any association existed between the FPI classification 

and dynamic rearfoot motion and the magnitude of the EKAM. No significant differences were 

identified in all groups between all variables. Strong negative association was identified 

between the FPI and rearfoot motion, and between the rearfoot FPI and rearfoot motion when 

limbs were divided into three groups (inverted, everted, and neutral) which added novelty to 

the literature. However, negative association does not provide inferences into whether rearfoot 

motion increases or decreases, as the FPI is a static measurement. Although association was 

present within the results, the association was negative and therefore clinical FPI and rearfoot 
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FPI classifications cannot represent biomechanical rearfoot motion. Results from this 

investigation suggested that the FPI may not be an ideal assessment to represent rearfoot 

motion in healthy subjects. Therefore, alternative assessment methods of the ankle subtalar 

joint complex are required, and future research should reflect this.  

Furthermore, dividing the dynamic rearfoot data into three groups (inversion, eversion, and 

neutral) led to the conclusion that no relationship existed between rearfoot motion and the 

EKAM in healthy subjects. However, previous literature has stated that the dynamic rearfoot 

and static foot posture may play an important role in both the onset and progression of medial 

compartment knee OA, and may affect the efficacy of and the biomechanical response and 

non-response to LWI. Consequently, further investigation was required. 

Chapter five therefore assessed the role of foot posture in response to the wearing of LWI, and 

the effects and impact on the EKAM in individuals with knee OA aiming to increase the 

understanding of how clinical static foot postures and biomechanical dynamic rearfoot motion 

may affect loading on the knee joint, the efficacy of LWI, and if a relationship exists between 

LWI and the magnitude of the EKAM. Despite previous studies investigating the effects of 

LWI as an intervention to reduce the loading on the medial compartment of the knee (which 

may be influenced by foot posture), a lack of research assessing clinical static foot posture, 

dynamic biomechanical rearfoot motion, and the magnitude of the EKAM with the use of a 

LWI was identified. Therefore, this study is an important addition to the literature. 

The results found no relationship existed between static foot posture and dynamic rearfoot 

motion, moreover, no relationship was identified between static foot posture and the magnitude 

of the EKAM in patients with medial knee OA. Therefore, clinical static foot posture (FPI) 

cannot predict rearfoot motion and the magnitude of the EKAM in both healthy subjects and 

patients with medial compartment knee OA, and should not be used as a predictor of 

biomechanical response or non-response to lateral wedge insole intervention. Additionally, 

Body Mass Index, age, and gender cannot predict medial compartment knee osteoarthritis 

patients that will respond to LWI. These findings add novelty to the investigations and may aid 

the further understanding and improvement of interventions for the treatment of medial 

compartment knee OA, such as LWI. 

Some association was identified between the dynamic rearfoot and the EKAM in patients with 

medial compartment knee OA. Results indicated that patients with a larger rearfoot range of 

motion are more likely to respond to LWI, which has been reported in previous research in 
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shod walking. This investigation was the first to identify that barefoot rearfoot motion is a 

significant predictor of biomechanical response to LWI in patients with medial compartment 

knee OA. This finding has important clinical implications that may lead to further 

understanding of individual biomechanical response or non-response to LWI. Future studies 

should investigate the range of motion at the rearfoot, which could be assessed in a clinical 

setting, both statically and dynamically to identify possible relationships to biomechanical 

rearfoot range of motion. The collection of rearfoot motion in shod is challenging however, 

and therefore methods to understand this are required in order to investigate the influence of 

LWI on gait. Furthermore, the results indicated that walking speed varied between 

biomechanical responders and non-responders to LWI, with the non-responders walking faster 

than responders. It was concluded that further investigation is required into walking speed and 

LWI. 

Chapter six involved an investigation which aimed to identify and examine possible differences 

between heel cup clusters and heel pin clusters when used to evaluate kinematic rearfoot 

motion during barefoot walking in three planes of motion, which had not previously been 

addressed within the literature. A heel pin cluster marker can be considered an acceptable 

method when used to quantify rearfoot motion in barefoot walking, and therefore may increase 

the understanding of rearfoot motion and its possible effects on knee loading. The heel pin 

cluster was then assessed between barefoot and shod walking conditions to determine the effect 

of shoes on rearfoot motion, and whether barefoot rearfoot motion, quantified using a heel pin 

cluster marker, represented rearfoot motion in shod when quantified using a heel pin cluster 

marker in healthy subjects. Within the shod footwear condition, results identified differences 

between rearfoot motion when compared to barefoot in three planes of motion (sagittal, frontal 

and transverse) in healthy subjects. Barefoot walking therefore cannot be viewed to be the same 

as shod, which has not previously been identified within the literature and may lead to further 

understanding of rearfoot motion in shod. Additionally, these findings may lead to future 

investigations into the impact of footwear (such as the density and thickness of the shoes sole, 

shoe structure and manufacturing materials) on rearfoot motion and gait.  

Investigations aiming to identify the differences between shod and LWI walking conditions in 

three planes of motion were then conducted, and findings indicated significant differences were 

present between walking conditions (shod and LWI) during stance phase of the gait cycle. 

Additionally, the results achieved from heel strike to the period of time when the first peak of 

EKAM occurred in minimum and maximum frontal plane rearfoot motion indicated that 



228 

 

significant differences in minimum frontal plane rearfoot motion were present between shod 

and LWI intervention. These findings indicate significant differences were present in minimum 

frontal plane rearfoot motion between shod and LWI, and therefore increases in frontal plane 

rearfoot motion are towards eversion with the use of a LWI compared to shod, which may be 

caused by the lateral gradient of the LWI, which reduces the EKAM by shifting the centre of 

pressure in the foot laterally. The significant changes in rearfoot motion quantified using a heel 

pin cluster marker during stance phase and the first peak of stance phase of the gait cycle, 

identified during walking with a LWI compared to shod may allow a change in kinetics, 

possibly leading to a reduction in the EKAM, and therefore a reduction in the load on the 

medial compartment of the knee joint.  

These findings are consistent with the literature, and may allow further understanding of 

rearfoot motion in shod and the effects of LWI on the rearfoot with the use of a heel pin cluster 

in future studies using patients with medial compartment knee OA. 

The efficacy of LWI when used at increased walking speeds compared to shod was 

investigated, which had not previously been conducted within the literature, and aimed to 

determine whether an increase in walking speed led to a reduction in the magnitude of EKAM 

with the use of LWI compared to shod. The gait of participants was firstly examined at self-

selected walking speed, and secondly at a 20% increased walking speed.  

A reduction in the EKAM was identified with the use of a LWI compared to the shod condition 

when participants walked at self-selected speeds. LWI are therefore a beneficial intervention 

when used in healthy subjects to reduce the EKAM at normal walking speeds. Findings 

indicated minimal and insignificant reductions in the EKAM were present when walking speed 

was increased by 20% with the use of LWI compared to the shod condition. Moreover, a 20% 

increase in walking speed from self-selected speeds with the use of a LWI led to an increase in 

the EKAM compared to self-selected walking speeds. It can therefore be stated that walking at 

increased speeds led to a reduction in the efficacy of LWI. These findings have not previously 

been reported within the literature and therefore, future research surrounding conservative 

treatment methods for knee OA should consider the efficacy of the treatment when worn at 

increased walking speeds. Considering the results from a clinical perspective, these findings 

may contribute to clinician’s recommendations to individual patients concerning walking at 

slower speeds when wearing LWI in order to achieve an optimal reduction in EKAM and 

therefore the maximal benefits of LWI use. 
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Additionally, walking speed could possibly be a factor affecting the biomechanical response 

of individuals to LWI intervention, and consequently walking speed requires further 

exploration within future research. Furthermore, future studies should focus on varying LWI 

designs (shape, length, wedge gradient and manufacturing material) and their possible 

influences on the magnitude of the EKAM in patients with medial compartment knee OA when 

walking at increased speeds.  

7.2 Thesis Novelty 

Aspects included within this thesis had not been previously conducted, and therefore can be 

considered novel, adding to the literature, and also the knowledge of both experimenters and 

clinicians within the field of medial compartment knee OA. 

The primary novelty in this thesis was the examination of rearfoot motion in barefoot, to 

determine if rearfoot motion can predict biomechanical response and non-response to LWI 

intervention in patients with medial compartment knee OA. This thesis was therefore the first 

to conclude that rearfoot motion in barefoot can predict which patients with medial 

compartment knee OA may respond or not respond to LWI intervention.  

This study was the first to examine clinical measurements including the FPI, BMI, gender and 

age of participants in order to assess whether they could predict if an individual was likely to 

be a biomechanical responder or non-responder to LWI. The study was therefore the first to 

conclude that clinical measurements cannot predict biomechanical response to LWI 

intervention. 

The thesis also investigated individual participant’s limb data into three groups according to 

Foot Posture Index classifications, which included; inverted, neutral and everted in order to 

determine if a relationship existed between static foot posture, rearfoot motion and the 

magnitude of the EKAM in healthy subjects. Additionally, this study divided individual 

participant’s limb data into three groups; inversion, neutral, and eversion, according to rearfoot 

motion in order to identify if a relationship existed between rearfoot motion and the magnitude 

of the EKAM. Dividing the limbs of participants in such a way had not been conducted 

previously within the literature. 

This thesis contains the first study to assess the differences between a heel pin cluster marker 

and a heel cup cluster marker when used to quantify rearfoot motion in barefoot and shod. 

Additionally, the investigation which used a heel pin cluster to quantify rearfoot motion in shod 



230 

 

compared to in shod with LWI had not been carried out previously. The relationship between 

rearfoot motion and the magnitude of the EKAM quantified using a heel pin cluster marker 

was investigated within this thesis using healthy subjects, and had not been conducted 

previously. 

This thesis investigated the differences between walking speed in biomechanical responders 

and non-responders to LWI intervention in a population of medial compartment knee OA 

patients. Such an investigation had not been conducted previously. Walking speed was found 

to be faster in biomechanical non-responders to LWI intervention, which has not been reported 

before within the literature. Investigations performed within this thesis included the exploration 

of the effects of LWI and walking speed on the EKAM, to determine if an increase in walking 

speed influences the biomechanical response to LWI in healthy subjects, which had not been 

carried out previously. 

7.3 Future Studies 

This thesis has highlighted some potential future studies that would allow further investigation 

of the role of the rearfoot in patients with medial compartment knee osteoarthritis. In health 

care clinics, it is quite rare to see 3-D data capture facilities being available. Therefore, in order 

for the results to be confirmed from this thesis, a clinical generalisability study would be the 

next step. This would involve simple measurements of the rearfoot range of motion (using 2-

D analysis which is common in podiatric and physiotherapy clinics) to determine whether there 

is a cut-off angle where biomechanical response is true. The most complete design would be a 

blinded design whereby the clinician determines whether the individual would respond from 

their clinical data collection, confirmed by 3-D analysis. This would need a larger sample size 

of individuals but would be a large step to stratify patients. 

It is not known from the literature whether biomechanical response affects clinical and 

structural outcomes. Therefore, an assessment of the importance of biomechanical changes 

would be a future option to determine the impact of lateral wedge insoles on these measures. 

This would be a costly study to undertake but would be worthwhile to bring these different 

methodological aspects together in one study, which has not been performed before. Within 

this thesis, the incidence of biomechanical non-response to LWI intervention was identified 

and assessed immediately after the wearing of the LWI. No previous study has investigated the 

long term biomechanical non-response to LWI, and therefore it is unknown whether 

biomechanical response may take place in a previous biomechanical non-responder, after the 
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long term use of LWI. Therefore, further investigation is needed to determine whether response 

changes over time. 

Additionally, the biological response to LWI intervention is not investigated within the 

literature, and therefore assessment of the importance of biological changes should be 

considered within future investigations to determine the impact of LWI on biological measures. 

Methods of assessment could include X-rays, biomarker assessment, and MRI and should be 

conducted as part of a longitudinal investigation, so that the effects of LWI on the biology of 

the knee can be assessed over a long period of time. 

Further investigation using the heel pin cluster marker in shod is required in patients with 

medial compartment knee OA, however time constraints of this PhD meant that further 

investigation was not possible within this thesis. Therefore, future studies should investigate 

the differences and the relationship between rearfoot motion and the EKAM in patients with 

medial compartment knee OA and response and non-response to LWI intervention. Further 

investigation into the effects of varying gradients and designs of LWI, and varying footwear, 

together with increased walking speed is required, as the degree, thickness, shape, length and 

density of LWI, the design of shoes, and walking speed can impact the biomechanical response 

and non-response to LWI in patients with medial compartment knee OA. 

Previous investigations have concluded that walking with LWI can lead to an increase in 

walking speed in patients with medial compartment knee OA. Further investigation is therefore 

necessary, and should focus on whether walking speed affects individual biomechanical 

response to LWI. Investigations should also aim to determine whether walking speed 

contributes to the incidence of biomechanical non-response of individuals to LWI intervention 

in both healthy participants and patients with medial compartment knee OA present within both 

this study and reported within the literature. 
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