
2016 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 13–16, 2016, SALERNO, ITALY
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ABSTRACT

Many biological monitoring projects rely on acoustic detec-
tion of birds. Despite increasingly large datasets, this detec-
tion is often manual or semi-automatic, requiring manual tun-
ing/postprocessing. We review the state of the art in auto-
matic bird sound detection, and identify a widespread need
for tuning-free and species-agnostic approaches. We intro-
duce new datasets and an IEEE research challenge to address
this need, to make possible the development of fully auto-
matic algorithms for bird sound detection.

1. INTRODUCTION

Monitoring birds by their sound is important for many envi-
ronmental and scientific purposes. A variety of crowdsourc-
ing and remote-monitoring projects now record these sounds,
and some analyse the sound automatically—yet there are still
many issues to solve, as indicated by the number of projects
that are yet to be fully automated [1, 2, 3]. In this paper we re-
view research on the specific topic of bird detection in audio.
The audio modality is well-suited to bird monitoring because
many birds are much more clearly detectable by sound than
by vision or other indicators. We overview the paradigms and
techniques used for bird audio detection, and specific issues
to be addressed. We then describe a data challenge which we
are introducing, with new public datasets, as an initiative to
advance the state of the art. First, though, we must outline the
applications for which bird detection in audio is useful.

Bioacoustics has in recent years become one of the “big
data” research areas, in particular with remote acoustic mon-
itoring projects generating terabytes of audio, far more than
can feasibly be inspected manually. The goal of such projects
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is usually to monitor population densities and migration pat-
terns of animal species, or to monitor overall ecosystem
health. For example [4] found that automatically-detected
calling activity was a reliable indicator of relative abundance
for monitoring a seabird colony. [1] further reviewed the use
of passive acoustic monitoring to estimate animal population
density and there is increasing interest in using acoustic in-
dices for biodiversity assessments [5].

Other large-scale monitoring programmes have used an oc-
cupancy framework, meaning that instead of working with
abundance data (i.e. estimated numbers of individuals), the
simpler presence/absence of a species in a spatio-temporal
window is the basic observation [6, 7]. The efficiency of col-
lecting occupancy data motivates its use in large-scale stud-
ies [6]. Rowe [7], using an occupancy framework, found
that automated recognition software improves detectability
for a range of bird species’ vocalizations, though also found
that with current technology the manual effort required—to
set parameters and to check and post-process the results—
means that the efficiency in terms of person-hours was actu-
ally not reduced relative to a manual survey. This demon-
strates that automatic detection is useful in practice but the
automation of this requires further development. Marques et
al. [1] likewise concluded that improvements in automatic de-
tection (and classification) would be desirable, especially with
respect to calibration and full automation.

Unattended monitoring is not the only application to re-
quire bird detection. Another common use case is as a pre-
filtering step before other automatic analyses such as bird
species classification [8, 9]. It is particularly needed in un-
controlled data collection scenarios such as crowdsourcing.

Big data problems also affect manual work with audio
data, such as the manual browsing and data-mining of audio
archives [10]. In these situations, content may be sparsely
represented, and the exact audio signal of interest may vary
according to the user’s query. Tools are therefore needed to
help a person to navigate quickly through large audio collec-
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tions [11].
These diverse use cases have broadly similar requirements,

but can differ in the exact precision of detail required. Hence,
before reviewing technical approaches used to address these
tasks, we must be a little more specific about the task specifi-
cations.

2. TASK PARADIGMS

The idea of detecting birds in audio can be made into a con-
crete task in various ways, each connecting with different ap-
plication tasks and implying very different output data. Do
we need to know the exact start/end times? Do we need to
know about each vocalisation separately? Do we need to
know how many vocalisations, or how many individuals, or
just an overall presence/absence? Figure 1 illustrates differ-
ent task paradigms that have been studied, along with some
of their characteristics. Their differing characteristics have
strong implications, both for which computational approaches
are appropriate and for the practical feasibility of annotation
and evaluation.

The most basic is the simple estimation of pres-
ence/absence in a given sound clip: a detector outputs a zero
if none of the target species are detected, and a one otherwise.
This provides relatively little information—low temporal de-
tail, no differentiation between one and many detections—yet
it has practical relevance. The occupancy modelling frame-
work in statistical ecology [12] uses exactly this type of data,
and is recommended because it is often easier and less expen-
sive to collect than abundance data, especially in the context
of very large surveys [6, 7]. The output format is a simple
binary decision, which gives scope for various classification
methods to be adapted directly, and also allows for very ef-
ficient manual annotation. For applications such as filtering
a large dataset, or assisting with manual data browsing, an-
notated fine detail is often unnecessary since the purpose is
simply to help a person or a machine skip over the (typically
large) number of negative instances to focus on the audio re-
gion containing the positive instances.

A common variant is to add temporal detail to the pres-
ence/absence decision: in other words, to partition the time
axis into positive and negative regions (Figure 1 c). This
is often the format produced by methods such as threshold-
ing based on short-term energy levels, and is appealing for
streaming applications such as real-time detectors. It is anal-
ogous to the approach commonly adopted in voice activity
detection (VAD) for speech [13, 14, 15]. Note that in VAD
applications there is typically one dominant source of inter-
est, while in natural sound monitoring the signals of inter-
est are often intrinsically polyphonic. Thus a positive region
may contain one or many vocalisations together. This task
paradigm maintains the advantage of relative simplicity while
adding a little more temporal resolution.

Related methods deal with polyphony more explicitly.

Template-matching methods (see next section) yield either
event detections (Figure 1 b) or time-frequency boxes (Fig-
ure 1 f), allowing overlapping vocalisations to be represented
as separate data points. Occasionally other methods output
temporal regions which can overlap [16]. Some approaches
are polyphonic in a way which we might describe as “multi-
monophonic” (Figure 1 d): methods such as non-negative ma-
trix factorisation (NMF) are designed around having multiple
source types each of which can be active/inactive, yet within
each source type they do not segregate signals that may over-
lap or come from multiple individuals [17]. These approaches
have not received much attention in research on animal sound
detection.

In bird sound, a paradigm that has become common and
built in to standard software is to describe events via time-
frequency boxes (Figure 1 f). These can be annotated rel-
atively intuitively by drawing boxes on a spectrogram, and
detected using template-matching methods. This paradigm
works well when sounds are compact in time and frequency:
the approach is not seen in speech and music analysis, be-
cause in those cases the signals of interest are often broad-
band, consisting of harmonic stacks and noises. A sizeable
portion of bird sounds is relatively bandlimited; however for
sounds with significant energy across a range of harmonics,
there may be a tendency to exclude higher harmonics, or to
create large regions containing many subbands with no en-
ergy from the signal of interest. These are not show-stopping
issues, but may inhibit accuracy for some species.

Going to even more detail, some authors consider detec-
tions as arbitrarily-shaped regions on a spectrogram (Figure 1
g) [18, 19]. This approach fits with object-detection methods
in image processing. Often each detected event is required to
be a single fully-connected region (“blob detection”), which
is problematic for harmonic sounds since harmonics may then
be detected as separate events. Manually labelling data at
this resolution is labour-intensive, and it is rare that the final
downstream applications require such detail.

Tonal sounds can be considered as time-varying sinusoids,
in which case annotation may come in the form of frequency
tracks (Figure 1 h). This has been explored in marine mammal
detection, and sometimes for bird sounds [20]. Again, har-
monics might be detected as separate events; however some
models are able to conjoin harmonics into unified tracks.
Also note that a sizable number of bird sounds are non-tonal,
and the very rapid pitch modulation of some bird sounds can
cause problems for standard frequency trackers. (The track-
ing methods of [20, 21] account for this issue.)

The task paradigms just discussed each have different af-
fordances. They provide varying levels of detail for down-
stream tasks, but they also enable different sets of technical
solutions, and imply different amounts of manual labour to
annotate and evaluate. We will return to the relative impor-
tance of these task paradigms after reviewing the literature on
technical methods that have been used to address them.



Output paradigms for event detection of birds

Output format Common algorithms Used by applications Advantages Disadvantages Cmplxty
(a) Presence/
absence

time

1 / 0

Classifiers Occupancy-models in
statistical ecology; re-
trieval / data mining
systems generally

Evaluation is straightforward;
manual annotation can be efficient

Low temporal precision; multiple
events merged

1

(b) Onsets

time

Onset detectors e.g. en-
ergy slope, per-frame
classifier

Overlapping events are OK No offset/duration information 1

(c) Monophonic
segmentation / VAD

time

Energy thresholding;
HMM decoding

VAD Overlapping events merged 2

(d) Polyphonic
segmentation
(multi-monophonic)

time

species

A

B

C

NMF Joint estimation can reduce confu-
sion between similar sound types;
overlaps between species are OK

Overlaps in same species merged 3

(e) Polyphonic
segmentation
(overlappable)

time

Overlapping events are OK 3

(f) Time-frequency
boxes

time

fr
e
q
u
e
n
cy

Spectrogram cross-
correlation

Common where spectro-
gram cross-correlation
used e.g. in Raven

4

(g) Time-frequency
blobs

time

fr
e
q
u
e
n
cy

Image-processing
object-detection meth-
ods e.g. spectrogram
thresholding, connected
component

Harmonic stacks may separate 5

(h) Time-frequency
sinusoids

time

fr
e
q
u
e
n
cy

Pitch trackers Common in whale stud-
ies

Inappropriate for non-tonal and
other complex sounds; harmonic
stacks may separate

5

1

Fig. 1. Task paradigms for bird detection. The final column gives a rough ordering in ascending complexity/difficulty.

3. TECHNICAL METHODS

3.1. Established/baseline methods

The most common methods for detection are based on ei-
ther energy, spectrogram cross-correlation, or hidden Markov
models (HMMs). These well-known baselines are available
in widely-used bioacoustics software (Raven, XBAT, Song
Scope), and have been used for various surveys.

Perhaps the simplest method is energy thresholding, which
yields a VAD-like segmentation output: positive if the en-
ergy in a short time-window is higher than a threshold, other-
wise negative. For bioacoustic surveys it is usually preceded
by some kind of noise reduction, and often applied to ban-
dlimited frequency regions of interest [22, 23]. [24] augment
it with an iterative process which estimates the background
noise level as it converges.

Also common is spectrogram cross-correlation, an alterna-
tive which uses one or more example sounds as templates.

These templates are species-specific, and used to scan a
spectrogram for regions with strongly-matching profiles by
cross-correlation. For example [4] used spectrogram cross-
correlation (in XBAT) to detect calls in a seabird colony.
Across millions of calls the detection accuracy was 53.6%,
which the authors compare against 22%, 17% and 24% for
studies detecting terrestrial birds; the authors also reported
that soundscape characteristics had an impact on detection.

Hidden Markov models (HMMs) have widely been used
for sound sequence analysis, especially in speech, and have a
particular appeal of temporal flexibility that goes beyond tem-
plate matching. HMMs have been used for various purposes
in bioacoustics including bird detection, for example in Song
Scope software [22]. Using Song Scope, [2] reported sensi-
tivity ranging from 56% to 69% for detecting three seabird
species. [19] report in passing that they found MFCCs and
HMMs to perform poorly for detection, hence their use of
other methods.



Alternatively, some investigators use template matching,
but instead of cross-correlation they employ dynamic time
warping (DTW) which allows for the template and the target
sound to be slightly warped in time relative to each other [25].
DTW is in principle a very suitable method for natural sounds
such as bird sounds which often have much organic variabil-
ity. However, note that DTW remains much less widely used
than cross-correlation, perhaps because in practice the flexi-
bility does not give a strong enough boost over the simpler
(and thus computationally more efficient) cross-correlation.

For pitched sounds, an alternative detection criterion could
be the degree of “pitch clarity” in the signal (e.g. [26], [27]).
Such measures are likely to be vulnerable to the effects of
noise, which often affect the extent to which the tonal com-
ponent stands out from the background.

3.2. Recent work

Towsey et al. [19] provide a software toolbox with multiple
detection methods, including: spectrogram template match-
ing; “oscillation detection” by detecting amplitude modula-
tions in narrow frequency bands; energy-based segmentation;
spectral peak tracking; and spectrogram blob detection. Note
that the focus of Towsey et al. is explicitly on single-species
targeted studies, and the choice of method must be chosen
based on knowledge of the target species vocalisations. This
is eminently possible for targeted single-species studies, but
difficult to generalise to species-agnostic detection. It is an
interesting open question whether the various different ap-
proaches can simply be aggregated under a meta-algorithm
to produce species-agnostic output; to our knowledge this has
not been attempted.

[28, 20] detect sinusoidal (pure-tone-like) signals in noise,
and use these as a basis for detecting bird species. Their
method is able to detect very fast-modulated pitch tracks,
which sets it apart from other methods and makes it suit-
able for many frequency-modulated bird sounds. However,
a method based on sinusoidal tracks may of course be inap-
propriate for the case of non-tonal bird sounds.

[16] propose a model based on detecting onsets and offsets
separately, then using typical syllable durations to unify the
onsets and offsets into probabilistically smoothed event de-
tections, which may include overlaps. This method is perhaps
most suitable for monosyllabic vocalisations.

[29] propose to detect presence/absence by training a Gaus-
sian mixture model (GMM) for each chosen species applied
to spectral features (such as mean, skewness, flatness), and
then using a high GMM likelihood as an indicator of pres-
ence. They find the frequency peak a useful feature, with per-
species variability in performance.

[30] use a random forest (RF) classifier to make detec-
tion decisions for the presence/absence of flight calls. Sound
events are first detected with simple bandlimited energy de-
tection, and then the RF method refines these initial decisions

by discarding many of the false positives. [30] argue that the
random forest algorithm is appropriate for the detection task,
because of various properties including its ability to handle
polymorphic categories (i.e. the positive events do not all have
to be of the same type).

[18] work within the relatively uncommon paradigm of de-
tecting exactly which pixels in a spectrogram should be la-
belled as belonging to bird sound. They train a RF classi-
fier to make the pixel-level decisions. This approach has the
clear advantages and drawbacks of the paradigm: the system
is able to output detailed estimates (spectrotemporal shapes),
at the cost that the user must train the system by providing
a set of pixel-wise binary mask information. However, they
demonstrate that in this paradigm, the RF achieves much bet-
ter results than energy-based detection. [19] also include a
pixel-wise method in their toolbox, based on energy and size
of ‘blob’ rather than on training a classifier, which should thus
be more general though potentially less accurate. [31] also
use a smoothing technique which sits with these image-based
approaches, in their case to preprocess the spectrogram before
applying energy-based segmentation.

There are of course detection systems developed and de-
ployed for related tasks outside of bird sound, in speech,
music and environmental sound. In speech, VAD is well-
studied and should be a source of inspiration, although some
methods may be speech-specific [13, 14, 15]. Note also that
VAD is typically applied in a monophonic close-mic scenario,
whereas we often wish to detect polyphonic and distant bird
sounds. [8] use “a simple voice activity detection system,
with acoustic models trained with bird vocalization data” as
a preprocessing step before bird species classification. How-
ever the VAD method is not specified.

For general soundscapes, [32] review the state of the art in
detecting everyday sound events in urban sound scenes, and
evaluate many methods via a public data challenge using au-
dio recorded in office environments. The challenge uses two
detection paradigms: monophonic and “multi-monophonic”
(in our current terminology), in both cases aiming to retrieve
the start time, end time and label for each event. The gener-
ally best-performing detector in their study was a two-layer
HMM approach; also strong was a combined HMM and RF
method. MFCCs were not found to be useful features for
event detection, generally outperformed by spectrogram or
filterbank features. Regarding evaluation, the authors con-
clude that more work is needed to ensure that the evaluation
measures used for structured data tasks match up with the task
desiderata.

More recently, [17] develop a system for detecting multi-
ple event types through a probabilistic model with HMM-like
constraints on each “channel”. The model has been used both
for music and urban soundscapes.



4. PRACTICAL CONSIDERATIONS

Noise reduction; weather noise: Background noise must
be a consideration, and even simple noise reduction can help
with downstream processing. The assumption of temporally
constant background noise levels (see e.g. [24]) is in general
unrealistic for outdoor sound recordings, but is a first step for
simple noise reduction. Some approaches allow for smoothly-
varying background noise. However, the bigger issue is ro-
bustness to strongly-varying noise, especially wind and rain,
but also from other fauna (e.g. [3, 2]). In practical applica-
tions heavily affected sound clips may have to be removed
(e.g. 2.9% of recording time in [2]). For example the tool-
box of [19] performs automatic wind and rain detection as a
classification task.

Manual intervention: calibration, post-processing: An
important issue for large-scale studies and for general appli-
cation is how much user intervention is actually needed in
practice, even for nominally automatic methods. Widely-used
tools such as Raven and SongScope require manual calibra-
tion of thresholds and/or templates for each species of interest
before they can be used, and this can have a strong effect on
precision and sensitivity [22, 7, 2].

Single-species vs. generic: An important question is
whether the detector for a certain situation should be detect-
ing individuals from a single species, or more generally such
as from a whole taxon. Single-species studies can be useful
for example in studying so-called “keystone species”, or in
cases where highly custom detectors might be used to detect
idiomatic sounds (e.g. woodpecker drumming). Conversely,
there are many cases in which the desire is to detect all vo-
calisations irrespective of species: e.g. for overall ecosystem
monitoring, or as a filtering front-end before further analysis
such as classification. This is particularly the case in situa-
tions where not all species are known or well-characterised.

Some techniques are inherently more suited to one or the
other: template detection is inherently specific, while energy-
based detection can be very generic. For surveys that must
cover a wide range of species yet with high specificity (and
perhaps with a high rejection of distractor events), it may
be useful to apply a range of focussed detectors and then to
aggregate their outputs. This can be done straightforwardly.
There is unexplored scope however for meta-algorithms to ag-
gregate the outputs of multiple detectors intelligently, helping
to mitigate “double firing” from independent detectors.

5. EVALUATIONS OF BIRD DETECTION

Surveying studies have evaluated the detection performance
of humans [6, 33] and more recently of automatic methods.

[7], using an occupancy framework, found that automated
recognition software improves detectability for a range of bird
species’ vocalizations. However they also found that with cur-
rent technology the manual effort required—to set parameters

and to check and post-process the results—means that the ef-
ficiency in terms of person-hours is actually not reduced. This
demonstrates that automatic detection is useful in practice but
the need for automation is not yet solved. [4] also reported
that financial costs were approximately equal for manual and
automated nest census monitoring, though in that case they
highlighted the initial equipment setup costs as the main is-
sue.

[3] compared manual and autonomous acoustic detection
for kiwis. They found autonomous detection could be highly
reliable and very efficient in person-time. They noted that
automatic recorders were much more strongly affected by
weather (especially wind) than were humans. [34] conducted
a multi-species comparison of in-field vs. remote methods for
point-count surveys. Remote monitoring was performed by
autonomous recording units, and the audio recordings were
manually labelled by a human observer through audio and
spectrograms inspected using Raven. They found that this
method performed much worse than the human observers,
suggesting that it was not a cost-effective means of gather-
ing survey data. However [6] found that methods based on
automated sound recording have the sensitivity necessary e.g.
for detecting population decline to a required standard.

6. A RESEARCH DATA CHALLENGE

To stimulate the next research advances on species-agnostic
bird detection, we present an IEEE-sponsored data challenge.
For this challenge we introduce two new public datasets of an-
notated audio data. For the challenge tasks we have opted for
the presence/absence paradigm, applied to ten-second audio
excerpts. As discussed, this approach fits well with statistical
applications such as the occupancy framework, is efficient for
manual annotation, and has clear evaluation. (cf. [19] using
the same paradigm.) It can be addressed by a wide variety of
approaches.

6.1. Datasets

Our first dataset comes from a UK bird-sound crowdsourcing
research spinout called Warblr.1 From this initiative we have
over 10,000 ten-second smartphone audio recordings from
around the UK. The audio totals around 28 hours duration.
The audio will be published by Warblr under a Creative Com-
mons licence. The audio covers a wide distribution of UK
locations and environments, and includes weather noise, traf-
fic noise, human speech and even human bird imitations. It
is directly representative of the data that is collected from a
mobile crowdsourcing initiative. Annotations of the Warblr
dataset are performed by a network of volunteers.

Our second dataset comes from the TREE (Transfer-
Exposure-Effects) research project (www.ceh.ac.uk/TREE),

1http://warblr.net

http://warblr.net


which is funded by the Natural Environment Research Coun-
cil (NERC), Environment Agency and Radioactive Waste
Management Ltd. Dr Mike Wood’s team are using unattended
acoustic recorders in the Chernobyl Exclusion Zone (CEZ) to
capture the Chernobyl soundscape and investigate the long-
term effects of the Chernobyl accident on the local ecology.
To date, the study has captured approximately 10,000 hours
of audio from the CEZ. Dr Wood’s team are annotating a data
subset for bird species presence/absence, and approx 48—72
hours of annotated audio will be made available for the BAD
Challenge. The audio covers a range of birds and includes
weather, large mammal and insect noise sampled across var-
ious CEZ environments, including abandoned village, grass-
land and forest areas.

To provide an initial indication of the general level of dif-
ficulty within a single dataset, we ran a two-fold crossval-
idation test using a subset of the Warblr data and a simple
baseline binary classifier. We used the baseline previously
created for the DCASE challenge, a generic MFCC+GMM
pipeline as used for various audio tasks in the past [32]. In
a previous study, this baseline system achieved 82% AUC in
an auto-tagging study to detect the “birdsong” tag in audio
soundscapes [35]. In the present case, the baseline attained
a similar value of 79% AUC—above the 50% chance level
but with substantial headroom for the challenge. Recall that
this test is to detect presence/absence across potentially hun-
dreds of bird species, making it rather impractical to use cer-
tain single-species methods.

6.2. Organisation

As is typical for data challenges, we will partition the data
and annotations into training, validation and testing partitions,
with the testing annotations kept private for evaluation. Fur-
ther, we will incentivise the development of generalisable and
“tuning-free” methods by ensuring that at least one set of
testing data is recorded under different conditions than the
publicly-available data. This will create a harder task than
the within-dataset task for which the AUCs above were mea-
sured (further baselines, for these cases, will be published
later). This helps ensure that the challenge addresses the need
for methods that work with minimal manual intervention, as
identified in the review we present here.

Participants will be challenged to create a system that can
label the presence/absence across a diverse species range;
they will not be required to identify the species. The data will
be released in Summer 2016, with a deadline of late 2016 for
challenge submissions. Results will be presented at a confer-
ence special session in 2017. For more detail on the timeline,
please visit the challenge website.2

2http://machine-listening.eecs.qmul.ac.uk/
bird-audio-detection-challenge/

7. CONCLUSIONS

This survey has described current approaches to automatic
bird detection in audio, including the current level of gener-
ality. Open topics include weather robustness and tuning-free
methods. We have introduced a challenge giving researchers
an opportunity to create a step change in these directions. A
wide variety of methodological options remains open to fur-
ther study, such as recent innovations in deep learning [36],
or meta-algorithms that can automatically select detectors or
combine their outputs.
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[13] J. Ramı́rez, JM Górriz, and JC Segura, “Voice activity
detection. fundamentals and speech recognition system
robustness,” in Robust Speech Recognition and Under-
standing, M. Grimm and K. Kroschel, Eds., chapter 1.
2007.

[14] G. Ferroni, R. Bonfigli, E. Principi, S. Squartini, and
F. Piazza, “A deep neural network approach for voice
activity detection in multi-room domestic scenarios,” in
2015 Int Joint Conf on Neural Networks (IJCNN). IEEE,
2015, pp. 1–8.

[15] X.-L. Zhang and D. Wang, “Boosting contextual in-
formation for deep neural network based voice activity
detection,” IEEE/ACM Trans Audio, Speech, and Lan-
guage Processing, vol. 24, no. 2, pp. 252–264, 2016.

[16] D. Stowell and D. Clayton, “Acoustic event detection for
multiple overlapping similar sources,” in Proc WASPAA
2015, 2015.

[17] E. Benetos et al., “Detection of overlapping acous-
tic events using a temporally-constrained probabilistic
model,” in ICASSP, 2016.

[18] L. Neal et al., “Time-frequency segmentation of bird
song in noisy acoustic environments,” in Proc ICASSP,
2011, pp. 2012–2015.

[19] M. Towsey et al., “A toolbox for animal call recogni-
tion,” Bioacoustics, vol. 21, no. 2, pp. 107–125, 2012.
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