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ABSTRACT 

Analytical solutions are developed for the electro-kinetic flow of a viscoelastic biological 

liquid in a finite length cylindrical capillary geometry under peristaltic waves. The Jefferys’ 

non-Newtonian constitutive model is employed to characterize rheological properties of the 

fluid. The unsteady conservation equations for mass and momentum with electro-kinetic and 

Darcian porous medium drag force terms are reduced to a system of steady linearized 

conservation equations in an axisymmetric coordinate system. The long wavelength, creeping 

(low Reynolds number) and Debye–Hückel linearization approximations are utilized. The 

resulting boundary value problem is shown to be controlled by a number of parameters 

including the electro-osmotic parameter, Helmholtz-Smoluchowski velocity (maximum 

electro-osmotic velocity), and Jefferys’ first parameter (ratio of relaxation and retardation 

time), wave amplitude. The influence of these parameters and also time on axial velocity, 

pressure difference, maximum volumetric flow rate and streamline distributions (for 

elucidating trapping phenomena) is visualized graphically and interpreted in detail. Pressure 

difference magnitudes are enhanced consistently with both increasing electro-osmotic 

parameter and Helmholtz-Smoluchowski velocity, whereas they are only elevated with 

increasing Jefferys’ first parameter for positive volumetric flow rates. Maximum time averaged 

flow rate is enhanced with increasing electro-osmotic parameter, Helmholtz-Smoluchowski 

velocity and Jefferys’ first parameter.  Axial flow is accelerated in the core (plug) region of the 

conduit with greater values of electro-osmotic parameter and Helmholtz-Smoluchowski 

velocity whereas it is significantly decelerated with increasing Jefferys’ first parameter. The 

simulations find applications in electro-osmotic (EO) transport processes in capillary 

physiology and also bio-inspired EO pump devices in chemical and aerospace engineering.  
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1. INTRODUCTION 

The study of electro-kinetics in biological and bio-inspired systems is attaining considerable 

importance owing to its applications in bio-micro-electro-mechanical-systems (bioMEMS), 

microfluidics-based biomedical separation, bio-chip systems for drug delivery and biomedical 

diagnostics [1-3]. Electro-kinetics is the study of fluid flow generated by the imposition of an 

external electric field in an electrolyte-filled conduit with electric double layers on its wetted 

surfaces. Owing to the continuous miniaturization of many industrial, biomedical and other 

systems, the influence of electrical forces is greatly increased in micro-channel transport 

processes. This has mobilized significant scientific interest in simulating the complex fluid 

dynamical features of such processes aimed at optimizing performance in real applications, 

including medicine. In recent years therefore many researchers have formulated various 

electro-kinetic fluid dynamics models (both laminar and turbulent) to predict the interplay 

between electrical, viscous and other body forces and geometric features. Kang et al. [4] 

studied the electroosmotic flow in a cylindrical microcapillary and found the solution of 

Poisson–Boltzmann equation for arbitrary zeta-potentials. A similar study was reported in [5] 

in which electroosmotic flow was analysed through an annulus under the situation when both 

concentric cylindrical walls carry high zeta potentials. Devasenathipathy and Santiago [6] 

studied the electrokinetic flow diagnostics using micro- and nano-scale diagnostic techniques. 

Minerick et al. [7] experimentally examined the electrokinetic flow of a suspension of 

erythrocytes (red blood cells, RBCs) in 20 micron cylindrical fused-silica capillaries. Chung et 

al. [8] presented low power and robust electroactive microwell-based implantable drug 

delivery system, intended for use with autonomous microsystems. A diverse spectrum of 

theoretical models of electroosmotic fluid mechanics are presented in [9-11]. Recently 

Mohammadi et al. [12] designed a microfluidic device combining hydrodynamic and 

dielectrophoretic techniques to separate plasma from fresh blood in a microfluidic channel. 

This study achieved for the first time a robust methodology for optical real-time monitoring of 

the components of plasma without pre- or post-processing. Sinha and Shit [13] presented a 

mathematical model for blood flow through capillary by considering electromagnetic body 

forces in addition to convection heat transfer effects. They considered the case where the height 

of the capillary significantly exceeds the thickness of electrical double layer comprising the 

stern and diffuse layers and noted that blood temperature may be regulated effectively with 

Ohmic magnetic dissipation (Joule heating) parameter. 
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In the above investigations, electrokinetic effects on fluid flow with biological applications 

have been presented and some microfluidics devices have been engineered exploiting this 

principle. However, in these systems the boundaries have invariably been rigid i.e. non-

flexible. Peristaltic flow is a mechanism for transportation of physiological fluids by rhythmic 

muscle contraction followed by relaxation and is a highly efficient, adaptive, intelligent and 

sustainable methodology for propulsion in flexible-walled conduits [14]. It exemplifies 

biological compromise between strength and compliance which enables many medical and 

zoological systems to function with stunning efficiency. It arises in human and animal 

physiological phenomena and pertinent examples include uro-dynamic transport from the 

kidneys to the bladder, chyme dynamics in the gastrointestinal tract, vaso-motion in small 

blood vessels, swallowing of food through the oesophagus, ovum transport in the female 

fallopian tube, and lymph movement in the lymphatic vessels and transport of spermatozoa in 

the ductus efferents of the male reproductive tract. An excellent perspective of these 

applications is provided by Fung [15]. Furthermore peristaltic transport is fundamental to the 

versatile locomotion of certain earthworms (Lumbricus terrestris) [16, 17], phloem trans-

location in botanical systems (trees, plants) [18, 19] and respiratory pentasome functioning in 

reptiles [20]. Many modern devices have implemented peristaltic mechanisms including heart 

lung machines, dialysis machines, blood pump machines, and roller pumps.  

In parallel with progress in laboratory fabrication of systems, many mathematical and 

computational investigations of peristaltic flow have also been communicated. A very 

interesting and influential theoretical model on peristaltic flow under low Reynolds number 

and long wavelength has been presented by Shapiro et al. [20] in which reflux and trapping 

phenomena are discussed in detail. Most studies in the literature are however constrained to 

steady flow and infinite conduits. The vast majority of physiological flows are by nature, 

unsteady and propagate in finite length conduits. The formulation in [21] has therefore been 

improved by a number of researchers for unsteady peristaltic flows in finite length tubes. An 

excellent example is the study of Li and Brasseur [22] who considered both single and multiple 

train wave propagation. Brasseur and Dodds [23] described numerical results which concur 

well with the manometer observation for swallowing of a single food bolus. These studies while 

physically more realistic than earlier analyses, have nevertheless been confined to the 

Newtonian i.e. Navier-Stokes model. Many real working fluids in electro-osmotic devices and 

peristaltic propulsion mechanisms are strongly non-Newtonian. Viscoelasticity in particular 

has been confirmed to be a critical feature of numerous medical fluids, as elucidated by 
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Goldsmith [24] and de Vincente [25]. Biopolymeric solutions and gels deployed in biomedical 

devices are also frequently strongly viscoelastic in nature [26]. Non-Newtonian (rheological) 

peristaltic flow simulation has evolved into a significant area of modern biological fluid 

dynamics. Many simple and more sophisticated constitutive equations have been employed to 

improve the accuracy of mathematical models, which provide an important compliment to 

clinical studies. These rheological models capture different characteristics of real liquids 

including shear thinning, thixotropy, relaxation, retardation, memory, couple stresses, micro-

continuum features, stretch and swelling, all of which arise in physiology. Chaube et al. [27] 

considered peristaltic slip flow of Ostwald-DeWaele power law in tapered conduits. Ali et al. 

[28] derived perturbation solutions for third grade differential viscoelastic fluids in peristaltic 

pumping through curved channels. Tripathi and Bég [29] studied peristaltic pumping of 

fractional second order Reiner-Rivlin viscoelastic fluids with Froude number effects.  Kiran et 

al. [30] simulated chemical reaction and Taylor dispersion effects in peristaltic pumping of 

Eringen micropolar fluids in an attempt to characterize the physico-chemical features of gastric 

breakdown. Further studies have employed Stokes couple stress (polar) fluids [31] and elasto-

viscous Williamson nanofluids [32]. A particularly elegant non-Newtonian viscoelastic model, 

is the Jefferys viscoelastic model which features both retardation and relaxation effects. It 

employs a convective derivative instead of the customary time derivative encountered in other 

viscoelastic models. This model has proved extremely popular and versatile and has been 

implemented in many diverse problems in biomedical flows including pulsed Couette flows 

(using Lattice Boltzmann methods) [33] and biopolymeric thermal enrobing flows [34] using 

Keller box finite difference methods. Khadrawi et al. [35] investigated fundamental 

biophysical engineering flows using the Jefferys model including transient Couette flow and 

transient Poiseuille flow in a channel. They derived closed-form solutions and noted that with 

increasing dimensionless relaxation time the flow response to the imposed driving force is 

markedly slower, implying that the fluid requires a greater time to absorb the effect of a driving 

force and therefore there is an associated delay in achieving steady-state behaviour. Akbar et 

al. [36] studied Jefferys non-Newtonian blood flow through a tapered artery with a stenosis 

deriving perturbation solutions for velocity, wall shear stress, shearing stress at the stenosis 

throat, and impedance of the artery. Several works relating to peristaltic pumping of Jefferys 

viscoelastic fluids have also been presented. Alarabi et al. [37] applied He’s powerful 

homotopy perturbation method (HPM) to investigate variable viscosity effects in peristaltic 

pumping and heat transfer of Jeffreys viscoelastic fluid in an eccentric cylindrical annulus, as 

a simulation of endoscopy. Tripathi et al. [38] derived analytical solutions for thermal 
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convection effects on esophageal transport of viscoelastic materials. They observed that 

pressure along the entire length of the food pipe geometry (channel) reduces with greater 

relaxation time (fixed retardation time) whereas it is enhanced by increasing the magnitude of 

retardation time (fixed relaxation time). 

Motivated from the wide applications of electro-kinetic effects in biomedical engineering, in 

the present article, we present a theoretical study on peristaltic transport driven by 

electroosmotic means in Jefferys viscoelastic fluids. The objective is double fold. Firstly we 

extend the work of Chakraborty [39] which was limited to thin electric double layer (EDL) i.e. 

electroosmotic slip boundary condition is taken in account and external electric field effects 

are neglected. Secondly we provide a new non-Newtonian formulation to extend the existing 

studies in rheological electro-osmotic transport. Previous works have considered power-law 

fluids [40], simplified Phan-Thien–Tanner viscoelastic fluids [41] and viscoplastic (Casson, 

Herschel-Bulkley, and Bingham fluids) [42]. Important aspects in electro-osmotic peristaltic 

rheological propulsion require further elucidation. Paramount among these are the need to 

elaborate in more detail how external electric field controls the peristaltic flow and how the 

Debye length (characteristic thickness of the electrical double layer i.e. EDL) improves 

peristaltic pumping. It is also of great interest to clarify with more precision the impact of 

oscillating flow on electrical potential profiles. This paper therefore studies the electro-kinetic 

effects on peristaltic transport of a Jefferys viscoelastic electrolyte through a finite length tube.  

The effects of Debye length and Helmholtz-Smoluchowski velocity on peristaltic pumping and 

trapping are evaluated analytically and explored further with the aid of graphical visualization 

using Mathematica software. The finite length tube Newtonian model Li and Brasseur [22] is 

shown to be a special case of the present study. The current computations are relevant to 

physiological electro-osmotic processes e.g. cylindrical electrophoresis cells [43, 44] and also 

bio-inspired electro-chemical pumps [45]. 

2. MATHEMATICAL MODEL 

The geometric model for the electro-osmotic peristaltic transport through a finite length ( L ) 

cylindrical tube, as depicted in Fig.1, is mathematically considered as: 

],0[)(cos),( 2 Lxtcxatxh 



 ,                                                            (1) 

where h , x , t , a , , , c , L  are the radial displacement of the wall surface, axial coordinate, 

time, radius of tube, amplitude, wavelength, wave velocity, and tube length.  
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Fig.1. A geometrical description of flow regime altered by applied external electric field (

xE ) through a finite length ( L ) circular capillary of radius ( a ) with travelling by 

peristaltic wave propagations with a wave velocity ( c ), wavelength ( ), and amplitude (

 ). The pressures at the left and right reservoirs (inlet and exit, respectively) are denoted 

as 0p    and Lp  respectively. The electric double layer (EDL) is also sketched to show the 

ions distribution with Debye length ( d ). 

Most solid surfaces tend to acquire a net surface charge (+ve or –ve) when brought into contact 

with an aqueous (polar) solvent. For a symmetric (z: z) binary electrolyte solution (Na+ Cl-), 

the electric potential distribution is developed due to the presence of electrical double layer 

(EDL) in the micro-channel, described by the Poisson-Boltzmann equation: 



e2
,                                                                                                                          (2) 

in which, 2  is Laplacian operator,  is potential function, e  is the density of the total ionic 

change,   is the permittivity. For a symmetric (z:z) electrolyte, the density of the total ionic 

energy, e is given by, )(   nneze , in which z is charge balance, e  is the electronic 

charge, n and n  are the number densities of cations and anions respectively and are given by 

Boltzmann distribution (considering no EDL overlap):  








 


TK

ze
Expnn

B

0 ,                                                                                                              (3) 

x
 



 

xE

 

r
 

0p  

Net flow under the influence of 

combined effects of peristalsis 

and applied external electric field 

d  
 


 

Lp

 

a
 

L  

c  

E

D

L 



7 
 

where 0n  represents the concentration of ions at the bulk, which is independent of surface 

electro-chemistry, BK  is the Boltzmann constant, T  is the average temperature of the 

electrolytic solution. 

This distribution of ionic concentration appears to be valid when there is no axial gradient of 

the ionic concentration within the micro-channel and the flow Peclét number is assumed to be 

significantly small. Combining the Eqns. (2) & (3), we obtain the Poisson-Boltzmann equation 

in the form:  










 
















 TK

ez
ezn

r
r

rr

B

sinh2
1

0

.                                                                                         (4) 

Introducing a normalized electro-osmotic potential function,  , with zeta potential  of the 

medium along with other non-dimensional variables, like 



  and 

a

r
r   (normalized 

radial coordinate) and using the Debye–Hückel linearization approximation

TK

ez

TK

ez

BB


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





 
sinh , Eqn.(4) reduces to:  
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,                                                                                                                (5) 
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

 
  , is known as the electro-osmotic parameter and 

1
d


  is Debye 

length or characteristic thickness of electrical double layer (EDL). Using the boundary 

conditions: 0
0






rr
 and 1

hr
, since the potential function is symmetric, the potential 

function is obtained as: 

0

0

( )

( )

I r

I h




  ,                                                                                                                            (6)      

where 0 ( )I r  is modified Bessel function of first kind of zero order. 

Under the above approximations, the fundamental equations for axisymmetric incompressible 

flow with an axially applied electrokinetic body force term taken into account are given as: 
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                                                                                                                   (7) 
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                                                   (8) 

( )1
v v rx rr

S rSp
u

t x r r x r r


     
      
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,                                                                (9) 

where , , ,xx xr rx rrS S S S  are the extra stress components and , , v, ,u p  and xE  denote the fluid 

density, axial velocity, radial velocity, pressure, and elctrokinetic body force. The constitutive 

equation of extra stress S  for Jeffrey model, following [34]-[38] may be defined as: 

2

1

{ }
1

S


  


 


,                                                                                                            (10) 

where 21,,,    are the dynamic viscosity, rate of strain, the ratio of relaxation and retardation 

time, the retardation time and dots denote differentiation with respect to time. 

We then introduce the following non-dimensional parameters: 

2v
, , , v , , , , , Re ,

x ct u a h pa ca
x t u h p

c c a a c

 
 

      
          (11) 

It is assumed that the wavelength of the pulse (peristaltic wave) is much larger than the channel 

height; i.e. we assume that the lubrication approximation is valid ( = a/ <<1).  The nonlinear 

terms in the momentum equation are found to be  2O Re , Re  being the Reynolds number 

(based on the peristaltic wave velocity and tube radius),   denotes the ratio of the radial length 

scale to the axial length scale. On similar lines, the nonlinear terms in the Nernst Planck 

equations are  2O Pe , where Pe Re Sc  represents the ionic Peclet number and Sc D   

denotes the Schmidt number. Therefore, the nonlinear terms may be dropped in the limit that 

(Re, Pe,  <<1). In this limit, the governing equations reduce to: 

1 ( v)
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u r
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 
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 
                                                                                                                  (12) 
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E
U x

HS



   is the Helmholtz-Smoluchowski velocity or maximum electro-osmotic 

velocity. The relevant boundary conditions following Li & Brasseur [22] are specified as 

follows: 
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,                                        (15) 

Using boundary conditions (15), the axial velocity solution of Eqn.(13) emerges as: 

 2 2 0
1

0

( )1
(1 ) 1

4 ( )
HS

I rp
u r h U

x I h






   
      

   
.                                                                   (16) 

Using the Eq.(16) and boundary condition (15), the radial velocity from the mass conservation 

(continuity) equation is obtained as: 

2 2 2

1 1
1 2 2

0

( ) ( )
v (1 )

4 4 2 ( ( ))
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I r I hr p r h p h h
h U

x x x I h x

 




       
        

        

,                                  (17) 

where 1( )I r  is the modified Bessel function of the first kind of first order. 

Using Eq.(17) and boundary conditions (15), the pressure gradient is obtained as: 

2

1
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1 00

( )1
( ) 16

(1 ) ( )

x
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I hp h h h
G t U h ds

x h t s I h



 

      
     

        
 ,                                               (18) 

where )(0 tG  is arbitrary function of t  to be evaluated by using finite length boundary 

conditions (15). The pressure difference can be computed along the axial length by 

0

( , ) (0, )

x
p

p p x t p t ds
s


   


,                                                                                              (19) 

 and )(0 tG is expressed as: 
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The volumetric flow rate in the fixed frame is defined as: 

4
2 1

1

00

2 ( )
( , ) 2 (1 )

8 ( )

h

HS

hI hh p
Q x t urdr U h

x I h




 

   
       

   
 .                                             (21) 

Rearranging the Eq.(21), the pressure gradient in the form of volumetric flow rate is expressed 

as: 

2 1

4

1 0

2 ( )8 ( , )

(1 ) ( )
HS

hI hp Q x t
U h

x h I h



  

    
     

    

.                                                                       (22)   

The transformations in dimensional form between a wave frame ( , )w wx y moving with velocity 

( c ) and the fixed frame ( , )x y  are given by : 

, , ,w w w wx x ct r r u u c v v      ,                                                               (23) 

where ( , )w wu v and ( , )u v  are the velocity components in the wave and fixed frame respectively. 

The volumetric flow rate in the wave frame is given by 

0 0

2 2 ( 1)

h h

w w w wq r u dr r u dr    ,                                                                                 (24) 

which, on integration, yields:  

2

wq Q h  .                                                                                                               (25) 

The pumping performance is characterized for periodic train waves by averaging the 

volumetric flow rate for one time interval i.e. a time-averaged volume flow rate is employed 

which, following Shapiro et al. [20], is defined as: 

1 1

2

0 0

( )wQ Qdt q h dt    ,                                                                                          (26)                                    

which, on integration, yields 
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1

2 2

0

1 3 / 8Q Qdt Q h        .                                                                                       (27) 

Using Eqs.(22) & (27), the pressure gradient in wave frame is expressed as: 
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.                                                (28) 

Integrating the Eq.(28) from 0 to 1, the pressure difference across one wavelength is obtained 

as:  

1 2 2
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 .                    (29) 

Using Eqn.(16), the stream function in the wave frame (obeying the Cauchy-Riemann 

equations, 
rr

u





1
and 

xr
v






1
) takes the form: 

2
4 2 2 1

1

0

( )1
(1 ) ( 2 )

16 ( ) 2
HS

rI rp r
r r h U

x I h


 

 

   
      

   
.       

       

                                        (30) 

All the above expressions will reduce to expressions of Li and Brasseur [22] for 

10 & 0HSU    i.e. without external electrical field and viscoelastic properties. The above 

expressions will also reduce to expressions for peristaltic propulsion with thin EDL effects (i.e. 

only electroosmotic slip velocity at the wall is considered, neglecting external electric field 

effects) and correspond to the case examined by Chakraborty [39]) which is retrieved from the 

present general model for   i.e. when the thickness of EDL tends to zero ( 0d ). 

 

3. NUMERICAL RESULTS AND DISCUSSION 

Comprehensive numerical solutions have been obtained based on the analytical solutions 

derived in section 2, via Mathematica symbolic software. Simpson’s 1/3 rule is employed to 

perform the numerical integration. These are presented in Figs. 2-8. We confined attention to 

discussing the effects of three parameters on the peristaltic pumping  characteristics and 

trapping phenomenon, namely 1) electro-osmotic parameter ( 02

B d

n a
aez

K T


 
  ), which 

inversely proportional to  Debye length ( d )  or characteristic thickness of electrical double 
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layer (EDL), 2) Helmholtz-Smoluchowski (HS) velocity (
c

E
U x

HS



 ), which is 

proportional to external electric field ( xE ), and 3) Jefferys first parameter (ratio of relaxation 

time to retardation time (1)). All other parameters i.e. c,,,   are prescribed constant.  
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Fig.2. Velocity profile (axial velocity vs. radial coordinate) at 0.5,   and (a) 11, 1HSU    (b)  

=1, 1=1 (c)  =1, UHS=1. 
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Fig.3. Pressure distribution along the length of tube at 10.6, 2, 1, 1HSl U      at different time period 

(a) 0.2t   (b) 0.6t   (c) 0.9t  . Color lines represent the pressure distribution for different values of 

Debye length and Black dotted lines show the train wave propagation and single wave propagation. 
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Fig.4. Pressure distribution along the length of tube at  =0.6,l=2,  =0.5,1=2  at different time period 

(a) 0.2t   (b) 0.6t   (c) 0.9t  . Color lines represent the pressure distribution for different values of 

Helmholtz-Smoluchowski velocity and Black dotted lines show the train wave propagation and single 

wave propagation. 
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
Fig.5. Pressure distribution along the length of tube at  =0.6, l=2,  =0.5, UHS =1   at different time 

period (a) 0.2t   (b) 0.6t   (c) 0.9t  . Color lines represent the pressure distribution for different 

0.5 1.0 1.5 2.0

1

2

3

4

0.5 1.0 1.5 2.0

2

1

1

0.5 1.0 1.5 2.0

4

3

2

1

 

 

 

(a)

) 

(b) 

(c) 

 

 

 

    

 

 

    

 

 

    

 

 



17 
 

values of relaxation time and Black dotted lines show the train wave propagation and single wave 

propagation. 

 

 

 

 

 

 

Fig.6. Maximum volumetric flow rate vs. time at 0.6,   (a) 
11, 2HSU    (b)  =0.5, 1 =2  (c)  

=0.5, UHS =1. 
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Fig.7. Pressure difference across one wavelength (
1p ) vs. time averaged volumetric flow rate (Q ) for 

0.6,   (a) 1,HSU   1 1   (b)  =5, 1 1   (c)  =5, UHS =1.     
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Fig.8. Stream lines in wave form at 0.6, 0.9Q    (a)  =1, UHS =1, 1=1 (b)   =5, UHS =1, 1=1  (c) 

 =10, UHS =1, 1=1 (d)  = 5, UHS =5, 1=1  (e)  =5, UHS =10, 1=1 (f)  =5, UHS =5, 1=2 (g)  

=0.5, UHS =1, 1=3.  

Fig. 2a shows that the axial velocity is enhanced with increasing electroosmotic parameter () 

in the core region of the channel. Axial flow is however decelerated in the vicinity of the 

conduit wall significantly with greater  values. The profiles evolve from strong inverted 

parabolas to plug-flow geometry with increasing electro-osmotic parameter. Debye length, d

, is inversely related to the electro-osmotic parameter, and quantifies the influence of a charge 

carrier’s overall electrostatic effect in the viscoelastic electrolyte and therefore how deep into 

the bulk fluid these electrostatic effects are sustained. Increasing Debye length (decreasing 

electro-osmotic parameter) therefore decelerate the core flow and accelerate the near wall flow 

in the channel. We reiterate that in these figures   (permittivity),  (zeta potential of the 

medium),  (dynamic viscosity of viscoelastic electrolyte) and peristaltic wave velocity (c) are 

all fixed as is the wave amplitude (). With an increase in Helmholtz-Smoluchowski velocity 

(
c

E
U x

HS



 ), i.e. a rise in axial external electric field strength, xE the axial velocity in fig. 

2b is observed to increase from negative values to zero (vanishing velocity) in the central zone 

 

(g) 
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of the channel (-0.5  r  +0.5). However with greater radial distance a significant decrease in 

axial velocity arises with greater Helmholtz-Smoluchowski (UHS) values. Evidently therefore 

the influence of axial electrical field is dependent on the location in the conduit. Acceleration 

is only produced in the core region whereas deceleration is induced in the peripheral regions 

(at and close to the walls). The effect of increasing axial field on the peristaltic flow for UHS  

0 is not consistent across the cross-section of the conduit. It is also interesting to note that for 

UHS = 1 the velocity profile is linear across the channel i.e. axial velocity is invariant with radial 

coordinate. This implies that if a homogenous velocity profile is needed across the capillary or 

micro-scale device, the maximum electro-osmotic velocity of unity can achieve this result. Fig 

2c demonstrates the influence of the Jefferys viscoelastic parameter (1=2) on axial velocity 

profiles. An alternating response is computed. In the conduit core section -0.5  r  +0.5, an 

increase in 1 generates significant retardation in the flow i.e. opposes axial momentum 

development. However external to this core, in the zones -1.0  r  -0.5 and 0.5  r  1.0, the 

axial flow is strongly accelerates, attains a peak and only very close to the conduit wall does 

the deceleration effect return. 1 relates the relaxation time to retardation time in the viscoelastic 

fluid. Yoo and Joseph [46] have shown that in viscoelastic fluid models including Jefferys 

model and the Maxwell model, with greater relaxation time, the fluid is more elastic and 

damping is suppressed near the boundaries. However in core flows the converse effect is 

induced and damping is accentuated which leads to deceleration in viscoelastic flows in the 

core zone of conduits. Similar observations have been reported by Haroun [47]. These trends 

concur with the present observations as illustrated in fig. 2c. Furthermore with 1 = 0 the 

Newtonian viscous case is retrieved and clearly in the core region Newtonian electro-osmotic flows are 

accelerated compared with viscoelastic flows. For 1 =1, 2 the relaxation time is respectively equal to 

and double the retardation time. In general viscoelastic models, the retardation time of the material 

quantifies the time taken for the creep strain to accumulate; the shorter the retardation time, the more 

rapid the creep straining. It is therefore a very different phenomenon from stress relaxation which is 

related to time taken for bond rotations to take place and quantifies the time elapsed in relaxing to a 

new state (a measure of the time taken for the stress to relax; the shorter the relaxation time, the 

more rapid the stress relaxation). An advantage of the Jefferys model is that it possess both 

retardation and relaxation features, unlike for example the Maxwell model which cannot simulate a 

retarded elastic response or even the Voight model which does not address stress  relaxation. 

Viscoelastic fluids behave as fully viscous fluids at one extremity and ideally elastic solids at 

the other. At the shear rates under consideration both viscous and elastic effects are of interest 

as are relaxation and retardation effects. Although biological materials exhibit an extensive 
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relaxation/retardation spectrum, the values of 1 =1, 2 employed in the current analysis are 

representative of actual viscoelastic electrolytes or gels both encountered in human physiology and in 

medical devices as described by Beebe et al. [48].  

Figs. 3a-c illustrate the pressure difference (p) distributions along the axis of the conduit at 

different times (t) and with different electro-osmotic parameter values, . At low time values, 

there is a strong presence of positive pressure difference peaks along the channel extent. 

Simultaneously an increase in electro-osmotic parameter,  (i.e. decrease in electrical Debye 

length) is found to reduce pressure differences in figs 3a and 3b (t =0.2 and 0.6 respectively) 

at the peaks but to enhance pressure difference at the troughs. With progressive time elapse the 

pressure differences are substantially reduced along the channel. For fig 3c, at t = 0.9, there is 

very little influence computed by altering the electro-osmotic parameter at the peaks, whereas 

at the troughs pressure difference is again found to be elevated with greater values of . 

However the plots exhibit mainly negative pressure difference at high time value and positive 

pressure difference at lower time values. In all three figures the relaxation and retardation times 

of the viscoelastic electrolyte are equivalent (1 =1).  

Figs. 4a-c illustrate the pressure difference (p) distributions along the axis of the conduit at 

different times (t) and with different values of Helmholtz-Smoluchowski (UHS). With 

increasing UHS values i.e. stronger axial electrical field, there is a marked reduction in the 

pressure differences along the conduit length. This behaviour is consistent for both troughs and 

peaks at t = 0.2. However at t = 0.6 the decrease in pressure differences is observed only to 

arise at the peaks and not the troughs. With subsequent progress in time, fig. 4c (t = 0.9) shows 

that increasing axial electrical field i.e. greater Helmholtz-Smoluchowski (UHS) velocity values 

infact sustains an enhancing effect on the pressure difference for all values of axial coordinate. 

The impact of time is therefore critical in generating a modification in the impact of maximum 

electro-osmotic velocity i.e. Helmholtz-Smoluchowski (UHS) on pressure difference evolution 

in the conduit, although generally negative values are computed at t = 0.9.  

Figs. 5a-c illustrate the pressure difference (p) distributions along the axis of the conduit at 

different times (t) and with different values of viscoelasticity parameter (1). A significant 

depression in pressure difference is observed with increasing 1.values. The Newtonian case (1 

= 0) achieves the greatest pressure difference magnitudes, at t = 0.2 (fig. 4a). Furthermore at this time 

state, the pressure differences are principally positive along the channel length. However with 

larger times (figs. 4b,c), pressure differences become increasingly negative. At intermediate 

time (t = 0.6) the pressure differences are again suppressed with greater values of viscoelasticity 
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parameter (at the peaks) and this effect is even more amplified at higher time values. Both time 

and viscoelasticity therefore substantially modify the pressure distributions in electro-osmotic 

pumping.  

Figs. 6a-c illustrate the evolution in maximum transient volumetric flow rate (Qo(t)) with time 

(t) and with different values of a) electro-osmotic parameter (i.e. 02

B d

n a
aez

K T


 
  ), b) 

Helmholtz-Smoluchowski velocity (
c

E
U x

HS



 ) and c) Jefferys first viscoelastic 

parameter (ratio of relaxation time to retardation time, 1). In all three plots well-dispersed 

periodic profiles are captured which illustrate clearly the sinusoidal nature of the peristaltic 

flow. Flow rates are observed to alternate with time i.e. attaining respective peaks then troughs. 

With an increase in , UHS and also 1 there is a consistent enhancement in the volumetric flow 

rate at any value of time. Effectively therefore greater electro-osmotic effect (smaller Debye 

length), stronger axial field and stronger stress relaxation in the viscoelastic electrolyte results 

in boosting flow rates. Magnitudes of flow rates are modified (non-trivially increased) with a 

change in electro-osmotic parameter,  (fig. 6a) and Helmholtz-Smoluchowski velocity (fig. 

6b) than with a change in viscoelastic parameter (fig. 6c). 

Figs. 7a-c illustrate the distributions of pressure difference across one wavelength vs time averaged 

volumetric flow rate for different values of the electro-osmotic parameter (), Helmholtz-

Smoluchowski i.e. maximum electro-osmotic velocity ( HSU ) and Jefferys first viscoelastic 

parameter (ratio of relaxation time to retardation time, 1)., respectively. These  graphs provide 

an insight into the  perspective of the response in pressure difference for both positive and 

negative time-averaged volumetric flow rates (Q) i.e. for the case where the pumping is aligned 

in the direction of axial electrical field (positive Q ) and the opposite scenario in which the flow 

is opposite to axial field orientation i.e. x-axis (negative Q ). In all cases an intermediate 

peristaltic wave amplitude is imposed i.e.  = 0.2 in these plots. With an increase in electro-

osmotic parameter,, as shown in fig. 7a, there is a significant elevation in the pressure 

difference for both Q <0 and Q >0. However positive pressure difference is only generally 

associated with negative flow rate and vice versa for positive flow rate. Overall a stronger 

electro-osmotic effect (weaker Debye length) impacts noticeably and tends to increase the 

pressure difference at any flow rate. Similarly fig. 7b shows that as the Helmholtz-

Smoluchowski velocity increases (and therefore stronger axial electrical field acts on the 

system), pressure difference is again boosted, for both negative and positive flow rates. The 



26 
 

influence is again sustained irrespective of values of Q. Stronger axial electrical field is 

therefore assistive to the peristaltic propulsion in the conduit. Fig. 7c demonstrates that with 

greater Jefferys first viscoelastic parameter, the response in pressure difference with volumetric 

flow rate is significant deviated from that in figs 7a,b. For negative flow rates (Q <0) i.e. 

reversed flow an increase in stress relaxation relative to retardation in the viscoelastic 

electrolyte strongly depresses the pressure difference. This implies that stronger viscoelastic 

effect is inhibitive to pressure build up in the peristaltic regime in this range of flow rates. 

However for positive flow rate (Q>0), the opposite effect is induced and there is a growth in 

pressure difference with increasing viscoelastic parameter (i.e. decreasing retardation time).  

Figs. 8a-g present streamline visualizations in the conduit for different various values of electro-

osmotic parameter (), maximum electro-osmotic velocity ( HSU ) and non-Newtonian couple 

stress parameter (). Comparing fig. 8a-c, for which both UHS and 1  are given fixed values of 

unity, and electro-osmotic parameter () varies from 1 through 5 to 10, it is apparent that with 

greater electro-osmotic effect, the intensity of streamlines near the conduit wall is very slightly 

reduced and there is weaker circulation generated in this location. The dual bolus (trapping 

zone) structure is marginally distorted with greater electro-osmotic effect. Comparing fig. 8d 

and e, for which both   and 1 are fixed at values of 5 and 1, respectively, and UHS increases 

from 5 to 10, it is apparent that with an increase in axial electrical field (to which UHS is 

proportional) there results a slight growth in the dual bolus system and the streamlines near the 

boundaries are constricted. Finally figs. 6f and 6g reveal that as 1 is increased (with both   

and UHS fixed at values of 5 and 5, respectively), there is a much more significant growth in 

the dual bolus magnitudes which diverge across the conduit section and cause a constriction in 

streamlines in the central zone.  

 

4. CONCLUSIONS 

A mathematical model has been developed for electro-osmotic driven peristaltic pumping of 

Jefferys viscoelastic electrolytes in a finite length conduit under the action of an axially 

imposed electrical field. The conservation equations have been non-dimensionalized and 

analytical solutions derived in terms of Bessel functions, for axial velocity, volumetric flow 

rate, pressure difference and pressure gradient, stream function and time averaged volume 

flow rate. The effects of electro-osmotic parameter (inverse Debye length), Helmholtz-

Smoluchowski velocity and Jefferys viscoelastic relaxation/retardation parameter on peristaltic 
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pumping characteristics and trapping phenomena are evaluated numerically with the aid of 

Mathematica software. The finite length tube Newtonian model Li and Brasseur [22] is shown 

to be a special case of the present study. These principal findings from the present computations 

are:  

 Axial velocity is increased with increasing electroosmotic parameter and Helmholtz-

Smoluchowski velocity in the core region of the channel. Axial flow is however 

decelerated in the vicinity of the conduit wall significantly with greater electroosmotic 

parameter and Helmholtz-Smoluchowski velocity (i.e. stronger axial electrical field) 

values. In the conduit core region, greater viscoelastic parameters induce strong 

deceleration in the axial flow whereas the converse effect is computed closer to the 

conduit wall.   

 Pressure difference is decreased with greater electro-osmotic parameter, larger time 

elapse, increasing Helmholtz-Smoluchowski velocity and also with greater 

viscoelasticity parameter, across the conduit length. 

 Volumetric flow rate at any value of time is boosted with increasing electroosmotic 

parameter (smaller Debye length), Helmholtz-Smoluchowski velocity and 

viscoelasticity (relaxation/retardation) parameter.  

 Pressure difference is enhanced with stronger electro-osmotic effect (weaker Debye 

length) and larger Helmholtz-Smoluchowski velocity (i.e. stronger axial electrical 

field) at any flow rate.   

 With greater electro-osmotic effect and higher Helmholtz-Smoluchowski velocity there 

is a weak growth in the dual bolus structures. However a much more prominent growth 

is computed with increasing viscoelastic parameter. 

The present study has considered the Jefferys viscoelastic model. Future investigations will 

consider alternate non-Newtonian models e.g. micropolar fluids [49].  
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