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Abstract 

The aim of this research is to forecast the rates of lung cancer incidence and mortality in 

the Kingdom of Saudi Arabia using data on lung cancer diagnosis between 1994 and 2009. 

Lung cancer data, including incidence and mortality, were obtained from Saudi Cancer 

Registry at the Ministry of Health. The Central Department of Statistics & Information at 

the Ministry of Planning also provided data on person characteristics, such as age, gender 

and ethnicity. These data serve as a basis for modelling the effect of gender, ethnicity, and 

age at diagnosis, and region on incidence and mortality. For comparison of incidence and 

mortality rates between region and over time, standardised rates are used in this thesis, 

based on a hypothetical standard population, in our case  the world standard population. 

We use several modelling approaches. The first part of the analysis uses two approaches. 

The first approach concentrates on Box–Jenkins methodology, and the second approach 

uses dynamic regression modelling including both finite and infinite lag models to forecast 

lung cancer incident cases. The second part focuses on age-period-cohort modelling 

including both incidence and mortality rates of lung cancer, and using two methodological 

approaches, namely spline functions and Bayesian dynamic models, for the incidence and 

mortality respectively. Lung cancer is rarely diagnosed in people under 30 years of age in 

Saudi Arabia, but incidence rises sharply thereafter peaking in the 65-69 years age group. 

Males have a 79% greater incidence rate of lung cancer than females across the entire 

dataset when adjusting for the other effects. The average age standardised incidence rate in 

2009 was 3.8 per 100,000 population whereas the average age standardised mortality rate 

was 1.9 per 100,000 population in the same year. The highest number of cases of lung 

cancer were reported in the Western region at 187 and in Riyadh at 144 cases and the 

majority of cases were diagnosed in winter (December - March). The forecast incidence 

rate of lung cancer is expected to decrease in men but to increase in women over the next 

ten years. This is perhaps due to the increase in the proportion of female smokers. The 

male age standardised rate of lung cancer incidence is forecast to fall from 4.6 in 2010 to 

2.4 per 100,000 by 2020, whereas the female age standardised rate is forecast to increase 

from 2.0 in 2010 to 2.2 per 100,000 by 2020. On the other hand, the overall mortality rate 

of lung cancer (with 95% credible interval shown) is forecast to increase to 2020 from 1.8 

(1.61, 1.94) in 2010 to 3.04 (0.13, 5.94) per 100,000 population. Age has a strong 

association with lung cancer mortality, suggesting age-related causes such as accumulative 

exposures to smoking over time may be the main reason for increasing lung cancer 

mortality in Saudi Arabia. This is the first study to forecast lung cancer incidence and 

mortality in Saudi Arabia. It will help the Saudi Arabian Ministry of Health to understand 

the rate of future lung cancer incidence and mortality and the overall effects of the 

population classes, and to plan healthcare provision accordingly. The data are limited 

because the Saudi Cancer Registry has only been in existence since 1992. Therefore, we 

can expect the precision of forecasts to improve as further data are collected.  
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CHAPTER 1 

INTRODUCTION 

1.1. Background Information 

Cancer is a major health challenge. Globally, the estimated number diagnosed with cancer 

is approximately 14.1 million people per year and mortality is 8.2 million deaths per year 

(Ferlay et al, Global Cancer, 2012; IARC, 2013). These figures are set to rise to 26.4 

million and 13.2 million by 2030 (Boyle P, et al. World Cancer Report, 2008). 

 At the beginning of the 20th century lung cancer was a very rare disease. The increase 

was first recognized in autopsy research (De Vries VM, 1927). Since World War II, rates 

in the Western world have increased dramatically and lung cancer could be called 'one of 

the epidemics' of the 20th century. Nowadays lung cancer is the first or second most 

frequent tumor type among men and third or fourth among women (World Health 

Organization, Media Center, 2015). 

 The Kingdom of Saudi Arabia (KSA) is the largest country of the Arabian Peninsula 

and the second-largest country in the Arab world. It extends from the Red Sea in the west 

to the Arabian Gulf in the east with approximately 2,150,000 square kilometers in land 

area. KSA is divided into 13 administrative regions. In 2010, the population was 

approximately 27 million (Figure 1.1). 

 

 

Figure 1.1: Population of Saudi Arabia from 1996 to 2010. 

 

 Tobacco smoking is the most important risk factor for cancer, causing 20% of the 

world mortalities and more than 70% of global lung cancer mortalities (WHO, Media 
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Center, 2014; Cancer research UK, 2014). Globally, three people die every minute from 

lung cancer according to WHO (Elsayed et al., 2011). Lung cancer is a multifactorial 

disease – that is, many factors work together to either cause or prevent lung cancer. Other 

risk factors include genetic risk, age, effects of past cancer treatment, exposure to asbestos, 

radon gas and – in very rare cases – substances such as uranium, chromium, nickel, and 

polycyclic hydrocarbons (Alberg and Samet, 2003). Lung cancer is not infectious. 

 In the Kingdom of Saudi Arabia (KSA), the amount of imported tobacco has increased 

dramatically in recent years (Figure 1.2). This suggests there will be a serious problem 

with lung cancer in the future.  The sharp decrease in the period 1991 and 1996 coincides 

with the Gulf War. 

 

 

Figure 1.2: Value of tobacco imported by Saudi Arabia (1 S.R. = $3.75). 

 

Lung cancer is estimated as the seventh most common cancer in Gulf Countries (Gulf 

Cooperation Council, 2011). In 2007, the estimated lung cancer cases were 4600 and 

accounted for 5% of all cancers. In Gulf Countries, the average age standardised rates 

reported were 7.0 per 100,000 population for males and 2.1 per 100,000 for females.  Lung 

cancer seems to be higher among men than women in the Gulf Countries. The highest ASR 

was in Bahrain at 31.1 and 10.7 per 100,000 population in male and female, respectively. 

This was followed by Kuwait and Qatar. The lowest ASR was reported in Saudi Arabia at 

5.6 and 1.6 per 100,000 population for male and female, respectively (Gulf Cooperation 

Council, 2011).  Lung cancer ranked in the seventh position with around 490 cases at 3.9% 

of all cancers (Al-Eid, Saudi Cancer Incidence Report, 2009). This percentage could 

increase in future according to the chairman of the Saudi cancer registry.  
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1.2. Aims and Objectives 

The aim of this thesis is to use statistical methods to model temporal trends of lung cancer 

in the Kingdom of Saudi Arabia (KSA) and to predict cancer incidence and mortality up to 

2020. We develop trend models for the period 1994-2009 for different age groups for short 

and medium term predictions. In so doing we aim to produce forecasts of number of cases 

by that use additional information available about male and female smoking prevalence 

and other covariates. In addition, we aim to describe the broad picture of the future lung 

cancer burden in KSA against which progress in implementing the National Health Service 

(NHS) Cancer Plan will be measured.  

 Projecting the burden of cancer is important for evaluating prevention strategies and 

for administrative planning at cancer facilities. Health and planning officials need to plan 

treatment and care. In fact, assuming that the current rates will remain the same is often 

inaccurate. 

1.3. Methodology 

We study lung cancer incidence in Saudi Arabia between 1994 and 2009. Lung cancer 

incidence and mortality data were obtained from Saudi Cancer Registry (SCR). The 

Central Department of Statistics & Information (CDS) provided data on person 

characteristics, such as age, gender, and ethnicity from 1994 to 2009.  

 In the first part of this research, the incidence of lung cancer are modelled and 

predicted using Box-Jenkins methodology and dynamic regression models. Box-Jenkins 

methodology fits non-seasonal Autoregressive Integrated Moving Average (ARIMA) 

models and seasonal ARIMA (SARIMA) models. Dynamic regression models would 

involve more general autoregressive AR(∞) processes such as AR(1), distributed lag 

models (DLMs), and polynomial distributed lag models (PDLs). We try to find new 

approaches to evaluate the robustness of the results, using autoregressive polynomial 

distributed lag models (ARPDLs). Thus, the ultimate purpose of dynamic modelling is to 

estimate consistent individual (short run) and cumulative (long run) trends of lung cancer 

cases over the period 1994-2009 per month and to forecast over the period 2010-2012. The 

second part of this research concentrates first on the age-period-cohort (APC) modelling 

using the spline functions for the incidence rates and second on Bayesian dynamic APC 

modelling for the mortality rates of lung cancer. We forecast the rates of lung cancer 

incidence and mortality up to 2020 for the population of Saudi Arabia using population 

projections from the United Nations (2012) for the years 2010 to 2020 using lung cancer 
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incidence and mortality data from the Saudi Cancer Registry (SCR) for the years 1994 to 

2009. 

 We model the incidence rate of lung cancer using a version of the age-period-cohort 

model with recommended modifications that was developed and tested in Stata Journal 

articles (Rutherford et al., 2010 and Sasieni, 2012). In the age-period-cohort setting, we fit 

spline functions to each of the three components of age, period, and cohort. Constraints 

need to be made because of the lack of identifiability of the model. The identifiability issue 

stems from the fact that there is an exact relationship between the variables. 

 Rutherford et al. (2010) described an APC command called apcfit and illustrated 

how to fit age-period-cohort models when not making predictions. Potentially, an update 

by Sasieni (2012) made predictions easier from apcfit command. The extension to 

making the predictions involves a little care in setting up the data and making the knot 

selection with simple assumptions of linearity beyond the boundary knots. Using the 

restriction of the cubic splines being linear beyond the boundary knots, we were able to 

make better predictions in the magnitude of the rates, the variation by age, and time trends 

in the rates. We arrange the data in one-year intervals from 1994 to 2009 and 5-year age 

groups from 0-4 years to 75+ years. We obtain parameters by means of a maximum 

likelihood procedure. We add covariates to the models in order to obtain the best-fitting 

model using the model selection criteria. In this analysis, various combinations of 

covariates such as gender, race, smoking prevalence by gender, price of imported tobacco, 

consumption of tobacco per 1000 tons were used. In addition, five created regions (north, 

south, east, west, central) from the whole 13 administrative regions of Saudi Arabia were 

added to assess the performance of the final model. 

 In the Bayesian dynamic APC modelling, we follow the strategy proposed by Held 

and Rainer (2001) and Shuichi et al. (2008) by using a dynamic age-period-cohort model 

to smooth age, period and cohort trends and to extrapolate N future periods and cohorts. 

We model lung cancer mortality trends through specific smoothing of model parameters 

since our lung cancer mortality data are sparse (many of zero counts). According to Knorr-

Held and Rainer (2001), a second order random walk (RW2) has been assumed for age, 

period and cohort effects to reduce the variation of parameter estimates. We calculate lung 

cancer mortality rates using the population of Saudi Arabia from 1994-2009. We 

standardize both the incidence and mortality rates using the world standard population. We 

arrange the data in one-year intervals from 1994 to 2009 and 5-year age groups from 25-29 

years to 75+ years. Since there are fewer observations for the earliest and most recent 
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cohorts this may lead to less precision in the estimates of these cohorts. The form of 

models fall into the class of generalized linear models with the number of lung cancer 

incidence and mortality follow a Poisson distribution. The posterior distributions of the 

hyper-parameters are obtained by using Markov Chain Monte Carlo (MCMC) techniques. 

To achieve better smoothing of the parametric effects, we introduce an adaptive precision 

parameter (  ) for each prior distribution of age, period and cohort as suggested by Cleries 

et al. (2010). In the Bayesian analysis, convergence diagnostics and model selection 

criteria are used to compare between nested models and select the best-fitting model. 

 The data in this thesis are analyzed using statistical software packages Minitab, 

Stata13, Eviews8, R, and R2WinBUGS. 

1.4. Justification 

Recently, cancer has become the top priority of the government of Saudi Arabia because of 

its increase in the country. Therefore, effort must be made to reduce and prevent the 

increase of cancer incidence and mortality in Saudi Arabia.  

 In 2009, the percentage of males and females smokers in Saudi Arabia has been 

estimated to be around 20.8% for males and 5.8% for females for the population aged 16 

and over (Ministry of Health, 2009). This implies around 3,775,400 million adult cigarette 

smokers in KSA. Thus, efforts need to be made to reduce the prevalence of smoking since 

tobacco is responsible for around 70% of lung cancer mortality (World Health 

Organization, Media Center, 2015). In addition to the human toll of cancer, the financial 

cost of cancer is substantial. The direct costs include payments and resources used for 

treatment and the indirect costs include the loss of economic output due to days missed 

from work. 

1.5. Structure of the Thesis 

This thesis is composed of eight chapters. Chapter one is this introduction, where an 

overview of the project is given and includes the aims and objectives, methodology, and 

justification. Chapter two is composed of a brief literature review on disease incidence, 

forecasting lung cancer incidence in developed and developing countries among other 

things, a review of time series methods, a review of dynamic regression models, a review 

of age–period–cohort (APC) models, methods for quantification of incidence and 

mortality, and forecasting methods. Chapter three presents all the data summary. The 

fourth chapter presents analysis of Box–Jenkins methodology for modelling and 

forecasting lung cancer incidence. The fifth chapter presents analysis of first order 
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autocorrelated, distributed lag models and their one-step ahead forecasts, polynomial 

distributed lag models (PDLs), and autoregressive polynomial distributed lag models 

(ARPDLs). Chapter six is composed of APC modelling and predictions to 2020 for the 

incidence using spline functions. Chapter seven presents Bayesian dynamic APC 

modelling and predictions to 2020 for mortality. Chapter eight presents conclusions, 

recommendations and future research. Apart from the first and the last chapters, each 

chapter is provided with a brief summary. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Cancer Incidence and Mortality 

WHO reports that future death rates can be reduced with timely diagnosis, regular 

screenings, and early treatment of cancers. In 2012, the incidence and mortality cases in 

the economically developed countries were about 6.1 and 3.0 million, respectively.  

Whereas, the incidence and mortality cases in economically developing countries were 

about 8.1 and 5.3 million, respectively (Ferly et al, Global Cancer, 2012). This increase of 

incidence and mortality cases is simply because of the growth and ageing of the population 

(American Cancer Society, 2011). Cancer involves more than 100 types of cancers with 

different etiologic factors and treatment. In 2012, the majority of cancer cases were 

diagnosed in Eastern Asia at 4,145,000 cases in both males and females. This was followed 

by Northern America, South-Central Asia and Western Europe at around 1,786,400, 

1,514,000 and 1,110,300 cancer cases, respectively (Ferly et al, Global Cancer, 2012). It 

has been estimated that the number of deaths in Europe is projected to increase by 11% in 

2015, compared to the 2000 level (Quinn et al., 2003). It is estimated that in Europe alone, 

one in three people will be affected by cancer in their lifetime (World Cancer Report, 

2003). In Western Asia, the estimated number of cancer incidence was 317,600 cases and 

the mortality was almost 189,400 cases (Ferly et al, Global Cancer, 2012). In Saudi Arabia, 

in 2007, the estimated cancer cases were 70,000 with 35,100 cases among males and 

34,900 cases among females, compared to 2004 when there were 45,500 cancer cases for 

both genders (Al-Amadi, K. and Al-Ameri, A., 2011).  

2.2. Lung Cancer Incidence and Mortality 

In 2012, globally the estimated lung cancer impact was approximately 1.89 million cases 

and 1.59 million deaths. The numbers of incidence and mortality cases in the developed 

countries were about 758,000 and 627,000, respectively. In addition, the numbers of cases 

of incidence and mortality in the developing countries were about 1.1 million and 963,000 

respectively (Ferly et al, Global Cancer, 2012).  Tobacco smoking is the most important 

risk factor for lung cancer causing 20% of the world mortalities and more than 70% of 

global lung cancer mortalities (WHO, Media Center, 2014; Cancer Research UK, 2014). 

 Globally, the highest age standardised rate (ASR) of lung cancer was among males in 

Central and Eastern Europe at 53.5 per 100,000 population. This was followed by Eastern 
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Asia males at 50.4 per 100,000 population. Also, it was high among males in Southern 

Europe, Western Europe, and North America at approximately 46, 45, and 44 per 100,000 

population respectively. Notably, the lowest ASR was in Middle and Western Africa at 2.0 

and 1.7 per 100,000 respectively. In females, age standardised rates (ASR) were high in 

North America and Northern Europe at almost 33.8 and 23.7 per 100,000 population 

respectively. The lowest ASR was reported again in Middle and Western Africa at 1.1 and 

0.8 per 100,000 respectively (Ferly et al, Global Cancer, 2012).  

2.3. Time Series  Forecasting Models 

2.3.1. Introduction    

In this section, we highlight brief literature review on time series methods including key 

publications in other journals. We provide a selective guide to the literature on time series 

forecasting, covering more than four decades. The proportion of papers that concern time 

series forecasting has been fairly stable over time. We also review key papers and books 

published elsewhere that have been highly influential to various developments in the field, 

but of course the list is far from exhaustive. 

 The main aim of time series modelling is to carefully collect and rigorously study the 

past observations of a time series to develop an appropriate model  which describes the 

inherent structure of the series. This model is then used to generate future values for the 

series, i.e. to make forecasts. Time series forecasting thus can be termed as the act of 

predicting the future by understanding the past (Raicharoen et al., 2003). Due to the 

indispensable importance of time series forecasting in numerous practical fields such as 

business, economics, finance, science and engineering, etc. (Tong, 2003 and Zhang, 2003; 

2007 ), proper care should be taken to fit an adequate model to the underlying time series. 

A lot of efforts have been done by researchers over many years for the development of 

efficient models to improve the forecasting accuracy. As a result, various important time 

series forecasting models have been evolved in literature.  

2.3.2. Definition of A Time Series  

A data set containing observations on a single phenomenon (or variable) observed over 

multiple time periods is called time series. It is mathematically defined as a set of vectors 

x(t), t = 0, 1, 2, ... where t represents the time elapsed (Cochrane, 1997; Hipel and McLeod, 

1994; Raicharoen et al., 2003). The variable x(t) is treated as a random variable. The 

measurements taken during an event in a time series are arranged in a proper chronological 
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order. In time series data, both the values and the ordering of the data points have 

meaning. Although the ordering is usually through time, particularly in terms of some 

equally spaced intervals, the ordering may also be taken through other dimensions such as 

space (Wei, 1990).  

 A time series containing observations of a single variable is termed as univariate, 

whereas if observations of more than one variable are considered, it is termed as 

multivariate. A time series can be continuous or discrete. Continuous time series are 

generally recorded steadily and instantaneously whereas discrete time series contain 

observations measured at sequential integer values of the variable time. For example 

temperature readings, flow of a river, concentration of a chemical process, an oscillograph 

records of harmonic oscillations of an audio amplifier etc. can be recorded as a continuous 

time series. On the other hand population of a particular city, production of a company, 

exchange rates between two different currencies, and rainfall accumulations measured at a 

regular interval may represent discrete time series. Usually in a discrete time series the 

consecutive observations are recorded at equally spaced time intervals such as hourly, 

daily, weekly, monthly or yearly time separations. As mentioned in (Hipel and McLeod, 

1994), the variable being observed in a discrete time series is assumed to be measured as a 

continuous variable using the real number scale. Furthermore a continuous time series can 

be easily transformed to a discrete one by merging data together over a specified time 

interval. This thesis examines raw data and summary statistics measured at regular 

intervals over time, for which time series analysis is most appropriate. 

 Analysis of time series has been a part of statistics for long. Some methods have also 

been developed for its analysis to suit the distinct features of time series data, which differ 

both from cross section and panel or pooled data. Various approaches are available for 

time series modelling. Some of the tools and models which can be used for time series 

analysis, modelling and forecasting are briefly discussed. 

2.3.3. Time Series Models and Components 

A time series is a set of values of a particular variable that occur over a period of time in a 

certain pattern. The time series movements of such chronological data can be decomposed 

into the most common patterns as increasing or decreasing trend, cyclical, seasonal 

(periodic), and irregular fluctuations (Bowerman et al., 2005). In some series, one or two 

of these components may overshadow the others. A basic assumption in any time series 

analysis and modelling is that some aspects of the past pattern will continue to remain in 
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the future. For detailed discussion of the four main time series components, see Bowerman 

et al., (2005).  

 A time series is non-deterministic in nature, i.e. we cannot predict with certainty what 

will occur in future. Generally a time series {x(t), t = 0,1, 2,...} is assumed to follow certain 

probability model (Cochrane, 1997) which describes the joint distribution of the random 

variable   . According to Hipel and McLeod (1994), the mathematical expression 

describing the probability structure of a time series is a stochastic process. Thus the 

sequence of observations of the series is actually a sample realization of the stochastic 

process that produced it.  

 A usual assumption is that the time series variables    are independent and identically 

distributed following the normal distribution. However as mentioned in Cochrane, (1997), 

an interesting point is that time series are in fact not exactly independent and identically 

distributed; they follow more or less some regular pattern in long term. For example if the 

temperature today of a particular city is extremely high, then it can be reasonably 

presumed that tomorrow’s temperature will also likely to be high. Hence, if time series 

models are put to use, say, for instance, for forecasting purposes, then they are especially 

applicable only in the short term. 

 Exponential smoothing methods originated in the 1950s and 1960s with the work of 

Brown (1959, 1963), Holt (1957, reprinted 2004) and Winters (1960). Pegels (1969) 

provided a simple but useful classification of the trend and the seasonal patterns depending 

on whether they are additive (linear) or multiplicative (nonlinear). Muth (1960) was the 

first to suggest a statistical foundation for simple exponential smoothing (SES) by 

demonstrating that it provided the optimal forecasts for a random walk plus noise. Further 

steps towards putting exponential smoothing within a statistical framework were provided 

by Box & Jenkins (1970, 1976), Roberts (1982) and Abraham and Ledolter (1983,1984), 

who showed that some linear exponential smoothing forecasts arise as special cases of 

ARIMA models. However, these results did not extend to any nonlinear exponential 

smoothing methods. Forty years ago, exponential smoothing methods were often 

considered a collection of ad hoc techniques for extrapolating various types of univariate 

time series. Although exponential smoothing methods were widely used in business and 

industry, they had received little attention from statisticians and did not have a well-

developed statistical foundation. A decent account on exponential smoothing methods has 

been given in Makridakis et al.,(1998). 
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2.3.4. Models of Stationary Processes  

The concept of stationarity of a stochastic process can be visualized as a form of statistical 

equilibrium (Hipel and McLeod, 1994). The statistical properties such as mean and 

variance of a stationary process do not depend upon time. It is a necessary condition for 

building a time series model that is useful for future forecasting. A time series is said to be 

stationary if its underlying generating process is based on a constant mean and constant 

variance with its autocorrelation function (ACF) essentially constant through time. This 

means that different subsets of a time series sample will typically have time independent 

means, variances and autocorrelation functions that do not differ significantly.   

 A statistical test for stationarity or test for unit root has been proposed by Dickey and 

Fuller (1979). The test is applied for the parameter   in the auxiliary regression 

                    

 where     denotes the difference operator i.e.                

 The relevant null hypothesis is      i.e. the original series is non stationary and the 

alternative is      i.e. the original series is stationary. Differencing is usually applied 

until the acf shows an interpretable pattern with only a few significant autocorrelations.  

 As mentioned in (Box & Jenkins, 1970 ; Hipel and McLeod, 1994), stationarity is a 

mathematical idea constructed to simplify the theoretical and practical development of 

stochastic processes. To build a suitable time series model for future forecasting, the 

underlying time series is expected to be stationary. Unfortunately this is not always the 

case. As stated by Hipel and McLeod (1994), the greater the time span of historical 

observations, the greater is the chance that the time series will exhibit non stationary 

characteristics. However for relatively short time span, one can reasonably model the series 

using a stationary stochastic process. Usually time series with trend or seasonal patterns are 

non stationary in nature. In such cases, differencing and power transformations are often 

used to remove the trend and to make the series stationary.  

2.3.5. Box-Jenkins Methodology   

Generally, early attempts to study time series particularly in the nineteenth century were 

characterized by the idea of a deterministic world. It was the major contribution of Yule 

(1927) who launched the notion of stochasticity in time series by postulating that every 

time series can be regarded as the realization of a stochastic process. Based on this simple 

idea, a number of time series methods have been developed since then.  
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 Autoregressive (AR) models were first introduced by Yule in 1926. They were 

consequently supplemented by pioneers such as Slutsky who in 1937 formulated moving 

average (MA) schemes. Wold (1938), first combined both AR and MA schemes and 

showed that ARMA processes can be used to model all stationary time series as long as the 

appropriate order of p, the number of AR terms, and q, the number of MA terms, were 

appropriately specified. This means that any series can be modelled as a combination of 

past values and/or past errors. Wold’s decomposition theorem led to the formulation and 

solution of the linear forecasting problem by Kolmogorov (1941). Since then, a 

considerable body of literature in the area of time series dealing with the parameter 

estimation, identification, model checking, and forecasting has appeared (see, for example, 

Newbold, 1983) for an early survey.  

 Box and Jenkins (1970, 1976) first integrated the existing knowledge, formulated the 

concepts of ARIMA and popularised the use of ARMA models. Moreover, they developed 

a coherent, versatile approach for model-building through the following: 

i. providing guidelines for making the series stationary in both its mean and variance 

ii. suggesting the use of autocorrelations and partial autocorrelation coefficients for 

determining appropriate values of p and q (and their seasonal equivalent P and Q 

when the series exhibited seasonality)  

iii. providing a set of computer programs to help users identify appropriate values for p 

and q, as well as P and Q, and estimate the parameters involved 

iv. once the parameters of the model were estimated, a diagnostic check was proposed 

to determine whether or not the residuals were white noise, in which case the order 

of the model was considered final (otherwise another model was entertained in (ii) 

and steps (iii) and (iv) were repeated). If the diagnostic check showed random 

residuals then the model developed was used for forecasting or control purposes 

assuming of course constancy, that is that the order of the model and its non-

stationary behaviour, if any, would remain the same during the forecasting, or 

control, phase. 

 The approach proposed by Box and Jenkins came to be known as the Box-Jenkins 

methodology to ARIMA models, where the letter "I", between AR and MA, stood for the 

word "Integrated". For seasonal time series, a variation of ARIMA, namely, the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) (Box and Jenkins, 1970; Hipel and 

McLeod, 1994; Hamzacebi, 2008) model is used. The Autoregressive Fractionally 

Integrated Moving Average (ARFIMA) (Galbraith and Zinde-Walsh, 2001) model 



13 

 

generalizes ARMA and ARIMA models. ARIMA model and its different variations are 

based on the famous Box-Jenkins principle (Box and Jenkins, 1970; Zhang, 2003 ) and 

these are broadly known as the Box-Jenkins models. In the 1970s, Box-Jenkins 

methodology became highly popular among academics especially when it was proved 

through empirical studies using real data that they could outperform the large and complex 

econometric models, popular at that time, in a variety of situations (Cooper, 1972; Nelson, 

1972; Elliot, 1973; Narasimham et al., 1974; McWhorter, 1975; for a survey see 

Armstrong, 1978). An excellent discussion of various aspects of this approach is given in 

Box et al. (2007). 

 In this section, we will present the steps in the ARIMA (and/or SARIMA) 

methodology. The methodology put forth by Box and Jenkins will be demonstrated with 

real lung cancer data in another chapter, since it uses several time series procedures.  

2.3.6. The Univariate ARIMA Model   

The success of the Box-Jenkins methodology is founded on the fact that the various models 

can, between them, mimic the behaviour of diverse types of series and do so adequately 

without usually requiring very many parameters to be estimated in the final choice of the 

model. Univariate models are sometimes referred to as non-causal models. Although our 

focus is on forecasting, univariate Box-Jenkins models (often referred to as ARIMA 

models) are often useful for simply explaining the past behaviour of a single data series, 

for whatever reason one may want to do so. In general, a univariate time series will reflect 

the reality in which observations occurring close in time have a greater relationship than 

observations that are farther apart, looking only at the single variable. It is the purpose, 

therefore, of univariate time-series methods to statistically measure the degree of this 

relationship.  

 Notwithstanding, model selection in the mid-sixties was very much a matter of 

researcher’s judgment as there was no algorithm to specify a model uniquely. Since then, 

many techniques and methods have been suggested including Akaike’s information 

criterion (AIC), Akaike’s final prediction error (FPE), and the Bayes information criterion 

(BIC). Most often, these criteria minimise (in-sample) one-step-ahead forecast errors with 

a penalty term for overfitting. FPE has also been generalized for multi-step-ahead 

forecasting (for more details, see Bhansali, 1996, 1999), but this generalization has not 

been utilized by applied workers. This also seems to be the case with criteria based on 

cross-validation and split-sample validation (see for example, West, 1996) principles, 
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making use of genuine out-of-sample forecast errors (Pena & Sanchez, 2005) for a related 

approach worth considering. 

2.3.7. Non-Seasonal ARIMA Models  

A stochastic model for non-seasonal series are called Autoregressive Integrated Moving 

Average model, denoted by ARIMA (p, d, q). Here p indicates the order of the 

autoregressive part, d indicates the amount of differencing, and q indicates the order of the 

moving average part. If the original series is stationary, d = 0 and the ARIMA models 

reduce to the ARMA models. 

2.3.8. The Autoregressive Moving Average (ARMA) Models  

An ARMA(p, q) model is a combination of AR(p) and MA(q) models and is suitable for 

univariate time series modeling. In an AR(p) model the future value of a variable is 

assumed to be a linear combination of p past observations and a random error together with 

a constant term. Mathematically the AR(p) model can be expressed as (Hipel and McLeod, 

1994; Lee, Econs 413, Lecture 4): 

                                      

 

   

        

where    and     are respectively the actual value and random error (or random shock) at 

time period t ,               are model parameters to be estimated,    is a constant 

and p is the order of the model. Sometimes the constant term is omitted for simplicity. 

Usually Yule-Walker equations (Hipel and McLeod, 1994) are used for estimating 

parameters of an AR process using the given time series. 

 Whereas  an AR(p) model regress against past values of the series, an MA(q) model 

uses past errors as the explanatory variables. The MA(q) model is given by (Cochrane, 

1997, 2005; Hipel and McLeod, 2005): 

                                         

 

   

    

where    is the constant mean of the process,               are the model parameters 

to be estimated and q is the order of the model. The error terms are assumed to be a white 

noise process, i.e. a sequence of independent and identically distributed random variables 

with zero mean and constant variance    (Cochrane, 1997, 2005; Hipel and McLeod, 

2005). Generally, the random shocks are assumed to follow the typical normal distribution. 
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This implies that a moving average model is a linear regression of the current observation 

of the time series against the random shocks of one or more prior observations. 

 To achieve greater flexibility in fitting of actual time series data, it is sometimes 

advantageous to include both autoregressive and moving average processes. This forms a 

general and useful class of time series models, known as the ARMA models. 

Mathematically an ARMA(p, q) model is represented as  

             

 

   

             

 

   

 

where p and q are autoregressive and moving average terms. 

 Usually ARMA models are manipulated using the lag operator (Cochrane, 1997, 2005; 

Hipel and McLeod, 2005) notation. The lag or backshift operator is defined as     

    . Polynomials of lag operator or lag polynomials are used to represent ARMA models 

as follows (Cochrane, 1997, 2005): 

        AR(p) model:                   , 
 

           MA(q) model:              , 

 

           ARMA(p,q) model:                    , 

 

where            
 
        and                 

 
   . 

 
 The zeros of       must lie outside the unit circle for stationarity of the AR(p) 

process, and for invertibility of the MA(q) process the zeros of      must also lie outside 

the unit circle. This condition is known as the Invertibility Condition for an MA process. 

2.3.9. Stationarity Analysis 

Hipel and McLeod (2005) have shown that an important property of AR(p) process is 

invertibility, i.e. an AR(p) process can always be written in terms of an MA(∞) process.  If 

AR(p) process is represented as          , then         is known as the 

characteristic equation for the process. Box and Jenkins (1970) that a necessary and 

sufficient condition for the AR(p) process to be stationary is that all the roots of the 

characteristic equation must fall outside the unit circle. Hipel and McLeod (1994) also 

presented another simple algorithm for determining stationarity of an AR process. For 
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example as shown elsewhere the AR(1) model                 is stationary when 

        with a constant mean     

    
   and constant variance     

  

    
     

 An MA(q) process is always stationary, irrespective of the values the MA parameters 

Hipel and McLeod (1994). The conditions regarding stationarity and invertibility of AR 

and MA processes also hold for an ARMA process. An ARMA(p, q) process is stationary 

if all the roots of the characteristic equation ϕ (L) = 0 lie outside the unit circle. Similarly, 

if all the roots of the lag equation θ (L) = 0 lie outside the unit circle, then the ARMA(p, q) 

process is invertible and can be expressed as a pure AR process.  

2.3.10. Autoregressive Integrated Moving Average (ARIMA) Models 

In practice, many time series data exhibits non-stationary behaviour. Time series, which 

contain trend and seasonal patterns, are also non-stationary in nature (Faraway and 

Chatfield, 1998). Generally, ARMA models can be used for only stationary time series 

data. Thus ARMA models are inadequate to properly describe non-stationary time series, 

which are frequently encountered in practice. For this reason a generalisation of ARMA 

models which incorporates a wide class of non stationary time series as well is proposed 

(Box and Jenkins, 1970; Hipel and McLeod, 1994).  

 The integrated ARMA, or ARIMA, model is a broadening of the class of ARMA 

models to include differencing. The simplest example of a non stationary process which 

reduces to a stationary one after differencing is random walk. In ARIMA models, a non-

stationary time series is made stationary by applying finite differencing of the data points. 

According to Shumway and Stoffer (2011), a process    is said to be ARIMA(p,d,q) if 

                 is ARMA(p,q). In general, the model is written as  

                    

where                indicating white noise. If             we write the model 

as  

                        

where                . 

The integration parameter d is a nonnegative integer. When      ARIMA(p,d,q) 

 ARMA (p,q). An ARIMA(p,0,0) is nothing but the AR(p) model and ARIMA(0,0,q) is 

the MA(q) model. ARIMA(0,1,0), i.e.            is a special one and known as the 

random walk model (Cochrane, 1997, 2005).  
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 A useful generalization of ARIMA models is the Autoregressive Fractionally 

Integrated Moving Average (ARFIMA) model, which allows non-integer values of the 

differencing parameter d. ARFIMA has useful application in modelling time series with 

long memory (Galbraith and Zinde-Walsh, 2001). In this model the expansion of the 

term(1− L)d is to be done by using the general binomial theorem. Various contributions 

have been made by researchers towards the estimation of the general ARFIMA parameters. 

2.3.11. Seasonal Autoregressive Integrated Moving Average (SARIMA) Models 

In this section, we introduce several modifications made to the ARIMA model to account 

for seasonal and non stationary behaviour. ARIMA models are used for non-seasonal non-

stationary data. Box and Jenkins (1970,1976) have generalised this model to deal with 

seasonality. Their proposed model is known as the Seasonal ARIMA (SARIMA) model. In 

this model seasonal differencing of appropriate order is used to remove non-stationarity 

from the series. The fundamental fact about seasonal time series with period S is that 

observations, which are S intervals apart, are similar. Often, the dependence on the past 

tends to occur most strongly at multiples of some underlying seasonal lag S. Box and 

Jenkins (1970, 1976) proposed further that a seasonal series of period S could be modelled 

by 

                                               
         

          
                                         2.1 

where    is the usual Gaussian white noise process. The general model in Equation (2.1) is 

denoted as SARIMA(p,d,q) x (P,D,Q)S and is called a multiplicative seasonal 

autoregressive integrated moving average model. For monthly time series      and for 

quarterly time series    . The ordinary autoregressive and moving average components 

are represented by polynomials       and       of orders p and q respectively, and the 

seasonal autoregressive and moving average components by     
   and     

   of orders 

P and Q and ordinary and seasonal difference operators by           and   
  

       . For estimation of parameters, iterative least squares method is used. 

2.3.12. Selection with the HK-algorithm  

Hyndman and Khandakar (2008) developed the Hyndman-Khandakar (HK) algorithm and 

can be applied in R with the function auto.arima in the forecast package. They suggest an 

iterative time-saving procedure where the model with the smallest value of some 

information criterions AIC, AICc or BIC will be found much faster, since it is now found 

without comparing every possible model.  
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 To derive these information criterions the first thing that is needed is the likelihood 

function,       ,  where      is the maximum likelihood estimates of the parameters for the 

SARIMA with               parameters and sample size n. The criterions are 

then derived by the following equations 

                                                                     
   

 
  

                                        
       

     
  

                                                                          
   

 

 
        

where  

k: is the number of parameters in the statistical model, (p+q+P+Q+1). 

L: is the maximized value of the likelihood function for the estimated model.  

RSS: is the residual sum of squares of the estimated model. 

n : is the number of observation, or equivalently, the sample size. 

  
  : is the error variance. 

 The AICc is a modification of the AIC by Hurvich and Tsai (1989) and it is AIC with 

a second order correction for small sample sizes. Burnham & Anderson (1998) insist that 

since AICc converges to AIC as n gets large, AICc should be employed regardless of the 

sample size. The HK-algorithm then performs an iterative procedure to select the model 

that minimizes the value of each criterion. 

2.3.13. Multivariate ARIMA model  

A multivariate time series is a combination of multiple univariate time series; simply called 

vector ARIMA (VARIMA) model involves a multivariate generalization of the univariate 

ARIMA model. Since VARIMA models can accommodate assumptions on exogeneity and 

on contemporaneous relationships, they offered new challenges to forecasters and policy 

makers. Work in this area started in the 1960s with population characteristics of VARMA 

processes by Quenouile (1957, 1968). Today, VARIMA models investigate the 

relationship between exogenous series and endogenous series where a dynamic system 

may exist i.e. in which a variation in the input series is utilised to explain a variation in the 

output series. Transfer function models are used to assess this relationship with input series 

and response series cross-correlated by way of a transfer function (TF). The exogenous 

variables can include continuous variables or dummy indicators highlighting the presence 

of an intervention or a stochastic series, which drives the response series. These types of 
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models are used to test explanatory relationships between time-dependent processes that 

are hypothesized to exist (Yaffee et al. 2000). 

2.3.14. Transfer function 

The dynamic or linear transfer function model can be useful (Pankratz, 1991) in 

overcoming possible problems of omitted time-lagged inputs terms, autocorrelation in the 

disturbance series, and common correlation patterns among the input and output series that 

yield spurious correlations. Notwithstanding, the identification of transfer function models 

can be difficult when there is more than one input variable. Edlund (1984) presented a two-

step method for identification of the impulse response function when a number of different 

input variables are correlated. Using principal component analysis, a parsimonious 

representation of a transfer function model was suggested by del Moral & Valderrama 

(1997). Krishnamurthi et al. (1989) showed how more accurate estimates of the impact of 

interventions in transfer function models can be obtained by using a control variable.  

 A dynamic regression model, a term applied by Pankratz (1991) and used by 

Makridakis (1998), uses explanatory variables to forecast the dependent variable, but it still 

allows one to include the elements of ARIMA to model any patterns that cannot be 

accounted for by the explanatory variables. According to Makridakis (1998), they differ 

from multivariate autoregressive models in that the explanatory variables are leading 

indicators and are not affected by the dependent variable.   

A dynamic regression model for one explanatory variable   can be written in two general 

forms as described in Makridakis (1998), but in the simpler form the forecast variable 

    takes the form 

     
    

    
         

where     is the explanatory variable, where 

            
                            

   

 

   

 

   

 

in terms of the backward shift operator (e.g.         ) and where     is the combined 

effects of all other factors (i.e. noise, modelled as an ARIMA process). This formula 

extends naturally to several explanatory variables. In order to calibrate the model for one 

explanatory variable   , it is necessary to determine the values of            as well as the 

values of           for the ARIMA(p, d, q) model for    . There are various methods for 

doing this. The method used in this study was suggested by Pankratz (1991) and 
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Makridakis (1998) and is referred to as the Linear Transfer Function (LTF) identification 

method. 

2.3.15. Spectral Analysis 

This is sometimes known as harmonic analysis or the frequency approach to time series 

analysis. Spectral analysis is therefore concerned with estimating the unknown spectrum of 

the process from the data and with quantifying the relative importance of different 

frequency bands to the variance of the process. The spectrum being estimated in a sense is 

not really the spectrum of the observed series, but the spectrum of the unknown infinitely 

long series from which the observed series is assumed to have come. Various methods 

have been developed to estimate the spectrum from an observed time series. For an 

overview and comparisons of different methods, see Percival and Walden (1993), 

Chatfield (2004), and Bloomfield (1976).  

 Two basic approaches to time series analysis are associated with the time domain or 

the spectral domain. The spectral domain approach is motivated by the observation that the 

most regular, and hence predictable, behaviour of a time series is to be periodic. This 

approach then proceeds to determine the periodic components embedded in the time series 

by computing the associated periods, amplitudes, and phases, in this order. The classical 

implementation of the spectral domain approach is based on the Bochner-Khinchin-Wiener 

theorem (Box and Jenkins, 1970), which states that the lag autocorrelation function of a 

time series and its spectral density are Fourier transforms of each other. 

2.3.16. State Space Models 

At the start of the 1980s, state space models were only beginning to be used by statisticians 

for forecasting time series, although the ideas had been present in the engineering literature 

since Kalman’s (1960) ground-breaking work. State space models provide a unifying 

framework in which any linear time series model can be written. The key forecasting 

contribution of Kalman (1960) was to give a recursive algorithm (known as the Kalman 

filter) for computing forecast.  

 A particular class of state space models, known as “dynamic linear models” (DLM), 

was introduced by Harrison & Stevens (1976), who also proposed a Bayesian approach to 

estimation. Harvey (2006) provides a comprehensive review and introduction to this class 

of models including continuous-time and non-Gaussian variations.  
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 Amongst this research on state space models, Kalman filtering, and 

discrete/continuous time structural models, the books by Harvey (1989), West & Harrison 

(1989, 1997) and Durbin & Koopman (2001) have had a substantial impact on the time 

series literature. 

2.4. Dynamic Regression Models  

Dynamic models have long been used in econometrics, agricultural econometrics and 

capital appropriations & expenditures. A class of dynamic models are the distributed lag 

models. Distributed lag models are useful because they allow a dependent variable to 

depend on past values of an explanatory variable at various lags. Therefore, decision 

makers or action planners can take into account the past or lagged values of the policy 

variables. This can be achieved through the use of many different models discussed in the 

literature that deal with this kind of situation. 

 Classical regression techniques are not designed to cope with variables that are non-

stationary as they exhibit upward and downward trends over time. If explanatory variables 

exhibit such trends then classical assumptions will not simply work. In such instances, 

normal large-sample statistics theory is no longer valid and standard classical inferential 

procedures can no longer be applied. 

 In the late 1940s, Cochrane and Orcutt (1949) developed applications of least squares 

regression to relationships containing autocorrelated error terms. This was followed by 

Prais-Winsten (1954) and Hildreth-Lu (1960). During the same period, more efficient 

methods of estimation using distributed lag models were proposed. The distributed lag 

models received greater attention in the 1950s, when Koyck (1954), Cagan (1956), and 

Nerlove (1958b) suggested using an infinite lag distribution with geometrically declining 

weights for the parameters. For a thorough discussion of the Koyck model, see Nerlove 

(1958a). Additionally, there are several other models for reducing the number of 

parameters in a distributed lag model. Kmenta (1986), gave an overview of some of the 

most important distributed lag models such as the Pascal lag, the gamma lag, the LaGuerre 

lag and the Shiller lag models. For example, Pascal lag model is an infinite distributed lag 

model which is a flexible instrument for capturing the dynamic adjustment in most time 

series. Thomas (1997) clearly stated that for technological reasons, psychological factors 

and for imperfect information, distributed lag models should be used. However, Maeshiro 

(1996) and Thomas (1997) have pointed out that OLS estimation of the Koyck model gives 

inconsistent and biased estimators even if the sample size is increased indefinitely because 
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the equation involves lagged dependent variable and the errors are serially correlated. 

Almon (1965) developed polynomial distributed lags to approximate inverted U-shaped or 

even more complicated lag distributions that have a finite rather than an infinite maximum 

lag. Almon suggested that the immediate impact might well be less than the impact after 

several periods. After reaching its maximum, the policy effect diminishes for the remainder 

of the finite lag.  

 Bentzen and Engsted (2001) used the autoregressive distributed lag model in 

estimating the energy demand relationship. Hans and van Oest (2004) have also used 

distributed lag models to find the relationship between sales and advertising. More 

importantly, Huang et al. (2004) used Bayesian hierarchical distributed lag models in 

epidemiology for summer ozone exposure and cardio-respiratory mortality. Welty and 

Zeger (2005) used distributed lag models in environmental areas. Heaton and Peng (2013) 

investigated the effect of heat on mortality through the use of high degree distributed lag 

models. Schwartz et al. (1996) had already recommended that epidemiologists need to pay 

more attention to modelling distributed lags. For example, if we assume to use polynomial 

distributed lag models then we have three main issues - optimal lag length, order of the 

polynomial (Maddala, 1977; Hendry et al, 1984; Thomas, 1997; Maddala, 2009), and the 

difficulty in capturing any long-tailed distributions (Maddala, 2009). If any of these 

problems appear, the model may suffer from autocorrelation, heteroskedasticity, non-

normality, incorrect functional form as well as the loss of degree of freedom among others. 

For more information and applications of distributed lag models you can see Cooper 

(1972), Shiller (1973), Fomby et al. (1984), Thomas (1997), Jeffrey and Wooldridge 

(2003), and Asteriou and Hall (2011). 

2.5. Age-period-cohort (APC) Models 

Age–period–cohort (APC) models have long been used in demography and medical 

statistics to describe the rate of mortality or incidence of a disease as a function of both age 

and period. Classically, APC models fit the effects of age, period, and cohort as factors 

(Hobcraft, Menken, and Preston 1982; Robertson, Gandini, and Boyle 1999).  

 Unfortunately, the use of these models is not straightforward as they suffer from an 

identifiability problem due to the exact linear relationship between age, period and cohort 

(Holford, 1983). This leads to a major challenge in analyzing APC models, a problem that 

has been widely addressed by statisticians, demographers and epidemiologists. The date of 

birth can be calculated directly from the age at diagnosis and the date of diagnosis (cohort 
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= period - age). If fitted directly in a generalized linear model (GLM) this leads to 

overparameterization and, consequently, the exclusion of one of the terms. It is therefore 

necessary to fit constraints to the model to extract identifiable answers for each of the 

parameters. This step is needed because each of the components of the model provides 

different insights into the trends of the disease over time. The multiple classification model 

which is the initial work developed by Mason et al. (1973) presented the general 

framework for cohort analysis. For example, in social and demographic research, Glenn 

(1976), Fienberg and Mason (1978, 1985), Hobcraft, et al. (1982), Wilmoth (1990), and 

O’Brien (2000) followed a number of methodological discussions to overcome the 

identifiability problems and to estimate the APC model. Also, in epidemiology and 

biostatistics, Osmond and Gardner (1982), Clayton and Schifflers (1987), Holford (1992), 

Tarone and Chu (1992), Robertson and Boyle (1998), Fu (2000), Knight and Fu (2000), 

Yang et al. (2004), Carstensen (2007), Rutherford et al. (2010), Rutherford et al. (2012), 

and Sasieni (2012) have proposed a number of solutions to solve the identifiability 

problems over the past 30 years. 

 Developments in APC methodology in biostatistics over the past three decades have 

stressed the use of estimable functions that do not respond to the selection of constraints on 

the parameters (Clayton and Schifflers 1987; Holford 1983, 1991, 1992; Robertson et al. 

1999; Tarone and Chu 1992, 2000). For more details on estimable functions see, for 

example, Searle (1971). Fu et al. (2004) used this approach in the derivation of a new APC 

estimator called intrinsic estimator. This estimator is based on estimable functions and the 

singular value decomposition of matrices. Yang et al. (2004), on the other hand, used the 

conventional demographic approach of constrained generalized linear models estimator 

(Fienberg and Mason 1978, 1985; Mason and Smith 1985) and the intrinsic estimator 

method developed by Fu 2000; Knight and Fu 2000; Fu et al. 2004 to compare parameter 

estimates and model fit statistatics produced by two solutions to the identification problem 

in APC models. The two approaches to solving the model identification problem in APC 

models are described in detail and compared by Yang et al. (2004). Carstensen (2007) 

published an article advocating the use of an analysis that models age, period, and cohort 

as continuous variables through the use of spline functions. Carstensen implemented his 

method for age–period–cohort models in the Epi package for R. Rutherford et al. (2010, 

2012) built on the work of Carstensen and explained how the method and the extensions 

have been made available in Stata. Sasieni (2012) fully explained and illustrated programs 

including postestimation functionality and flexibility to fit models not possible using 
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Stata’s glm command as described by Rutherford et al. (2010). What distinguishes this 

article from a recent Stata Journal article on age–period–cohort models by Rutherford et 

al. (2010) is that the emphasis made by Sasieni (2012) is on extrapolating the model fit to 

make projections into the future. 

 Bayesian APC models are used more frequently in the last few years in epidemiology, 

demography, social & political behaviour and cancer research to predict cancer incidence 

and mortality rates (Baker and Bray 2005; Raifu and Arbyn 2009). The Bayesian APC 

model provides an effective way to cope with the identification problem inherent in the 

model and offer better predictions than the classical APC approaches. It has been found 

that Bayesian APC models do not pose any implementation problems when there are many 

zero counts or sparse data, whereas the classical APC models may lead to instable 

parameters estimates in this case (Raifu and Arbyn, 2009). Moreover, Bayesian APC 

models are recommended recently because they reduce the errors associated with functions 

of the parameters as much as possible by smoothing the effect of age, period and cohort 

(Cleries et al., 2010). 

 Bayesian APC approaches were proposed firstly by Berzuini et al., (1993), Berzuini 

and Clayton (1994), and Besag et al., (1995). To reduce variation of the model parameters, 

several methods have been proposed during the last 30 years, in such a way that the 

identification issue is avoided. For example, Nakamura (1986) used a first-order 

autoregressive approach whereas Berzuini and Clayton (1994) used a second-order random 

walk. Besag et al., (1995) proposed a sophisticated MCMC algorithm using 

reparameterisation and block sampling to fit a Bayesian APC model using the second-order 

random walk. Rue et al., (2009) proposed an alternative and fast method of inference 

which is an Integrated Nested Laplace Approximations (INLA). This is because improper 

priors can generate problems in making inference. Therefore, prior distributions should be 

carefully selected based on previous studies in the literature or on subjective prior beliefs. 

 Breslow & Clayton (1993), and Berzuini & Clayton (1994) use Bayesian APC to 

model breast cancer and lung cancer respectively. Besag et al., (1995) used Bayesian 

logistic regression to forecast prostate cancer in USA. Leonhard et al., (2001) used a 

generalized Bayesian APC model to predict lung cancer mortality in West Germany by 

2010. Bray (2002) fitted a Bayesian APC model to predict incidence rates for Hodgkin's 

disease for males registered in Oxford. Cleries et al., (2006) used an autoregressive 

structure using Bayesian approach to predict breast cancer mortality rates in Spain. Raifu 

and Arbyn (2009) used a Bayesian log linear Poisson-regression model to assess the effects 
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of age, period and cohort. Stegmueller (2014) proposed a Bayesian dynamic hierarchical 

model with cohort and period effects modelled as random walk through time to model 

cancer in the USA. 

2.6. Methods for Quantification of Incidence and Mortality 

2.6.1. Methods and Techniques 

The source of the following definitions and terminologies can be found in Cancer Atlas of 

Saudi Arabia (2011).  

2.6.2. Rates 

Rate expresses how often a disease (cancer) occurs in a given population over a given 

period of time.  

2.6.3. Age-specific Rates 

The age specific rates per year are obtained from the cancer registries. The all ages rate 

referred to as crude rate is defined as follows: 

              
                   

                
          2.2 

 

Calculation of age-specific rates for each age group can also be defined as follows:  

       
  
  

           2.3 

 

where      is the age-specific rate for age group k,    is the number of registrations in age 

group k,    is the people at risk in age group k and k is the group index for age groups 0-4, 

5-9,..., 70-74, and 75+. 

 It is possible to calculate the age specific rates of lung cancer incidence separately for 

females and males, or for both genders combined. In order to make comparisons of 

incidence rates over time or between genders and geographical areas, age standardised 

rates are used to make unbiased comparisons.  

2.6.4. Age-standardised Rates 

Lung cancer incidence and mortality vary greatly with age. Therefore, to specify how 

many old or young people are in the population being looked at, we use age standardized 

rates in order to obtain unbiased comparisons of incidence or mortality rates between 

genders or regions over time. Thus, if lung cancer rates are not age standardised, a higher 
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rate in one country is likely to reflect the fact that it has a higher proportion of older 

people. This can be obtained through direct or indirect standardisation according to dos 

Santos Silva (1999). Throughout our research we use the direct stanadrdised rate.  

 Age standardized rates can be calculated directly by multiplying the age specific rate  

in each group in the populations by the corresponding number of people in a ‘standard’ 

population, usually the world standard population – see Appendix F of Cancer Trends 

(Quinn et al, 2001), and then summed to give the overall rate of lung cancer per 100,000 

population. Thus,  

          
 

        
 

 2.4 

 

where ASR is the age standardised incidence or mortality rate,    is the number of cases of 

lung cancer in age group k,    is the world standard population in age group k,    is 

persons at risk and k = 0-4, 5-9,..., 70-75, and 75+.  

 To study cancer incidence directly, we should take into account the age as a major 

determinant of cancer incidence. It has been stressed in each consecutive volume that the 

most suitable comparisons of cancer risk are those made using the age specific rates 

directly. Most developed countries have taken a higher proportion of elderly people into 

account to make a comparable comparison between developed and developing countries 

because the elderly are expected to live longer in developed countries than in developing 

countries. 

2.7. Prediction Methods 

There are several methods used in predicting or forecasting cancer in general but APC 

models have been used widely to predict cancer incidence and mortality rates and are 

unique (Holford, 1985). In most well developed countries, they use the age-period cohort 

models, known as the APC model. 

 Many methods have been proposed for making projections from APC models. Good 

references for APC model projections are Clements et al. (2005), Elkum (2005), Bray and 

Moller (2006), and Rutherford et al. (2012). Bray et al. (2001), Cleries et al. (2009), Lee et 

al. (2011), and Mistry et al. (2011) to mention a few. Moller et al. (2003) compared fifteen 

of these methods using data from the Nordic countries. Sasieni and Adams (1999, 2000) 

used natural cubic splines in APC models for drawing inference on the impact of cervical 

screening on cervical cancer rates. Carstensen (2007) has written about their use more 

generally. Rutherford et al. (2010) has provided software in Stata for fitting APC models 



27 

 

using natural cubic splines. Quite apart from these methods, a good overview of techniques 

available to carry out APC model projections using natural cubic splines has been given by 

Rutherford et al. (2012) and Sasieni (2012). They concluded that multiplicative APC 

models tend to over-estimate future incidence and therefore linear projections need to be 

tempered or dampened when making long-term prediction. For that reason, they advocated 

the use of an APC model with a power link function together with a linear combination of 

age, period and cohort terms. 

 The main advantage of using the APC models is that they take into account the period, 

cohort, and age effects to forecast the future temporal trends of cancer rates. However,  it 

has been advised by Clytton and Schifflers (1987a and 1987b) that reduction of the APC 

model to be either an age-period (AP) model or an age-cohort (AC) model whenever 

possible is better, only using the APC model when it provides a satisfactory fit. 

2.8. Summary  

To identify the potential areas of our research and to ensure that we have a full 

understanding of the problem, we have reviewed the literature to identify similar works, to 

compare previous findings and to suggest future work.  

 Time series analysis is frequently used in statistics, econometrics, mathematical 

finance and weather forecasting among many other fields to analyse time series data in 

order to extract meaningful statistics and other characteristics of the data. A variety of 

models have been proposed in literature to improve the accuracy and efficiency of time 

series modelling and forecasting. Generally, time series analysis falls into two main 

approaches: the time domain analysis; and the frequency domain analysis.  There are many 

techniques available to analyse data within each domain. One common technique used in 

the time domain is the Box-Jenkins methodology, which can be used for univariate or 

multivariate analyses. Analysis in the frequency domain is often used for periodic and 

cyclical observations. Common techniques are spectral analysis, periodogram analysis, and 

harmonic analysis. Mathematically, frequency domain techniques use fewer computations 

than time domain techniques. Thus, for complex data, analysis in the frequency domain is 

most common. However, frequency analysis is more difficult to interpret, so time domain 

analysis is generally used outside of the sciences. 

 Distributed lag models (DLM) have been reported in the literature since the early 

1930s. Distributed lag models are useful because they allow a dependent variable to 

depend on past values of an explanatory variable at various lags. The difficulty of using 

https://en.wikipedia.org/wiki/Econometrics
https://en.wikipedia.org/wiki/Mathematical_finance
https://en.wikipedia.org/wiki/Mathematical_finance
https://en.wikipedia.org/wiki/Weather_forecasting
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these models requires choosing the optimal lag length, order of the polynomial and 

capturing any long-tailed distribution. In this case, if the model is not specified correctly, 

the model will suffer from autocorrelation, heteroskedasticity, non-normality, incorrect 

functional form and the loss of degrees of freedom. The models, their difficulties, and 

corrections have been explicitly explained. 

 Age-period-cohort (APC) models are the most popular tools used in cancer studies to 

describe the rate of incidence or mortality as a function of both subject age and period. 

However, the use of these models is known to suffer from an identifiability problem due to 

the exact linear relationship between age, period and cohort. New approaches have been 

developed for APC analysis to overcome the identification problem during the last 30 

years. Overcoming the identification problem by forcing constraints on either the period or 

the cohort effects has been emphasized.   

 Our thesis will help the Saudi Arabian Ministry of Health to understand the rate of 

future lung cancer incidence and mortality and the overall effects of the population classes 

and budgeting costs needed for lung cancer in Saudi Arabia. We therefore expect that our 

thesis will produce an impact on Saudi Arabian health policy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 

 

CHAPTER 3 

DATA FOR THE RESEARCH PROJECT 

3.1. Introduction  

Lung cancer incidence and mortality data in Saudi Arabia between 1994 and 2009 were 

collected from Saudi Cancer Registry (SCR). These data include the date of diagnosis, 

gender, ethnicity, type of lung cancer, region, age at diagnosis, date of birth, and the status 

(dead, alive, or unknown). 

 The Central Department of Statistics & Information (CDS) in the Ministry of Planning 

provided data on person characteristics, such as age, gender, and ethnicity. Other data 

including estimated population of both Saudi and non-Saudis are tabulated ranging from 

Table F1 to Table F20 (see Appendix F). The estimated Saudi male population in 2009 was 

9,216,449 accounting for 35.1% of the total population and is tabulated in Table F2, 

whereas the Saudi female population of about 8,855,113 accounts for 33.7% of the total 

population (see Table F6). The non-Saudi populations were 5,784,649 (22.0%) for males 

and 2,434,016 (9.3%) for females and are shown in Table F4 and Table F8 respectively. 

3.2. Incidence Data 

Figure 3.1 shows the number of cases of lung cancer incidence in KSA per year for Saudi 

males, non-Saudi males, Saudi females and non-Saudi females from 1994 to 2009. Data for 

Figure 3.1 are shown in Table F1, F3, F5 and F7. Notably, the reduction in numbers of 

cancers in some cases at increased age is due primarily to the reduction in the associated 

number of individuals at risk. In such situations, to accommodate for the number of 

individuals at risk, we focus on the incidence rate, which is equal to the number of events 

divided by the number at risk and multiplied by one hundred thousand. Therefore, we 

present the age-specific incidence rates per 100,000 population for Saudi males in Table 

3.1, non-Saudi males in Table 3.2, Saudi females in Table 3.3 and non-Saudi females in 

Table 3.4. The data have been also presented separately for males and females in months 

from 1994-2009 as illustrated in Figure3.2 (see also Table F9 and Table F10).  

 The data of smoking prevalence were collected from the Department of Tobacco 

Control Program in the Ministry of Health. Figure 3.3 illustrates smoking populations in 

10,000 per month for males (X1t) and females (X0t), respectively. The data for smoking 

populations are shown in Table F11 and Table F12. (Note: smoking population (Xt) = 

smoking prevalence (%) × population size).  
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 SCR is located in King Faisal Specialist Hospital and Research Centre in Riyadh 

(KFSH & RC).  In addition, five regional branches and four hospital-based offices were set 

up to ensure comprehensive data collection from all over the kingdom. They are National 

Guard Hospitals, Armed Forces Hospitals, Security Forces Hospitals, King Abdulaziz 

University Hospital, King Khalid University Hospital, Madinah Region, Southern Region, 

Eastern Region, Western Region, and Central region (KFSH & RC). 

 

 

Figure 3.1: Number of cases of lung cancer per year by ethnicity and gender from 1994 to 2009. 

 

 

 

Figure 3.2: Number of cases of lung cancer per month in Saudi Arabia by gender from 1994 to 

2009.  
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Figure 3.3: Smoking population in Saudi Arabia by gender from 1994 to 2009.  

 

 

 

Table 3.1: Age-specific incidence rates of lung cancer per 100,000 population for Saudi males in 

KSA (1994-2009). 

  Time period (1994-2009)   

Age  94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.1 

4-9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

10-14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 

15-19 0.0 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 

20-24 0.2 0.2 0.0 0.0 0.2 0.0 0.1 0.1 0.0 0.0 0.1 0.0 0.1 0.2 0.0 0.1 

25-29 0.2 0.2 0.0 0.4 0.4 0.2 0.0 0.2 0.0 0.1 0.0 0.1 0.1 0.3 0.3 0.3 

30-34 0.3 0.8 1.4 0.5 1.0 1.0 0.5 0.4 0.4 0.5 0.7 0.5 0.3 0.2 0.4 0.6 

35- 39 1.9 2.2 1.8 2.5 0.9 1.4 0.8 1.3 1.3 1.0 0.8 2.0 0.2 1.9 0.2 0.4 

40-44 6.5 5.3 0.9 3.7 1.8 3.0 1.6 0.6 1.5 2.0 2.7 3.3 1.4 3.4 2.4 1.7 

45-49 7.0 5.9 4.8 4.8 7.9 1.9 3.4 4.1 2.6 1.3 4.8 5.3 4.5 2.8 4.7 3.8 

50- 54 18.2 14.7 15.9 12.7 10.7 10.5 4.3 9.7 6.4 8.3 11.7 6.2 5.6 9.5 12.4 9.7 

55- 59 27.1 25.2 16.8 19.8 18.8 9.0 13.3 16.8 11.6 9.2 15.8 12.0 13.3 12.4 13.9 12.3 

60- 64 327.3 62.7 33.6 19.7 22.3 20.6 29.5 26.4 38.9 22.8 35.4 32.3 21.3 32.7 26.5 22.8 

65- 69 45.5 60.7 57.1 29.2 39.1 38.1 26.4 13.8 30.1 35.6 23.3 42.5 61.8 56.3 41.5 52.8 

70- 74 46.8 50.8 45.9 30.0 56.3 32.2 31.9 29.8 28.7 37.3 40.3 58.2 51.8 52.8 39.1 44.1 

75+ 47.0 35.7 48.8 25.5 23.9 32.5 24.8 8.2 16.7 35.4 38.8 37.0 55.4 64.7 55.0 45.9 
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Table 3.2: Age-specific incidence rates of lung cancer per 100,000 population for non-Saudi males 

in KSA (1994-2009). 

  Time period (1994-2009)   

Age 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10-14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

15-19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

20-24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

25-29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

30-34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

35- 39 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

40-44 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

45-49 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

50- 54 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 

55- 59 0.3 0.4 0.3 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 

60- 64 0.6 0.6 0.7 0.3 0.4 0.3 0.1 0.4 0.1 0.1 0.2 0.1 0.4 0.4 0.3 0.2 

65- 69 1.0 1.0 1.3 0.4 0.4 0.1 0.5 0.4 0.7 0.9 0.4 0.5 0.7 0.5 0.6 0.4 

70- 74 0.8 0.8 1.2 0.5 0.2 0.4 0.7 0.1 0.4 0.3 0.2 0.5 0.6 0.5 0.7 0.5 

75+ 1.2 1.2 0.8 0.8 0.2 0.4 0.3 0.0 0.1 0.0 0.4 0.8 0.4 0.5 0.2 0.4 

 

 

 

Table 3.3: Age-specific incidence rates of lung cancer per 100,000 population for Saudi females in 

KSA (1994-2009). 

  Year of diagnosis  (1994-2009)   

Age 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-9 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

10-14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

15-19 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.1 

20-24 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.4 0.0 0.0 0.0 0.2 0.0 

25-29 0.2 0.0 0.0 0.4 0.2 0.0 0.0 0.2 0.2 0.3 0.1 0.1 0.5 0.4 0.1 0.4 

30-34 0.3 0.3 1.3 0.8 0.0 0.0 0.0 0.0 0.4 0.5 0.0 0.3 0.2 0.0 0.3 0.3 

35- 39 1.3 1.0 0.3 0.6 0.9 0.5 0.0 0.2 0.5 0.4 0.2 0.6 0.2 0.4 0.2 0.4 

40-44 1.9 0.9 0.5 1.8 0.9 1.1 0.6 0.6 1.2 1.1 0.3 2.6 1.4 0.9 0.7 1.6 

45-49 2.7 3.3 2.2 1.1 1.0 1.4 0.9 2.0 1.1 0.7 1.8 3.9 2.4 3.0 2.3 2.3 

50- 54 4.2 2.8 4.2 4.6 2.7 3.1 4.5 1.0 1.4 4.1 2.5 3.9 2.0 3.7 1.5 7.3 

55- 59 3.2 6.9 4.4 4.0 6.1 6.2 2.7 3.2 3.6 4.0 6.5 4.5 3.4 3.1 5.1 3.6 

60- 64 5.1 6.0 3.4 6.9 5.3 8.3 3.9 7.2 3.7 6.9 9.7 9.4 9.6 4.8 9.9 6.0 

65- 69 16.9 11.7 4.9 8.5 10.0 4.1 10.3 8.5 6.6 6.1 6.9 2.9 14.7 17.6 9.9 17.1 

70- 74 4.5 7.0 13.3 7.1 4.6 4.3 8.0 7.9 4.2 6.0 7.1 12.6 15.3 10.3 13.8 7.5 

75+ 9.5 13.7 6.6 11.2 12.4 15.1 11.5 12.6 8.2 13.2 10.8 16.7 14.6 17.2 11.8 15.1 
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Table 3.4: Age-specific incidence rates of lung cancer per 100,000 population for non-Saudi 

females in KSA (1994-2009). 

 
Time period (1994-2009)   

Age  94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-9 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10-14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

15-19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

20-24 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 

25-29 0.7 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.7 0.4 0.4 0.0 0.0 0.0 0.4 0.0 

30-34 2.1 1.2 0.8 0.0 0.7 0.0 0.0 0.0 1.4 1.1 0.4 0.4 1.7 0.0 0.3 0.5 

35- 39 0.0 1.2 1.8 0.6 0.6 1.1 0.5 0.0 0.0 0.0 0.5 1.5 0.4 0.8 0.0 0.0 

40-44 3.3 1.1 1.1 2.2 3.4 0.0 0.0 0.0 2.1 2.5 0.0 2.3 4.5 0.7 0.7 2.5 

45-49 2.0 4.2 4.3 4.4 0.0 8.2 1.9 3.6 3.0 2.8 1.4 0.0 2.7 6.8 1.3 3.3 

50- 54 12.0 7.7 7.4 11.1 0.0 10.3 0.0 3.2 8.6 2.3 6.8 6.5 2.2 10.6 6.3 7.0 

55- 59 30.0 45.5 27.3 25.0 8.3 13.3 16.7 0.0 5.0 14.3 4.5 21.7 11.5 15.4 3.7 9.4 

60- 64 16.7 25.0 45.5 36.4 0.0 27.3 9.1 18.2 0.0 0.0 6.7 6.3 35.7 13.3 6.7 16.7 

65- 69 50.0 33.3 40.0 40.0 20.0 33.3 0.0 33.3 14.3 12.5 12.5 75.0 33.3 11.1 33.3 54.5 

70- 74 20.0 0.0 0.0 0.0 20.0 14.3 0.0 22.2 0.0 16.7 16.7 14.3 37.5 44.4 11.1 30.0 

75+ 16.7 0.0 0.0 0.0 0.0 0.0 0.0 16.7 14.3 0.0 0.0 62.5 0.0 25.0 50.0 30.0 

 

  Table 3.5 shows the overall age-specific incidence rate of lung cancer in one-year 

intervals from 1994 to 2009 and five-year age groups from 0-4 years to 75+ in Saudi 

Arabia. The rates show an increasing incidence of lung cancer with increasing age to 65-69 

in all sixteen time periods. Among older age groups, there is a 50 per cent increase in 

incidence rates from 1994-2009 but in the age groups under 35 the increases are based on 

very limited absolute numbers. Such a pattern points to an interaction between age group 

and time period. This may be of significance for the aetiology or may reflect an increase in 

the completeness of coverage for registration of incident cases, or components of both. Our 

initial task of fitting the APC models is to estimate the effects of each of these three factors 

on the rates. Figure 3.4 shows the average incidence rate of lung cancer per 100,000 for the 

16 age groups from 1994 to 2009. 
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Table 3.5: Overall age-specific incidence rates per 100,000 of lung cancer population in KSA 

1994-2009. 
  

Year of diagnosis  (1994-2009)   

Age  94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 0.1 0.0 0.0 0.0 0.2 0.1 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.1 

5-9 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.1 

10-14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 

15-19 0.0 0.2 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.1 0.1 0.1 0.0 0.1 

20-24 0.2 0.4 0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.0 0.5 0.1 0.1 0.3 0.2 0.2 

25-29 0.4 0.1 0.0 0.5 0.6 0.1 0.4 0.2 0.5 0.6 0.3 0.2 0.5 0.5 0.3 0.4 

30-34 1.1 0.9 1.8 0.7 0.8 0.4 0.3 0.2 1.1 1.1 0.5 0.6 1.0 0.1 0.7 0.8 

35- 39 1.9 2.3 1.7 1.6 1.9 1.6 0.8 1.1 1.1 1.0 0.8 2.1 0.5 1.6 0.6 0.7 

40-44 4.9 3.6 2.4 4.3 4.1 3.1 2.1 1.2 2.8 3.0 1.6 5.1 3.5 2.9 2.3 3.0 

45-49 9.0 9.6 7.5 5.3 6.9 4.6 3.7 5.9 3.9 2.9 4.9 7.5 6.0 7.0 5.2 4.9 

50- 54 18.5 15.5 17.6 16.7 12.1 12.6 9.6 9.5 9.1 11.2 11.7 9.8 8.2 13.0 12.5 14.8 

55- 59 35.0 38.8 25.8 26.4 24.1 14.5 15.6 17.4 16.0 15.9 19.7 20.1 16.6 18.8 17.7 14.6 

60- 64 71.1 70.2 46.0 30.3 30.1 31.4 30.4 37.4 34.7 25.9 41.9 37.2 37.2 39.7 37.7 28.7 

65- 69 72.1 79.3 73.6 41.2 50.0 41.7 38.5 26.5 43.6 49.3 33.2 51.0 80.1 72.6 55.0 71.0 

70- 74 55.7 59.9 64.6 38.0 59.1 38.3 41.9 38.1 33.0 43.2 45.6 69.8 70.8 66.1 56.3 54.8 

75+ 61.2 53.9 57.2 39.2 35.1 47.3 35.7 20.6 25.0 45.1 49.2 60.2 66.6 81.5 65.5 62.1 

 

 

 

Figure 3.4: Average incidence rate of lung cancer per 100,000 for the 16 age groups from        

 1994 to 2009. 

Table 3.6 shows the total cases of lung cancer by region, price of imported tobacco in 

millions of dollars and consumption of tobacco in thousands of tons from 1994 to 2009.  

Notice that the 13 administrative regions in Saudi Arabia are divided into five regions 

in our study in order to obtain an overall picture of the future lung cancer burden in KSA. 

These five regions are presented in Figure 3.5. Thus, the northern region includes Tabuk, 

Hail, Jouf and Northern Border cities. The southern region includes Asir, Baha, Najran and 

Jazan cites. The western region includes Makkah and Madinah cites whereas, the central 
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region includes Riyadh and Qassim cites. The eastern region includes the whole Eastern 

province. 

 Our aim of including various covariates in this thesis is to establish a more realistic 

model of the relationship between some environmental lifestyles and lung cancer incidence 

in all age groups for males and females across Saudi Arabia. Initially, our desire not to 

include as many explanatory variables including smoking level and alcohol consumption 

were due to inaccessibility of data. However, a set of variables, namely, gender, race, age, 

consumption of tobacco per 1000 tons, smoking prevalence by gender, and five regions of 

Saudi Arabia were mentioned.  

  There were some problems with the data. For example, the Ministry of Health 

encountered problems at the beginning during the diagnostic, monitoring, treatment period 

and collection of the data. These problems were due to the untrained staff at the Saudi 

Cancer Registry at the time, influx of foreign nationals or immigration caused by the Gulf 

war and probably the lack of modern diagnostic techniques using technological resources. 

Another reason could be due to poor case ascertainment and certification at older ages 

(Saudi Cancer Registry, 2009). 

 

Table 3.6:  Total cases of lung cancer by region, price of imported tobacco in millions of dollars 

and consumption of tobacco in 1000 tons from 1994 to 2009. 

Year  

Consumption 

in (1000 tons) 

Price 

(millions) 

Northern 

Cases  

Southern 

Cases  

Western 

Cases  

Central 

Cases  

Eastern 

Cases  

1994 9 401 15 22 115 93 83 

1995 22 844 18 27 127 77 70 

1996 29 633 19 21 144 53 62 

1997 39 1353 16 17 98 100 53 

1998 39 1353 12 15 128 90 61 

1999 37 1300 19 21 115 84 50 

2000 36.5 1320 21 13 95 91 72 

2001 37.7 1450 23 14 78 85 83 

2002 38.8 1460 23 20 107 104 79 

2003 39.2 1500 13 30 141 83 76 

2004 43.6 1600 23 18 169 79 85 

2005 44.2 1700 10 21 201 124 74 

2006 46 1750 25 23 189 125 77 

2007 43 2058 44 31 204 125 115 

2008 47 2264 34 21 184 121 107 

2009 52 2491 26 33 187 144 114 

 



36 

 

 

Figure 3.5: Number of cases of lung cancer per year by regions in KSA from 1994 to 2009. 

 

 

3.3. Mortality Data 

The cases of lung cancer mortality per year are presented in Figure 3.6 for males and 

females separately from 1994 to 2009. Data for Figure 3.6 are shown in Tables F15 and 

F16. In addition, the mortality data in months are presented separately for males and 

females from 1994 to 2009 as shown in Figure 3.7. We have also presented the mortality 

data in Tables F17 and F18. The age-specific mortality rates of lung cancer per 100,000 

population for both males and females combined are presented in Table 3.7. We arrange 

the data in one-year intervals from 1994 to 2009 and five-year age groups from 25-29 

years to 75+ years.     

 

 

Figure 3.6: Number of cases of lung cancer mortality per year by gender from 1994 to 2009.  
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Figure 3.7: Number of cases of lung cancer mortality per month  in Saudi Arabia by gender from 

1994 to 2009. 

 

 

Table 3.7: Age-specific mortality rates per 100,000 of lung cancer for population in KSA 1994-

2009. 

  Year of diagnosis (1994-2009)      

 Age 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

25-29 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.1 0.0 

30-34 0.1 0.0 0.1 0.2 0.0 0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.3 0.0 0.1 0.1 

35-39 0.1 0.1 0.1 0.1 0.3 0.3 0.2 0.2 0.3 0.5 0.1 0.4 0.0 0.2 0.0 0.1 

40-44 0.0 0.2 0.0 0.1 0.3 0.4 0.4 0.1 0.4 0.7 0.6 0.7 0.6 0.6 0.7 0.5 

45-49 0.2 0.5 0.3 0.3 1.1 0.6 0.8 1.2 0.8 1.6 0.6 1.4 1.8 1.8 1.2 1.2 

50-54 0.0 0.0 0.7 3.2 1.2 3.3 1.7 3.6 1.3 2.2 2.9 2.2 1.8 2.8 3.5 3.4 

55-59 0.7 0.7 1.3 5.5 5.0 2.0 2.5 6.0 3.5 3.8 3.2 4.3 3.9 4.2 4.6 4.3 

60-64 0.7 0.7 1.4 2.7 6.5 4.1 5.9 8.1 10.6 9.1 10.1 10.2 10.8 11.5 10.9 7.9 

65-69 1.4 0.7 3.9 4.4 8.0 7.5 9.5 6.5 7.3 11.2 8.3 15.7 20.0 17.2 9.0 18.6 

70-74 0.0 0.7 2.7 2.0 9.0 7.0 8.1 11.8 11.1 11.5 13.5 18.0 25.9 21.0 17.8 13.7 

75+ 0.6 0.0 0.5 7.7 6.1 12.3 9.1 9.5 9.8 10.5 15.1 20.3 18.9 21.0 22.7 19.6 
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3.4. Population Forecast by 2020 

The estimated male population in 2009 was 15,010,101 accounting for 57% of the total 

population, and female population was 11,325,130 accounting for 43.0% of the total 

population (see Figure 3.8). The Department of Economic and Social Affairs at the United 

Nations in 2012 made the forecasts of population growth between 2010 and 2020. It 

assumed that males would experience the largest proportional increase by 16.2% as shown 

in Table F19, whereas females were estimated to increase by 6.4% in 2020, which is 

illustrated in Table F20. The reason for this is that female forecasts assume a relatively low 

birth rate and low net immigration. The total population estimated by 2020 is 32,340,000. 

Its structures vary by the age distribution for males and females separately as in Figures 3.9 

and 3.10. Figure 3.11 shows the age distribution of the world standard population in 2009. 

 

 

 

Figure 3.8: Male and female populations in KSA from 1994 to 2020 (thousands). 
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Figure 3.9: Age distribution in thousands of male population in KSA averaged over the period 

2005-2009 and the forecast averaged over 2016-2020. 

 

 

  

 

Figure 3.10: Age distribution in thousands of female population in KSA averaged over the period 

2005-2009 and the forecast averaged over 2016-2020.  

 

 

 

 -    

 500  

 1,000  

 1,500  

 2,000  

 2,500  

0
-4

 

5
‒
9

 

1
0
‒
1
4

 

1
5

-1
9

 

2
0

-2
4

 

2
5

-2
9

 

3
0

-3
4

 

3
5

-3
9

 

4
0

-4
4

 

4
5

-4
9

 

5
0

-5
4

 

5
5

-5
9

 

6
0

-6
4

 

6
5

-6
9

 

7
0

-7
4

 

7
5

+
 

N
u

m
b

er
 o

f 
p

er
so

n
s 

p
er

 y
ea

r 
(i

n
 1

0
0

0
) 

Age groups  

2005-2009  

2016-2020 

0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

0
-4

 

5
‒
9

 

1
0
‒
1
4

 

1
5

-1
9

 

2
0

-2
4

 

2
5

-2
9

 

3
0

-3
4

 

3
5

-3
9

 

4
0

-4
4

 

4
5

-4
9

 

5
0

-5
4

 

5
5

-5
9

 

6
0

-6
4

 

6
5

-6
9

 

7
0

-7
4

 

7
5

+
 N

u
m

b
er

 o
f 

p
er

so
n
s 

p
er

 y
ea

r 
(i

n
 1

0
0
0
) 

Age groups  

2005-2009  

2016-2020  



40 

 

 

Figure 3.11: Age distribution of the world standard population in 2009.  

 

 

3.5. Summary  

The data collected from 1994 to 2009 for lung cancer from Saudi Cancer Registry (SCR) 

and Central Department of Statistics (CDS) in the Kingdom of Saudi Arabia (KSA) are 

presented in four different groups. The groups are Saudi male, Saudi female, non-Saudi 

male, and non-Saudi female. The lung cancer data collected are the date of diagnosis, 

gender, ethnicity, type of lung cancer, region, age at diagnosis, date of birth, and the status 

(dead, alive, or unknown). Population data we have include the number of people at risk 

from 1994 to 2009 for each age group, gender, and ethnicity. Between 2010 and 2020, the 

Department of Economic and Social Affairs at the United Nations (2012) made forecasts 

of population growth for both genders. In addition, data on smoking prevalence by gender, 

price of imported tobacco, and consumption of tobacco per 1000 tons are presented. 

 The total number of incident cases reported to the SCR from 1994 to 2009 was 5,966. 

Overall lung cancer was substantially higher among males than females. Of this 3,487 are 

Saudi males, 1,145 are non-Saudi males, 1,028 are Saudi females, and 306 are non-Saudi 

females. In the case of mortality, the total number reported from 1994 to 2009 was 1,755 

deaths for males and 486 for females.  

 These data will be used in the analyses that we carry out in Chapters 4, 5, 6 and 7. For 

Box-Jenkins methodology in Chapter 4 we use monthly data. The monthly data were also 

used for dynamic regression modelling of autoregressive model AR(1), distributed lag 

0 

2,000 

4,000 

6,000 

8,000 

10,000 

12,000 

14,000 

0
-4

 

5
‒
9

 

1
0
‒
1
4

 

1
5

-1
9

 

2
0

-2
4

 

2
5

-2
9

 

3
0

-3
4

 

3
5

-3
9

 

4
0

-4
4

 

4
5

-4
9

 

5
0

-5
4

 

5
5

-5
9

 

6
0

-6
4

 

6
5

-6
9

 

7
0

-7
4

 

7
5

+
 N

u
m

b
er

 o
f 

p
er

so
n

s 
p

er
 y

ea
r 

(i
n

1
0

0
0

) 

Age groups  



41 

 

models (DLMs), polynomial distributed lag models (PDLs) and autoregressive polynomial 

distributed lag models (ARPDLs) in Chapter 5. For the age-period-cohort modelling in 

Chapter 6 we use yearly incidence data using spline functions. In Chapter 7 we use the 

annual mortality data for the Bayesian dynamic APC models. The use of monthly data 

helps to address the fact that the dataset is relatively small. Nonetheless, several cancer 

research studies have used datasets of roughly the same size when making predictions.  
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CHAPTER 4  

PREDICTION OF LUNG CANCER INCIDENCE IN SAUDI ARABIA 

USING BOX-JENKINS METHODOLOGY 

 

4.0. Introduction 

In time series analysis, the Box–Jenkins methodology applies Autoregressive Moving 

Average (ARMA) or Autoregressive Integrated Moving Average (ARIMA) models to find 

the best fit of a time series to past values of this time series, in order to make forecasts. 

Box-Jenkins represents a powerful methodology that addresses trend and seasonality well, 

see George et al. (1994). ARIMA models have a strong theoretical foundation and provide 

an effective technique for approximating any stationary process. 

4.1. SARIMA (Seasonal ARIMA) Model 

A stationary time series    is said to follow an autoregressive moving average model of 

orders p and q, denoted by ARMA(p, q), if it satisfies the following equation  

                                                                4.1 

where the α’s and the β’s are constants such that the model is both stationary and 

invertible.    is a white noise process. 

 Equation 4.1 can be written as  

                                                                                                          4.2
 

where                
       

  ,                
       

   and  

           . 

The zeros of       must lie outside the unit circle for stationarity, and for invertibility the 

zeros of and       must also lie outside the unit circle. 

 In case the series are seasonal, the Box-Jenkins methodology proposes multiplicative 

seasonal models coupled with long-term differencing, if necessary, to achieve stationarity 

in the mean. 

 Let d be the minimum order for stationarity. Then the resultant stationary series is 

denoted by      where      . If      follows an ARMA (p, q) model, then the 

original series    is said to follow an autoregressive integrated moving average model of 

orders p, d and q, denoted by ARIMA(p, d, q). In general, we will write the model as  
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                                                                                                                         4.3 

Box and Jenkins (1976) proposed further that a seasonal series of period S could be 

modelled by 

                                                 
         

          
                                            4.4 

where    is the usual Gaussian white noise process. The general model in Equation (4.4) is 

denoted as SARIMA(p,d,q) x (P,D,Q)S and is called a multiplicative seasonal 

autoregressive integrated moving average model . The ordinary autoregressive and moving 

average components are represented by polynomials       and       of orders p and q 

respectively, and the seasonal autoregressive and moving average components by     
   

and     
   of orders P and Q and ordinary and seasonal difference operators by    

       and   
         . For monthly time series      and for quarterly time 

series    . For estimation of parameters, iterative least squares method is used. 

4.2. Model Estimation 

In order to fit the model in Equation (4.4), its orders p, d, q, P, D, Q and s must be 

determined. One can determine the seasonality period s from the nature of the time-series 

plot and the correlogram. The correlogram of an s-period seasonal series exhibits 

fluctuating movements of the same periodicity as the series. 

 At each stage of the differencing process, the series is tested for stationarity until it is 

attained. Here, the Augmented Dickey Fuller (ADF) test shall be used to test for 

stationarity after each stage of differencing. The AR orders p and P are estimated as the 

non-seasonal and the seasonal cut-off lags of the autocorrelation function (ACF) 

respectively. Similarly the MA orders q and Q are estimated as the non-seasonal and the 

seasonal cut-off lags of the partial autocorrelation function (PACF) respectively.  

 The parameters are thereafter estimated by the use of non-linear optimization 

techniques because of the involvement of white noise process items in the model. After 

model fitting the fitted model is usually subjected to residual analysis for validation. All 

analysis in this work was done using the statistical package R. 

 In this analysis, we aim to fit a time series SARIMA model to the lung cancer 

incidence in the Kingdom of Saudi Arabia (KSA). The best-fit model will also be used for 

forecasting future incidence of lung cancer. The data set contains monthly cases of lung 

cancer recorded by the Cancer Registry of Saudi Arabia between 1994 and 2009. We are 

particularly interested in the short-term future forecast of the lung cancer incident cases. 
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 The following analysis mainly focuses on the application of Box-Jenkins SARIMA 

modelling techniques to estimate the appropriate model that can be used for forecasting 

future incidence of lung cancer in KSA. 

4.3. Analysis 

The process consists several stages in an analysis of this type. First, as with any data 

analysis, we should construct a time plot of the data, and inspect the graph for any 

anomalies. If, for example, the variability in the data grows with time, it will be necessary 

to transform the data to stabilize the variance. In such cases, the Box-Cox class of power 

transformations could be employed. Also, the particular application might suggest an 

appropriate transformation. The same time plot gives first answers to questions of 

stationarity or whether the time series show a seasonal pattern. 

 This is then followed by an identification of the initial model. This, we achieve by 

establishing seasonality in the dependent series (seasonally differencing it if necessary), 

and using function plots of the autocorrelation function (ACF) and partial autocorrelation 

function (PACF) of the dependent time series to decide which (if any) autoregressive or 

moving average component should be used in the model. Secondly, we estimate the 

parameters for a tentative model that has been selected. Thirdly, the estimated model is 

tested or checked for adequacy to determine if it is the best-fit model for the data (this 

stage includes both residual diagnostics and over-fitting of the initial model). If the 

estimation is inadequate, we have to return to step one. Lastly, the final best-fit model is 

then chosen and used to predict future values of the time series. 

4.4. Modelling Seasonal Time Series 

4.4.1. SARIMA Model Building 

Following Section 4.1 above, the data set was plotted to give an initial guess about the data 

generation process. Figure 4.1 illustrates a time series plot of the original monthly lung 

cancer incidence data for KSA from January 1994 to December 2009. 
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Figure 4.1: Time series plot of the original monthly incidence data. 

 

 From the time plot, we could easily observe that many times, the incidence data of 

lung cancer rises and then drops suddenly within the same year throughout the series from 

January 1994 to December 2009. One could really see that there is a seasonal pattern 

where it seems to oscillate with spikes and valleys. Throughout, it seems to have some sort 

of trend for part of the time in the levels and then increase. Therefore the plot also notifies 

the presence of profile to it. In addition, the ACF and PACF plots shown in Figure 4.2 of 

the original series confirm that the dataset is not stationary. Therefore differencing will be 

necessary so as to attain stationarity. 

 

Figure 4.2: ACF and PACF plots of the monthly incidence data. 
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 From the time plot, the series appears to show the presence of a trend. If the series 

somehow indicate a trend, then there is a possibility of trend-stationarity. A quadratic trend 

is therefore fit to the data and the de-trended data is plotted in Figure 4.3. Again, this plot 

did not clearly show that the series is stationary. Since the de-trended data does not clearly 

indicate stationary, we conclude that the original time series is not trend-stationary. We 

therefore prefer differencing the time series in order to remove its nonseasonal and 

seasonal unit roots (Box and Jenkins, 1976). 
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Figure 4.3: (a) Quadratic trend, (b) De-trended data. 
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4.4.2. Test for Stationarity 

Next we consider difference-stationarity. Figure 4.4 shows the time series, autocorrelation 

function (ACF) and partial autocorrelation function (PACF) plots for the first-difference of 

the time series. 

 

 

Figure 4.4: First difference of the monthly incidence data - time series, ACF and PACF 

plots. 
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 An Augmented Dickey-Fuller (ADF) test is used to check for the presence of a unit 

root in the time series. From the ADF test on the first-difference series, the p-value (0.01) 

is smaller than 0.05 and therefore we need to accept the alternative hypothesis which is 

stationary which means again that there is no unit root present in the data (where the null 

hypothesis assumes that the data is non-stationary). It is therefore clear from the time series 

plot that this first-differenced time series is stationary (constant mean and approximately 

constant variance). 

 The model identification techniques used in Box-Jenkins SARIMA modelling is now 

applied to the first differenced time series. 

4.4.3. Model Identification 

Before we can estimate the SARIMA model, we first identify the dependence orders of the 

model with the aid of autocorrelation function (ACF) and partial autocorrelation functions 

(PACF).  

 The output of the differenced data is shown in Figure 4.4. We used a seasonal 

difference equation                    and                 for non-seasonal 

differencing. The plot shows a transformation of the lung data using the first differencing 

method to remove the seasonality component in the original series. The pattern move 

irregularly about its mean value of zero with the variability being approximately stable. 

 The plot shows clear monthly effect and no obvious trend, so the ACF and PACF of 

the 12
th

 difference (seasonal differencing) are examined in Figure 4.4. Examining the ACF 

and the PACF of the difference data, these plots suggest seasonality order of the AR and 

MA components 2 and 1 respectively.  

 Therefore we fit  

                                                        SARIMA(2,1,1)x(2,1,1)12                                           4.5 

 

Using the lag operator this model can be written as follows: 

      
      

             
                   

        
      

Using the same procedure, the following other SARIMA models are suggested for 

comparisons: 

 SARIMA(2,1,1)x(1,1,0)12 

 SARIMA(2,1,1)x(1,1,1)12 

 SARIMA(2,1,1)x(1,1,2)12 

 SARIMA(2,1,1)x(0,1,1)12 
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 SARIMA(2,1,1)x(0,1,2)12 

 SARIMA(2,1,1)x(2,1,2)12 

 

 Using the Maximum Likelihood Estimator the model parameters  ,  , Θ, Φ are 

estimated. The parameter estimates corresponding to the SARIMA models are shown in 

Table 4.1. A dash in a box indicates the parameter is not applicable to the respective 

model. 

 

Table 4.1: Estimated model parameters for SARIMA (p, d, q)x(P, D, Q)12. 

 

SARIMA 

MODEL 

 

   

AR(1) 

 

   

AR(2) 

 

   

MA(1) 

 

   

SAR(1) 

 

   

SAR(2) 

 

   

SMA(1) 

 

   

SMA(2) 

 

    

(2,1,1)x(2,1,1)12 
0.04 0.07 -0.92 -0.04 -0.02 -0.70 - 44.69 

(2,1,1)x(1,1,0)12 
0.05 0.09 -0.96 -0.47 - - - 52.06 

(2,1,1)x(1,1,1)12 
0.03 0.07 -0.92 -0.02 - -0.71 - 44.69 

(2,1,1)x(1,1,2)12 
0.05 0.07 -0.9 -0.86 - 0.17 -0.67 44.23 

(2,1,1)x(0,1,1)12 
0.04 0.07 -0.92 - - -0.72 - 44.69 

(2,1,1)x(0,1,2)12 
0.03 0.07 -0.92 - - -0.74 0.02 44.69 

(2,1,1)x(2,1,2)12 
0.03 0.07 -0.92 -0.91 -0.12 0.19 -0.58 44.00 

 

 Using the standardised residual test, the ACF of the residuals, Normal Q-Q plot of 

standardised residuals and the Ljung-Box statistic all the seven models were found to be 

significant. 

4.4.4. Model Selection 

Fitting the seven models suggested by these observations we obtain the values shown in 

Table 4.2. Thus the final model was selected using penalty function statistics such as 

Akaike Information Criteria (AIC, AICc) and Bayesian Information Criterion (BIC).  

 



50 

 

Table 4.2: Values of AIC, AICc and BIC for the SARIMA Models. 

MODEL AIC AICc BIC 

SARIMA(2,1,1)x(2,1,1)12 4.862 4.876 3.964 

SARIMA(2,1,1)x(1,1,0)12 4.994 5.006 4.062 

SARIMA(2,1,1)x(1,1,1)12 4.852 4.865 3.937 

SARIMA(2,1,1)x(1,1,2)12 4.852 4.866 3.954 

SARIMA(2,1,1)x(0,1,1)12 4.841 4.854 3.909 

SARIMA(2,1,1)x(0,1,2)12 4.852 4.865 3.937 

SARIMA(2,1,1)x(2,1,2)12 4.857 4.872 3.976 

 

 From Table 4.2 above, SARIMA (2,1,1)x(0,1,1)12 is the best model with the minimum 

values of Akaike’s Information Criteria of AIC, AICc and Bayesian Information Criterion 

(BIC) statistics. The AIC, AICc and the BIC are good for all the models but the 

SARIMA(2,1,1)x(0,1,1)12 model provided the minimum values and was therefore selected. 

Therefore we present the estimated model parameters for the best-fit model in Table 4.3 

below. 

Table 4.3: Estimated parameters of preferred model. 

SARIMA(2,1,1)x(0,1,1) Estimate Standard Error 

AR(1) 0.040 0.085 

AR(2) 0.068 0.083 

MA(1) -0.919 0.038 

SMA(1) -0.724 0.070 

 

 Hence, SARIMA (2,1,1)x(0,1,1)12 is the preferred model, and the fitted model in this 

case is  

 

          
                    

        
       

                           
         

                             
                             

       

with              
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4.4.5. Model Diagnostics 

Residual diagnostic for the best-fit model are displayed in Figure 4.5. We note the few 

outliers in the series as exhibited in the plot of the standardized residuals and their normal 

Q-Q plot, and a small amount of autocorrelation that still remains (although not at the 

seasonal lags) but otherwise, the model fits well. Finally, forecasts based on the fitted 

model for the next 24 months are shown in Figure 4.6. 

 

 

Figure 4.5: Diagnostics for the SARIMA (2,1,1)x(0,1,1)12  fit on the lung cancer incidence. 

 
 
4.5. Forecasting with the SARIMA (2,1,1)x(0,1,1)12 model 

Forecasts of future incidence of lung cancer are of particular importance to the Ministry of 

Health of any country.   

 Using SARIMA (2,1,1)x(0,1,1)12, a forecast pattern for the next 24 months ahead of 

the original data for the period from January, 1994 to December, 2009 was generated. 
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Figure 4.6: Graph of forecast of SARIMA(2,1,1)x(0,1,1)12 model. 

 

 We may now use the final form of the best-fit SARIMA(2,1,1)x(0,1,1)12 model for the 

time series to estimate future incidence levels. The forecast incidence for the next two 

years is displayed in Table 4.4 together with the standard errors of the parameter estimates. 

 

Table 4.4: Forecast incidence levels using SARIMA(2,1,1)x(0,1,1)12 model. 

Month (2010) Estimate Standard Error Month (2011) Estimate Standard Error 

1 45 6.68 1 46 7.45 

2 50 6.73 2 52 7.49 

3 50 6.80 3 51 7.54 

4 44 6.83 4 45 7.59 

5 50 6.86 5 52 7.63 

6 48 6.89 6 49 7.66 

7 44 6.92 7 45 7.70 

8 40 6.95 8 42 7.74 

9 38 6.97 9 39 7.78 

10 41 7.00 10 43 7.82 

11 41 7.03 11 43 7.86 

12 47 7.05 12 48 7.90 
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It is clear from these forecasts that the monthly incidence levels is expected to follow the 

positive trend visible in the time series plot of the original data. 

4.6. Summary 

The main aim of this analysis was to determine an appropriate SARIMA model for the 

lung cancer incidence data in KSA. Particularly, we were interested in forecasting future 

lung cancer values using this model.  

 The results of this study indicate that SARIMA model allows for more complex 

description of the seasonality and autocorrelation structure of the time series and is found 

to be suitable in predicting the lung cancer incidence in KSA. Based on the minimum AIC, 

AICc and BIC statistics the best fitted SARIMA model is the SARIMA(2,1,1)x(0,1,1)12 

expressed as  

 

                           
         

                             
                             

       

 

 The model fitted well and provided sensible forecasts for up to 24 months ahead. This 

is against the backdrop that SARIMA models have shorter period of predicting power 

(Abraham et al., 2009: Aidoo, 2010).  
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CHAPTER 5 

DYNAMIC REGRESSION MODELLING OF LUNG CANCER INCIDENCE IN 

SAUDI ARABIA 

5.1. Introduction 

 In this chapter, we model and forecast lung cancer incidence using dynamic regression 

models with finite and infinite lags. These models involve autoregressive models (ARs), 

distributed lag models (DLMs), polynomial distributed lag models (PDLs) and 

autoregressive polynomial distributed lag models (ARPDLs). We give an overview of 

AR(1) models and how to detect and correct autocorrelation in section 5.2. We outline the 

implementation and forecasting issues with DLM and PDL models in section 5.5 and 

section 5.12 respectively and went further to present one-step ahead forecast for the 

various models in section 5.7. Finally, to evaluate the robustness of the results, we explore 

ARPDL models in section 5.14 and present our summaries of best models and their 

forecasts in section 5.17.       

5.2. Autoregressive Models 

5.2.1. Linear Model of First-order Autoregressive AR(1) 

First, we focus on the concept of autocorrelation. In simple terms, autocorrelation means 

that current values depend on past values. A common starting point of analysis is a simple 

model of positive first-order AR(1) autocorrelated error-process associated with a 

regression equation that can be represented by the following two equations:  

                    5.1 

and 

          

where     is the incidence at time t (number of cases in month t),    is the smoking 

population in 10,000,    is the smoking prevalence and    is the population size,  

and                
5.2 

 

where             (or ⎸ ⎹ <1 in order to avoid unstable behaviour) and            . 

With the model in equation (5.1) above, the errors    are not independently distributed 

because the previous errors       influence the current errors whenever   is not zero. We 

say that the errors are autocorrelated. It is important to note that there are three important 
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consequences when ordinary least squares (OLS) is used to estimate    and    in the 

presence of an autocorrelated data generation process: 

1. The estimates of     and    remain unbiased. 

2. The OLS estimated standard errors (SEs) of the estimated coefficients are 

inconsistent and inference is flawed. Also, they are not asymptotically unbiased. 

3. Ordinary least squares does not give the best linear unbiased estimator. A 

generalized least squares (GLS) procedure is the best (minimum SE) linear 

unbiased estimator.  

 Because (OLS) reported SEs are misleading and the OLS estimators are inconsistent if 

autocorrelation exists, we need to investigate if the errors are autocorrelated (Barretto and 

Howland, 2006). The following diagnostic procedures are employed: 

i. Examining the scatter diagram of OLS residuals plotted against lagged residuals. 

ii. Applying the estimated   test in which estimated   is the slope of the regression of 

residuals on lagged residuals.  

iii. Using the Durbin-Watson (DW) test. Unlike the estimated   test, the DW test is 

often used because it does not suffer from small sample bias. 

5.2.2. Detecting Autocorrelation 

One simple way of detecting autocorrelation is the autocorrelation function or ACF. 

Autocorrelation computes and plots the autocorrelations of a time series. Autocorrelation is 

the correlation between observations of a time series separated by k time units. Suppose we 

model the total number of lung cancer cases in Saudi Arabia from 1994 to 2009 against 

smoking population using Equation (5.1) above. The results from Minitab are shown in 

Table A1 (see Appendix A). The estimated slope from OLS regression through the origin 

of residuals on lagged residuals is 0.173. Also from the graphs of Figures 5.1 and 5.2, it is 

concluded that the residuals are serially correlated with positive autocorrelation. Figure 5.1 

illustrates the residual plots against time whereas Figure 5.2 shows that the autocorrelation 

function of the residuals exceed the significance bounds at different lags. Finally, the 

Durbin-Watson test from Minitab produced the value 1.55538 confirming that 

autocorrelation exists in the estimated model because according to Asteriou and Hall 

(2011), the DW statistic is given by          . Because     by definition ranges from   

-1 to 1, the range for   will be from 0 to 4. Therefore, we have three main cases: 

i.          therefore, a value of   close to 2 means that there is no evidence 

of autocorrelation. 
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ii.          a strong positive serial correlation indicates that    will be close 

to +1, and thus   will have very low values (close to zero) for positive 

autocorrelation. 

iii.           similarly, when   is close to -1 then   will be close to 4, 

meaning  a strong negative autocorrelation. 

From this analysis, we can see that as a rule of thumb, when the DW test statistic is very 

close to 2 we do not have serial correlation. 

Month 

R
es

id
ua

l

180160140120100806040201

30

20

10

0

-10

-20

 

Figure 5.1: Plot of residuals from OLS regression of total cases of lung cancer on smoking      

      population. 

 

Figure 5.2: Autocorrelation function plot with 95% confidence intervals of the residuals.  
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5.2.3. Correcting Autocorrelation 

 Once first-order AR (1) autocorrelated errors are detected, it is possible to correct the 

model. By appropriately transforming the original data, applying a special formula in 

section 5.4.4 to the first observation and then running OLS on the transformed data, linear 

unbiased estimates    and    with minimum SE are found. Applying OLS on appropriately 

transformed data is called the GLS estimation, and the GLS estimator is the best linear 

unbiased estimation (BLUE) according to Barretto and Howland (2006). 

5.3. Generalized Least Squares 

A transformation of    and     can be such that the resulting linear model has an 

independent error structure. We simply transform the model so that we get rid of the   

errors that are systematically related to the previous errors, leaving only the   errors that 

are independent and normally distributed. This transformation is defined as follows.  

 By substituting the error-forecasting equation into the equation that generates the 

observed y: 

                            5.3 

Because each individual Y is generated the same way, lagging equation (5.1) by one period 

gives  

                       5.4 

Multiplying equation (5.4) by the autocorrelation coefficient   gives  

                               5.5 

Subtracting equation (5.5) from equation (5.3) we get that  

                                                              

Rearranging this equation we obtain a model in which the error term is a pure, 

independently and identically distributed error,   : 

                                            5.6 

If we define new variables       
                  and         

  =          , then we have  

   
                 

      5.7 

Equation (5.7) is known as the transformed model with a well-behaved error term. Since  

  , the disturbance, obeys all the classical conditions by assumption, OLS may be applied 

to this equation. 

However   is unknown, so it must be estimated from the regression of residuals on 

lagged residuals. We then use it to transform the original data to obtain the new 
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transformed   
  and    

 . Note that    and     are the original parameter values of the 

model. Running OLS on the transformed model is called generalized least squares (GLS). 

It generates the right SEs as it is the best linear unbiased estimator. Notice as well that 

when  =0, the transformation reduces to the familiar OLS model. Our new model is called 

generalized least squares because the transformation applied here is one of many possible 

transformations, which includes OLS as a particular case.  

Note that if the regression equation is misspecified or the error process does not follow 

the AR (1) model, the transformation presented above will not work.  

5.4. Iterative Procedures to Estimate    

Although the method of generalized differencing seems to be easy to apply, in practice the 

value of   is not known. Therefore, procedures need to be developed to provide us with 

estimates of   and then of the regression model in equation (5.7). Several procedures have 

been developed, but the most popular ones are Cochrane-Orcutt iterative procedure, Prais-

Winsten, and Hildreth-Lu search procedures. 

5.4.1. The Cochrane-Orcutt Iterative Procedure 

 Cochrane-Orcutt (1949) developed an iterative procedure that is described as follows: 

1. Estimate the model by OLS and obtain the residuals    . 

2.  Estimate the first-order autocorrelation coefficient   by OLS from 

                 

3. Transform the original data as    
                and   

  =          for t= 2,…, 

192. Note that this means that we lose the first observation. 

4. Now regress   
  on   

  . The constant in this regression will be          Generate 

new residuals from this regression. 

5. Regress the new residuals on the lagged new residuals to estimate a new ρ. 

6. Go to step 3 and repeat until convergence. 

 The iterative procedure can be stopped when the estimates of   from two successive 

iterations differ by no more than a preselected (very small) value such as 0.001. The final 

estimated rho is used to get the estimates of Equation (5.7). 

 To apply generalized differencing estimation to the total cases of lung cancer in Saudi 

Arabia from 1994 to 2009 against smoking population, we first need to find an estimate of 

 . We obtain   from running a regression of the residuals against lagged residuals obtained 

from Equation (5.1).  We get the results shown in Table A2 (see Appendix A) from which 
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the   coefficient is 0.1726 using STATA 13 statistical package. Then we go to step 3 and 

repeat the procedure until we get convergence as in Table 5.1 below. 

 

Table 5.1: Cochrane-Orcutt iterative procedure for the best estimated  . 

Iteration    

1 0 

2 0.1726 

3 0.1726 

4 0.1726 

 

Now, we can see from Table 5.1 that the best estimated   when using the Cochrane-Orcutt 

iterative procedure is 0.1726.  

Now to estimate the coefficients, we know that      =0.120,             and    = 0.1726. 

Then                 , so           . The final model is  

     =                   and                      where      N (0,    ) iid. 

5.4.2. Prais-Winsten Procedure  

Prais-Winsten (1954) is essentially the same as the Cochrane-Orcutt iterative procedure 

except that we keep the first observation and it does not iterate. Therefore, in order to 

transform the variables in the first observation we need to apply the following formula to 

the first observation as follows: 

  
                         and        

              

whereas to transform the variables for observations 2 to 192 we use the transformations  

    
                  and         

  =         . 

Thence 

  
                 

     . 

 Suppose that we use the same data but we apply a special formula to the first 

observation as mentioned earlier. This produced the following iterations for rho (see Table 

5.2).  
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      Table 5.2:  Prais-Winsten iterative procedure for the best estimated  . 

Iteration   

1 0.0000 

2 0.1726 

3 0.1728 

4 0.1728 

From Table 5.2, the best estimated   when using Prais-Winsten iterative procedure is 

0.1728. The full results of this are shown in Table A3 (see Appendix A). 

Now, we know that    = 0.115,           and    = 0.173. Then,                . So         

          . The final model is  

    =                  and                          where       N (0,    ) iid. 

5.4.3. The Hildreth-Lu Search Procedure  

Hildreth and Lu (1960) developed an alternative method to the Cochrane-Orcutt iterative 

procedure as shown in the following. 

1.  Choose a value for   (for example   = 0.1), and for this value transform the model 

as in Equation (5.7) and estimate it by OLS. 

2.   From the estimation in step 1, obtain the residuals     and the residual sum of 

squares (RSS for   =0.1). Next choose a different value of   (for example   = 0.2) 

and repeat steps 1 and 2. 

3.  By varying   from 0 to 1 in some predetermined systematic way, we can get a 

series of values for RSS (  ). We choose the   for which RSS is minimized and 

Equation (5.7), which was estimated using the chosen   as the optimal solution.  

Table 5.3: The Hildreth-Lu search procedure for the best estimated  . 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Iteration 

 

  

1 0.0000 

2 0.9999 

3 0.5000 

4 0.2500 

5 0.3750 

6 0.3125 

7 0.2812 

8 0.2656 

9 0.2578 

10 0.2539 

11 0.2519 
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The best estimated   with minimum RSS is shown in Table 5.3 ( =0.2519) and the full 

results from the transformed model are shown in Table A4 (see Appendix A). 

Now, we know that     = 0.120,           and    = 0.2510. Then                 . 

So 

          . The final model is  

                      and                       where        N (0,    ) iid. 

5.4.4. Remark  

Generally, as we know, OLS implicitly treats the X value for the intercept term as 1 for 

each observation. Here, the transformed model, however, has changed the intercept term 

from 1 to (1- ). When estimating this model, either we need to interpret the reported 

intercept coefficient as an estimate of         , or we can try the computer software to 

support the usual intercept in favour of the transformed intercept.  

There is an additional sticky detail to consider. How do we transform the first 

observation? No previous observed value of the independent or dependent variables is 

available, and thus we cannot apply the formula for the transformed model on the first 

observation. It turns out that the following formula is the correct transformation to apply to 

the first observation:  

  
               

  
              

          
           

Intuitively, what this transformation accomplishes is to ensure that the error term in the 

transformed equation for the first observation has the same spread as the other error terms 

(e.g. the spread of the   ). For more details, see Greene (2000), p.543, or Goldberger 

(1991), pp. 302-303.   

5.5. Distributed Lag Models (DLMs) 

5.5.1. Introduction 

Distributed lag models are useful because they allow a dependent variable to depend on 

past values of an explanatory variable at various lags. When the population is increasing, 

this means that the age distribution will increase over time. This together with the increase 

in tobacco consumption will lead to a serious problem in the future. The effects of smoking 

do not occur instantaneously but are spread, or distributed over time. Therefore, decision 
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makers or action planners should take into account the past or lagged values of the policy 

variables. Algebraically, we can demonstrate this lag effect by saying that a change in a 

policy variable    has an effect on the dependent or response variables   ,       , .... If 

we turn this around slightly, then we can say that    is affected by the values of     ,      , 

or  

                                             5.8 

 
This distributed lag model is finite as the duration of the effects is a finite period of 

time, namely k periods. This model is said to be dynamic because it describes the reaction 

over time. The most important issue here is the lag length, how far back in time must we 

go. In reality, there are two kinds of lags. First, a finite distributed lag that describes the 

effects only for a certain and fixed period of time. Second, an infinite distributed lag that 

describes the effects as lasting and forever. In order to convert Equation (5.8) into a 

distributed lag model we need a functional form with an error term and then make 

assumptions about the properties of the error term. 

5.5.2. Finite Distributed Lag Models  

To model the finite distributed lag, the functional form is assumed to be linear, so that the 

finite lag model, with an additive error term, is  

                                                                             

              

 

   

 5.9 

where we assume that E (  ) = 0, Var (  ) =     , and Cov (  ,       for all s≠ t.  

In this model the parameter  is the intercept and i is the distributed lag weight to 

reflect the fact that it measures the effect of changes in past values of X on the expected 

current value of Y, all other things being equal. Equation (5.9) can be estimated by least 

squares if the error term    has the usual desirable properties. The question here is, how 

many lags are required in order to have a correctly specified equation? Or, in other words, 

what is the optimal lag length? 

 One way to overcome this is to use a relatively large value for    estimate the model 

for             lags and choose the model with the lowest value of AIC (Akaike 

Information Criterion), SBC (Schwarz Bayesian Criterion) or any other criterion. 

However, this procedure will create two kinds of problems: 
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a) Because of close relationships between the independent variables                ,  

the model will suffer from multicollinearity.   

b) A large number of lag indicates a serious loss of degrees of freedom because we 

can only choose     to    observations. 

 There are many consequences of collinearity. Firstly, the estimates of least squares are 

imprecise, meaning that a wide interval estimates will be detected. Secondly, high levels of 

correlation among the regressors imply multicollinearity, which leads to unreliable and 

inconsistent coefficient estimates with large variances and standard errors. Thus, because 

the pattern of lag weights will often be used for policy analysis, decision makers should 

specify the lag length very carefully since this imprecision may lead to serious problems on 

decision making. 

5.5.3. Short and Long-Run Effects 

It is interesting to examine the effect of the  s in Equation (5.9). In order to test for short 

and long-run effects we should include lags of the dependent and independent variables in 

the regression model. The main reason for including lags is that we believe that the 

influence of a variable could extend beyond the period being estimated. The use of lags 

allows us to find the difference between the short and long run multiplier effects.  

As in Equation (5.9), the short run multiplier effect is    since it captures the current 

effect of any change in X on Y at time t, whereas the long run multiplier is the sum 

             which measures the effect of the permanent change in the value of X.  

Notice that when introducing lags, this assumes that not just the current value of the X 

variable is uncorrelated with the residual, but also all past values of X beyond the lags 

already included in the model                where            (which changes the 

definition of exogeneity a little and ensures that the lagged values included in the original 

model comprise all the possible non-zero dynamic effects of X). 

 If we assume that the residuals are also uncorrelated with all future values of X this is 

called strict exogeneity      ⎸                    and there may be estimation 

techniques other than OLS that can be used to estimate dynamic causal effects ( Hill et al, 

2000).  

 From empirical studies using real data, it has been shown that short-term forecasts are 

more reliable than long-term forecasts because the forecast relies more on immediate past 

observations than long-term observations. Short-term objectives, for example, help 

decision makers in meeting the long-term objectives, making them an important element of 
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any decision making. Suppose that the Ministry of Health’s long-term goal is to reduce the 

cases of lung cancer by 10% every year. To do so, it creates a plan that involves a series of 

short-term forecasts. The Ministry then moves from one short-term objective to the next, 

knowing that each completed objective brings it closer to its overall goal. Additionally, in 

some situations, the long-term forecast might fail, which is another reason short-term 

forecast is important.  

To find out the relationship between the dependent variables and one current value of 

the independent variables to get the short and long-run multiplier of lung cancer incidence 

in KSA, we regress    on    as in the following equation:   

                 

Since there are no lags in the estimated model the short and long-run multipliers are 

the same i.e.      = 0.116 (see Table A5 in Appendix A). Therefore, 1% increase in 

smoking population suggests an approximately immediate and permanent 12% (43) 

individual cases increase in lung cancer per month. The value of the Durbin-Watson test 

indicates that there seems to be first order autocorrelation in the data so standard errors are 

wrongly estimated, but coefficients are unbiased.  

In this case, we have to estimate the model again but the problem is how many lags 

should be included in the next estimated model. Clearly, we have to increase the number of 

lags sequentially until the lag values start to become insignificant.  

                          

                                 

          .. 

                                                         

The main problems here as mentioned earlier are two: 

1. Perhaps a limited number of observations in the data set which means “degrees of 

freedom” problems start to set in and the standard errors of OLS estimates get 

larger as t-k decreases.  

2. More lags increase the risk of multicollinearity, which again increases standard 

errors and reduces the precision of OLS estimates. 

To illustrate this, let us lag the model by one period to see the effect on the model. The 

full result of fitting the following equation is in Table A6 (see Appendix A).  
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When introducing lags on the smoking population into the model, the short and long-run 

multipliers are not the same. The short-run (impact) multiplier is     = -1.112 and the long-

run multiplier equals        (-1.112 + 1.241) = 0.1288. Here, the long-run effect is larger 

than the short-run effect but seems to agree with the estimate from the first regression 

without lags. We should note that while the introduction of lags is supposed to reduce 

autocorrelation, in this case we still appear to have autocorrelation in the model (see Table 

A6 in Appendix A).  

In the next step, we will lag the model, for example by six periods instead of one 

period, to see the effects of adding extra variables to the estimated model. The results of 

fitting this model are shown in Table A7 (see Appendix A).  

 The    for the estimated relation is 49.3% and the overall F-test value is 24.77. Note 

however there are big changes to the estimated coefficients and standard errors when 

adding several lags of smoking population variables and these could be due to 

multicollineartiy. We have found that none of the smoking population variables are 

significant according to the p value whereas the rest of the coefficients have changed 

considerably. The statistical model fits the data quite well and the F-test of the joint 

hypotheses that all distributed lag weights i = 0, i = 0,...,6, is rejected at the  = .05 level 

of significance. None of the lag weights is statistically significantly different from zero 

based on individual t-tests, reflecting the fact that the estimates’ standard errors are large 

relative to the estimated coefficients.  In addition, the estimated lag weight β6 is larger than 

the estimated lag weight for lag 5 and the estimated lag weight β2 is larger than the 

estimated lag weight for lag 1. This does not agree with our anticipation that the lag effects 

of smoking should decrease with time and in the most distant periods should be small and 

approaching zero.  

As a result it is very hard to estimate the short and long run multipliers precisely, yet 

the short-run (impact) multiplier is -0.46 and the long-run multiplier equals         

                    = 0.135. Now we can check the multicollineartiy by looking at the 

correlation coefficients.  
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Table 5.4: Correlation coefficients of smoking population   ,     ,     ,     ,     ,      and 

     with p-values. 

  
                            

     1.000 

    

  

  0.000 

    

  

     0.999 1.000 

   

  

  0.000 0.000 

   

  

     0.997 0.999 1.000 

  

  

  0.000 0.000 0.000 

  

  

     0.995 0.997 0.999 1.000 

 

  

  0.000 0.000 0.000 0.000 

 

  

     0.993 0.995 0.997 0.999 1.000   

  0.000 0.000 0.000 0.000 0.000   

     0.991 0.993 0.995 0.997 0.999 1.000 

  0.000 0.000 0.000 0.000 0.000 0.000 

 From Table 5.4 above, the correlation coefficients for all smoking prevalence 

variables are almost collinear. Since the pattern of lag weights will often be used for policy 

analysis, this imprecision may have serious consequences on the decision making. 

Therefore, an alternative approach is needed to provide methods that can resolve these 

difficulties. The typical approach is to impose restrictions regarding the structure of the βs 

and then reduce from     to a few number of parameters to be estimated. Imposing a 

shape on the lag distribution will reduce the effects of collinearity. Let us assume that the 

lag weights follow a smooth pattern that can be represented by a low degree polynomial. 

Two of the most popular methods proposed in 1954 and 1965 respectively for doing this 

are the Koyck (geometric lag) and the Almon (polynomial lag) transformations. 

5.5.4. The Koyck Transformation 

Koyck (1954) proposed a geometrically declining scheme for the βs. Therefore, rather than 

estimate the model with a large number of lags we can transform the data into a more 

parsimonious form by using the Koyck Transformation procedure.  

Begin with a model of Y as a function of X and k lags of X: 

 
                                      

               
5.10 

Suppose that in the distributed lagged model (DLM) the effect of variable    diminishes as 

the lag gets larger by an amount λ each period. This is reflected in the size of coefficients 

such that 

        
                           

where λ is a fraction, so the larger the value of λ the slower the speed of adjustment. 
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Substituting         
   into the DLM in Equation (5.10), we get  

 

 
                             

      

                       
             

         
5.11 

  

 

                                        

                            
5.12 

If (5.12) is true at time t it is also true at time t-1, so if we lag Equation (5.12) one time 

period,  

 
                                 

                                          
5.13 

 

Multiplying Equation (5.13) by λ gives  

 
                                   

                                            
5.14 

Subtracting Equation (5.14) from Equation (5.12), we obtain  

               {                                              

{                                                        

Simplifying (all lags cancel out) gives  

                                                                     

 Hence  

                                   5.15 

 

Using Equation (5.15), regress     on    and        to generate estimates of     and  . Use 

these estimates to compute the coefficients at each lag as well as the original intercept    

This transformation is known as the Koyck transformation. As a result, this model has 

fewer coefficients to estimate which means less chance of multicollinearity. 

 Applying the Koyck transformation to the total cases of lung cancer against smoking 

population, the results are shown in Table A8 in Appendix A. From the estimated equation 

we can find the coefficient parameters as follows: 

                     , and                . So                    and 

               

Estimated coefficients of the original equation     

         
        5.16 
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are 

                      

                               

          
                           

          
                          

          
                           

          
                            

          
                             

          
                            

          
                             

           
                             

           
                               

           
                               

Hence 

 
                                                    

                                                           
5.17 

 

The short run multiplier     estimate is       and the parameter λ estimate is      , so 

the long run multiplier is given by               =       / (1-      ) = 0.120.  

If all the    in theses equations are positive, a useful way of summarizing the lag 

structure is to find the mean lag, given by  

                         5.18 

Equation (5.18) is a weighted average of the individual lags in Equation (5.16), with 

weights given by the relative size of the    , for equation (5.17), for example  

 Mean lag =   
     

     
 +   

     

     
 +  

     

     
 +  

     

     
 +  

      

     
 +  

       

     
    

        

     
  

                  = 0.21 periods.  

Thus on average a change in X takes 0.21 periods before it affects Y.  

 The lag patterns for various values of the parameter   are illustrated in Figure 5.3. 
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Figure 5.3:  Geometric lag coefficients for different values of λ. 

 

 

 

5.6. Other Models with Lag Structure 

There are several other models for reducing the number of parameters in a distributed lag 

model. Some of the most important ones are the Pascal lag, the gamma lag, the LaGuerre 

lag and the Shiller lag. For a full explanation of these models, see Kmenta (1986).  

5.7. One-step Ahead Forecasts 

The forecasting models included here are four types as follows:  

(i) AR (1) model 

                             where                N (o,    ),    

(ii) Simple linear regression with lagged covariate 

                             where               N (o,    )  

(iii) Simple linear regression with lagged covariate and AR(1) errors 

 

                           
 

     where                     and        N (o,   ). 

 

(iv)  Distributed lag model (DLM) 

 

                                        ,            N (0,    ) iid. 

 Now the one-step ahead forecasts are as follows: 
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5.8. Forecasting with the AR (1) Model  

Given data (                   , the one period ahead optimal forecast is as follows:  

                                                                ⎹     

                                                                           ⎹             ⎹     

                                                                            

In practice, we compute                        using the estimates. 

5.8.1. Forecast Error  

The one-step ahead optimal forecast error of AR (1) is  

                       

The forecast error variance is  

Var (                             =    

5.8.2. Prediction Interval for AR (1) Model 

To evaluate the prediction interval we use the normal method:  

(i) Assume the forecast error is normally distributed  

(ii) Construct the prediction interval (PI) using the following equation  

                       

Therefore, the 95% PI is computed as follows: 

                                                                    ) . 

From the results shown in Table A9 in Appendix A, the estimated AR(1) model is 

      14.788 + 0.5462    +    . 

The computed one-step ahead forecast is       41. The 95% PI for this forecast is (26, 

57). This is also calculated as follows:  

The AR (1) with T observations has the mean μ = 32.584,     = 0.5462,    = 49,   = 61.2.  

The AR (1) process is  

         +        +    , 

where          ) so that          ) = 32.584 (1-0.5462) = 14.788. The one 

period ahead forecast is 14.788+ 0.5462× 49 = 41 cases of lung cancer. Thus, the one-step 

ahead forecast is a fixed amount   +         plus the stochastic term    . The fixed amount 

has a variance of zero, so the variance of the one-step ahead forecast is      61.2. The 
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plots for one-step ahead forecasts and the residuals are shown in Figure 5.4 and Figure 5.5 

respectively.  
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                            Figure 5.4: One step ahead forecast for AR(1) model with 95% PI. 
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Figure 5.5: Residual plots for AR(1) model for total cases of lung cancer. 
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5.9. Forecasting with the Linear Regression Model with Lagged Covariate 

Having shown how to forecast for the AR(1) model using a one-step ahead forecast, let us 

forecast for the simple linear regression model with lagged covariate. The model is as 

follows: 

                     ,        N (o,   ) 

Given data (                   , the one-step ahead optimal forecast is as follows:   

                   ⎹     

                                                            ⎹             ⎹     

                    

In practice, we compute                         using the estimates. The estimated 

regression equation is as follows: 

      -1.447   0.1211     +    . 

Therefore the one-step ahead forecast when    = 377.540 is  

               

                                 cases of lung cancer. 

5.9.1. Forecast Error  

The mean square error of the residuals (variance) is 45.42 as shown in Table A10 in 

Appendix A.  

5.9.2. Prediction Interval  

The 95% PI is computed as follows: 

                        

                

Therefore, the 95% PI is (30, 57). Figure 5.6 and Figure 5.7 show the regression fit and the 

residual plots respectively. 
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Figure 5.6: Fitted line plot with 95% PI.  
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                     Figure 5.7: Residual plots for linear regression model with lagged covariate. 

 

 

5.10. Forecasting with the Linear Regression Model with Lagged Covariate and AR 

(1) Errors 

In this section, we consider the case when the errors are correlated and possess first order 

autocorrelation. The process is as follows: 
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                                        where                       ,             N (o,    ).     

The estimated AR (1) model when using the Cochrane-Orcutt iterative procedure is as 

follows: 

      -1.54  0.121                 and                        . 

Therefore the one-step ahead forecast when    = 377.54 is  

               

                              cases of lung cancer. 

The mean square error of the residuals (variance) of the one-step ahead forecast is 44.16 as 

shown in Table A11 in Appendix A.  

 

5.10.1 Prediction Interval 

The 95% PI is given as 

                

Therefore, the 95% PI is (30, 56). The following Figure 5.8 shows the fitted line plot with 

95% PI for the one-step ahead forecast.  

 

Figure 5.8: Fitted line plot with 95% PI for the one-step ahead forecast. 

 

5.11. Forecasting with the Distributed Lag Model (DLM) 

Here, we forecast for the infinite DLM as follows: 

                                        ,      

                 
 
               N (0,    ) iid. 

The estimated DLM using the Koyck transformation is as follows: 
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                                           -1.49  0.102     +               . 

Therefore the one-step ahead forecast when    = 377.54 and   = 42 is  

                                   

                                                             cases of lung cancer. 

5.11.1. Forecast Error  

The mean square error of the residuals (variance) is 44.2 as shown in Table A12 in 

Appendix A. 

5.11.2. Prediction Interval 

The 95% PI is given as 

                  

Therefore, the 95% PI is (30, 56). Figure 5.9 shows the residual plots as follows:  
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Figure 5.9: Residual plots for DLM model. 

 

 To conclude, the above models  fail to capture the seasonal pattern in the data so we 

need to look for more flexible models that can take into account the seasonal effect. Thus, 

we use polynomial distributed lag models to capture the delays in the time series. We use 

polynomial distributed lag models because they reduce the amount of data needed to 

estimate time series phenomena where the numbers of observations available are limited 

and the number of significant lags are large. 
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5.12. Polynomial Distributed Lag Models (PDLs) 

5.12.1. Introduction 

The Koyck transformation may yield to seriously misleading results if one of the 

explanatory variables in a distributed lag model is not independent of the stochastic 

disturbance term. Therefore, the OLS estimators may be inconsistent and biased even if the 

sample size is increased indefinitely. In addition, the Koyck geometric lag is very 

restrictive in some situations. For instance, if we assumed that the coefficients increase at 

first and then decline or they follow a cyclical pattern, then the Koyck transformation fails 

in this case. We therefore need an efficient procedure to correct this problem and hence, 

the Almon procedure. 

 To apply the PDL model to the total cases of lung cancer in Saudi Arabia against 

smoking population data, we have to take into account the following issues. Firstly, the 

maximum length of the lag k has to be selected. Davidson and Mackinnon (1993) 

suggested that the best way is to specify the lag length first, by choosing a very large value 

of k and then seeing whether the fit of the model deteriorates significantly when it is 

reduced without imposing any restrictions on the shape of the distributed lag. In this case 

we have to assume that there is a true number of lag lengths and as soon as we 

underestimate the lag length we will mislead the model to be biased and when we increase 

the lag length to be more than enough it will increase the risk of multicollinearity. 

Alternatively, we can use one of the criteria such as Akaike or Schwarz information 

criterion to choose the appropriate lag length. Secondly, we can specify the order of the 

polynomial by at least one more than the number of turning points in the curve relating the 

    to i . However, the choice of polynomial degree remains largely subjective if we do not 

know the number of turning points.  

5.12.2. Finite Lags: The Polynomial Lag Model   

Almon (1965) developed polynomial lags to approximate inverted U-shaped or even more 

complicated lag distributions that have a finite rather than an infinite maximum lag. Almon 

suggested that the immediate impact might be less than the impact after several months, or 

years. Also after reaching its maximum, the policy effect diminishes for the remainder of 

the finite lag. In this procedure, we must know how many lags (k) we should include in our 

model as well as the degree of polynomial (r). Thus, we denote the polynomial distributed 

lag by PDL(k, r).  
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Consider the estimation of the equation 

 
                                    

                        
5.19 

which may be written as  

                   

 

   

    

and 

                    

where     is the incidence at time t (number of cases in month t),     is the smoking 

population in 10,000 in month t,     is the smoking prevalence and     is the population 

size. Note that when j = 1 we refer to males and when j = 0 we refer to females.  

 Almon assumes that the relationship between the β coefficients in Equation (5.19) is 

approximated by a suitable degree of polynomial r, such as  

        
      

      
     

        
  5.20 

From the lag scheme of our dataset as shown earlier in Figure 3.2, we shall restrict 

ourselves to third-order polynomial for example. Thus, 

        
      

      
     

  5.21 

By substituting Equation (5.21) into Equation (5.19) we obtain  

 

             
      

      
     

        

 

   

    

                 
 
              

 
    

                              
 
               

 
       

5.22  

Defining  
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and factorizing the    s we obtain :  

                                          5.23  

Now we regress      on the created variables    ,    ,     and     from the original     

variables. The polynomial coefficients are then estimated by applying an ordinary least 

squares (OLS) procedure. As soon as the coefficients are estimated by Equation (5.23), the 

original β’s can then be estimated from Equation (5.21).                

What the polynomial approximation has done is to reduce the number of parameters 

that have to be estimated from      in Equation (5.19) to just five in Equation (5.23). 

There is a similar reduction in the number of explanatory variables in the estimating 

equation. The procedure can therefore substantially reduce any multicollinearity problems 

that might arise in the estimation of Equation (5.19).  

 In summary, two models are considered: dynamic regression of total cases of lung 

cancer on total smoking population (Model I) and dynamic regression of total cases of lung 

cancer on smoking population separately for males and females (Model II) in Section 5.13 

and Section 5.15 respectively to see the overall effects of the population classes and 

budgeting costs for lung cancer in KSA. We use the Almon procedure illustrated by 

Davidson & MacKinnon (1993) and Maddala & Lahiri (2009, pp 526-533). 

5.13. Model I: Dynamic Regression of Total Cases of Lung Cancer on Total Smoking 

Population    

5.13.1: Choosing the Lag Length with OLS 

First, let us estimate the unrestricted distributed lag model by running an OLS regression 

on Equation (5.19) by following the advice of Davidson & MacKinnon (1993) and 

Maddala & Lahiri (2009, pp 526-533). They both suggested that we need to settle the 

question of lag length first by starting with a very large value of k and then see whether the 

fit of the model deteriorates significantly when k reduces without imposing any restriction 

on the shape of distributed lag. Having specified the best lag length k, we can specify the 

order of the polynomial r by starting with a very large value of r and then check whether 

the fit of the model deteriorates significantly when r is reduced.    
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There are 192 observations and we decided to estimate 36 lagged coefficients. For 

forecasting purposes, assume that cases (   ) depend on smoking population in previous 

month      and the preceding 35 months as in Equation (5.24) below. The implicit 

assumption is that the maximum time lag between smoking population    and the total 

cases of lung cancer     is one month. The model is given by 

                                       5.24  

Let us run a regression on the original Equation (5.24) using our monthly data of the total 

cases of lung cancer     and the total smoking population     .  

Using EViews8 software package, the results are presented as in Davidson & 

MacKinnon (1993) and Maddala & Lahiri (2009, pp 526-533) are shown in Table 5.5. We 

have run the regression 36 times using different lags, starting from lag 36 to lag 1. Then, 

we checked where the fit of the models deteriorates significantly.  
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Table 5.5: Choosing the best lag length from OLS. 

  Lag 

coefficient of 31 30 29 28 27 26* 25 24 

     -2.060 -2.070 -2.081 -2.101 -2.054 -2.007 -2.084 -2.065 

     3.294 3.304 3.315 3.335 3.290 3.212 3.291 3.270 

     -0.446 -0.446 -0.446 -0.512 -0.515 -0.484 -0.485 -0.485 

     -1.187 -1.187 -1.058 -0.927 -0.927 -0.927 -0.927 -0.926 

     1.259 1.196 0.937 0.871 0.872 0.872 0.873 0.872 

     -2.324 -2.198 -2.067 -2.067 -2.067 -2.067 -2.068 -2.068 

     0.866 0.803 0.802 0.802 0.801 0.801 0.802 0.802 

     1.608 1.608 1.608 1.608 1.609 1.609 1.610 1.609 

     0.577 0.577 0.578 0.578 0.578 0.578 0.577 0.577 

      -4.696 -4.696 -4.697 -4.697 -4.698 -4.697 -4.697 -4.696 

      7.215 7.221 7.219 7.228 7.214 7.207 7.229 5.729 

      -6.400 -6.405 -6.403 -6.411 -6.397 -6.391 -4.435 -1.369 

      2.512 2.502 2.492 2.473 2.516 2.064 -2.076 -3.626 

      1.289 1.298 1.308 1.327 0.044 0.994 3.160 3.141 

      -1.774 -1.774 -1.773 -1.238 1.320 0.822 0.821 0.821 

      0.400 0.400 0.593 -0.520 -1.841 -1.841 -1.841 -1.840 

      0.231 0.464 0.075 0.652 0.653 0.653 0.654 0.653 

      -1.931 -2.420 -2.224 -2.224 -2.224 -2.224 -2.225 -2.225 

      1.675 1.931 1.931 1.931 1.931 1.931 1.931 1.932 

      1.326 1.327 1.327 1.326 1.327 1.327 1.328 1.327 

      -0.272 -0.272 -0.272 -0.272 -0.272 -0.272 -0.273 -0.273 

      -3.366 -3.366 -3.367 -3.367 -3.367 -3.367 -3.367 -3.366 

      6.581 6.598 6.594 6.621 6.574 6.555 6.621 4.110 

      
-

10.035 
-10.051 -10.047 -10.073 -10.027 -10.008 -6.871 -1.773 

      9.991 9.990 9.989 9.988 9.991 9.184 2.590 
 

      -3.040 -3.039 -3.039 -3.038 -5.058 -3.393 
  

      -4.277 -4.277 -4.276 -3.302 0.858 
   

      4.050 4.050 4.160 2.145 
    

      -1.298 -0.819 -1.042 
     

      0.882 -0.112 
      

      -0.516 
       

sum of coefficients 0.133 0.135 0.134 0.137 0.132 0.131 0.136 0.131 

    0.456 0.464 0.466 0.473 0.472 0.476 0.469 0.448 

 

  

 There are several features of the lag distribution in the above table. The adjusted R-

squared increased gradually until we use a lag of 26. The sum of the coefficients also 

increases steadily except for lag 27. As a result, it appears that a lag distribution using 26 

lags is appropriate. The main problem with the OLS estimates is that, no matter how many 

lags we include, the Durbin-Watson (DW) test shows positive correlation. This can be seen 

from the following table of the DW test for different lengths of the lag distribution:  
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Table 5.6: The Durbin-Watson statistic. 

Length of lag  DW 

20 1.69 

24 1.61 

26 1.55 

28 1.54 

32 1.51 

36 1.43 

 

 From Table 5.6, this suggests a typical symptom of collinearity and we should be 

estimating some more general dynamic models, allowing for autocorrelated errors.  

 

 

Table 5.7: The best-unrestricted least squares (OLS) model with 26 lags. 

     
     Variable Coefficient p-value 
   
   C -3.97 0.28 

     -2.00 0.13 

     3.21 0.28 

     -0.48 0.88 

     -0.92 0.77 

     0.87 0.78 

     -2.06 0.52 

     0.80 0.80 

     1.60 0.62 

     0.57 0.85 

      -4.69 0.15 

      7.20 0.02 

      -6.39 0.05 

      2.06 0.54 

      0.99 0.77 

      0.82 0.81 

      -1.84 0.60 

      0.65 0.85 

      -2.22 0.53 

      1.93 0.58 

      1.32 0.70 

      -0.27 0.93 

      -3.36 0.34 

      6.55 0.07 

      -10.00 0.01 

      9.18 0.01 

      -3.39 0.05 
     
     R-squared 0.558597     Mean dependent var 32.77108 

Adjusted R-squared 0.476032     S.D. dependent var 9.408990 

S.E. of regression 6.810757     Akaike info criterion 6.822671 

Sum squared resid 6447.711     Schwarz criterion 7.328838 

Log likelihood -539.2817     Hannan-Quinn criter. 7.028127 

F-statistic 6.765567     Durbin-Watson stat 1.549204 

Prob(F-statistic) 0.000000    
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 After fitting the OLS model with 26 lags, we determine whether all the necessary 

model assumptions are valid before performing any forecast. If there are any violations, 

subsequent inferential procedures may be invalid resulting in faulty conclusions. 

Therefore, it is crucial to perform appropriate model diagnostics.  

 The fitted model is shown in Figure 5.10 together with residual diagnostic plots. This 

is followed by the distribution of the series in the histogram with a complement of standard 

descriptive statistics displayed along with the histogram as shown in Figure 5.11. This 

figure shows that the skewness of the normal distribution is approximately -0.02. The 

Jarque-Bera is a test statistic for testing whether the series is normally distributed. The test 

statistic measures the difference of the skewness and kurtosis of the series with those from 

the normal distribution. Under the null hypothesis of a normal distribution, the Jarque-Bera 

statistic is distributed as with 2 degrees of freedom. The reported probability is the 

probability that a Jarque-Bera statistic exceeds (in absolute value) the observed value under 

the null hypothesis—a small probability value leads to the rejection of the null hypothesis 

of a normal distribution. Thus, we do not reject the null hypothesis of the normal 

distribution with p-value of 0.99 at the 5% level and conclude that the model is normally 

distributed.  

 Leverage plots are graphical methods used to diagnose any potential failures of the 

underlying assumptions of a time series model. We use leverage plots to spot near 

collinearity between the terms. As we can see from Figure 5.12, the points are compressed 

towards the vertical line indicating collinearity between the terms. Therefore we look for 

an adequate model that is more flexible and parsimonious. 
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Figure 5.10: Fitted and residual plots for the best OLS model of lung cancer cases per month from 

1994 to 2009. 
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Figure 5.11: Normality plot of the best OLS model of lung cancer cases per month from 1994 to 

2009. 
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Figure 5.12: Leverage plots for the stability of diagnostics of the best OLS model of lung cancer 

cases per month from 1994 to 2009. 

 

5.13.2. Choosing the Degree of the Polynomial 

As we discussed earlier, the lag length was specified as 26. The next step is to specify the 

degree of the polynomial by starting with a high-degree polynomial and then we decrease 

it until we obtain a satisfactory fit, or until one of the hypothesis is rejected (Maddala & 

Lahiri (2009, pp 526-533)). So we started with a polynomial of degree nine and decreased 

it until we obtained a satisfactory fit as shown in Table 5.8.  

 The Durbin Watson (DW) test for first order autocorrelation in regression residuals is 

the most widely applied tests in time series analysis. A significant test statistic indicates 

possible mis-specification of the underlying model as well as warning of the invalidity of 

traditional tests of parameter restrictions. However, the DW test is not inconclusive. Only 

the boundaries suggested initially by Durbin and Watson were because the precise 

distribution depends on the observed regressor matrix, which can be address  very easily in 
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most statistical software. In addition, there are generalizations of the DW test to higher 

lags. So neither inconclusiveness nor limitation of lags is an argument against the Durbin-

Watson test (Kleiber and Zeileis, 2008). Therefore, we mainly use the adjusted R-squared 

values to compare between the models.  

 

Table 5.8: Choosing the degree of the polynomial. 

  Equation  

 

1 2 3 

coefficient    9th order t ratios  p-value    8th order* t ratios  p-value  7th order 

t 

ratios  p-value 

    -0.101424 0.50 0.50 -0.128174 -0.89 0.37 -0.097536 -0.70 0.49 

    -0.146874 0.25 0.25 -0.083218 -1.01 0.31 -0.073998 -0.91 0.37 

    0.018934 0.50 0.50 0.027774 1.14 0.26 0.01194 0.64 0.53 

    0.011895 0.30 0.30 0.00475 1.18 0.24 0.003662 0.94 0.35 

    -0.000539 0.61 0.61 -0.000959 -1.14 0.26 -0.000182 -0.51 0.61 

    -0.000273 0.38 0.38 -6.96E-05 -1.30 0.20 -4.61E-05 -0.95 0.34 

    5.04E-06 0.71 0.71 1.10E-05 1.07 0.29 6.62E-07 0.40 0.69 

    2.33E-06 0.45 0.45 2.90E-07 1.34 0.18 1.65E-07 0.92 0.36 

    -1.46E-08 0.79 0.79 -3.93E-08 -1.01 0.31 

       -6.59E-09 0.51 0.51 

          0.481093 

  

0.482945 

  

0.482851 

     7120.451 

  

7140.808 

  

7187.888 

  DW 1.699036     1.701843     1.699121     

 

 First, we test the coefficient of     at the 5% level and we do not reject the hypothesis 

that it is zero (p=0.51). Next, we test the coefficient of    , also we do not reject the 

hypothesis that its coefficient is zero (p=0.31). We therefore compare the adjusted R-

squared values for the three models and their corresponding DW statistics to select the best 

order for the polynomial. From Table 5.8, the eighth-order polynomial is appropriate due 

to its highest adjusted R-squared and DW statistic. Hence, the model PDL(26,8) as 

illustrated in the following formula  

    -4.25 - 0.128174×   - 0.083218×   + 0.027774    + 0.00475   - 0.000959    -   

  0.0000696×   -0.0000110×   +0.000000290 ×    - 0.0000000393×   

The results from this model are shown in Table 5.9.  

 

 

 

 



86 

 

 
Table 5.9: Results of restricted least squared PDL(26,8) model. 

      

      

Variable Coefficient  t-Statistic p-value 
     
     

C -4.25  -1.17 0.24 

    -0.12  -0.89 0.37 

    -0.08  -1.01 0.31 

    0.02  1.13 0.26 

    0.00  1.18 0.24 

    -0.00  -1.13 0.26 

    -0.00  -1.29 0.20 

    0.00  1.06 0.29 

    0.00  1.33 0.18 

    -0.00  -1.01 0.31 
      
      

R-squared 0.511148  Mean dependent var 32.77108 

Adjusted R-squared 0.482945  S.D. dependent var 9.408990 

S.E. of regression 6.765679  Akaike info criterion 6.719952 

Sum squared resid 7140.808  Schwarz criterion 6.907422 

Log likelihood -547.7561  Hannan-Quinn criter. 6.796047 

F-statistic 18.12389  Durbin-Watson stat 1.701843 

Prob(F-statistic) 0.000000     
      
      

  

 What the polynomial approximation has done is to reduce the number of parameters 

that have to be estimated from 26 to just 9 in the restricted equation. Therefore, the 

procedure reduced any multicollinearity problems that might arise in Equation 5.24.  

 The fitted model is shown in Figure 5.13 together with residual diagnostic plots. This 

is followed by the distribution of the series in the histogram with a complement of standard 

descriptive statistics displayed along with the histogram (see Figure 5.14). The p-value 

(p=0.85) of the Jarque-Bera test is not less than 0.05 for a 5% significance level and hence 

we do not reject the null hypothesis that the model is normally distributed. Figure 5.15 

shows leverage plots of the residuals. We can see that the residuals are not collinear but the 

fitted model does not reflect the seasonal nature of the data. Therefore, we fit a new 

autoregressive polynomial distributed lag (ARPDL) model in the next section.   
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Figure 5.13: Fitted and residual plots for the best PDL(26,8) model of lung cancer cases per month 

from 1994 to 2009. 
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Figure 5.14: Normality plot of the best PDL(26,8) model of lung cancer cases per month from 

1994 to 2009. 
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Figure 5.15: Leverage plots for the stability of diagnostics of the best PDL(26,8) model of lung 

cancer cases per month from 1994 to 2009. 

 

5.14. Autoregressive Polynomial Distributed Lag (ARPDL) Models 

In order to minimize the error as much as possible, we have decided to continue with the 

above model by using the autoregressive polynomial distributed lag (ARPDL) model, 

which is more flexible and parsimonious. We then continue with Model II in section 5.15. 

We denote this by ARPDL(p,q,k,r), where p is the length of    lag, q is the degree of the 

polynomial of    , k is the length of    lag, and r is the degree of the polynomial of     The 

pdl command can be used in EViews to run the PDL and ARPDL models through the 

following steps:   

Step 1: specify the name of the series (variables) one wants to estimate e.g. ( Yt, X1t, X0t).   

Step 2: Specify the lag length one wishes to estimate regarding to the procedure outlined 

earlier.   

Step 3: Specify the degree of the polynomial regarding to the procedure outlined earlier.  

Step 4: Open EViews and go to Quick then choose estimate equation. 

Step 5: Write the command to run e.g. (yt c pdl(x1t(-1),26,5)) for simple PDL   
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where Yt is the dependent variable, c is the constant, pdl is the command, X1t(-1) is the 

independent variable one wishes to start from, 26 is the lag length, and 5 is the degree of 

the polynomial one has chosen in advanced. For a complex ARPDL model we choose the 

following command yt c pdl(x1t(-1),26,5) pdl(x0t(-1),26,5) pdl(yt(-1),12,3) where the 

procedure is the same except that we have added two variables we wanted to regress on 

which are X0t and Yt.   

Step 6: Print the graphs and specify the test needed.  

Note that the terms PDL1, PDL2, PDL3, PDL4 ,..., correspond to Z1, Z2, Z3, Z4,..., in 

Equation (5.23). 

5.14.1. Choosing the Lag Length of    from OLS  

Using the procedure outlined in Maddala & Lahiri (2009, pp 526-533), the best lag length 

of    is as shown (starred) in Table 5.10. We ran the regression 36 times using different 

lags of   , starting from lag 36 to lag 1. Then, we checked where the fit of the models 

deteriorates significantly.  

Table 5.10: Choosing the best lag length of    from ordinary least squares. 

  Lag  

coefficient of  14 13 12* 11 

     0.23 0.23 0.19 0.24 

     0.17 0.18 0.18 0.20 

     0.06 0.06 0.06 0.12 

     0.04 0.03 0.02 0.01 

     -0.01 -0.00 0.00 -0.01 

     0.03 0.03 0.04 0.04 

     -0.07 -0.08 -0.08 -0.08 

     0.024 0.03 0.03 0.02 

     0.15 0.15 0.16 0.21 

      0.01 0.01 0.00 0.07 

      0.11 0.11 0.09 0.11 

      0.30 0.30 0.30 

       -0.12 -0.09 

        0.05 

   Sum of coefficients 0.97 0.96 0.98 0.93 

    0.478588 0.479481 0.478342 0.427623 

F-statistic 12.60447 13.61282 14.67807 13.22528 

AIC 6.723771 6.711298 6.703722 6.797215 

       12*= best model (lag) 
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 From Table 5.10, the appropriate lag length of     selected is 12. This is due to the 

steady increase in the sum of the coefficients until we use a lag of 12. We selected the lag 

of 12 also because the difference between the adjusted R-squared values of lag 12 and lag 

13 is insignificant. Between their AICs, lag length of 12 has the lowest AIC value of about 

6.70.  

5.14.2. Choosing the Degree of the Polynomial     

Here, we started with a ninth-degree polynomial and decreased it until we obtained a 

satisfactory fit.  

Table 5.11: Choosing the degree of the polynomial. 

  Equation 

  

 1   2* 3 

coefficient   6th order t ratios  p-value 5th order t ratios  p-value 4th order t ratios  p-value 

    -0.023103 -0.57 0.57 -0.010804 -0.34 0.74 0.00461 0.16 0.88 

    0.012725 0.38 0.71 0.021368 0.75 0.46 -0.007137 -0.48 0.63 

    0.018442 0.97 0.33 0.010361 1.11 0.27 0.003821 0.51 0.61 

    -0.002521 -0.51 0.61 -0.004108 -1.12 0.27 5.16E-05 0.06 0.95 

    -0.00094 -0.58 0.56 -0.000171 -0.47 0.64 0.000122 0.46 0.65 

    6.35E-05 0.43 0.67 0.000117 1.16 0.25 

       1.82E-05 0.49 0.62 

  

  

       0.483028 

 

  0.485298 

 

  0.484246 

     7591.889     7602.491     7662.062     

2*= best model (order of polynomial) 

 

 Therefore, the best order of the polynomial is 5 as shown (starred) in Table 5.11 

above. Hence, the best model is ARPDL(12,5,26,8);  
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Table 5.12: Results of the autoregressive polynomial distributed lag ARPDL(12,5,26,8) model. 

      
      Variable   Coefficient  t-Statistic p-value 
     
     C -6.43  -1.58 0.12 

    -0.10  -0.70 0.48 
    -0.11  -1.39 0.17 
    0.03  1.10 0.27 
    0.01  1.40 0.16 
    -0.00  -1.11 0.27 
    -0.00  -1.37 0.17 
    0.00  1.02 0.31 
    0.00  1.28 0.20 
    -0.00  -0.93 0.35 
    -0.13  -2.86 0.00 
     0.01  0.49 0.63 
     0.01  1.31 0.19 
     -0.00  -0.71 0.48 
     -0.00  -0.58 0.56 
     0.00  0.83 0.41 

      
      R-squared 0.594906  Mean dependent var 32.77108 

Adjusted R-squared 0.554396  S.D. dependent var 9.408990 
S.E. of regression 6.280836  Akaike info criterion 6.604302 
Sum squared resid 5917.335  Schwarz criterion 6.904252 
Log likelihood -532.1571  Hannan-Quinn criter. 6.726054 
F-statistic 14.68561  Durbin-Watson stat 1.949266 
Prob(F-statistic) 0.000000     

      
       

 

 Note that the created variables from     to     refer to the lag of      whereas the 

variables from     to      refer to the lag of     .    

 From the three models obtained so far we prefer the ARPDL(12,5,26,8) model based 

on the lowest value of AIC and adjusted R-squared values. In addition, this model captures 

the seasonality pattern better than the OLS and the PDL models.   

 The fitted model is shown in Figure 5.16 together with residual diagnostic plots. This 

is followed by the distribution of the series in the histogram with a complement of standard 

descriptive statistics displayed along with the histogram (see Figure 5.17). The p-value 

(p=0.42) of the Jarque-Bera test is not less than 0.05 for a 5% significance level and hence 

we do not reject the null hypothesis that the model is normally distributed. Figure 5.18 

shows leverage plots of the residuals. Here, we can see that the residuals are not collinear. 

Hence, we forecast with this model and present the k-step ahead forecasts.  
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Figure 5.16: Fitted and residual plots for the best ARPDL(12,5,26,8) model of lung cancer cases 

per month from 1994 to 2009.  
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 Figure 5.17: Residual diagnostic of the normality test of the best ARPDL(12,5,26,8) model of 

lung cancer cases per month from 1994 to 2009. 
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Figure 5.18: Leverage plots for the stability of diagnostics of the best ARPDL(12,5,26, 8) model of 

lung cancer cases per month from 1994 to 2009. 

  

5.14.3. The Breusch-Godfrey Test for Serial Correlation  

When the regression model includes lagged dependent variables as explanatory variables, 

the Durbin and Watson test is not valid anymore. Thus, Breusch (1978) and Godfrey 

(1978) developed the Lagrange Multiplier (LM) test that is applicable when a lagged 

dependent variable is present. Moreover, it takes into account a higher order of serial 

correlation. However, Durbin in 1970 developed a new test based on a h-statistic that can 

be used instead in the presence of lagged dependent variables.  

Table 5.13: Results of Breusch-Godfrey LM test of ARPDL(12,5,26,8) model. 
     

     F-statistic 1.277     Prob. F(1,149) 0.26 

Obs*R-squared 1.411     Prob. Chi-Square(1) 0.23 
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 From Table 5.13, the values of both the LM-statistic and the F-statistic are low, 

indicating that we do not reject the null hypothesis and hence conclude that there is no 

significant serial correlation. Residuals generated from the model are not serially correlated 

because the p-values are not very small i.e. they are not less than 0.05 for a 5% 

significance level. For the full results see Table A13 in Appendix A.  

5.14.4. Cross-validation  

Cross-validation is a model validation technique for assessing how the results of a 

statistical analysis will generalize to an independent data set. Thus, to make sure that the 

results obtained so far are close to the real values, we perform cross-validation of the 

model by using the one step ahead out-of-sample forecasts. We fit the model from 1994 to 

2007 and forecast over the period from 2008 to 2009 using the one step ahead out-of-

sample forecasts and then compare with the actual observation. The forecasting 

performance of the fitted ARPDL(12,5,26,8) model can be seen from Figure 5.19 as the 

two graphs are roughly close to each other. The forecast graph appears to smooth the actual 

observations well. In addition, we run a new model with high number of lags using data 

with different period from 2000 to 2007 to assess the validity of the ARPDL model. 

Appendix S shows the steps of analyzing and choosing the best-fit model for this data. 

Therefore, the best-fit model selected is the ARPDL(11,2,23,6) model. Moreover, the one 

step ahead out-of-sample forecast was performed to check the performance of the model. 

The forecast of the ARPDL(11,2,23,6) model again seems to fit the data well and can 

capture the seasonal component (see Figure 5.20). However, the use of high number of 

lags might be a case of over-fitting. Therefore we consider a new model with fewer 

number of lags. This will provide us with a yardstick to compare the models with high 

number of lags (see Appendix G for the results). From the results obtained, the best-fit 

model selected is the ARPDL(3,1,6,2). Moreover, the one step ahead out-of-sample 

forecast was performed to check the performance of the model. Figure 5.21 illustrates the 

one step ahead out-of-sample forecasts from 2008 to 2009 with the actual cases. The 

forecast graph in this case fails to capture any seasonality in the series. The short-term 

forecast the reduced model eventually goes to be straight line and poor at predicting series 

with seasonality. Hence, we continue to present the short-term forecast for the 

ARPDL(12,5,26,8) model as shown in Figure 5.23.  

   

 

https://en.wikipedia.org/wiki/Model_validation
https://en.wikipedia.org/wiki/Statistics
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Figure 5.19: Actual and forecast ARPDL(12,5,26,8) model with 24 months ahead forecast of lung 

cancer cases per month from 2008 to 2009. 

 

 

 

Figure 5.20: Actual and forecast ARPDL(11,2,23,6) model with 24 months ahead forecast of lung 

cancer cases per month from 2008 to 2009. 
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Figure 5.21: Actual and forecast ARPDL(3,1,6,2) model with 24 months ahead forecast of lung 

cancer cases per month from 2008 to 2009. 

 

5.14.5. Results of the Best ARPDL(12, 5, 26,8) Model  

The forecast between 2010 and 2012 of the best ARPDL(12,5,26,8) model is shown in 

Figure 5.22 and Figure 5.23.  
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Figure 5.22: Forecast of the best ARPDL(12,5,26,8) model of lung cancer cases per month from 

2010 to 2012. 
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Figure 5.23: Actual and fitted ARPDL(12,5,26,8) model with 24 months ahead forecast of lung 

cancer cases per month from 1994 to 2012. 

 

 

5.15  Model II: Dynamic Regression of Total Cases of Lung Cancer on Smoking 

Population Separately for Males and Females    

In this section, we were seeking to find the relationship between the total cases of lung 

cancer from 1994 to 2009 and smoking population separately for males & females per 

month. Therefore, the relationship between the total cases and 36 lagged periods of male 

and female smoking population of the unrestricted model is 

 

 

                                             

                           

where  

5.26  

                      = the incidence at time t (number of cases in month t). 

Using EViews8 software package, the results are presented as in Davidson & 

MacKinnon (1993) and Maddala & Lahiri (2009, pp 526-533) are shown in Table 5.14. 

We ran the regression 36 times using different lags, starting from lag 36 to lag 1. Then, we 

checked where the fit of the models deteriorates significantly.  
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Table 5.14: Choosing the lag length from OLS. 

  lag 

          Coefficient  27 26* 25 

      -4.07 -2.70 -2.44 

      7.35 4.66 4.44 

      -6.56 -5.18 -5.18 

      4.87 4.87 4.87 

      -2.00 -2.00 -2.00 

      -1.73 -1.73 -1.74 

      2.41 2.41 2.41 

      1.91 1.91 1.92 

      -2.93 -2.92 -2.93 

       0.06 0.06 0.06 

       6.16 6.16 6.22 

       -11.35 -11.36 -8.51 

       4.83 6.70 0.80 

       3.52 -0.34 2.70 

       -3.90 -1.82 -1.82 

       3.03 3.03 3.03 

       -2.78 -2.78 -2.78 

       -1.31 -1.31 -1.31 

       2.41 2.41 2.41 

       2.21 2.21 2.21 

       -3.15 -3.15 -3.15 

       1.28 1.27 1.27 

       5.47 5.48 5.58 

       -15.48 -15.50 -11.24 

       13.46 14.35 5.17 

       -2.78 -4.84 - 

       -1.20 - - 

      2.41 -0.47 -1.62 

      -7.74 -2.08 -1.03 

      23.14 20.21 20.21 

      -25.72 -25.73 -25.73 

      12.71 12.71 12.70 

      -3.21 -3.20 -3.20 

      -6.44 -6.44 -6.44 

      0.51 0.51 0.50 

      15.63 15.64 15.64 

       -24.80 -24.81 -24.81 

       12.53 12.52 12.43 

       12.12 12.15 12.33 

       -8.09 -15.37 -16.52 

       -8.85 6.28 7.18 

       19.87 11.75 11.75 

       -23.42 -23.42 -23.42 

       16.49 16.49 16.48 

       -6.66 -6.66 -6.66 

       0.40 0.40 0.40 

       -3.05 -3.05 -3.05 

       12.47 12.48 12.48 

       -24.35 -24.35 -24.35 

       15.58 15.58 15.56 

       5.55 5.56 7.46 

       3.14 -3.58 -7.67 

       -16.38 -2.09 - 

       

 
7.78 - - 

 

Sum of coefficients 

 

1.376276 

 

0.913401 

 

0.624424 

    0.494108 0.497934 0.484655 
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 The adjusted R-squared increased gradually until 26 lags. As a result, it appears that a 

lag distribution using 26 lags is appropriate and this agrees with our previous analysis 

when the data is total smoking population (Model I). Table 5.15 below shows the DW test 

for different lengths of the lag distribution:   

Table 5.15: The Durbin-Watson statistic. 

Length of lag  DW 

28 1.49 

27 1.50 

26 1.50 

25 1.52 

 

 From Table 5.15, this suggests a typical symptom of collinearity and we should be 

estimating some more general dynamic models, allowing for autocorrelated errors.  

Table 5.16: The best-unrestricted least squares (OLS) model with 26 lags. 
 

     
     Variable Coefficient t-Statistic p-value 
    
    C 12.56 0.61 0.54 

      -2.70 -1.45 0.15 

      4.66 1.23 0.22 

      -5.18 -1.27 0.20 

      4.86 1.20 0.23 

      -2.00 -0.49 0.62 

      -1.73 -0.42 0.67 

      2.41 0.59 0.55 

      1.91 0.47 0.64 

      -2.92 -0.72 0.47 

       0.06 0.01 0.99 

       6.16 1.50 0.14 

       -11.35 -2.63 0.01 

       6.69 1.51 0.13 

       -0.34 -0.08 0.94 

       -1.82 -0.43 0.66 

       3.02 0.72 0.47 

       -2.78 -0.66 0.50 

       -1.31 -0.31 0.75 

       2.41 0.57 0.56 

       2.21 0.53 0.60 

       -3.15 -0.75 0.45 

       1.27 0.30 0.76 

       5.48 1.25 0.21 

       -15.50 -3.08 0.00 

       14.35 3.01 0.00 

       -4.84 -2.15 0.03 

      -0.47 -0.09 0.93 

      -2.08 -0.19 0.84 

      20.21 1.79 0.08 

      -25.73 -2.27 0.02 

      12.70 1.12 0.26 

      -3.20 -0.28 0.78 
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Table 5.16 Continued. 
  

      -6.44 -0.57 0.57 

      0.50 0.04 0.96 

      15.63 1.38 0.17 

       -24.80 -2.19 0.03 

       12.52 1.10 0.27 

       12.14 1.04 0.29 

       -15.36 -1.28 0.20 

       6.28 0.54 0.59 

       11.74 1.05 0.29 

       -23.41 -2.10 0.04 

       16.48 1.48 0.14 

       -6.65 -0.59 0.55 

       0.39 0.03 0.97 

       -3.05 -0.27 0.78 

       12.47 1.12 0.26 

       -24.34 -2.19 0.03 

       15.58 1.40 0.16 

       5.56 0.49 0.61 

       -3.57 -0.34 0.73 

       -2.08 -0.41 0.68 
     
     R-squared 0.656161     Mean dependent var 32.77108 

Adjusted R-squared 0.497934     S.D. dependent var 9.408990 

S.E. of regression 6.666895     Akaike info criterion 6.886140 

Sum squared resid 5022.567     Schwarz criterion 7.879726 

Log likelihood -518.5496     Hannan-Quinn criter. 7.289443 

F-statistic 4.146956     Durbin-Watson stat 1.503597 

Prob(F-statistic) 0.000000    
     
     

 

 

 The fitted model is shown in Figure 5.24 together with residual diagnostic plots. This 

is followed by the distribution of the series in the histogram with a complement of standard 

descriptive statistics displayed along with the histogram (see Figure 5.25). The p-value 

(p=0.33) of the Jarque-Bera test is not less than 0.05 for a 5% significance level and hence 

we do not reject the null hypothesis that the model is normally distributed. Figure L1 in 

Appendix L shows leverage plots of the residuals. As we can see from Figure L1, the 

points are compressed towards the vertical line indicating collinearity between the terms. 

Therefore we look for an adequate model that is more flexible and parsimonious. 
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Figure 5.24: Fitted and residual plots for the best OLS model of lung cancer cases per month from 

1994 to 2009. 
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Figure 5.25: Normality plot of the best OLS model of lung cancer cases per month from 1994 to 

2009. 
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5.15.1. Choosing the Degree of the Polynomial 

Starting with a high-degree of polynomial, we obtain the following table. 

 

Table 5.17: Choosing the degree of the polynomial. 

  Equation  

Coefficient   9th order t ratios  p-value 8th order*  t ratios p-value 
 

7th order  t ratios  p-value 

    -0.320899 -1.65 0.10 -0.348903 -1.90 0.06 
 

-0.370668 -2.09 0.04 

    -0.082038 -0.52 0.60 -0.020377 -0.20 0.84 
 

-0.037517 -0.37 0.71 

    0.033154 0.91 0.36 0.04173 1.35 0.18 
 

0.042385 1.82 0.07 

    0.008062 0.58 0.57 0.001177 0.23 0.82 
 

0.001986 0.42 0.68 

    -0.000318 -0.23 0.82 -0.000713 -0.67 0.51 
 

-0.000663 -1.51 0.13 

    -0.000214 -0.57 0.57 -1.86E-05 -0.27 0.78 
 

-2.77E-05 -0.47 0.64 

    -1.97E-06 -0.11 0.91 3.54E-06 0.27 0.79 
 

2.53E-06 1.24 0.22 

    2.04E-06 0.55 0.58 8.05E-08 0.29 0.78 
 

1.08E-07 0.50 0.62 

    1.86E-08 0.26 0.79 -4.34E-09 -0.09 0.93 
 

1.038911 2.08 0.04 

    -6.31E-09 -0.53 0.60 0.684081 1.28 0.20 
 

-0.251474 -0.87 0.38 

     0.699939 1.23 0.22 -0.385987 -1.31 0.19 
 

-0.118809 -1.80 0.07 

     -0.449985 -0.96 0.34 0.003509 0.04 0.97 
 

0.01107 0.80 0.42 

     -0.004602 -0.04 0.97 0.022261 1.47 0.14 
 

0.001965 1.56 0.12 

     0.029514 0.70 0.49 -0.003479 -1.09 0.28 
 

-0.000119 -0.68 0.50 

     -0.003042 -0.70 0.48 -0.000326 -1.55 0.12 
 

-7.99E-06 -1.35 0.18 

     -0.000534 -0.47 0.64 6.15E-05 1.62 0.11 
 

3.70E-07 0.56 0.58 

     5.50E-05 1.00 0.32 1.38E-06 1.58 0.12 
 

 
  

     3.48E-06 0.31 0.76 -2.61E-07 -1.84 0.06 
 

 
  

     -2.33E-07 -1.08 0.28 
    

 
  

     -6.79E-09 -0.19 0.85 
    

 
  

    0.498237 
  

0.503602 
   

0.496625 
  

   6440.995 
  

6460.014 
   

6639.943 
  

DW 1.829387     1.831135     
 

1.812622     

 

 First, we test the coefficients of     and      for males and females respectively at the 

5% level and we do not reject the hypotheses that they are zero (p-value 0.60 for males and 

0.85 for females). Next, we test the coefficients of     and      for males and females 

respectively; also, we do not reject the hypotheses that their coefficients are zero (p-value 

0.93 for males and 0.06 for females). We then compare the adjusted R-squared values for 

the three models and their corresponding DW statistics to select the best order for the 

polynomial. From Table 5.17 above, the eighth-order polynomial was chosen because of 

its highest adjusted R-squared and DW statistic. Hence, the model as illustrated in Table 

5.18. 
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Table 5.18: Results of restricted least squared PDL(26,8) model. 
      
      Variable Coefficient  t-Statistic p-value 
     
     C 3.94  0.19 0.84 

    -0.34  -1.89 0.06 

    -0.02  -0.19 0.84 

    0.04  1.35 0.18 

    0.00  0.23 0.82 

    -0.00  -0.66 0.51 

    -0.00  -0.27 0.78 

    0.00  0.26 0.79 

    0.00  0.28 0.78 

    -0.00  -0.08 0.93 

    0.68  1.28 0.20 

     -0.38  -1.30 0.19 

     0.00  0.03 0.97 

     0.02  1.47 0.14 

     -0.00  -1.08 0.28 

     -0.00  -1.55 0.12 

     0.00  1.61 0.11 

     0.00  1.57 0.12 

     -0.00  -1.83 0.06 
      
      R-squared 0.557754  Mean dependent var 32.77108 

Adjusted R-squared 0.503602  S.D. dependent var 9.408990 

S.E. of regression 6.629154  Akaike info criterion 6.728192 

Sum squared resid 6460.014  Schwarz criterion 7.084383 

Log likelihood -539.4399  Hannan-Quinn criter. 6.872772 

F-statistic 10.29969  Durbin-Watson stat 1.831135 

Prob(F-statistic) 0.000000     
      
       

 Note that the created variables from     to     refer to the lag of       whereas the 

variables from     to      refer to the lag of      . What the polynomial approximation has 

done is to reduce the number of parameters that have to be estimated from 52 to just 18 in 

the restricted equation. Therefore, the procedure reduced any multicollinearity problems 

that might arise in Equation (5.26).  

 The fitted model is shown in Figure 5.26 together with residual diagnostic plots. This 

is followed by the distribution of the series in the histogram with a complement of standard 

descriptive statistics displayed along with the histogram (see Figure 5.27). The p-value 

(p=0.97) of the Jarque-Bera test is not less than 0.05 for a 5% significance level and hence 

we do not reject the null hypothesis that the model is normally distributed. Figure L2 in 

Appendix L shows leverage plots of the residuals. We can see that the residuals are not 

collinear but the fitted model does not clearly reflect the seasonal nature of the data. 

Therefore, we fit a new ARPDL model in the next section. 
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Figure 5.26: Fitted and residual plots for the best PDL(26,8) model of lung cancer cases per month 

from 1994 to 2009. 
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Figure 5.27: Normality plot of the best PDL(26,8) model of lung cancer cases per month from 

1994 to 2009. 

 

5.16. Autoregressive Polynomial Distributed Lagged (ARPDL) Variables  

Using the procedure outlined in Maddala & Lahiri (2009, pp 526-533), the best lag length 

of     was 12 lags.  

5.16.1. Choosing the Degree of the Polynomial of     

Here, we started with a ninth-degree polynomial and decreased it until we obtained a 

satisfactory fit.  
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Table 5.19: Choosing the degree of the polynomial. 

  Equation  

Coefficient   5th order  t ratios  p-value 
 

4th order  t ratios  p-value  3th order*  t ratios  p-value  

    -0.385635 -2.33 0.02 
 

-0.388004 -2.35 0.02 -0.383201 -2.32 0.02 

    -0.155767 -1.59 0.11 
 

-0.15897 -1.63 0.11 -0.163728 -1.68 0.09 

    0.046728 1.72 0.09 
 

0.047123 1.74 0.08 0.047303 1.75 0.08 

    0.005648 1.21 0.23 
 

0.005756 1.24 0.22 0.006014 1.30 0.20 

    -0.000713 -0.76 0.45 
 

-0.000723 -0.77 0.44 -0.000763 -0.82 0.41 

    -5.09E-05 -0.83 0.41 
 

-5.17E-05 -0.84 0.40 -5.54E-05 -0.91 0.36 

    2.13E-06 0.18 0.85 
 

2.21E-06 0.19 0.85 2.91E-06 0.25 0.80 

    1.25E-07 0.50 0.62 
 

1.26E-07 0.51 0.61 1.42E-07 0.57 0.57 

    4.02E-09 0.09 0.93 
 

3.84E-09 0.09 0.93 8.36E-10 0.02 0.98 

    0.938096 1.96 0.05 
 

0.942487 1.97 0.05 0.96844 2.03 0.04 

     -0.192688 -0.70 0.49 
 

-0.192801 -0.70 0.49 -0.173853 -0.64 0.53 

     -0.002234 -0.03 0.98 
 

-0.002571 -0.03 0.98 -0.012249 -0.15 0.88 

     0.017986 1.28 0.20 
 

0.018267 1.30 0.19 0.017162 1.24 0.22 

     -0.004206 -1.43 0.15 
 

-0.004206 -1.43 0.15 -0.00377 -1.32 0.19 

     
-0.000329 -1.68 0.09 

 
-0.000336 -1.72 0.09 -0.000319 -1.65 0.10 

     7.57E-05 2.14 0.03 
 

7.59E-05 2.14 0.03 7.03E-05 2.04 0.04 

     1.57E-06 1.92 0.06 
 

1.60E-06 1.97 0.05 1.52E-06 1.90 0.06 

     -3.23E-07 -2.44 0.02 
 

-3.24E-07 -2.45 0.02 -3.03E-07 -2.35 0.02 

     -0.182605 -3.55 0.00 
 

-0.174873 -3.48 0.00 -0.161959 -3.48 0.00 

     0.001594 0.06 0.95 
 

-0.014458 -1.00 0.32 -0.009276 -0.75 0.45 

     0.015134 1.76 0.08 
 

0.011488 1.65 0.10 0.006789 3.94 0.00 

     -0.000735 -0.22 0.83 
 

0.001615 1.91 0.06 0.001246 1.90 0.06 

     -0.000339 -1.00 0.32 
 

-0.000175 -0.70 0.49 
   

     6.62E-05 0.73 0.47 
 

 
     

    
0.6235 

   
0.6247 

  
0.6261 

  

   
4700.01     

 
4717.6210     4733.7240     

 

 From Table 5.19 above, the best order of the polynomial is 3 with the highest adjusted 

R-squared. Hence, the best model of the ARPDL(12,3,26,8) is as in the following equation:  

 

               
      

      
     

       
        

  

   

       
      

      
     

       
        

  

   

       
      

      
     

       

  

   

     

5.27  
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Therefore, the results of ARPDL(12,3,26,8) are shown in Table 5.20 below.  
 

 

Table 5.20: Results of the autoregressive polynomial distributed lag ARPDL(12,3,26,8) model. 
 

      
      Variable Coefficient  Std. Error t-Statistic p-value 
      
      C 20.85  18.16 1.14 0.25 

    -0.38  0.16 -2.32 0.02 

    -0.16  0.09 -1.68 0.09 

    0.05  0.02 1.75 0.08 

    0.01  0.00 1.30 0.20 

    -0.00  0.00 -0.82 0.41 

    -0.00  0.00 -0.91 0.36 

    0.00  0.00 0.25 0.80 

    0.00  0.00 0.57 0.57 

    0.00  0.00 0.02 0.98 

    0.97  0.47 2.03 0.04 

     -0.17  0.27 -0.64 0.53 

     -0.01  0.08 -0.15 0.88 

     0.02  0.01 1.23 0.22 

     -0.00  0.00 -1.32 0.19 

     -0.00  0.00 -1.65 0.10 

     0.00  0.00 2.04 0.04 

     0.00  0.00 1.90 0.06 

     -0.00  0.00 -2.35 0.02 

     -0.16  0.04 -3.48 0.00 

     -0.01  0.01 -0.75 0.45 

     0.01  0.00 3.94 0.00 

     0.00  0.00 1.90 0.06 
      
      R-squared 0.675934  Mean dependent var 32.77108 

Adjusted R-squared 0.626078  S.D. dependent var 9.408990 

S.E. of regression 5.753518  Akaike info criterion 6.465465 

Sum squared resid 4733.724  Schwarz criterion 6.896644 

Log likelihood -513.6336  Hannan-Quinn criter. 6.640484 

F-statistic 13.55767  Durbin-Watson stat 2.028012 

Prob(F-statistic) 0.000000     
      
            Lag Distribution of  

       i Coefficient Std. Error t-Statistic 
      
              *.        |  1 -0.07  0.68 -0.11 

  *      .        |  2 -0.54  0.44 -1.22 

  *      .        |  3 -0.54  0.43 -1.25 

     *   .        |  4 -0.29  0.25 -1.14 

         .*       |  5  0.04  0.24  0.18 

         .    *   |  6  0.34  0.25  1.35 

         .      * |  7  0.54  0.21  2.56 

         .       *|  8  0.59  0.18  3.31 

         .      * |  9  0.51  0.19  2.69 

         .   *    |  10  0.32  0.20  1.61 

         .*       |  11  0.07  0.19  0.39 

       * .        |  12 -0.17  0.17 -1.02 

    *    .        |  13 -0.38  0.16 -2.32 

   *     .        |  14 -0.49  0.16 -3.00 

   *     .        |  15 -0.48  0.17 -2.80 

     *   .        |  16 -0.35  0.19 -1.88 

       * .        |  17 -0.13  0.19 -0.67 

         . *      |  18  0.13  0.18  0.74 

         .    *   |  19  0.39  0.18  2.14 
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Table 5.20 Continued.  
  

         .      * |  20  0.55  0.22  2.44 

         .      * |  21  0.54  0.26  2.02 

         .    *   |  22  0.34  0.25  1.36 

         *        |  23 -0.03  0.27 -0.12 

   *     .        |  24 -0.44  0.48 -0.93 

 *       .        |  25 -0.61  0.48 -1.26 

         *        |  26 -0.02  0.74 -0.03 
      
       Sum of Lags  -0.19833  0.27173 -0.72987 
      
            Lag Distribution of  

       i Coefficient Std. Error t-Statistic 
      
          *   .         |  1 -2.14  1.94 -1.10 

        .        *|  2  4.62  1.35  3.41 

        .     *   |  3  3.27  1.27  2.57 

        .*        |  4  0.15  0.72  0.21 

     *  .         |  5 -2.05  0.73 -2.77 

   *    .         |  6 -2.72  0.76 -3.55 

    *   .         |  7 -2.19  0.62 -3.53 

      * .         |  8 -1.11  0.52 -2.11 

        *         |  9 -0.02  0.55 -0.04 

        . *       |  10  0.73  0.56  1.29 

        . *       |  11  1.08  0.52  2.08 

        . *       |  12  1.10  0.47  2.32 

        . *       |  13  0.96  0.47  2.03 

        . *       |  14  0.79  0.48  1.63 

        . *       |  15  0.64  0.49  1.30 

        .*        |  16  0.46  0.51  0.91 

        .*        |  17  0.17  0.53  0.32 

        *         |  18 -0.31  0.52 -0.60 

       *.         |  19 -0.97  0.49 -1.96 

     *  .         |  20 -1.58  0.58 -2.72 

     *  .         |  21 -1.75  0.71 -2.46 

      * .         |  22 -1.01  0.68 -1.46 

        . *       |  23  0.85  0.69  1.23 

        .     *   |  24  3.20  1.21  2.63 

        .      *  |  25  3.55  1.28  2.76 

 *      .         |  26 -3.86  1.93 -1.99 
      
       Sum of Lags   1.89335  1.18804  1.59367 
      
            Lag Distribution of  

      i Coefficient Std. Error t-Statistic 
      
         *   .          |  1 -0.10  0.06 -1.48 

    *  .          |  2 -0.09  0.04 -2.10 

   *   .          |  3 -0.10  0.04 -2.40 

  *    .          |  4 -0.12  0.04 -2.68 

  *    .          |  5 -0.14  0.04 -3.10 

 *     .          |  6 -0.16  0.04 -3.47 

 *     .          |  7 -0.16  0.04 -3.47 

  *    .          |  8 -0.14  0.04 -2.95 

    *  .          |  9 -0.09  0.04 -1.95 

      *.          |  10 -0.01  0.04 -0.23 

       .   *      |  11  0.11  0.04  2.51 

       .         *|  12  0.29  0.06  4.25 
      
       Sum of Lags  -0.73891  0.47365 -1.56005 
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 Note that the created variables from     to     refer to the lag of       and the 

variables from     to      refer to the lag of       whereas the variables from      to      

refer to the lag of     .  

 The fitted model is shown in Figure 5.28 together with residual diagnostic plots. This 

is followed by the distribution of the series in the histogram with a complement of standard 

descriptive statistics displayed along with the histogram (see Figure 5.29). The p-value 

(p=0.86) of the Jarque-Bera test is not less than 0.05 for a 5% significance level and hence 

we do not reject the null hypothesis that the model is normally distributed. Figure L3 in 

Appendix L shows leverage plots of the residuals. Here, we can see that the residuals are 

not collinear. Hence, we forecast with this model and present the k-step ahead forecasts.  
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Figure 5.28: Fitted and residual plots for the best ARPDL(12,3,26,8) model of lung cancer cases 

per month from 1994 to 2009. 
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 Figure 5.29: Residual diagnostic of the normality test of the best ARPDL(12,3,26,8) model of 

lung cancer cases per month from 1994 to 2009. 

 

5.16.2. The Breusch-Godfrey LM Test 

From Table 5.21, the values of both the LM-statistic and the F-statistic are very small, 

indicating that we do not reject the null hypothesis and hence conclude there is no 

significant serial correlation. Residuals generated from the model are not serially correlated 

because the p-values are not very small i.e. they are not less than 0.05 for a 5% 

significance level. For the full results see Table A14 in Appendix A.  

 

Table 5.21: Results of Breusch-Godfrey LM test of ARPDL(12,3,26,8) model. 
 

     
     F-statistic 0.090604     Prob. F(1,142) 0.7639 

Obs*R-squared 0.105850     Prob. Chi-Square(1) 0.7449 
     
      

 Hence, we forecast this model and present the k-step ahead forecasts as shown in 

Figure 5.31.  

5.16.3. Results of the Best ARPDL(12,3,26, 8) Model 

The forecast between 2010 and 2012 of the ARPDL(12,3,26,8) model is shown in Figure 

5.30 and Figure 5.31.  
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Figure 5.30: Forecast of the best ARPDL(12,3,26,8) model of lung cancer cases per month from 

2010 to 2012. 

 

 

Figure 5.31: Actual and fitted ARPDL(12,3,26,8) model with 24 months ahead forecast of lung 

cancer cases per month from 1994 to 2012. 

 

5.17. Discussion of Results  

From Table 5.22, the best estimated dynamic model is ARPDL(12,3,26,8). This model has 

no autocorrelation, and the highest adjusted      and minimum forecast error among the 

dynamic ARPDL models fitted. The results of the short and long run effects are shown in 

Table 5.23. We now compare this model with the best SARIMA model determined in 

Chapter 4: this was the SARIMA(2,1,1)x(0,1,1)12 model. Figure 5.32 shows the forecasts 
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generated by these two models. They both capture the seasonality trends reasonably well. 

However, the SARIMA model is preferred because it has a fewer parameters to estimate 

and only requires the past data on cases to define the forecast.  

 

 

Figure 5.32: 24-step ahead forecast of lung cancer cases per month from 2010 to 2012 of best-fit 

SARIMA(2,1,1)x(0,1,1)12 and ARPDL(12,3,26,8) models. 

 

Table 5.22: Summary of Models I & II results. 

Model 
  
    DW 

  
   One step ahead and 95%CI 

Forecast 

Error  

Model I: 

     
OLS (Best lag length = 26)  0.47 1.54 6447 53.8 (71.8, 35.7) 18.1 

PDL(26,8) 0.48 1.70 7140 45.5 (59.1, 32.0) 13.5 

ARPDL(12,5,26,8) 0.55 1.94 5917 50.0 (62.6, 37.5) 12.5 

Model II: 

     
OLS (Best lag length = 26) 0.49 1.50 5022 60.5 (79.4, 41.5) 19.0 

 PDL(26,8) 0.50 1.83 6460 47.7 (61.0, 34.5) 13.2 

ARPDL(12,3,26,8)
**

 0.62 2.02 4733 54.1 (65.6, 42.6) 11.5 

     ARPDL(12,3,26,8)
** 

= Best dynamic model. 
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Table 5.23: Forecast cases of  best ARPDL(12,3,26,8) model (2010-2011). 

Month  Cases  Month Cases  

2010 Jan 54 2011 Jan 56 

2010 Feb 60 2011 Feb 55 

2010 Mar 56 2011 Mar 50 

2010 Apr 51 2011Apr 48 

2010 May 52 2011 May 47 

2010 Jun 50 2011 Jun 45 

2010 Jul  45 2011 Jul 43 

2010 Aug 43 2011 Aug 43 

2010 Sep 43 2011 Sep 44 

2010 Oct 49 2011 Oct 48 

2010 Nov 49 2011 Nov 50 

2010 Dec 53 2011 Dec 52 

Total  606   581 

 

  

5.18. Summary 

The data used are monthly incidence cases of lung cancer and smoking population for 

Saudi Arabia by gender from 1994-2009.  

 The empirical results suggest that lung cancer cases are strongly affected by smoking 

habits, and most of the cases are among males. However the value of the sum of t-ratios of 

the best model ARPDL(12,3,26,8) suggest that the smoking effect is greater for females 

than for males. The sum of the model coefficients also suggests that lung cancer cases 

decrease in males by 0.198 and increase in females by 1.893. 

 The one-step-ahead forecasts for each different model are:  

1) Forecasting AR(1) model. The one-step-ahead forecast is 41 with 95% PI (26, 56). 

The mean square error is 69.5.  

2)  Forecasting linear regression model with lagged covariate. The one-step-ahead 

forecast is 44 with 95% PI (30, 57). The adjusted R-squared for the estimated 

relation is 45.3 and the mean square error is 45.42.  

3) Forecasting linear regression model with lagged covariate and AR(1) errors. The 

one-step-ahead forecast is 43 with 95% PI (29, 56). The adjusted R-squared for the 

estimated relation is 36.4 and the mean square error is 69.5.  

4) Forecasting distributed lagged variable model (DLM). The one-step-ahead forecast 

is 44 with 95% PI (30, 56). The adjusted R-squared for the estimated relation is 

46.7 and the overall F-test value is 84.35 with p-value 0.00. 
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5) Forecasting of the best ARPDL(12,5,26,8) model of the total cases of lung cancer 

on total smoking population. The one-step-ahead forecast is 50 with 95% PI (37, 

62). The adjusted R-squared for the estimated relation is 55.4 and the overall F-test 

value is 14.68 with p-value 0.00.  

6) Forecasting of the best ARPDL(12,3,26,8) model of the total cases of lung cancer 

on smoking population separately for males and females. The one-step-ahead 

forecast is 54 with 95% PI (42, 65). The adjusted R-squared for the estimated 

relation is 62.6 and the overall F-test value is 13.55 with p-value 0.00.  

 The overall best one-step-ahead forecast was the total cases of lung cancer on smoking 

population separately for males and females ARPDL(12,3,26,8) model. This is confirmed 

by the value of adjusted R-squared as well as the significance of the F-statistic of the 

regression. Thus, the long run effect suggests that there will be on average 50 cases of lung 

cancer per month for the next 24 months. The estimated yearly lung cancer cases in 2010 

and 2011 are 606 and 581 respectively. Subsequently, in winter (December - March), we 

have more incident cases being diagnosed (see Table 5.23).  

 Notice that our main aim of regressing the total cases of lung cancer on smoking 

population separately for males and females is that we want to identify the effect of 

changes in past values of smoking population separately for males and females on the 

current expected value of total cases of lung cancer. Particularly, we want to see where the 

effect of smoking is greater among males or females. In addition, we aim to minimize the 

error as much as possible since there are available data on smoking population for males 

and females separately in order to obtain reliable forecasts. 

 A new approach called Autoregressive Polynomial Distributed Lag (ARPDL) model 

was used to compare the errors associated with the model. In this approach, the procedure 

is the same as the PDL model except that we regressed    on its polynomials as well. 

However, this procedure, which looks a little complex, was more flexible and 

parsimonious. It proved to be more robust on comparison with the PDL model approach, 

which is shown in the summary of results in Table 5.22. To the best of our knowledge, no 

study has been undertaken incorporating ARPDL approach to model and predict lung 

cancer incidence. This new procedure is outlined in section 5.14 with statistical software 

package Eviews8 commands. 

 Overall, ARPDL can be used when the number of observations available is limited and 

the number of significant lags is large. In this way, ARPDL models allow us to model 
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more complex lag structures of the independent and the dependent variables with different 

covariates but we need reasonable reasons for including them. ARPDL models are able to 

smooth the prediction and capture the seasonality trends. However, the forecast eventually 

becomes constant and does not predict a series with a seasonal pattern well.  

 Overall, when comparing the results obtained from SARIMA model to ARPDL 

model, we found that SARIMA model is preferred. Many advantages of SARIMA models 

were found and support the SARIMA model as a good way to forecast short-term time 

series. The SARIMA model has a fewer coefficients to estimate and only require the past 

data to define the forecast. Hence, SARIMA model can increase the forecast accuracy 

while keeping the number of parameters to a minimum.  

 One of the most widely used standard procedures for model evaluation in 

classification and regression is K-fold cross-validation (CV). However, when it comes to 

time series forecasting, because of the inherent serial correlation and potential non-

stationarity of the data, its application is not straightforward and often omitted by 

practitioners in favour of an out-of-sample (OOS) evaluation. Hence we generated our 

forecasts accordingly using the seasonal ARIMA model.  

 It is important to mention that cross correlation methods in the time domain and 

impulse response functions in frequency domain which are generated through cross 

spectral analysis are other potential methods that can be used for modelling bivariate time 

series. Consideration of these approaches may lead to models that can be derived more 

efficiently than using lagged regression models with their many parameters. However, due 

to time constraints, we have not considered these approaches. 
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CHAPTER 6 

AGE-PERIOD-COHORT MODELLING OF LUNG CANCER INCIDENCE  

6.1. Introduction 

Age-period-cohort (APC) models provide a useful method for modelling disease incidence 

and mortality rates of cancers (Rutherford et al., 2012). The effects of period and cohort 

are identified as proxies for events such as risk factors, which we cannot measure directly 

whereas the most important time-related variable that influences the risk of cancer is age 

(Bray and Moller, 2006). The age effect reflects the way of life, physiological, biological, 

behaviour factors, and lung risk factors for example. The period effect can highlight 

changes in the environmental factors that act around lung cancer onset including the effects 

of primary prevention and new medical care procedures. The cohort effect reflects the 

cumulative effects of exposure in generations (Meheni Khellaf, 2010).  

 APC models are known to suffer identification problems and that is due to the perfect 

relationship between the age, period, and cohort (Mason et al., 1973; Rutherford et al., 

2010). This leads to a major challenge in analyzing APC models, a problem that has been 

widely addressed by statisticians, demographers and epidemiologists. The birth cohort can 

be calculated directly from the age at diagnosis and the date of diagnosis (cohort = period - 

age). If fitted directly in a generalized linear model (GLM) this leads to 

overparameterization and, consequently, incorrect parameter estimates because the APC 

model will not capture all the distinct effects of age, period, and birth cohort. It is therefore 

necessary to fit constraints to the model to extract identifiable answers for each of the 

parameters. This step is needed because each of the components of the model provides 

different insights into the trends of the disease over time. 

 New approaches have been developed for APC analysis to overcome the identification 

problem during the last 30 years. They are the conventional generalized linear CGLIM 

models and the intrinsic estimator IE (Yang, et al., 2004). In 2007, Carstensen developed 

new methodology for the identification problem. This author used age, period and cohort 

as continuous variables using spline functions. This author implemented this method for 

age-period-cohort models in R statistical software. In 2010, Rutherford et al developed a 

new command called apcfit that uses the spline functions, which was tested in STATA 

statistical software package. The identifiability problem is overcome by forcing constraints 

on either the period or the cohort effects. 
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 Splines are a collection of polynomials that are joined at a pre-defined number of 

points known as knots. The first and last of these points are often referred to as the 

boundary knots. A spline is constrained in order to produce a smooth overall curve. It is 

worth noting that the number of knots determines the flexibility of the spline functions, 

which means that the number and location of knots can affect the fit. The function that is 

fitted is forced or restricted to have cubic curves between knots with continuous second 

derivatives at each knot and linear behaviour beyond the end knots. According to Sasieni 

(2012), because the splines are forced to be linear beyond the end knots, a natural cubic 

spline with no internal knots is simply a straight line (linear function).  

 Restricted cubic splines refer to restricted splines that use cubic polynomials between 

the knots and they have largely been used in other regression analyses according to 

Rutherford et al. (2012). In addition, cubic polynomials offer sufficient flexibility to 

capture the shape of most data, if appropriate knots are chosen. 

 In this chapter, we follow the procedure proposed by Rutherford et al. (2010). We 

outline the log-linear Poisson model in section 6.2 and present the APC modelling in 

section 6.3. In this analysis we present the APC basic model and include the covariates of 

gender, race, price of imported tobacco, consumption of tobacco per 1000 tons, smoking 

prevalence by gender, and five regions of Saudi Arabia. We present the overall best APC 

model with covariates in section 6.5.3. Prediction using restricted cubic (natural) splines 

and their graphs are presented in section 6.6.3. Finally, we discuss and give an overall 

summary of the chapter in section 6.7 and 6.8 respectively.    

6.2. Log-linear Poisson Model 

In GLMs, the dependent variable follows a distribution from the exponential family, which 

includes the normal, Poisson, binomial, exponential and gamma distributions 

(Montgomery et al., 2006, p. 160, 427). A GLM is a generalisation of the classical linear 

models (McCullagh and Nelder, 1983).  

 Taking into account that count data, like the lung cancer case data, are always non-

negative, they are therefore naturally modelled on the log-scale. The choice of distribution 

to fit to the dependent variable is important. For count data not in the form of proportions, 

the Poisson distribution may be appropriate (McCullagh and Nelder, 1983, p. 127). For the 

Poisson distribution the variance is equal to the mean; Byers et al.,(2003) suggest that if 

the variance is much larger than the mean, a negative binomial distribution may be better 

suited to the data.  
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 In our analysis, we use the method of model building as proposed by Clayton & 

Schifflers (1987). Rates are nonnegative and therefore are naturally modelled on the log-

scale. The majority of the models fall into the class of generalized linear models and the 

assumptions often made are: 

1. Assume that the count in each cell of the Lexis diagram     is presented by Poisson 

       with the expected rate                  where       is the corresponding 

person–years at risk,  i=1,...,m and j=1,..., n. 

2. The person-years at risk (   ) is a fixed known value. 

3. The random variables,    , are jointly independent. 

4. The expected rate is a logarithmic linear function as follows: 

             
    

   
             

 

6.1 

where    represents the effect of age group i,    the effect of time period j, and     the 

effect of birth cohort k.   represents the mean effect or a constant corresponding to  the 

log-rate for the reference levels (when i, j or k=0). 

 Typically, ln (   ) is treated as an offset when fitting a log-linear Poisson regression 

model with                as the response. The persons at risk,    , is not, strictly 

speaking, a fixed quantity. It is an estimation of a population collected from census 

registries each year from birth and death records, estimated immigration and emigration 

rates without any random variation in,    , being many times larger than    . Table F14 in 

Appendix F shows the person-years-at-risk (   ) in thousands of lung cancer cases among 

the entire population, aged 0-75+, in Saudi Arabia between 1994 and 2009. 

 Parameters can be estimated by means of a maximum likelihood procedure using 

statistical packages able to perform generalised linear modelling. Models are evaluated by 

their deviances from the null model, and then compared differences in deviance for model's 

best fit. 

6.3. APC Modelling 

Classically, APC models fit the effects of age, period, and cohort as factors. Due to a direct 

relationship between the terms,                    the components of this method 

cannot be uniquely determined. The models therefore need to be constrained in some way 

to ensure that the three functions showing age, period, and cohort effects can be extracted. 

Carstensen (2007), for example, demonstrated how this method could be achieved. The 
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method proposed by Carstensen uses restricted cubic (natural) splines for the age, period, 

and cohort terms within a GLM framework with a Poisson family error structure, a log link 

function, and an offset of log (person risk-time) to overcome the identification problem. 

According to Carstensen (2007), the APC model is to give an overview of the magnitude 

of the rates, the variation by age, and time trends in the rates. 

 However, in a slightly different method proposed by Rutherford et al (2010), 

transformations are made to the spline basis vectors for the period and cohort effects using 

matrix transformations. After successful transformation, a GLM is fitted within Stata using 

the adjusted spline basis vectors. Using this GLM as a foundation, it is possible to extend 

the analysis to include covariates. The data required to do this have observations for each 

unique age–period combination for every level of the covariate of interest. This allows us 

to adjust for the effect of the covariate by including the term in the GLM. It is also possible 

to include interaction terms between the covariate and age, period, and cohort. 

 Variation in lung cancer incidence could be explained by changes in smoking habits 

and other environmental risk factors such as air pollution, temperature, and price of 

tobacco that affect incidence rates and changes in risk factors that are present in early life. 

The models would identify and measure the effects of the age, period, and cohort on the 

disease incidence from 1994 to 2009.  

 We used the same approach as used by Rutherford et al. (2010) for the Lexis diagram 

to display the data. It summarizes a population’s disease status over a calendar time against 

age. A Lexis diagram is usually split into five-year intervals for period and age. However it 

has been recommended by Rutherford et al. (2010) that yearly intervals should be used. 

Our data uses five-year age groups and cohorts but a one-year period interval. The data 

have been appropriately prepared in this way, each observation consisting of these 

explanatory variables: number of cases, population at risk, mean age, period and cohort. 

The command poprisktime was used to calculate the population risk-time from the 

population data using formula suggested by Sverdrup (1967) as in Carstensen 2007.  

 The incidence rates of lung cancer were calculated using the population of Saudi 

Arabia according to the statistical national census of 1994 to 2009 for all regions. It was 

decided to restrict the age range  in 16 age classes of five years (0-4, 5-9, 10-14, 15-19, 20-

24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75+), in 16 

periods of one year (1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 

2005, 2006, 2007, 2008, 2009), and in 91 cohorts of 5 years. To highlight the possibility of 

including covariates in the analysis, the gender and ethnicity of patients was included when 
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collapsing the dataset into unique records of age, period, and cohort. The incidence rate 

was measured as a function of age, period and cohort. 

6.4. STATA Commands for Fitting APC Models 

Two Stata commands apc_ie and apc_cglim are known to apply constraints to 

overcome the identifiability problem for the APC models. The apc_ie command uses the 

intrinsic estimator, which employs a principal components regression to arrive at the 

constrained estimates for the age, period, and cohort effects. The apc_cglim command 

on the other hand, uses a single equality constraint. The age, period, and cohort terms are 

fitted as factors, and a constraint that sets two of the categories from different components 

equal to one another is applied to overcome the lack of identifiability issue. The two 

approaches are described in detail and compared by Yang et al. (2004). In 2008, Land gave 

a good overview of techniques available to carry out APC models. Another command 

apcfit, which differs from the two approaches, uses restricted cubic splines to model the 

three variables and produces estimates for the three effects (age, period, and cohort) that 

can then be combined to give the predicted rates. These estimates can also be interpreted 

individually and plotted to show incidence and mortality trends over the different time 

scales. The advantage of apcfit is the potential for further modelling to investigate the 

effect of covariates (Rutherford et al., 2010). 

6.5. Data Analysis and Results 

6.5.1. The Basic Model 

Having set up the data into the correct form, the apcfit command can now be applied. 

The apcfit command saves the adjusted spline basis as _spA* for the age variable, 

_spP* for the period variable, and _spC* for the cohort variable (see Table 6.1), which 

allows other models to be fit using the glm command (providing that the appropriate 

family, link, and offset are used). As a result, providing that the dataset was appropriately 

split for any given covariate, further models can be fit that can account for interactions.  

 Figure 6.1 shows the fitted incidence of lung cancer data for males and females 

combined. The default for apcfit is to make the reference point at the median value 

(with respect to the number of cases) for the period and cohort variables, respectively. 
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   Table 6.1: The APC model of total lung cancer cases from 1994-2009. 

Z Coefficient Standard Error  P-value    95% Confidence Interval  

        Lower  Upper  

_spA1_intercept  -10.655 0.113 0.000 -10.875 -10.434 

_spA2 2.376 0.132 0.000 2.118 2.634 

_spA3 0.022 0.096 0.820 -0.167 0.210 

_spA4 0.359 0.063 0.000 0.235 0.483 

_spA5 0.076 0.029 0.010 0.018 0.133 

_spA6 0.103 0.011 0.000 0.081 0.125 

_spP1 -0.165 0.011 0.000 -0.186 -0.145 

_spP2 -0.001 0.010 0.896 -0.022 0.019 

_spP3 0.061 0.011 0.000 0.040 0.082 

_spP4 0.030 0.010 0.003 0.010 0.050 

_spC1_drift  -0.014 0.002 0.000 -0.019 -0.009 

_spC2 0.005 0.086 0.958 -0.163 0.172 

_spC3 -0.092 0.051 0.069 -0.192 0.007 

_spC4 -0.016 0.051 0.759 -0.116 0.085 

_spC5 -0.043 0.045 0.342 -0.130 0.045 

ln (Y) 1.000 (exposure)       

Deviance = 4965.320 AIC = 4.889 Log likelihood = -4495.405   

 

 

 

  

 
 

Figure 6.1: Age, cohort, and period effects of incidence rates for lung cancer data (degree of 

freedom=5) in Saudi Arabia. The respective regions surrounding the curves provides the 95% 

confidence bands. The circle indicates the reference point.  
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 The incidence of cancer of the lung increases steadily from age 10 in the population up 

to the generation born before the second world war in 1939 and declines thereafter until the 

Gulf war in 1990. A subsequent increase followed in cohorts born after the Gulf war until 

2010. However these figures are based on small numbers. Actually this complex cohort 

effect might be over fitting the splines. There may in fact be simply a decrease in incidence 

with cohort as lifestyles become healthier overall. The second increase in cohort incidence 

we see in the 1990s may be due to the establishment of Saudi Cancer Registry, influx of 

foreign nationals or immigration because of the Gulf war and the availability of newer 

diagnostic techniques using computers. The period of incident rates declined for about a 

decade to the early 2000s and then rose up to 2007, and thereafter observed a subsequent 

decrease. 

 The degrees of freedom were set to five (default) for each of the spline bases for the 

age, period, and cohort. It is interesting to alter the degrees of freedom for any one of the 

variables, particularly the cohort variable, although this might lead to over fitting if the 

number is increased too much. The decision on the number of degrees of freedom can be 

aided using the Akaike’s information criterion (AIC) values. A lower AIC value suggests a 

better fitting model. 

6.5.2. Computation of AIC and BIC Computed in Stata 

Stata commands glm ,  binreg, and  ml use the following formulae to compute the 

values of AIC and BIC: 

                                                                             

                               

where lnL and D2 are the overall likelihood and the overall deviance, reported by glm, k 

is the number of parameters of the model, and N-k is the degrees of freedom associated 

with the deviance D2. These formulae are from Akaike (1973) and Raftery (1995), 

respectively. 

On the other hand, Stata commands estat ic, estimates table, and stats 

(aic bic) use different definitions of these criteria on the basis of Akaike (1974) and 

Schwarz (1978): 

                 

                            

They thus report different AIC and BIC values. 
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6.5.3. Inclusion of Covariates 

We first estimated generalized log linear models in Equation (6.1) for the total lung cancer 

incidence data in Saudi Arabia. Using the GLM command, we can then add terms to the 

model to take into account the effects of other covariates and hence the best model. In this 

section, various combinations of covariates such as gender, race, consumption of tobacco per 

1000 tons, price of imported tobacco, smoking prevalence for males and females, and five 

regions (north, south, east, west, central) of Saudi Arabia were added to assess the 

performance of the model.  

 The essence of including various combinations of covariates was to demonstrate the 

preferred model for the lung cancer incidence in KSA.   

 We started by estimating the reduced models with the covariates, and then the full 

three-way APC model. The marginal or gross effects for each of the components of age 

(A) and period (P) with their model selection statistics are given in Table 6.2 and Table 6.3 

respectively. The two-way models of age & period (AP), age & cohort (AC), and period & 

cohort (PC) with their model selection statistics are given in Table 6.4 through to Table 

6.6. Finally, we estimated the full three-way APC model. 

 In order to fit an identified APC model, we considered the best model fit for each of 

the six models with their covariates using the model selection statistics. The best-fit models 

are indicated in the tables by double stars (**). 
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Table 6.2: Covariates with age (A) model. 

Model Deviance Pearson DF Log 

Likelihood 

AIC 

A 5289.62 6091.68 1839 -4657.55 5.055 

A+GENDER 3225.11 4796.36 1838 -3625.30 3.937 

A+ GENDER +RACE 3206.72 4613.17 1837 -3616.10 3.928 

A+ GENDER +RACE+CONSUMPTION 3133.71 4497.26 1836 -3579.60 3.890 

A+ GENDER +RACE+CONSUMPTION+PRICE 3101.95 4511.14 1835 -3563.72 3.873 

A+ GENDER 

+RACE+CONSUMPTION+PRICE+SMOKING 

2973.66 4339.68 1834 -3499.57 3.805 

A+ GENDER 

+RACE+CONSUMPTION+PRICE+SMOKING 

+(FIVE REGIONS)* 

2948.29 4407.62 1829 -3486.89 3.797 

A+ GENDER 

+RACE+CONSUMPTION+SMOKING+FIVE 

REGIONS 

2948.48 4406.95 1830 -3486.99 3.796 

A**+RACE+CONSUMPTION+SMOKING+FIVE 

REGIONS  

2950.10 4376.92 1831 -3487.80 3.795 

A+CONSUMPTION+SMOKING+FIVE REGIONS  2961.16 4526.29 1832 -3493.33 3.800 

(FIVE REGIONS)* = NORTHERN, SOUTHERN, EASTERN, WESTERN, AND CENTRAL 

A**= BEST MODEL FOR AGE 

 

 

 

 

Table 6.3: Covariates with period (P) model. 

Model Deviance Pearson DF Log 

Likelihood 

AIC 

P 611643747.4 305891505.6 1841 -305823886 331516.4 

P**+ GENDER 268083230.5 134136604.2 1840 -134043628 145304.8 

P**= BEST MODEL FOR P 
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Table 6.4: Covariates with age-period (AP) model. 

Model Deviance Pearson DF Log 

Likelihood 

AIC 

AP 5033.26 5752.25 1835 -4529.38 4.920 

AP+ GENDER 2955.44 4629.97 1834 -3490.46 3.795 

AP+ GENDER +RACE 2943.52 4466.11 1833 -3484.50 3.790 

AP+ GENDER +RACE+CONSUMPTION 2920.08 4420.79 1832 -3472.78 3.778 

AP+ GENDER +RACE+CONSUMPTION+PRICE 2919.52 4423.67 1831 -3472.51 3.779 

AP+ GENDER +RACE+CONSUMPTION+PRICE+ 

SMOKING 

2916.58 4388.80 1830 -3471.03 3.778 

AP+ GENDER +RACE+CONSUMPTION+SMOKING 2916.58 4388.16 1831 -3471.04 3.777 

AP+ GENDER 

+RACE+CONSUMPTION+SMOKING+ 

FIVE REGIONS 

2902.36 4427.85 1826 -3463.92 3.774 

AP**+ GENDER +RACE+CONSUMPTION+ 

FIVE REGIONS  

2899.13 4431.94 1827 -3462.31 3.772 

AP**= BEST MODEL FOR AP 

 
 

 

 

Table 6.5: Covariates with age-cohort (AC) model. 

Model Deviance Pearson DF Log 

Likelihood 

AIC 

AC 5253.13 6024.78 1834 -4639.31 5.040 

AC+ GENDER 3185.18 4754.19 1833 -3605.33 3.921 

AC+ GENDER +RACE 3166.80 4571.88 1832 -3596.14 3.912 

AC+ GENDER +RACE+CONSUMPTION 3071.11 4503.47 1831 -3548.30 3.861 

AC+ GENDER +RACE+CONSUMPTION+PRICE 3066.05 4512.61 1830 -3545.77 3.859 

AC+ GENDER +RACE+CONSUMPTION+PRICE+ 

SMOKING  

2922.82 4335.89 1829 -3474.15 3.783 

AC+ GENDER +RACE+CONSUMPTION+SMOKING 2923.36 4332.18 1830 -3474.42 3.782 

AC+ GENDER 

+RACE+CONSUMPTION+SMOKING+ 

FIVE REGIONS 

2860.83 4485.99 1825 -3443.16 3.754 

AC+ GENDER +RACE+CONSUMPTION+ 

FIVE REGIONS  

2861.46 4460.69 1826 -3443.47 3.753 

AC**+ GENDER +RACE+FIVE REGIONS 2861.93 4458.62 1827 -3443.71 3.752 

AC+ GENDER +RACE+PRICE+CONSUMPTION+ 

FIVE REGIONS  

2861.44 4461.48 1825 -3443.47 3.754 

AC**= BEST MODEL FOR AC 
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Table 6.6:  Covariates with period-cohort (PC) model. 

Model                                   Deviance            Pearson              Obs        DF        Log Likelihood      AIC 

PC                                             8668779.493          1.8669e+13           1845       1836         -4336402.491          

4700.717                                       

Warning: convergence  

not achieved 

 

 

 
 

Table 6.7: Covariates with age-period-cohort (APC) model. 

    Model  Deviance  Pearson  DF Log 

likelihood  

AIC  

APC  4965.32 5674.70 1830 -4495.40 4.889 

APC+ GENDER 2885.20 4599.72 1829 -3455.34 3.762 

APC+ GENDER +RACE 2873.75 4438.14 1828 -3449.62 3.757 

APC+ GENDER +RACE+CONSUMPTION  2866.83 4434.29 1827 -3446.16 3.755 

APC+ GENDER +RACE+CONSUMPTION+PRICE  2866.83 4434.04 1826 -3446.16 3.756 

APC+ GENDER 

+RACE+CONSUMPTION+SMOKING  

2865.41 4409.41 1826 -3445.45 3.755 

APC+ GENDER +RACE+CONSUMPTION+FIVE 

REGIONS  

2848.15 4446.25 1822 -3436.82 3.750 

APC**+ GENDER +RACE+FIVE REGIONS (1) 2849.07 4444.55 1823 -3437.28 3.749 

APC+ GENDER +RACE+SMOKING  2870.26 4400.82 1827 -3447.87 3.757 

APC+ GENDER +FIVE REGIONS  2860.42 4608.90 1824 -3442.95 3.754 

APC*+ GENDER +RACE+PRICE+CONSUMPTION+ 

SMOKING+FIVE REGION  

2846.05 4478.39 1820 -3435.77 3.751 

APC**= BEST MODEL FOR APC 

 

 

 

 

 



126 

 

Table 6.8: The best five models. 

Model Deviance Pearson DF Log 

likelihood 

AIC 

A+RACE+CONSUMPTION+SMOKING+FIVE 

REGIONS 

2950.10 4376.92 1831 -3487.80 3.795 

AP+ GENDER +RACE+CONSUMPTION+FIVE 

REGIONS  

2899.13 4431.94 1827 -3462.31 3.772 

AC+ GENDER +RACE+FIVE REGIONS 2861.93 4458.62 1827 -3443.71 3.752 

APC+ GENDER 

+RACE+PRICE+CONSUMPTION+SMOKING 

+FIVE REGIONS  

2846.05 4478.39 1820 -3435.77 3.751 

APC+ GENDER +RACE+FIVE REGIONS *** 2849.10 4444.55 1823 -3437.28 3.749 

*** = Overall Best Model 

 

 From Table 6.2, it is clear that race, consumption, smoking and the five regions 

influence the age effects most. From Table 6.3, gender is the only covariate that influences 

the period effects. By contrast to Table 6.2, the age-period (AP) models in Table 6.4 

provide better results. It is therefore clear that gender, race, consumption, and the five 

regions influence the age-period effects most. From Table 6.5, we can also see that gender, 

race, and the five regions influence the age-cohort effects most. There was no convergence 

in any of the covariates or combination of covariates with the period-cohort (PC) model. 

Finally, when we used the full age-period-cohort model, we realized that gender, race, and 

the five regions best influenced the age-period-cohort effects. 

 The model selection statistics reported in Table 6.8 for each of these five best models 

selected from both reduced and full three-way APC models show that the three full APC 

models with the covariates of gender, race, and five regions fit the data significantly better 

than other four models. This is indicated in Table 6.8 as triple star (***). The results from 

the best five models are presented in Table 6.9. 

 Therefore, it can be concluded that none of the three components of the APC model 

should be eliminated from the model specification and selection. Hence, we present Table 

6.10 that depicts the coefficient estimates and model fit statistics of the overall best model. 
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Table 6.9: The best five models with different covariates. 

 

APC+GENDER 

+RACE+FIVE 

REGION 

APC+GENDER 

+RACE+PRICE+ 
CONSUMPTION+ 

SMOKING+ 

FIVEREGIONS 

 

A+RACE+ 
CONSUMPTION 

+SMOKING+FIVE 

REGIONS 

AP+GENDER 
+RACE+ 

CONSUMPTION 

+ FIVE REGIONS 

AC+GENDER 

+RACE+ 

FIVE REGIONS 

Z IRR Std. P>|z| IRR Std. P>|z| IRR Std. P>|z| IRR Std. P>|z| IRR Std. P>|z| 

_spA1_intct 0.00 0.00 0.000 0.00 0.00 0.000 0.00 0.00 0.000 0.00 0.00 0.000 0.00 0.00 0.000 

_spA2 5.73 1.56 0.000 8.21 3.94 0.000 15.02 0.67 0.000 15.04 0.67 0.000 3.18 0.51 0.000 

_spA3 0.99 0.09 0.880 0.99 0.09 0.878 0.95 0.04 0.219 0.95 0.04 0.221 0.99 0.10 0.913 

_spA4 1.42 0.09 0.000 1.42 0.09 0.000 1.49 0.07 0.000 1.49 0.07 0.000 1.42 0.09 0.000 

_spA5 1.09 0.03 0.004 1.09 0.03 0.004 1.11 0.02 0.000 1.11 0.02 0.000 1.09 0.03 0.004 

_spA6 1.12 0.01 0.000 1.12 0.01 0.000 1.17 0.01 0.000 1.17 0.01 0.000 1.13 0.01 0.000 

_spP1 0.93 0.02 0.004 0.94 0.03 0.072 - - - 0.96 0.03 0.258 - - - 

_spP2 0.97 0.02 0.077 0.94 0.03 0.058 - - - 0.92 0.02 0.000 - - - 

_spP3 1.03 0.02 0.123 1.05 0.03 0.045 - - - 1.06 0.02 0.004 - - - 

_spP4 1.03 0.02 0.224 1.03 0.03 0.292 - - - 1.02 0.03 0.452 - - - 

_spC1_ldrft 0.96 0.01 0.000 0.97 0.02 0.198 - - - - - - 0.93 0.00 0.000 

_spC2 0.98 0.08 0.857 0.99 0.08 0.860 - - - - - - 0.98 0.08 0.815 

_spC3 0.91 0.05 0.076 0.91 0.05 0.078 - - - - - - 0.92 0.05 0.084 

_spC4 0.99 0.05 0.869 0.99 0.05 0.876 - - - - - - 0.99 0.05 0.879 

_spC5 0.96 0.04 0.362 0.96 0.04 0.361 - - - - - - 0.96 0.04 0.381 

gender 2.79 0.07 0.000 4.46 1.73 0.000 - - - 2.79 0.07 0.000 2.79 0.07 0.000 

race 0.92 0.02 0.001 0.92 0.02 0.001 0.92 0.02 0.001 0.92 0.02 0.001 0.92 0.02 0.001 

consumption - - - 1.00 0.01 0.761 0.98 0.00 0.000 0.98 0.00 0.000 - - - 

price - - - 1.00 0.00 0.335 1.07 0.00 0.000 - - - - - - 

smoking - - - 0.97 0.03 0.226 1.07 0.00 0.000 - - - - - - 

Northern 1.00 0.00 0.277 1.00 0.00 0.297 1.00 0.00 0.899 1.00 0.00 0.217 1.00 0.00 0.780 

Southern 1.01 0.00 0.044 1.01 0.00 0.056 1.00 0.00 0.253 1.00 0.00 0.184 1.01 0.00 0.040 

Western 1.00 0.00 0.030 1.00 0.00 0.038 1.00 0.00 0.000 1.00 0.00 0.065 1.00 0.00 0.000 

Central 1.00 0.00 0.471 1.00 0.00 0.120 1.00 0.00 0.662 1.00 0.00 0.378 1.00 0.00 0.000 

Eastern 1.00 0.00 0.038 1.01 0.00 0.043 1.00 0.00 0.037 1.00 0.00 0.187 1.00 0.00 0.000 

Deviance  2849.066 2846.049 2950.104 2899.135 2861.928 

Person  4444.545 4478.391 4376.924 4431.944 4458.616 

Log likelihood  -3437.277 -3435.769 -3487.796 -3462.312 -3443.708 

AIC  3.750 3.752 3.796 3.773 3.753 
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Table 6.10: Overall best APC model. 

Z IRR Standard Error  P-value  95% Confidence Interval  

        Lower   Upper  

_spA1_ intercept 0.000 0.000 0.000 0.000 0.000 

_spA2 5.727 1.556 0.000 3.362 9.755 

_spA3 0.986 0.095 0.880 0.817 1.190 

_spA4 1.421 0.090 0.000 1.256 1.608 

_spA5 1.089 0.032 0.004 1.028 1.153 

_spA6 1.125 0.013 0.000 1.100 1.150 

_spP1 0.929 0.024 0.004 0.883 0.977 

_spP2 0.973 0.015 0.077 0.944 1.003 

_spP3 1.033 0.022 0.123 0.991 1.076 

_spP4 1.029 0.024 0.224 0.983 1.077 

_spC1_ldrift 0.957 0.011 0.000 0.936 0.978 

_spC2 0.985 0.084 0.857 0.833 1.164 

_spC3 0.914 0.046 0.076 0.828 1.009 

_spC4 0.992 0.051 0.869 0.897 1.096 

_spC5 0.960 0.043 0.362 0.880 1.048 

gender 2.793 0.070 0.000 2.659 2.934 

race 0.919 0.023 0.001 0.876 0.965 

Northern 0.996 0.004 0.277 0.989 1.003 

Southern 1.006 0.003 0.044 1.000 1.012 

Western 1.003 0.001 0.030 1.000 1.005 

Central 1.001 0.001 0.471 0.999 1.003 

Eastern 1.004 0.002 0.038 1.000 1.009 

ln(Y) 1.000 (exposure)       

Deviance = 2849.06 AIC = 3.750 Log likelihood = -3437.27   

       

The simplest method for the inclusion of the gender term, for example, as covariate 

into the GLM is to assume a proportional effect for gender. The covariate for gender is 

coded as 0 for female and 1 for male. The eform option in Stata is used to report the 

covariate terms as an incidence rate ratio (IRR). In gender for example, we look at the 

effects of males relative to females. Similarly, the covariate for race is coded as 0 for non-

Saudi and 1 for Saudi. Thus, we also look at the effects of non-Saudis relative to Saudis.   

The output given above shows that, in KSA, males have about a 79% greater incidence 

of lung cancer than females across the entire dataset when adjusting for the other effects. 

The p-value for the gender term highlights that the effect for gender is significant at the 

5% level and even at the 0.1% level. This measure of significance, however, assumes that 

the effect of gender is proportional over both time scales and date of birth. In addition, the 

p-values for the race, Southern region, Western region, and Eastern region terms show that 

the effect for these covariates is statistically significant.  



129 

 

6.6. Prediction Using Restricted Cubic (Natural) Splines  

6.6.1. Introduction  

Many methods have been proposed for making predictions from APC models. The 

technical aspects of forecasting the burden of cancer have been developed and refined over 

the past few decades. For more information on APC model projections see the following 

papers, Bray et al. (2001), Moller et al. (2003), Clements et al. (2005), Bray and Moller 

(2006), Carstensen (2007), Cleries et al. (2010), Rutherford et al. (2010), Lee et al. (2011), 

Mistry et al. (2011), Rutherford et al. (2012) and Sasieni (2012). Natural cubic splines 

were firstly used in APC models by Sasieni and Adams (1999, 2000) for drawing inference 

on the impact of cervical screening on cervical cancer rates. Quite apart from these 

methods, good overviews of techniques available to carry out APC model projections 

using natural cubic splines have been given by Rutherford et al. (2012) and Sasieni (2012). 

In 2012, Rutherford et al. and Sasieni summarised that multiplicative APC models tend to 

over-estimate future rates of a disease incidence or mortality and therefore linear 

projections need to be tempered or dampened when making long-term predictions. For that 

reason, they advocated the use of an APC with a power link function together with a linear 

combination of age, period and cohort terms. 

 Although the apcfit uses a canonical link, using predict after fitting a glm 

command does not give you correct fitted mean values. This is because predict after glm 

does not take care of the regularization of the background or smoothing the model except 

the default background only. Another reason is that poisson or apcfit is not fully 

flexible and does not facilitate the visualization of the functions of age, period and cohort 

effects. Hence, making projections or forecasting from such predicted or fitted values 

could be very misleading. Notably, apcfit is used for fitting APC models using natural 

cubic splines when not making projections. Hence, an associated command apcspline 

will make projections simpler from apcfit.   

 What makes apcspline more effective and powerful for making projections is that 

different link functions can be used on the rates. By using the apcspline, a trade-off or 

balance also exists between having the flexibility to capture the salient features of the 

cohort effect and having a parsimonious model.  

 In the apcspline command, constraints are imposed by centering the period effects 

and cohort effects at the mean year of cases and at the weighted mean year of birth 

respectively, whereby apcfit allows the user to specify the centering of each variable. 
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6.6.2  The APC Model Prediction 

 The apcspline command fits an APC model of the form  

 

 

            

  
 

        
                                       

 

6.2 

where g is the link function, µ is the mean of the incidence rate and               are the 

natural cubic splines.        is the common drift parameter (Clayton & Schifflers, 1987).   

 When comparison between age only and age-period models indicates a highly 

significant period effect, and comparison between age only and age-cohort models 

indicates a highly significant cohort effect, we conclude that both age-period and age-

cohort models fit the data very well. An explanation is that there is some temporal 

variation of rates which does not distinguish between period and cohort influences; that is, 

a variation over time which could be predicted either by the age-period model or by the 

age-cohort model. This interesting phenomenon of a data set described equally well by 

both models is known as drift (Clayton and Schifflers, 1987). 

 The main predictions illustrated here are based on both the power of 0.2 link function 

and on the spline functions of age, period and cohort.  Other functions were used to study 

the sensitivity of the results to these constraints. We use the world standard population 

presented by Doll et al. (1966) which is the most frequently standard population used for 

the age standardization.  

 According to Sasieni (2012) the power 0.2 link function is used in our analysis of this 

thesis to reduce the growth in the predicted rates. It has been found that for moderate 

trends the difference between the logarithmic and the power 0.2 link in terms of fitted 

values to the observed numbers of events will be minimal, but the impact on long-term 

extrapolation could be considerable.  

 The data we use to illustrate the apcspline command contain the number of cases 

of lung cancer in Saudi Arabia in 5-year age bands for each year from 1994–2009 together 

with mid-year population estimates for 1994–2009 and population projections until 2020. 

The numbers of both lung cancer cases and population are separated by gender. For 

comparison, we fit both apcspline model and apcfit model and present the 

results in Table 6.11 and in Table 6.12 respectively.  
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Table 6.11: apcspline model for male lung cancer from 1994-2009. 

Z Coefficient Standard Error  P-value  95% Confidence Interval  

        Lower   Upper  

A 0.138 0.005 0.000 0.127 0.148 

_IA1 -0.001 0.001 0.026 -0.002 0.000 

_IA2 0.001 0.001 0.101 0.000 0.002 

_IA3 0.000 0.000 0.245 -0.001 0.000 

_IA4 0.000 0.000 0.146 0.000 0.001 

_IA5 0.000 0.000 0.008 -0.001 0.000 

_IA6 0.000 0.000 0.000 0.000 0.001 

       -0.022 0.004 0.000 -0.030 -0.014 

_IP1 0.010 0.008 0.225 -0.006 0.025 

_IP2 -0.004 0.011 0.709 -0.026 0.018 

_IP3 -0.008 0.011 0.477 -0.031 0.014 

_IP4 0.001 0.010 0.906 -0.019 0.022 

_IP5 0.010 0.007 0.169 -0.004 0.024 

_IC1 0.000 0.000 0.838 0.000 0.000 

_IC2 0.000 0.000 0.168 0.000 0.000 

_IC3 0.000 0.000 0.046 0.000 0.000 

_cons -16.709 0.295 0.000 -17.287 -16.131 

ln(population) 1.000 (exposure)       

Log likelihood = -601.14016 

Predict fitapc 

(option n assumed; predicted number of events) 

 

Table 6.12: apcfit model for male lung cancer from 1994-2009. 

Z Coefficient Standard Error  P-value  95% Confidence Interval  

        Lower   Upper  

_spA1_intercept  -10.810 0.188 0.000 -11.178 -10.442 

_spA2 2.396 0.230 0.000 1.946 2.846 

_spA3 0.154 0.176 0.380 -0.190 0.499 

_spA4 0.334 0.108 0.002 0.121 0.546 

_spA5 0.089 0.046 0.051 0.000 0.179 

_spA6 0.106 0.017 0.000 0.073 0.139 

_spP1 -0.182 0.015 0.000 -0.212 -0.153 

_spP2 0.038 0.014 0.009 0.009 0.066 

_spP3 -0.006 0.015 0.670 -0.036 0.023 

_spP4 0.085 0.015 0.000 0.055 0.115 

_spC1_drift  -0.021 0.003 0.000 -0.028 -0.015 

_spC2 -0.110 0.143 0.443 -0.391 0.171 

_spC3 -0.226 0.084 0.007 -0.390 -0.062 

_spC4 -0.111 0.083 0.182 -0.274 0.052 

_spC5 -0.098 0.071 0.163 -0.237 0.040 

ln (population) 1.000 (exposure)       

Log likelihood = -607.68 

Predict fitapc 

(option mu assumed; predicted mean Z) 

(608 missing values generated) 
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 Note that the fitted values from apcfit are only available for the observations that 

were used in the model fitting, whereas predict after apcspline provides estimated 

mean numbers for all observations. However, the fitted values that are provided by both 

commands are extremely similar. The cohort effect estimated by apcspline command 

is not the same as that estimated by apcfit. This is due to the effect of the transformation 

used by each command.  

Table 6.13:  Comparison between apcspline and apcfit command. 

Variable Observation Mean Standard deviation  Min Max 

fit apcspline 256 18 18.76 0.14 60.92 

fit apcfit 256 18 18.86 0.17 64.22 

 

 

 

Figure 6.2: Comparison of the default output from apcspline with that from apcfit. 

 

 It can be seen that the estimated risks as a function of age are similar, but the cohort 

relative risks are quite different. The left-hand plot shows the estimated cohort effects, 

which are very different. In particular, in the apcspline model fit, the relative risk is 

always close to 1, whereas the apcfit gives an estimate that decreases rapidly to beyond 

1 for those born between 1940 and 1980 and then increases. It should be noted that the 

constraints imposed by the two programs are different: one could remove the drift from the 

apcfit cohort effect, but its tail behaviour would still be quite different from the 

apcspline effect. The right-hand plot compares the age curve from both models. They 
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are seen to be similar. Thus, we prefer the apcspline to the apcfit for forecasting purposes 

because the apcspline command is flexible and captures the salient features of the cohort 

effect according to Sasieni (2012).    

 The apcspline command can also be used to generate the bases for the splines, 

which can then be combined with other covariates or multiplied to produce interactions 

within a Poisson or glm model. 

6.6.3. Graphs: Spline Predictions 

Figure 6.3 shows the observed age specific standardised incidence rates plotted for males 

and females separately from 1994-2009 with fitted rates, and predictions of rates from 

2010-2020 derived from the APC model using the spline functions. For example, see 

Figure B1 in Appendix B1. From Figure 6.3, the cause of the bump in risk for males in 

2007 is likely due to the history of high smoking prevalence among males in that period 

(see the smoking population in Figure 3.3). Note that we can use more than one model fit, 

as shown in Figure 6.4. We can also do cohort plots (see Figure 6.5).   

 

 

Figure 6.3: Actual (solid circles ••••) and fitted (solid curve ) age-specific standardised rates of 

lung cancer incidence in KSA (per 100,000 person-year) from 1994 to 2009 with forecast rates 

from 2010 to 2020 for males and females separately with different age bands.  

 

 
 

Actual  Forecast Actual  Forecast 
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Figure 6.4: Actual (solid circles ••••) age-specific standardised rates of lung cancer incidence (per 

100,000 person-year) with the fitted rate from 1994 to 2009 and the projected rate from 2010 to 

2020 for males in KSA for age groups 50-75 years. Both the predictions based upon the 

logarithmic link (solid curve) and the predictions based on the power 0.2 link (dashed curve) are 

shown. They are almost identical. 

 

 

 

 

Figure 6.5: Actual (solid circles ••••) and fitted (solid curve) male cohort and age plots. In the left-

hand panel, age-specific standardised rates are plotted against year of birth. In the right-hand panel, 

rates plotted against age and fitted values corresponding to different 10-year birth cohorts are 

joined together. 
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Figure 6.6: Actual (solid circles ••••) age-specific standardised rates of lung cancer incidence (per 

100,000 person-year) with the fitted rate from 1994 to 2009 and the projected rate from 2010 to 

2020 for females in KSA for age groups 50-75 years. Both the predictions based upon the 

logarithmic link (solid curve) and the predictions based on the power 0.2 link (dashed curve) are 

shown.  

 

 

 

Figure 6.7: Actual (solid circles ••••) and fitted (solid curve) females cohort and age plots. In the 

left-hand panel, age-specific standardised rates are plotted against year of birth. In the right-hand 

panel, rates plotted against age and fitted values corresponding to different 10-year birth cohorts 

are joined together. 
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Figure 6.8: Actual (solid circles ••••) and fitted (solid curve) age standardised rates of lung cancer 

incidence in KSA (per 100,000 person-year) from 1994 to 2009 with forecast rates from 2010 to 

2020 for males and females separately for age groups 0-75 years.  

 

 

Trends in lung cancer incidence in Saudi Arabia are shown in Figure 6.8. Age-

standardised incidence rates (ASR) for males lung cancer were at a minimum of 4 in 2001 

with 209 cases per 100,000 whereas they were a maximum in 2007 at 6 with 380 cases per 

100,000. Over the same time period females lung cancer incidence rates was minimum at 

1.5 in 2001 with 56 cases per 100,000 whereas it was maximum in 2009 at 2.2 and 123 

cases of lung cancer per 100,000 female population. The female ASR rate decreased 

gradually for 8 years and showed an upward increase until 2006. Thereafter, it maintained 

a steady increase. However, lung cancer incidence rates are still much lower in females 

than in males.  

From Figure 6.9, lung cancer rate is projected to drop by approximately half between 

1994 and 2020. 
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Figure 6.9: Actual (solid circles ••••) and fitted (solid curve) age standardised rate of lung cancer 

incidence in KSA for age groups 0-75 years (per 100,000 person-year) from 1994 to 2009 with 

forecast rate from 2010 to 2020.  

 The current age-specific incidence rates using the world standard population for lung 

cancer in Saudi Arabia are shown in Figure 6.10. In this graph, there are more cases of the 

disease diagnosed in males than in females. Figure 6.10 shows that lung cancer is rarely 

diagnosed in younger people before the age of 40 in KSA, but incidence rises sharply 

thereafter peaking in people aged 65-69 years. Most of the cases occur in people over the 

age of 50. 
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Figure 6.10: Age-specific incidence rates, lung cancer, by gender, KSA, 2009. 
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 During the period from 1994 to 2009, an average of 300 cases per year and 85 cases 

per year were diagnosed in males and females respectively. This means that more cases 

were diagnosed in males than in females from 35-39 age-groups onwards in KSA (Figure 

6.11). The projection in male cases indicates that there was a rise between 2009 and 2010, 

and then a sharp decline until 2015. Thereafter, the cases levelled up until 2020. In spite of 

this, female cases continued to increase gradually up to the year 2020.   

 

 

Figure 6.11: Number of new cases per year by gender in Saudi Arabia from 1994 to 2020. 

6.7. Discussions 

This study revealed that age, period, cohort, gender, ethnicity, and region effects are 

important factors for explaining lung cancer incidence rates in Saudi Arabia. We analyse 

the APC models in this chapter by using the restricted cubic splines to overcome the 

identification problem due to the exact linear relationship between age, period and cohort 

by fitting constraints to the model. In addition, the use of restricted cubic splines are useful 

because they produce a smooth overall curve and offer sufficient flexibility to capture the 

shape of most data, if appropriate knots are chosen.     

 The risk of lung cancer in males, adjusted by age, period, cohort, ethnicity and five 

regions, was approximately 79% greater than in females. Comparing the incidence rates of 

lung cancer among genders, it was found that although males show higher rates than 

females, females rate of lung cancer is expected to increase in the future. This is perhaps 

due to the increase in the proportion of female smokers.  
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 The model selection statistics for example AIC, deviance and log likelihood were used 

to choose the best model of reduced and full three-way APC models with covariates. We 

conclude that none of the three components of the APC models should be eliminated from 

the model specification and selection. In addition, the covariates (with p-value shown) of 

gender (0.000), race (0.001), Southern region (0.044), Western region (0.030) and Eastern 

region (0.038) are statistically significant. Thus, the full APC model with the covariates of 

gender, race and five regions fit the data significantly better than the other four models (see 

Table 6.8).  

 Using APC models with restricted cubic splines, we are able to identify the effects of 

the three variables on the outcome of lung cancer incidence, which is the first step for 

exploring the causal processes of lung cancer. Having known that age is the most 

important time-related variable that influences the risk of lung cancer, our results show that 

age has a strong association with lung cancer incidence rates, suggesting age-related causes 

such as cumulative exposures of smoking over time may be the main reason for increasing 

lung cancer incidence in Saudi Arabia. The age effect shows that the incidence rate 

increases as the age increases, with wider credible interval width at younger age groups 

due to the heterogeneity in the data where there are sparse and zero counts associated with 

the fitted model (see Table F13 in Appendix F). For the period effect, the rate-ratio 

declined for about a decade to the early 2000s and then rose up to 2007, and thereafter 

observed a subsequent decrease, as an effect of the new polices implemented by the 

government during the period, such as the ban of smoking cigarettes in public places and 

the increase of tax on imported tobacco. The cohort effect reflects the cumulative effects of 

exposure in generations. Therefore, the cohort effect increased steadily up to the generation 

born before the second world war in 1939 and declined thereafter until the Gulf war in 

1990. A subsequent increase followed in cohorts born after the Gulf war until 2009. 

However, our results show that the precision of the cohort effect was the lowest regarding 

to the widest credible intervals near the end of the cohort graph (see Figure 6.1). 

Particularly, the youngest cohort trends are uncertain due the low number of incidence 

cases. However, the complexity pattern of the cohort effect may be due to the short time 

period of the observed incidence data. Thus, more information is needed to further clarify 

our results. 

 Although the standard link function used in modelling the age-period-cohort models 

with covariates is the log, we used the power 0.2 link function for forecast purposes in line 

with the recommendations of Rutherford et al. (2012) and Sasieni (2012), because the log 
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link function tend to over-estimate future incidence rates. Therefore, we use the power 0.2 

link function to dampen the exponential growth especially for long-term forecasts. The 

difference between the log and the power link functions can be seen clearly in female 

forecasts in Figure 6.6.  

 Our APC model provides a good fit to the incidence of lung cancer data compared to 

the A, P, AP, AC and PC models. This can be confirmed by our previous analysis in 

Chapter 4 of the best ARPDL(12,3,26,8) model when the model has shown that lung 

cancer is expected to decrease in males and increase in females. The APC model has 

provided good estimations for lung cancer forecast by using the fact that restricted cubic 

splines are linear beyond the boundary knot. The linear prediction beyond the range of the 

data was dictated by the shape of the data towards the end of the observation period 

ensuring that the forecasts give increased weight to more recent trends than standard 

approaches (Rutherford et al. 2012). Thus, based on the assumption that past period, cohort 

and age trends would continue into the future, we forecast the next 10 years of lung cancer 

in Saudi Arabia between 2010 and 2020. Our results show that ASR of lung cancer 

incidence is expected to decrease in males from 4.6 to 2.4 and increase in females from 2.0 

to 2.2 per 100,000 population. This may be due to the increase of female smokers over 

time. The rate of lung cancer incidence in both genders is rarely diagnosed in younger age 

groups, but the rate rises sharply from people aged 65-69 years.  

 We forecast the rates and the cases of lung cancer incidence to 2020 to provide 

evidence for future policy making. However, we expect that the precision of our forecasts 

could be improved as further data are collected.    

 So far we have applied a range of alternative forecasting techniques to forecast lung 

cancer incidence in KSA from 1994 to 2009 with different data (monthly and yearly) with 

different covariates,  to assess which method copes better with the  specificities of each 

case. We use time series SARIMA modelling on monthly data for short-term forecasting. 

This appears to take into account trends and seasonal variations and eventually provide 

good estimates of current cases based on previous data. Also, we use generalised linear 

models such as APC modelling on yearly data for long-term forecasts and these appear to 

take into account the effects of age, period and cohort to extrapolate the future rate, which 

is important from the point of view of public health planers. 

 We describe a comparison of the quality of the forecasts generated by the APC model 

with classical time series SARIMA model. APC models can take one or more of the 

following into account, for example, population growth, ageing of the population and 
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changes in the rates based on the past observation. In addition, the advantages of using 

APC models take into account the age, period and cohort effects when forecasting future 

rates. On the other hand, the use of time series models are useful only for short-term 

forecast and can also explain the casual relationship between dependent and independent 

variables.  

 However, it is difficult to choose between SARIMA and APC models because these 

models may produce equally good fits to the data but offer different predictions. 

Predictions from APC models are uniquely determined (Holford 1985). Thus, we prefer 

APC models to the classical time series models because they extrapolate the effects of age, 

period and cohort into the future to make new forecasts. Most causes of lung cancer require 

prolonged exposure, determined by an aspect of life-style, such as smoking habits, which is 

fixed very early in adult life. In this case, a change in population exposure is more likely to 

manifest many years subsequently and will not occur simultaneously in all age groups; 

certain generations or cohort will have greater exposure than others and APC model will 

provide a better description of the data.  

6.8. Summary 

The observed data used for age-period-cohort (APC) modelling were annual incidence 

cases of lung cancer, for Saudi Arabia, by gender, ethnicity (race) and 5-year age group 

from 1994-2009. Incidence figures as mentioned in section 3.5, the total number of cases 

excluded from the ethnicity or race when dealing with the covariates includes 241 cases 

because of unknown nationalities. However, the overall model used the total number of 

lung cancer incident cases for both males and females. So this exclusion of ethnicity do not 

affect our forecasts.  

 It is often recommended to take the square root when one has a count data. On the 

other hand, when fitting a generalized linear model with a response variable distributed as 

Poisson (as in the APC approach), the log link is the canonical link. The log link implies a 

log transformation of the mean,  , the parameter that governs the response distribution but 

not especially of a Poisson data. We gather the square root is best for stabilizing the 

variance and normalizing the Poisson distribution, and could have been considered for the 

earlier ARIMA/SARIMA models and in the distributed lag models. 

 The projection of the future rate depends on population projections; we use the 2010 to 

2020 United Nations forecasts. Additionally, projection of lung cancer does not take into 
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account potential changes in lifestyle or treatment that could alter future rates of lung 

cancer incidence.  

 The forecast of lung cancer incidence presented in this chapter is based on the classical 

APC model, with the use of restricted cubic splines. In addition, the power link function is 

used instead of the logarithm link function to improve the forecast accuracy because the 

logarithm link function tend to over-estimate future incidence rates. Therefore, we use the 

power link function to reduce the exponential growth for long-term forecasts. 

 The estimated rates from APC modelling show a gradual decrease in males and a 

slight increase in females over the next 10 years. This is perhaps due to the increase in the 

proportion of female smokers. Male age standardised rates (ASR) of lung cancer are 

projected to fall to 2.4 per 100,000 by 2020, whereas female age standardised rates (ASR) 

of lung cancer are projected to increase to 2.2 per 100,000 by 2020. The growing and 

ageing populations will have a substantial impact, therefore the cases are projected to 

decrease in males (from 356 to 320) and to increase in females (from 134 to 247) between 

2009 and 2020.  

 The results show that in Saudi Arabia, males have about a 79% greater incidence of 

lung cancer than females across the entire dataset when adjusting for the other effects. The 

p-value for the gender term highlights that the effect for gender is significant at the 0.1% 

level. In addition, the p-values for the covariates of race, Southern, Western, and Eastern 

regions show that the effects for these covariates are statistically significant. 

 Notwithstanding new potential changes in lifestyle or treatment, the incident cases of 

lung cancer in Saudi Arabia will decrease gradually in males reflecting the decrease of 

smoking prevalence among males and will increase slightly in females reflecting the 

ageing, growing populations and the increase of smoking prevalence in females.  
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CHAPTER 7 

PREDICTION OF LUNG CANCER MORTALITY IN SAUDI ARABIA USING 

BAYESIAN DYNAMIC APC MODELLING  

7.1. Introduction 

Statistics provides analyses based on processing real data. Such analyses are noted for high 

measure of objectiveness, and thus provide information for making well informed 

decisions. Sometimes it is a great problem to gather enough data to describe the whole 

population.  

 Bayesian statistics is an effective tool for solving some inference problems when the 

available sample is too small for more complex statistical analysis to be applied. The lack 

of information may be offset (up to a certain point) by using Bayesian approach, as it 

enables us to utilise more sources of information.  

 In the Bayesian paradigm, we follow the strategy proposed by Held and Rainer (2001) 

and Shuichi et al. (2008) by using a dynamic age-period-cohort model to smooth age, 

period and cohort trends and to extrapolate N future periods and cohorts. Broadly, the 

methodology of the model building is a Bayesian version of the APC as suggested by 

Berzuini et al. (1993) and Besag et al. (1995). Bayesian dynamic APC modelling is 

expected to smooth the effect of age, period and cohort as much as possible in order to 

minimize the error and improve the predictions. By comparing the classical APC 

formulations to Bayesian APC, the predictions based on Bayesian APC do not rely on 

strong parametric assumptions for future values of subjective cohort and period effects and 

therefore seem to be particularly well suited for our objective. In addition, the models can 

take any additional unstructured heterogeneity. For more information on Bayesian APC 

models see the following papers (Berzuini et al, 1993; Berzuini and Clayton, 1994; Besag 

et al, 1995; Bray et al, 2001; Knorr-Held and Rainer, 2001; Bray, 2002; Baker and Bray, 

2005; Schmid and Held, 2007).  

 This chapter is organized as follows. We give an overview of APC models and 

autoregressive models and introduce our dynamic Bayesian APC model in Section 7.2. We 

give some details on implementation and projection issues to these models in Section 7.3. 

For more information on the implemented models, see Appendix C. Section 7.4 outlines 

the analysis of the KSA lung cancer mortality data in three separate steps. The first step is 

an analysis of the complete data without any projection. We then conducted sensitivity 

analysis using four different values for the prior standard deviations of the age, period and 



144 

 

cohort effects, to evaluate the robustness of the results. Finally, we present a practical 

example of combined male and female lung cancer mortality modelling with forecasts until 

the year 2020. To conclude, we summarize our findings and propose next steps for 

research in section 7.6. 

7.2. The Bayesian APC Model 

Although the classical APC modelling produces almost the same results in estimating 

cancer rates as in Bayesian APC models, Bayesian APC models provide more robust 

results especially when the data are sparse (a lot of zero counts) (Raifu and Arbyn, 2009). 

However, Bayesian approaches are more complex and time consuming for researchers. 

Bayesian APC has been used more frequently in the last few years in epidemiology, 

demography, social & political behaviour and cancer research to predict cancer incidence 

and mortality rates (Baker and Bray 2005; Raifu and Arbyn 2009). Moreover, Bayesian 

APC models are recommended recently because it allows the uncertainty associated with 

functions of the parameters to be readily explored (Cleries et al., 2010).  

 The Bayesian approach considers the likelihood for the data and a prior belief about 

the smoothness of the model parameters. To obtain the posterior distribution, the model is 

constructed and simulated through the Markov Chain Monte Carlo (MCMC) method using 

Gibbs sampling. Then the best model is selected based on one of the goodness-of-fit 

criteria (Kaplan, 2014). Thus, the posterior distribution of   is summarised as  

     ) =      )           

where =      ) is the likelihood function,      is the prior distribution of µ before seeing 

the data and       is the marginal distribution of the data.  

 APC models were originally proposed by sociologists and demographers in the early 

1970s, see for example, (Mason et al., 1973). Bayesian APC approaches have been 

proposed firstly by Berzuini et al., (1993), Berzuini and Clayton (1994), and Besag et al., 

(1995). To smooth the prior of the model parameters, several methods have been proposed 

during the last 30 years, in such a way that the identification issue is avoided, for more 

details see Chapter 2 in page 24. This mean that improper priors could generate problems 

in making inference. Therefore, prior distributions should be selected carefully based on 

previous studies in the literature or on subjective prior beliefs. 
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7.3. Dynamic Age-period-cohort Model 

Let             index the age groups, where age group 1 includes 25-29 year olds, age 

group 2 includes 30-34 year olds, and so on;           index 1 year period, with period 1 

as 1994, period 2 as 1995, and so on; and          index cohort. In our dataset,     ,  

     and     . The following assumptions were made during the construction of the 

model.  

 The number of deaths in age group  , period   and cohort   is denoted     , and is a 

realisation of Poisson random variable with mean     , where 

log (    ) = log (    ) +         . 

Here   ,   , and     are the effects of age group  , time period   and birth cohort  . The 

size of the population at risk, assumed to be known without error from census data, is 

denoted as       , and was used to transform the raw cases in both Table F15 and F16 (see 

Appendix F) to the rates in Table 3.7. As mentioned earlier in the incidence case, inclusion 

of the offsets        in the model for the Poisson mean implies that we are effectively 

modelling mortality rates           , thereby correcting for the number at risk. It is clear 

that the parameterization is not identifiable, as we are using three co-ordinates to index into 

a two dimensional table of counts. In particular,         . This methodological 

challenge results from the exact linear relationship between age, period, and (birth) cohort: 

cohort = period - age. Consequently, it is impossible to obtain valid estimations of the 

distinct effects of age, period, and cohort from standard regression-type models.  

7.3.1. Prior Distributions for Age, Period and Cohort Effects  

The prior distribution used in this analysis is a non-informative uniform distribution 

because we want the hyper-parameters to be estimated mainly from the data. If we are able 

to estimate the prior correctly, then the posterior mean will lie between the prior and the 

likelihood parameters. On the other hand, if we do not have information about the prior 

then the posterior parameters will be approximately the same as the maximum likelihood 

parameters and the effects of age, period and cohort will be close to maximum likelihood 

estimates (Congdon, 2006; Kaplan ,2014, pp 33-40). 

 In this Bayesian analysis, trends were modelled by using specific smoothing of model 

parameters because the cases of lung cancer mortality data are low. A 2nd order random 

walk (RW2) constraint has been used for age, period and cohort effects (Knorr-Held and 

Rainer, 2001), whilst 2nd order differences of this RW2 have been constrained for age 
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parameters, assuming that one 2nd order difference is estimated as the mean value on the 

previous and subsequent 2nd order differences (Cleries et al., 2006). Suppose ,   and   

are the age, period, and cohort effects respectively. Therefore, the age effect is constrained 

to  

            , j≠ i ~N(          
     

               
         

                  
 

          

 
 

                             
 

                     

 
           

                       
 

              

 
 

                  
            

           
 

  
  

        ~Uniform (0.01, 1) 

where    is the effect of the  th age group (1,...,A),           
 is the mean age effect for an 

individual aged i in the smooth prior specification,    is the prior standard deviation and    

is the prior precision (inverse of the prior variance). It is advised that for hierarchical 

models, the prior standard deviation of the parameters should be modelled using non-

informative uniform distributions on the interval [0.01, 1] which they are expected to 

improve the estimations especially when the variables are below five (Gelman, 2005). An 

adaptive precision parameter is denoted as    and has been assumed the same for age, 

period, and cohort effects. The period parameters, {        }, have been modelled using 

RW2 as follows: 

           

               ) 

                                 
            

                   
                   

          
 

  
  

    ~Uniform (0.01, 1) 

Notice that       and so the first period is the reference period.  

Similarly, cohort parameters, {        }, were modelled through 

           

               ) 
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            ,       

           
 

  
  

         ~Uniform (0.01, 1) 

Notice that      and so the first cohort is the reference cohort. 

7.4. Materials and Methods 

The mortality rates of lung cancer were calculated using the population of Saudi Arabia 

according to the statistical national census of 1994 to 2009. The rates were age 

standardised using the world standard population. It was decided to restrict the age range 

between 25-75 because the observation number of lung cancer mortality is low in the 

earliest age groups and this might lead to less precision in the estimates. Thus, data were 

arranged in one-year interval period from 1994 to 2009 and 5-year age group from 25-29 

years to 75+ years. The periods and the age groups involved 66 (5. (I - 1) + J) overlapping 

5-year cohorts (Held and Rainer, 2001). The data are provided in Appendix D. The cohort 

groups started from 1919 cohort and finishing with the cohort 1980. The form of the model 

falls into the class of generalized linear models to assess the effects of the three variables 

assuming that the number of lung cancer mortality follows a Poisson distribution. Three 

models were estimated, namely, APC, AP and AC models. Comparison between nested 

models was evaluated by the changes in Deviance Information Criterion DIC. The best-

fitting model is chosen by the lowest value of DIC. Bayesian dynamic APC model 

smoothing and Markov Chain Monte Carlo (MCMC) techniques were used. Constraints on 

2nd order differences were used for all the three effects. Additionally, the posterior 

inference were based on 2500, 5000, 10000, 50000 and 100000 iterations of Gibbs sampler 

after a burn-in of 1000 iterations was discarded. Convergence was assessed by using the 

Gelman and Rubin diagnostic statistic. R and R2WinBUGS statistical software were used 

for the implementation. In addition, a second order random walk (RW2) has been used for 

age, period and cohort effects to smooth the models as possible. Furthermore, we 

introduced an adaptive precision parameter (  ) for each prior distribution of age, period 

and cohort to smooth the parameter effects as much as possible as suggested by Cleries et 

al. (2010). The models have been fitted for age-period (AP) , age-cohort (AC) and age-

period-cohort (APC) and the one with lowest value of deviance information criteria (DIC) 
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is selected as the best model. DIC can be calculated directly by adding the number of 

model parameters (pD) to the posterior deviance.  

 Spiegelhalter et al. (2002) has proposed a method for judging the goodness-of-fit for 

Bayesian model comparison. The criterion is based on the deviance given by the following 

formula 

                               , 

where      is the posterior mean and      is some fully specified standardizing term that 

is a function of the data alone.  Thus, the DIC is given by  

        +   

where      is the posterior expectation of the deviance and    is the effective number of 

model parameters. 

7.5.  Results  

7.5.1. Bayesian Model Comparison and Sensitivity Analysis 

Comparison between nested models was evaluated by the changes in Deviance Information 

Criterion (DIC). The best-fitting model is chosen by the lowest value of DIC 

(Spiegelhalter, 2002). We evaluated the DIC values for AP, AC and APC models in five 

scenarios, depending on the value for the adaptive precision parameter,   . In this 

Bayesian analysis, we have evaluated    at five different fixed values (1, 0.1, 0.01, 0.001, 

0.0001). The adaptive precision parameter selected has been used for the APC model used 

for projections.  

 We also carried out sensitivity analysis on the prior standard deviations of the age, 

period and cohort effects, to evaluate the robustness of the results. In particular, we run the 

simulations for the prior standard deviations for the three effects at four different fixed 

values (1.0, 0.25, 0.5 and 0.75) each with AP, AC, and APC models. The number of 

iterations were simultaneously altered between 2500 and 100000 after a burn-in of 1000 

iterations was discarded for each single model to check the convergence. Results of the 

various simulations considered in this analysis have been tabulated as follows. 
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7.5.2. Sensitivity Analysis for the Best Bayesian AP Model  

Tables from 7.1 to 7.4 show different values of DIC and pD with different values of the 

adaptive precision parameter       {1, 0.1, 0.01, 0.001, 0.0001} for the reduced AP model 

at different fixed prior standard deviations of 1, 0.25, 0.5 and 0.75. These tables present the 

procedure for the selection of the adaptive precision parameter    using Deviance 

Information Criterion (DIC) and the effective number of model parameters (pD). Through 

the tables, the influence of the adaptive precision parameters on the predictive performance 

of the models due to model with lowest DIC value best predictive performance shows. In 

this analysis, we have selected the value 0.001 because AP model tested showed the lowest 

DIC value and this was used for the APC model used for predictions. To conclude, the 

adaptive precision parameter selected due to DIC value is the minimum observed among 

models. Hence, small adaptive precision parameter implies small variance of the age and 

period effects.   

 Table 7.2 shows the best age-period model when the adaptive precision parameter is 

0.001 and the prior standard deviation is 0.25 regarding the lowest value of DIC and the 

stabilization of the iterations as it increases.    

Table 7.1: Different values of DIC and pD with different values of the adaptive precision 

parameter for the AP model when the prior standard deviation is 1.0. 

Iteration   = 1.0   = 0.1   = 0.01   = 0.001   = 0.0001 

  DIC pD DIC pD DIC pD DIC pD DIC pD 

2500 305.04 11.13 301.26 10.79 299.67 11.97 299.17 14.60 305.18 20.06 

5000 302.65 11.31 301.80 11.68 300.12 11.92 299.24 14.91 305.70 20.59 

10000 303.92 11.37 302.66 11.60 300.75 12.01 299.50 15.03 305.51 20.54 

50000 303.02 11.70 303.28 11.92 300.64 12.11 299.97 15.09 305.57 20.46 

100000 302.80 11.76 302.88 11.76 300.19 12.16 299.57 15.01 305.58 20.42 

 

Table 7.2: Different values of DIC and pD with different values of the adaptive precision 

parameter for the AP model when the prior standard deviation is 0.25. 

Iteration   = 1.0   = 0.1   = 0.01   = 0.001*   = 0.0001 

  DIC pD DIC pD DIC pD DIC pD DIC pD 

2500 302.24 11.64 302.14 11.52 418.81 13.21 299.31 15.09 303.18 19.94 

5000 304.22 11.18 302.90 12.69 301.26 12.35 298.84 14.91 304.45 20.24 

10000 303.45 11.57 302.69 11.71 300.68 12.02 299.01 14.90 304.88 20.22 

50000 303.14 11.43 302.97 11.72 300.27 12.05 299.44 15.07 305.15 20.37 

100000 303.77 11.55 302.72 11.74 300.54 12.18 299.31 15.02 305.31 20.39 

       *=Best adaptive precision parameter. 
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Table 7.3: Different values of DIC and pD with different values of the adaptive precision 

parameter for the AP model when the prior standard deviation is 0.50. 

Iteration   = 1.0   = 0.1   = 0.01   = 0.001   = 0.0001 

  DIC pD DIC pD DIC pD DIC pD DIC pD 

2500 302.03 11.49 303.19 11.62 303.87 12.06 299.31 14.70 315.41 20.81 

5000 304.54 11.51 303.06 11.66 299.32 11.97 299.46 15.01 305.77 20.92 

10000 322.89 13.20 302.52 11.80 299.32 12.00 299.76 15.07 305.58 20.60 

50000 302.94 11.48 302.54 11.57 300.27 12.25 299.79 15.06 305.41 20.47 

100000 303.38 11.48 302.35 11.71 301.59 12.45 299.67 15.08 305.43 20.45 

 

 

Table 7.4: Different values of DIC and pD with different values of the adaptive precision 

parameter for the AP model when the prior standard deviation is 0.75. 

Iteration   = 1.0   = 0.1   = 0.01   = 0.001   = 0.0001 

  DIC pD DIC pD DIC pD DIC pD DIC pD 

2500 304.71 11.69 303.89 10.95 300.22 12.23 299.01 15.43 305.45 20.08 

5000 302.86 11.35 302.08 11.85 300.73 12.00 299.78 15.01 304.44 20.42 

10000 301.98 10.50 303.44 11.74 300.30 12.05 299.22 15.11 305.07 20.36 

50000 302.76 11.86 302.64 11.57 300.16 12.06 299.43 15.07 305.35 20.39 

100000 302.86 11.59 302.86 11.74 300.64 12.07 299.48 15.08 305.45 20.41 

 

 

 

Figure 7.1: Effects of age and period on mortality from lung cancer identified by the age-period 

model for persons aged 25 to 75 years in Saudi Arabia during the period 1994-2009 within 95% 

credible intervals (dash lines). 
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7.5.3. Sensitivity Analysis for the Best Bayesian AC Model  

Tables from 7.5 to 7.8 show different values of DIC and pD with different values of the 

adaptive precision parameter       {1, 0.1, 0.01, 0.001, 0.0001} for the reduced AC model 

at different fixed prior standard deviations of 1, 0.25, 0.5 and 0.75. These tables show the 

procedure for the selection of the adaptive precision parameter    using Deviance 

Information Criterion (DIC) and the effective number of model parameters (pD). Notice 

that the influence of the adaptive precision parameters on the predictive performance of the 

models due to model with lowest DIC value best predictive performance shows. In this 

analysis, we have selected the value 0.1 because AC model tested showed the lowest DIC 

value and this was used for the APC model used for predictions. To conclude, the adaptive 

precision parameter selected due to DIC value is the minimum observed among models.  

 Table 7.8 shows the best age-cohort model when the adaptive precision parameter is 

0.1 and the prior standard deviation is 0.75 regarding the lowest value of DIC. However, 

the DIC obtained here is far away from the DIC obtained from age-period model. Thus, it 

has been plotted in Figure 7.2 for just seek of comparison. 

Table 7.5:  Different values of DIC and pD with different values of the adaptive precision 

parameter for the AC model when the prior standard deviation is 1.0. 

Iteration   = 1.0   = 0.1   = 0.01   = 0.001   = 0.0001 

  DIC pD DIC pD DIC pD DIC pD DIC pD 

2500 335.43 10.34 323.78 10.90 321.63 15.50 322.91 21.69 343.95 36.20 

5000 342.64 11.92 328.27 11.83 321.02 15.72 324.08 23.90 342.84 36.12 

10000 328.06 11.40 317.60 11.29 319.11 16.61 324.03 23.93 342.12 35.79 

50000 319.45 11.59 314.30 12.44 315.17 16.04 322.80 22.93 342.17 35.93 

100000 312.91 11.64 312.43 12.49 314.33 16.11 322.84 23.12 366.91 36.23 

 

 

Table 7.6: Different values of DIC and pD with different values of the adaptive precision 

parameter for the AC model when the prior standard deviation is 0.25. 

Iteration   = 1.0   = 0.1   = 0.01   = 0.001   = 0.0001 

  DIC pD DIC pD DIC pD DIC pD DIC pD 

2500 329.60 11.76 331.17 11.73 321.12 15.02 324.07 22.30 342.37 35.55 

5000 333.57 9.71 324.85 12.01 323.72 15.60 323.66 22.30 342.65 35.76 

10000 331.76 10.60 318.83 11.49 315.90 15.64 322.56 22.93 343.14 36.12 

50000 324.03 10.79 315.00 12.86 314.47 15.76 323.48 23.35 342.27 35.88 

100000 314.78 12.11 312.60 12.68 313.52 15.82 327.61 23.27 341.88 35.77 
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Table 7.7: Different values of DIC and pD with different values of the adaptive precision 

parameter for the AC model when the prior standard deviation is 0.50. 

Iteration   = 1.0   = 0.1   = 0.01   = 0.001   = 0.0001 

  DIC pD DIC pD DIC pD DIC pD DIC pD 

2500 331.63 11.45 323.53 12.19 319.19 14.38 324.28 22.15 342.99 35.73 

5000 330.51 13.66 323.71 11.48 321.86 15.26 366.09 23.49 343.07 35.94 

10000 325.45 11.34 324.81 12.51 317.85 15.78 323.05 23.20 342.40 35.92 

50000 320.90 11.49 313.49 12.09 314.73 15.69 322.95 23.04 342.24 35.82 

100000 313.37 10.56 341.60 14.51 313.56 15.91 322.98 23.19 342.43 35.88 

 

 

Table 7.8: Different values of DIC and pD with different values of the adaptive precision 

parameter for the AC model when the prior standard deviation is 0.75. 

Iteration   = 1.0   = 0.1*   = 0.01   = 0.001   = 0.0001 

  DIC pD DIC pD DIC pD DIC pD DIC pD 

2500 332.04 10.77 318.72 11.85 326.06 14.82 325.02 22.37 405.84 35.26 

5000 325.27 11.29 323.36 12.95 317.41 15.51 323.24 22.46 364.10 36.77 

10000 324.75 10.40 322.33 12.90 344.12 16.19 322.34 22.57 342.48 35.86 

50000 319.58 11.52 316.55 12.43 315.04 16.12 322.21 23.05 342.11 35.85 

100000 314.76 11.36 310.36 12.09 313.00 15.90 322.68 23.09 342.47 36.00 

      *=Best adaptive precision parameter 

 

 

 

Figure 7.2: Effects of age and cohort on mortality from lung cancer identified by the age-cohort 

model for persons aged 25 to 75 years in Saudi Arabia during the period 1994-2009 within 95% 

credible intervals (dash lines). 
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7.5.4. Sensitivity Analysis for the Best Bayesian APC Model  

Tables from 7.9 to 7.12 show different values of DIC and pD with different values of the 

adaptive precision parameter       {1, 0.1, 0.01, 0.001, 0.0001} for the full APC model at 

different fixed prior standard deviations of 1, 0.25, 0.5 and 0.75. These tables present the 

procedure for the selection of the adaptive precision parameter    using Deviance 

Information Criterion (DIC) and the effective number of model parameters (pD). Note the 

influence of the adaptive precision parameters on the predictive performance of the models 

due to model with lowest DIC value best predictive performance shows. In this analysis, 

we have selected the value 1.0 because APC model tested showed the lowest DIC value 

and this was used for the APC model used for predictions. To conclude, the adaptive 

precision parameter selected due to DIC value is the minimum observed among models.  

 Table 7.10 shows the best age-period-cohort model when the adaptive precision 

parameter is 1.0 and the prior standard deviation is 0.25 regarding the lowest values of 

DIC. However, the DIC obtained here is not lower than the DIC obtained from age-period 

model. Thus, it has been plotted in Figure 7.3 for just seek of comparison. 

 

Table 7.9: Different values of DIC and pD with different values of the adaptive precision 

parameter for the APC model when the prior standard deviation is 1.0. 

Iteration   = 1.0   = 0.1   = 0.01   = 0.001   = 0.0001 

  DIC pD DIC pD DIC pD DIC pD DIC pD 

2500 301.79 12.70 302.18 13.68 303.88 17.03 314.98 27.88 337.07 42.74 

5000 301.82 12.98 301.76 14.27 306.39 18.95 316.20 28.76 337.34 42.83 

10000 301.75 12.95 303.70 15.34 301.91 20.30 314.44 27.89 338.08 43.21 

50000 301.15 13.91 301.18 14.88 305.50 19.53 314.79 28.23 338.21 43.48 

100000 300.95 13.50 301.61 14.94 305.34 19.16 314.84 28.17 337.69 43.19 

 

 

Table 7.10: Different values of DIC and pD with different values of the adaptive precision 

parameter for the APC model when the prior standard deviation is 0.25. 

Iteration   = 1.0*   = 0.1   = 0.01   = 0.001   = 0.0001 

  DIC pD DIC pD DIC pD DIC pD DIC pD 

2500 303.08 13.10 303.43 15.03 323.42 19.45 314.59 28.12 335.57 42.22 

5000 299.94 13.10 300.67 14.12 304.10 18.66 314.06 27.89 338.07 43.26 

10000 301.11 13.45 302.24 14.18 305.59 19.84 315.13 28.34 337.76 43.27 

50000 300.52 12.72 302.57 15.16 305.41 19.43 315.19 28.19 337.96 43.28 

100000 302.36 13.48 303.05 15.99 304.60 18.97 314.62 28.16 337.73 43.22 

          *=best adaptive precision parameter 
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Table 7.11: Different values of DIC and pD with different values of the adaptive precision 

parameter for the APC model when the prior standard deviation is 0.50. 

Iteration   = 1.0   = 0.1   = 0.01   = 0.001   = 0.0001 

  DIC pD DIC pD DIC pD DIC pD DIC pD 

2500 302.53 11.40 303.02 13.80 306.55 17.86 314.50 27.49 338.59 43.23 

5000 303.81 13.74 303.32 15.07 306.43 18.55 315.25 28.17 337.78 43.29 

10000 301.23 12.27 301.53 13.99 305.50 19.42 315.55 28.44 337.71 43.25 

50000 301.18 13.08 302.52 15.36 304.94 19.00 314.61 28.17 337.99 43.32 

100000 301.54 13.38 301.83 15.01 305.35 19.34 314.63 28.14 338.01 43.31 

 

 

Table 7.12: Different values of DIC and pD with different values of the adaptive precision 

parameter for  the APC model when the prior standard deviation is 0.75. 

Iteration   = 1.0   = 0.1   = 0.01   = 0.001   = 0.0001 

  DIC pD DIC pD DIC pD DIC pD DIC pD 

2500 305.08 12.30 304.15 13.19 307.02 19.04 315.72 28.36 338.83 44.07 

5000 304.50 12.80 302.10 14.40 305.86 19.17 314.67 27.84 337.56 42.81 

10000 301.75 14.08 302.43 14.28 305.46 19.28 315.04 27.94 339.40 43.55 

50000 300.02 13.27 301.29 14.58 304.68 19.28 315.12 28.19 338.20 43.42 

100000 301.66 13.34 302.51 15.37 305.00 19.17 314.87 28.22 337.91 43.34 

 

 

 

Figure 7.3: Effects of age, period and cohort on mortality from lung cancer identified by the age-

period-cohort model for persons aged 25 to 75+ years in Saudi Arabia during the period 1994-2009 

within 95% credible intervals (dash lines). 
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 From above, for example, the full Bayesian APC model (Figure 7.3) illustrates the 

non-linear effects of age, period and cohort on lung cancer mortality for both gender 

combined.  The age effect shows a dramatic increase of lung cancer mortality up to the age 

class 65-69 and then it starts to decrease gradually for the rest of age groups. The non-

linear effects of the period of lung cancer mortality show again an increase of deaths up to 

the year 2007 and start to fall slightly. The cohort effects show a fluctuated and an 

increased pattern until it reached the peak on the birth cohort 1939 and since then it started 

to decrease until 2009. 

 Tables 7.1- 7.12 above show the criteria for selecting the adaptive precision parameter 

  . The influence of the adaptive precision parameters can be accessed through the 

different DIC values for AP, AC, and APC models with different values of prior standard 

deviations. From this Bayesian analysis, we have selected across the tables, the value of    

=0.001 when the prior standard deviation is 0.25 because the age-period model tested 

showed the lowest DIC value (see Table 7.2). Notice that the parameters of the interval of 

the uniform distribution used in the best AP model is [0.01, 1]. Notwithstanding, we 

subjected again the best AP model to sensitivity analysis on the hyper-prior distribution to 

evaluate the robustness of the result. In particular, we changed the interval parameters of 

the uniform distribution for the age and period. The results of this analysis are provided in 

Table 7.13. 

Table 7.13: Bayesian AP modelling using non-informative prior (uniform distribution) with 

varying intervals (endpoints). 

    =0.001 and prior standard deviation =0.25 

Iteration  (0.01,1)*  (0.1,100)  (0.001,1)  (0.1,0.5)  (0.01,0.5)  (0.01,0.75)  (0.01,0.25) 

  DIC pD DIC pD DIC pD DIC pD DIC pD DIC pD DIC pD 

2500 299.3 15.1 310.7 24.0 302.7 11.6 310.7 23.8 301.2 15.3 301.2 15.3 299.3 14.9 

5000 298.8 14.9 310.4 24.0 302.5 12.0 310.5 23.7 300.1 14.8 300.8 15.1 300.1 15.0 

10000 299.0 14.9 310.2 23.9 302.8 11.8 310.3 23.7 300.0 14.9 300.3 15.1 299.3 15.2 

50000 299.4 15.1 310.2 23.8 303.0 11.7 310.4 23.6 299.3 15.0 299.4 15.0 299.2 15.1 

100000 299.3 15.0 310.5 23.9 302.7 11.8 310.7 23.2 299.4 15.0 299.3 15.0 299.4 15.1 

*=Best parameters.  

 

 From Table 7.13 above, the results obtained with new intervals did not show any 

improvement than the best result obtained so far. 
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Table 7.14: Summary Table of results. Overall best Bayesian APC model is stared. 

Model  Prior standard deviation     DIC  pD 

AP* 0.25 0.001 298.840 14.910 

AC 0.75 0.100 310.360 12.090 

APC 0.25 1.000 299.940 13.100 

 

 

 From Table 7.14, the adaptive precision parameter selected due to DIC value is the 

minimum observed among these models. Hence, small adaptive precision parameter 

implies small variance of the age and period effects.   

 

7.5.5. Model Validation 

One way to check if our chain has converged is to see how well our chain is mixing, or 

moving around the parameter space. The following figures show the graphical convergence 

diagnosis of the MCMC algorithms of selected parameters due to the limited space here. 

Thus, the first two parameters in Figure 7.4 represent the effects of the firs age group (25-

29) and the first period (1994). For each selected parameter, the trace plot illustrates the 

posterior sample values of a parameter during the runtime of the chain and the marginal 

density plot is the smoothened histogram of the parameter values from the trace plot. 

Therefore, the trace plots provide evidence of satisfactory convergence of the MCMC 

algorithms for these two parameters. The last three parameters represent the deviance, prior 

standard deviation for age and period. The trace plots indicate each chain is mixing well 

for each single parameter. Additionally, the Gelman-Rubin convergence is used as a formal 

test for convergence that assesses whether parallel chains with dispersed initial values 

converge to the same target distribution. The Gelman-Rubin diagnostic demonstrates that 

the scale reduction factor for each parameter is equal to one indicating no difference 

between the chains for a particular parameter. The multivariate potential scale reduction 

factor is also one, suggesting the joint convergence of the chains over all the parameters. 

Gelman-Rubin diagnostic plots for selected parameters are presented in Figure 7.5. It can 

be seen that for each parameter, the Gelman-Rubin plots illustrate the development of 

Gelman-Rubin's shrink factor as the number of iterations increases and the shrink factor of 

each parameter eventually stabilized around one. 
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Figure 7.4. Trace and density plots for the posterior samples of selected parameters. 
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Figure 7.5. Plots of Gelman-Rubin's diagnostic of selected parameters of the AP model. 
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7.6. Prediction to 2020  

This section presents the projections from 2010 to 2020 using our chosen best model. Here 

we observed that the AP model performed better than the APC and AC models (see Table 

7.14). The posterior mean and the 95% credible intervals were obtained after the last 

100,000 iterations. Fitted and projected rates were then estimated from samples of 100,000 

drawn from the posterior distribution after excluding the first 20,000 iterations as burn-in. 

We present the graphs in Figure 7.6 below. 

 

Figure 7.6: Age and period effects, on lung cancer mortality in KSA identified by AP model from 

age 25 to 75 and over during the period 1994-2020 within 95% credible intervals (dash lines.....). 

 Figure 7.6 above shows an increase of lung cancer mortality up to the age class 65-69 

and then it starts to decrease gradually for the rest of age groups whereas, the period effects 

declined slightly over time. Between 1998 and 2009 the period effect on lung cancer 

mortality rate has increased dramatically by 0.2% every year. However, our forecasts show 

that between 2009 and 2020, lung cancer period effect is expected to decrease by 0.5% per 

year. Note that the projected period effect is uncertain. The credible intervals include both 

uncertainty associated with the choice of the model and uncertainty associated with 

forecasting beyond the range of the data. This is necessarily reflected by rapidly increasing 

width of intervals as the length of projection increases.  
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Table 7.15: The effects of age and period on lung cancer mortality in KSA estimated from the 

Bayesian dynamic AP model from 1994 to 2020. 

Age effect (      Estimates Standard Errors 95 % Credible Intervals  

25-29 -11.11 1.35 -14.11, -8.83 

30-34 -10.20 0.89 -12.10, -8.60 

35-39 -9.27 0.74 -10.84, -7.91 

40-44 -8.16 0.64 -9.47, -6.96 

45-49 -6.97 0.56 -8.13, -5.92 

50-54 -5.98 0.53 -7.08, -4.99 

55-59 -5.20 0.51 -6.24, -4.24 

60-64 -4.24 0.49 -5.26, -3.32 

65-69 -3.84 0.50 -4.86, -2.92 

70-74 -3.89 0.50 -4.93, -2.95 

75+ -4.10 0.50 -5.13, -3.17 

Period  effect (        

1995 0.26 0.28 -0.28, 0.82  

1996 0.76 0.44 -0.07, 1.66 

1997 1.32 0.52 0.34, 2.38 

1998 1.65 0.54 0.65, 2.75  

1999 1.74 0.53 0.75, 2.81  

2000 1.77 0.52 0.79, 2.82 

2001 1.82 0.52 0.86, 2.88 

2002 1.84 0.51 0.87, 2.88 

2003 1.91 0.51 0.96, 2.95 

2004 2.00 0.51 1.04, 3.02 

2005 2.15 0.50 1.20, 3.18 

2006 2.24 0.51 1.30, 3.28 

2007 2.18 0.50 1.24, 3.22  

2008 2.06 0.50 1.12, 3.10  

2009 1.96 0.52 0.97, 3.03 

2010 1.86 0.75 0.42, 3.36 

2011 1.76 1.20 -0.56, 4.15 

2012 1.66 1.80 -1.83, 5.25 

2013 1.57 2.50 -3.31, 6.54 

2014 1.47 3.29 -4.96, 8.00 

2015 1.37 4.16 -6.74, 9.66 

2016 1.28 5.09 -8.59, 11.41  

2017 1.19 6.09 -10.57, 13.26 

2018 1.10 7.15 -12.75, 15.29  

2019 1.02 8.27 -14.99, 17.38 

2020 0.93 9.44 -17.36, 19.58 
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Figure 7.7: Fitted (1994-2009) and projected (2010-2020) age-specific standardized rate of lung 

cancer mortality (per 100,000 person-year) in Saudi Arabia, with 95% credible intervals (dashed 

lines---), for each 5 year age-group in the range 25-75 years based on the final Bayesian AP model. 
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Figure 7.8: Fitted and projected age standardized rate of lung cancer mortality (per 100,000 

person-year) in Saudi Arabia for age groups 25-75 years up to 2020, according to the final 

Bayesian AP model with 95% credible intervals for the projection (dashed lines ----). 

 

7.7. Discussions 

Separating the effects of age, period and cohort is challenging because of the identifiability 

of the parameters. However, in the last thirty years several methods have been suggested to 

overcome this identification problem e.g. spline functions and Bayesian dynamic APC. In 

this chapter, we use Bayesian dynamic age-period-cohort models to solve the identification 

problem because the number of cases of the lung cancer mortality is low. In this Bayesian 

analysis, trends were modelled through specific smoothing of model parameters using 

RW2 for all the three effects of age, period and cohort. Results from Bayesian model with 

reduced parameters of age and period effects are almost identical to those from age, period 

and cohort effects, suggesting that Bayesian AP model is preferred, in line with the 

recommendation of Clayton and Schifflers (1987a and 1987b). They advised to reduce the 

APC model to either an age-period (AP) model or an age-cohort (AC) model, whichever is 

better, and to only use the APC model when it provides a more satisfactory fit. The prior 

distribution used in our analysis is a non-informative uniform distribution because we want 

the hyper-parameters to be estimated mainly from the data. 

 Our results show that the most important effect on lung cancer is age followed by the 

period. The age effect shows a dramatic increase of lung cancer mortality up to the age 

class 65-69 and then it starts to decrease slightly for the rest of age groups. The Bayesian 

dynamic age-period model shows that the effect of the period reached its maximum in 

2007, as an effect of the new polices implemented by the government during the period, 

such as the ban of smoking cigarettes in public places and the increase of tax on imported 
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tobacco. The cohort effect is not important due to the short time period of the observed 

mortality data and therefore is assumed to be equal over different generations.   

 Our results suggests that the expected age-specific standardized rates of lung cancer 

mortality will increase gradually in all age groups between 2010 and 2020. For instance, in 

the age group 50-54 the posterior mean (age-specific standardized rate) within its 95% 

credible interval is expected to increase from 1.8 (1.57, 2.02) in 2010 to 3.06 (1.09, 5.02) 

per 100,000 population in 2020 whereas in the age group 65-69 is expected to increase 

from 4.50 (3.90, 5.09) in 2010 to 5.66 (2.78, 8.54) per 100,000 population in 2020. 

Overall, the risk of mortality reaches its peak from lung cancer in Saudi Arabia between 

ages 60 and 70. 

 Our Bayesian dynamic AP model provides a good fit to the mortality of lung cancer 

rates compared to the Bayesian dynamic AC and APC models. The fitted rate from age 

effect shows that the mortality rate increases as the age increases with wider credible 

interval width at younger age groups. The width of the intervals is due to the heterogeneity 

in the data where there are sparse, zero counts and uncertainty associated with the fitted 

model. This can be seen by the sudden increase of lung cancer mortality rate in the age 

group between the range 25-49 years due to the sparse and zero counts. This is shown in 

the mortality data in Table F15 and F16 in Appendix F. For the period effect, there is a 

gradual decrease in the rate-ratio over time. However, the projected period effect is 

uncertain. The credible intervals include both uncertainty associated with the choice of the 

model and uncertainty associated with forecasting beyond the range of the data. This is 

necessarily shown by rapidly increasing width of intervals as the length of prediction 

increases. The age effect is much stronger than the period effect as shown in Figure 7.6 and 

Table 7.15 above. The 95% credible interval is much tighter in the age effect than in the 

period effect so the credible interval is dominated by the uncertainty in the age effect rather 

than the uncertainty in the period effect.        

7.8. Summary 

The observed data used for Bayesian dynamic age-period (AP) modelling were annual 

mortality cases of lung cancer, for Saudi Arabia, by combined gender and 5-year age group 

in the range 25-75 years between 1994 and 2009. The projection of the future rate depends 

on population projections; we use the 2010 to 2020 United Nations forecasts for KSA. 

These projections do not take into account potential changes in lifestyle or treatment that 

could alter future rates of lung cancer mortality. 
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  Overall, the estimated age standardized rate (ASR) of lung cancer mortality from the 

Bayesian dynamic AP model shows a gradual increase between 1994 and 2007. However, 

it decreased in 2008 and started to increase again in 2009. Our projection shows that the 

ASR of lung cancer mortality is expected to increase to 2020, from 1.8 (1.61, 1.94) in 2010 

to 3.04 (0.13, 5.94) per 100,000 population in 2020. The trends are mainly due to the age 

effect and slightly due to the period effect but no obvious cohort effects were observed in 

our study. The lack of cohort effect may be due to the short time period of the observed 

mortality data. Age has a strong association with lung cancer mortality, suggesting age-

related causes such as accumulative exposures of smoking over time may be the main 

reason for increasing lung cancer mortality in KSA, since the prevalence of smoking is 

increasing especially in women. Tobacco is responsible for around 70% of lung cancer 

mortality (World Health Organization, Media Center, 2015). The increase of lung cancer 

mortality rate in all age groups during the period of our study could also be attributed to 

the lack of early detection and screening of lung cancer mortality. 

 In summary, the increased lung cancer mortality rate from 1994 to 2009 is mostly 

attributed to age effects. The ASR of lung cancer mortality will increase gradually until 

2020. Lung cancer burden will continue to increase due to the aging population and may be 

due to the increase of smoking prevalence especially in women.   

 Notice that in this analysis we did not include any covariate variables because our 

main aim here is to produce quite reliable estimates of future lung cancer mortality in KSA 

since our lung cancer mortality data is low. Additionally, the use of APC models are 

identified as proxies for events such as risk factors, which we cannot measure directly. 

 The lack of sufficient data is due to the late establishment of the Saudi Cancer 

Registry (SCR) in 1992. However, the data included in this study were compiled only up to 

December 2009 because it takes about 3-4 years before the data is processed for public 

consumption. In addition, the SCR has to wait until all the data from the regional cancer 

registries have been collected. Notwithstanding, there are a number of complex processes 

to register a cancer case in order to ensure the data is of a high quality (Al-Eid, Saudi 

Cancer Incidence Report, 2009). Therefore, the Ministry of Health should pay attention to 

reduce the time length of collecting the data from the branches as much as possible in order 

to improve short-term forecasts. Thus, we suggest that the Government should establish 

additional main cancer registries in Western, Eastern, Northern and Southern regions 

because of the geographical and demographical characteristics of the country with the 

required implementation materials and training methods needed for the staff.  
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1. Conclusions 

Cancer is a global health challenge. It is perhaps the most significant problem which 

humanity will have to face in the next two or more decades after global warning (World 

Health Organization, Media Center, 2015). Nowadays lung cancer is the first or second 

most frequent tumor type among men and third or fourth among women (World Health 

Organization, Media Center, 2015). Therefore, efforts to reduce and prevent lung cancer 

are of course essential.  

 Forecasting the burden of lung cancer incidence and mortality is important for 

evaluating prevention strategies and for administrative planning at lung cancer facilities. 

We collect the data of lung cancer incidence and mortality from Saudi Cancer Registry 

(SCR) and Central Department of Statistics (CDS) in Saudi Arabia (KSA) from 1994 to 

2009. Population data were prepared from forecasts made by the United Nations between 

2010 and 2020. Our aim is to use forecasting methods to describe the broad picture of the 

future lung cancer burden in Saudi Arabia and to report baseline incidences against which 

progress in implementing the National Health Service (NHS) Cancer Plan will be 

measured.  

 We study lung cancer incidence and mortality in Saudi Arabia between 1994 and 

2009. The first part of this study uses time-series methods in determining and forecasting 

lung cancer incidence data using Box-Jenkins methodology and dynamic regression 

models. In the Box-Jenkins analysis, we present Seasonal Autoregressive Integrated 

Moving Average (SARIMA) models in chapter 4. In dynamic regression, we describe 

more general autoregressive AR processes such as AR(1), distributed lag models (DLMs), 

and polynomial distributed lag models (PDLs). We develop, analyze, and perform a one-

step ahead forecast of the various models to explore the best-fit model for lung cancer 

cases in Saudi Arabia. We propose a new approach called autoregressive polynomial 

distributed lag (ARPDL) model. This approach results in having a model with a lower 

standard error and more accurate fit. The second part of this study concentrates on the age-

period-cohort (APC) models. Natural cubic splines were used in APC models for drawing 

inference on the impact of lung cancer incidence rates. Using the restriction of the cubic 

splines being linear beyond the boundary knots, we were able to make better projections in 
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the magnitude of the rates, the variation by age, and time trends in the rates into the future. 

Using splines and more finely split data as opposed to the factor models with coarsely split 

data seems better. Bayesian dynamic APC models were used for modelling and forecasting 

lung cancer mortality rates between 1994 and 2020. Bayesian approaches assume some 

sort of smoothness of age, period and cohort effects in order to improve estimation and 

facilitate prediction. Three models were used: the full APC, AP and AC models. 

Comparison between nested models was evaluated by the changes in Deviance Information 

Criterion DIC.    

 The empirical results of lung cancer incidence show that most of the cases are among 

males and suggest that lung cancer cases are strongly affected by smoking habits. The 

overall best one-step-ahead forecast of dynamic regression model is the ARPDL(12,3,26,8) 

model of the total cases of lung cancer on smoking population separately for males and 

females. This is confirmed by the value of adjusted R-squared as well as the significance of 

the F-statistic of the regressions. The overall best Box-Jenkins SARIMA model is the 

SARIMA(2,1,1)x(0,1,1)12 model. It is best on all three information criteria: AIC, AICc and 

BIC. The forecasts generated by ARPDL and SARIMA models both capture the 

seasonality trends. However, the ARPDL model with a small lag does not capture the 

seasonality as well as the ARPDL model with large lag. Nonetheless, we prefer the 

forecast generated from the SARIMA model since it has a fewer parameters to estimate. 

The preferred SARIMA model suggests that there will be an average of 45 cases of lung 

cancer per month for the next 24 months. In addition, the estimated yearly lung cancer 

cases in 2010 and 2011 were 538 and 555 respectively. We conclude from the data that 

more incident cases are diagnosed in winter. 

 The estimated incidence rates from age-period-cohort modelling show a sharp 

decrease in males and a gradual increase in females over the next 10 years. The male age 

standardised rate of lung cancer incidence is projected to fall from 5.6 to 2.4 per 100,000 

by 2020, whereas the female age standardised rate of lung cancer incidence is projected to 

increase from 2.0 to 2.2 per 100,000 by 2020. The growing and ageing populations will 

have a substantial impact, therefore the number of cases per year are projected to decrease 

in males (from 356 to 320) and to increase in females (from 134 to 247) between 2009 and 

2020. These results reflect the decrease of smoking prevalence among males and the 

increase of smoking prevalence in females. The results show that in KSA, males have 

about a 79% greater incidence of lung cancer than females across the entire dataset when 

adjusting for the other effects. The p-value for the gender term highlights that the effect for 
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gender is significant at the 0.1% level. In addition, the p-values for the covariates of race, 

Southern, Western, and Eastern regions show that the effects for these covariates are 

statistically significant. 

 By comparing the trends of lung cancer incidence in Saudi Arabia (KSA) to that of the 

United Kingdom (UK), we seem to have almost the same pattern. However, the rate of 

lung cancer incidence is much higher in the UK than in KSA due to the high prevalence of 

smoking among males and females in the UK (see Appendix B2 and B3).  In 1994, the 

overall age-standardised incidence rates of lung cancer in the UK were 90.5 and 35 per 

100,000 for males and females respectively. Over the same period, the overall age-

standardised incidence rates in KSA were 7.7 and 2 per 100,000 for males and females 

respectively. The projection of lung cancer incidence cases from 2009 to 2020 for both 

countries is expected to decrease sharply in males by 16.28% in UK and 57.14% in KSA. 

On the other hand, females are expected to have a slight decrease by 8.45% in UK and a 

slight increase by 10% in KSA. Thus, age-standardised incidence rates are projected to 

decease in males to 47.8 and to 2.4 per 100,000 in the UK and in KSA respectively. 

Whereas females age-standardised incidence rates are expected to decrease slightly in the 

UK to 32.5 and to increase slightly in KSA to 2.2 per 100,000.  

 The estimated age standardized rate (ASR) of lung cancer mortality within its 95% 

credible interval is expected to increase from 1.8 (1.61, 1.94) in 2010 to 3.04 (2.13, 5.94) 

per 100,000 population in 2020. Our results suggest that the expected age-specific 

standardized rates of lung cancer mortality will increase gradually in all age groups 

between 2010 and 2020. Mortality risk from lung cancer reaches its peak between ages 65 

and 69 years. The posterior mean (age-specific standardized rate) within its 95% credible 

interval is expected to increase from 4.50 (3.90, 5.09) in 2010 to 5.66 (2.78, 8.54) per 

100,000 population in 2020. The trends of lung cancer mortality are mainly due to the age 

effect and slightly due to the period effect but no obvious cohort effects were observed in 

the study. The lack of cohort effect may be due to the short time period of the observed 

mortality data. Age has a strong association with lung cancer mortality, suggesting age-

related causes such as cumulative exposures of smoking over time. This may be the main 

reason of increasing lung cancer mortality in KSA, since the prevalence of smoking is 

increasing especially in women. Tobacco is responsible for around 70% of lung cancer 

mortality (World Health Organization, Media Center, 2015). The increase of lung cancer 

mortality rate in all age groups during the period of our study could also be attributed to 

the lack of early detection and screening of lung cancer mortality. 
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 In this thesis we have proposed different approaches to model and forecast lung cancer 

incidence and mortality in Saudi Arabia. We used finite and infinite dynamic regression 

models and we came up with a new approach called autoregressive polynomial distributed 

lag (ARPDL) model. This approach results in having a model with a lower standard error 

and more accurate fit than PDL and OLS models. Also, we used two methodological  

approaches on modelling age-period-cohort models, namely spline functions and Bayesian 

dynamic models. Our results show that both APC models using spline functions and 

Bayesian dynamic models are able to overcome the identification problem and identify the 

effect of age, period and cohort. However, Bayesian dynamic APC model is preferred in 

forecasting the incidence or the mortality rates of lung cancer especially when the data are 

sparse or has zero counts, because the forecast based on Bayesian dynamic APC model 

does not rely on strong parametric assumptions for future values of subjective cohort and 

period effects. Additionally, the sparse data and zero counts in Bayesian dynamic APC 

models do not pose any implementation problems when fitting APC models.   

8.2. Limitations of the Work 

It is important to recognize and highlight potential limitations in our data and methods to 

ensure that results and findings obtained are reliable. Data quality can be an issue, as it will 

have implications for the confidence that can be placed in a study output. Although the 

data size is not large, checking the residuals for normality each time after performing 

normal regression on a model shows that the residuals are normally distributed, indicating 

minimal noise in the data. Another limitation is that, historical data are often assumed to be 

correct, without any means of assessing whether or not they were collected, processed or 

interpreted adequately. There is mis-recording as some cohort date of birth, age, dead or 

alive values are recorded as zero.  

 The use of SARIMA models has some limitations: first, some of the traditional model 

identification techniques for identifying the correct model order from the class of possible 

models are not clear cut. This process is also subjective and the reliability of the chosen 

model can depend on the skill and experience of the researcher. Second, the underlying 

theoretical model and structural relationships are difficult to apply (O‟Donovan, 1983).  

 The simplest way to estimate parameters associated with distributed lags (unrestricted) 

is by ordinary least squares. However, multicollinearity among the lagged explanatory 

variables often arises, leading to large variance of the coefficient estimates. There are two 

disadvantages to the finite distributed lag model. The first is multicollinearity. The second 

http://en.wikipedia.org/wiki/Ordinary_least_squares
http://en.wikipedia.org/wiki/Multicollinearity
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disadvantage of finite distributed lags is that they can be problematic when the lag length is 

large, especially in small samples. Estimation of the infinite distributed lag (Koyck) model 

also presents some challenges because the lagged independent variable is by definition not 

strictly exogenous and, unless the error term is white noise, is not even weakly exogenous.  

 In summary, the finite distributed lag (Almon) model is most suitable to estimating 

dynamic relationships when lag weights decline to zero relatively quickly, when the 

regressor is not highly autocorrelated, and when the sample is long relative to the length of 

the lag distribution. However, the finite distributed lag models are not without problems. 

The polynomial distributed lag model allows the data to determine the shape of the lag 

structure, but the researcher must choose the maximum lag length, choose the degree of the 

polynomial, and overcome the difficulty in capturing long-tailed lag distributions. An 

incorrectly specified maximum lag length and the rest can distort the shape of the 

estimated lag structure as well as the cumulative effect of the independent variable.  

 The impossibility to attribute the drift to respectively cohort or period related effects, 

because of their linear dependency, implies a serious problem in displaying and estimating 

the model parameters (Clayton and Schifflers, 1987). Nevertheless, APC-modelling 

protects against over-interpretation of trends based on standardised rates or simple 

graphical presentation of age-specific curves. 

 The use of Bayesian dynamic APC models also have some limitations. Firstly, the 

projected period effect is uncertain. The credible intervals include both uncertainty 

associated with the choice of the model and uncertainty associated with forecasting beyond 

the range of the data. This is necessarily reflected by rapidly increasing width of intervals 

as the length of projection increases. Secondly, these projections do not take into account 

potential changes in lifestyle or treatment that could alter future rates of lung cancer 

mortality. Thirdly, although our models did not show any convergence problems with the 

use of MCMC, the use of MCMC algorithms with random walk models has been criticized 

in terms of both computational time and mixing due to strong dependencies of parameters 

in the posterior distribution and of week identifiability. Thus, integrated nested Laplace 

approximations should be used to overcome these problems as an alternative solution 

(Carreras and Gorini, 2014). 
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8.3. Recommendations 

The government should monitor the rise of lung cancer cases during winter to consider 

providing more health-care resources in winter. Government should make it a priority in its 

policy agenda during this period to provide more training for health staff in various 

treatments. 

 The Ministry of Health should investigate and plan new strategies in areas where they 

are affected such as Southern, Western, and Eastern regional hospitals. . The Government 

should discourage tobacco advertising, promotion, and sponsorship in order to reduce the 

prevalence of smoking as much as possible since tobacco is responsible for around 70% of 

lung cancer mortality (World Health Organization, Media Center, 2015). 

 The Ministry of Health should pay attention to reduce the time length of collecting the 

data from the branches as much as possible in order to improve short-term forecasts. Thus, 

we suggest that the government should establish additional main cancer registries in 

Western, Eastern, Northern and Southern regions because of the geographical and 

demographical characteristics of the country with the required implementation materials 

and training methods needed for the staff.  

8.4. Future Research 

Having determined the best models used in forecasting lung cancer incidence and mortality 

rates, the next stage of our research will focus on forecasting breast cancer in KSA. To do 

this, we describe a detailed plan next.  

 A dynamic Poisson model will be used with a Bayesian approach to modelling to 

predict breast cancer incidence and mortality in Saudi Arabia. The complexity of the 

posterior distribution prohibits direct evaluation of the posterior, and therefore parameters 

will be estimated by the recently proposed Integrated Nested Laplace Approximations 

(INLA). INLA is a promising alternative to inference via MCMC in latent Gaussian 

models (Rue et al., 2009). INLA is a useful and flexible tool for Bayesian hierarchical 

models with complex dependence structure with loads of linear constraints. The out-of-

sample forecast is straightforward and the running time is fast (Held, 2009).      

 We will continue to work on extending our methodology to a more general 

Autoregressive Distributed Lag ARDL(p,q) models and a more general Moving Average 

Distributed Lag MADL(p,q) models. These will include both incidence and mortality. We 

will also explore the possibilities of addressing additional covariates using APC models. 
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APPENDICES 

Appendix A: Results of Dynamic Regression Models. 

 

Table A1: Estimated slope from OLS regression through the origin of residuals on lagged 

residuals. 

 

The regression equation is 

RESI1 = 0.173 lagged res 

191 cases used, 1 cases contain missing values 

 

Predictor      Coef  SE Coef     T      P 

Noconstant 

lagged res  0.17259  0.06787  2.54  0.012 

 

S = 6.64865 

Analysis of Variance 

Source           DF       SS      MS     F      P 

Regression        1   285.90  285.90  6.47  0.012 

Residual Error  190  8398.87   44.20 

Total           191  8684.77 

 

 

 

 

Table A2: Estimated rho from Cochrane-Orcutt iterative procedure. 

 

. prais Yt Xt, corc 

 

Iteration 0:  rho = 0.0000 

Iteration 1:  rho = 0.1726 

Iteration 2:  rho = 0.1726 

Iteration 3:  rho = 0.1726 

 

Cochrane-Orcutt AR(1) regression -- iterated estimates 

      Source |       SS       df       MS              Number of obs =     191 

-------------+------------------------------           F(  1,   189) =  111.26 

       Model |  4938.19512     1  4938.19512           Prob > F      =  0.0000 

    Residual |   8388.7016   189  44.3846646           R-squared     =  0.3705 

-------------+------------------------------           Adj R-squared =  0.3672 

       Total |  13326.8967   190  70.1415617           Root MSE      =  6.6622 

------------------------------------------------------------------------------ 

          Yt |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          Xt |    .120256   .0114009    10.55   0.000     .0977666    .1427454 

       _cons |  -1.344754   3.232239    -0.42   0.678    -7.720653    5.031146 

-------------+---------------------------------------------------------------- 

         rho |   .1726466 

------------------------------------------------------------------------------ 

Durbin-Watson statistic (original)    1.555379 

Durbin-Watson statistic (transformed) 2.002804 
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Table A3: Results of Prais-Winsten iterative procedure. 

.  prais Yt Xt 

 

Iteration 0:  rho = 0.0000 

Iteration 1:  rho = 0.1726 

Iteration 2:  rho = 0.1728 

Iteration 3:  rho = 0.1728 

Prais-Winsten AR(1) regression -- iterated estimates 

 

      Source |       SS       df       MS              Number of obs =     192 

-------------+------------------------------           F(  1,   190) =   99.62 

       Model |  4881.25627     1  4881.25627           Prob > F      =  0.0000 

    Residual |  9310.16083   190  49.0008465           R-squared     =  0.3440 

-------------+------------------------------           Adj R-squared =  0.3405 

       Total |  14191.4171   191  74.3006131           Root MSE      =  7.0001 

 

------------------------------------------------------------------------------ 

          Yt |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          Xt |   .1157449   .0119365     9.70   0.000     .0921998      .13929 

       _cons |   .1402733    3.37961     0.04   0.967    -6.526104     6.80665 

-------------+---------------------------------------------------------------- 

         rho |   .1728324 

------------------------------------------------------------------------------ 

Durbin-Watson statistic (original)    1.555379 

Durbin-Watson statistic (transformed) 1.935193 

 

 

 

Table A4: Results of Hildreth-Lu search procedure. 

. hlu Yt Xt  

 

Iteration 0:  rho = 0.0000 

Iteration 1:  rho = 0.9999 

Iteration 2:  rho = 0.5000 

Iteration 3:  rho = 0.2500 

Iteration 4:  rho = 0.3750 

Iteration 5:  rho = 0.3125 

Iteration 6:  rho = 0.2812 

Iteration 7:  rho = 0.2656 

Iteration 8:  rho = 0.2578 

Iteration 9:  rho = 0.2539 

Iteration 10: rho = 0.2519 

 

(Hildreth-Lu regression) 

      Source |       SS       df       MS              Number of obs =     191 

-------------+------------------------------           F(  1,   189) =   91.25 

       Model |   4079.1431     1   4079.1431           Prob > F      =  0.0000 

    Residual |  8449.03314   189   44.703879           R-squared     =  0.3256 

-------------+------------------------------           Adj R-squared =  0.3220 

       Total |  12528.1762   190  65.9377697           Root MSE      =  6.6861 

 

------------------------------------------------------------------------------ 

          Yt |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          Xt |     .12076   .0126419     9.55   0.000     .0958235    .1456964 

      _inter |  -1.502849   3.585433    -0.42   0.676    -8.575218    5.569519 

-------------+---------------------------------------------------------------- 

         rho |     0.2510     0.0678     3.70   0.000       0.1173      0.3846 

------------------------------------------------------------------------------ 

Durbin-Watson statistic (original)    1.555379 

Durbin-Watson statistic (transformed) 2.170192 
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Table A5: Regression results of total cases of lung cancer against smoking population 

The regression equation is 

Yt = - 0.03 + 0.116 Xt 

 

Predictor     Coef  SE Coef      T      P 

Constant    -0.034    2.849  -0.01  0.990 

Xt         0.11623  0.01007  11.55  0.000 

 

S = 7.11722   R-Sq = 41.2%   R-Sq(adj) = 40.9% 

Analysis of Variance 

Source           DF       SS      MS       F      P 

Regression        1   6753.9  6753.9  133.33  0.000 

Residual Error  190   9624.4    50.7 

Total           191  16378.3 

Durbin-Watson statistic = 1.55538 

 

 

 

Table A6: Regression results of total cases of lung cancer against smoking population with lag one 

The regression equation is 

Yt = - 2.74 - 1.11 Xt + 1.24 Xt-1 

 

191 cases used, 1 cases contain missing values 

Predictor     Coef  SE Coef      T      P 

Constant    -2.735    2.696  -1.01  0.312 

Xt         -1.1126   0.3659  -3.04  0.003 

Xt-1        1.2414   0.3686   3.37  0.001 

S = 6.59673   R-Sq = 48.1%   R-Sq(adj) = 47.6% 

 

Analysis of Variance 

Source           DF       SS      MS      F      P 

Regression        2   7585.3  3792.6  87.15  0.000 

Residual Error  188   8181.2    43.5 

Total           190  15766.4 

Durbin-Watson statistic = 1.7100 

 

Table A7: Regression results of total cases of lung cancer against smoking population with six lags 

The regression equation is 

 

Yt = - 4.24 - 0.464 Xt - 0.18 Xt-1 + 1.39 Xt-2 - 1.12 Xt-3 + 0.47 Xt-4 

     - 0.18 Xt-5 + 0.219 Xt-6 

 

186 cases used, 6 cases contain missing values 

 

Predictor     Coef  SE Coef      T      P 

Constant    -4.244    2.881  -1.47  0.142 

Xt         -0.4641   0.7901  -0.59  0.558 

Xt-1        -0.176    1.715  -0.10  0.918 

Xt-2         1.391    1.864   0.75  0.457 

Xt-3        -1.120    1.864  -0.60  0.549 

Xt-4         0.470    1.864   0.25  0.801 

Xt-5        -0.185    1.719  -0.11  0.914 

Xt-6        0.2191   0.8008   0.27  0.785 

S = 6.67538   R-Sq = 49.3%   R-Sq(adj) = 47.4% 

Analysis of Variance 

Source           DF       SS      MS      F      P 

Regression        7   7727.3  1103.9  24.77  0.000 

Residual Error  178   7931.8    44.6 

Total           185  15659.1 

 

Durbin-Watson statistic = 1.72907 
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Table A8: Results of Koyck transformation. 
 

The regression equation is 

 

Yt = - 1.18 + 0.0994 Xt + 0.176 Yt-1 

191 cases used, 1 cases contain missing values 

 

Predictor     Coef  SE Coef      T      P 

Constant    -1.182    2.682  -0.44  0.660 

Xt         0.09939  0.01221   8.14  0.000 

Yt-1       0.17621  0.06786   2.60  0.010 

S = 6.67419   R-Sq = 46.9%   R-Sq(adj) = 46.3% 

Analysis of Variance 

Source           DF       SS      MS      F      P 

Regression        2   7392.0  3696.0  82.97  0.000 

Residual Error  188   8374.4    44.5 

Total           190  15766.4 

 

Durbin-Watson statistic = 2.01369 

 

Table A9: Minitab output for AR(1). 

Final Estimates of Parameters 

Type         Coef  SE Coef      T      P 

AR   1     0.5462   0.0613   8.91  0.000 

Constant  14.7881   0.5650  26.17  0.000 

Mean       32.584    1.245 

Number of observations:  192 

 

Residuals:    SS =  11634.2 (backforecasts excluded) 

              MS =  61.2  DF = 190 

Modified Box-Pierce (Ljung-Box) Chi-Square statistic 

Lag            12     24     36     48 

Chi-Square   62.3  108.8  138.0  158.6 

DF             10     22     34     46 

P-Value     0.000  0.000  0.000  0.000 

 

Forecasts from period 192 

                     95 Percent 

                       Limits 

Period  Forecast    Lower    Upper  Actual 

   193   41.5495  26.2091  56.8898 

 

 

Table A10: Regression results.  

The regression equation is 

Yt = - 1.447 + 0.1211 Xt-1 

 

S = 6.73908   R-Sq = 45.6%   R-Sq(adj) = 45.3% 

 

Analysis of Variance 

 

Source       DF       SS       MS       F      P 

Regression    1   7183.0  7182.97  158.16  0.000 

Error       189   8583.5    45.42 

Total       190  15766.4 
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Table A11: Results of Cochrane-Orcutt AR (1) iterative procedure. 
 
. prais Yt Xt1, corc 

 

Iteration 0:  rho = 0.0000 

Iteration 1:  rho = 0.1806 

Iteration 2:  rho = 0.1806 

Iteration 3:  rho = 0.1806 

Cochrane-Orcutt AR(1) regression -- iterated estimates 

 

      Source |       SS       df       MS              Number of obs =     190 

-------------+------------------------------           F(  1,   188) =  109.59 

       Model |  4840.45371     1  4840.45371           Prob > F      =  0.0000 

    Residual |  8303.35851   188  44.1668006           R-squared     =  0.3683 

-------------+------------------------------           Adj R-squared =  0.3649 

       Total |  13143.8122   189    69.54398           Root MSE      =  6.6458 

 

------------------------------------------------------------------------------ 

          Yt |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         Xt1 |   .1213988   .0115963    10.47   0.000     .0985233    .1442744 

       _cons |  -1.539908   3.281055    -0.47   0.639    -8.012324    4.932507 

-------------+---------------------------------------------------------------- 

         rho |    .180584 

------------------------------------------------------------------------------ 

Durbin-Watson statistic (original)    1.637079 

Durbin-Watson statistic (transformed) 2.037903 

 

 

 

 

 

 

Table A12: Results of DLM using Koyck transformation. 
 

 

The regression equation is 

Yt = - 1.49 + 0.102 Xt-1 + 0.169 Yt-1 

 

 

191 cases used, 1 cases contain missing values 

 

Predictor     Coef  SE Coef      T      P 

Constant    -1.486    2.683  -0.55  0.580 

Xt-1       0.10161  0.01230   8.26  0.000 

Yt-1       0.16890  0.06786   2.49  0.014 

 

 

S = 6.64834   R-Sq = 47.3%   R-Sq(adj) = 46.7% 

 

Analysis of Variance 

 

Source           DF       SS      MS      F      P 

Regression        2   7456.8  3728.4  84.35  0.000 

Residual Error  188   8309.7    44.2 

Total           190  15766.4 
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Table A13: Results of Breusch-Godfrey LM test of ARPDL(12,5,26,8) model. 

     
     F-statistic 1.277192     Prob. F(1,149) 0.2602 

Obs*R-squared 1.410819     Prob. Chi-Square(1) 0.2349 
     
          

Test Equation:    

Dependent Variable: RESID   

Method: Least Squares   

Date: 12/21/14   Time: 19:40   

Sample: 1996M03 2009M12   

Included observations: 166   

Presample missing value lagged residuals set to zero. 
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -3.089198 4.907420 -0.629495 0.5300 

PDL01 0.011330 0.137187 0.082586 0.9343 

PDL02 -0.036211 0.083805 -0.432084 0.6663 

PDL03 0.001062 0.023269 0.045621 0.9637 

PDL04 0.001835 0.004125 0.444840 0.6571 

PDL05 -7.97E-05 0.000805 -0.098927 0.9213 

PDL06 -2.36E-05 5.47E-05 -0.432072 0.6663 

PDL07 1.22E-06 9.80E-06 0.124544 0.9011 

PDL08 8.82E-08 2.19E-07 0.401715 0.6885 

PDL09 -5.12E-09 3.69E-08 -0.138697 0.8899 

PDL010 -0.069043 0.075845 -0.910318 0.3641 

PDL011 -0.006449 0.028601 -0.225478 0.8219 

PDL012 0.015732 0.016660 0.944298 0.3465 

PDL013 -0.001349 0.003779 -0.357054 0.7216 

PDL014 -0.000789 0.000785 -1.005058 0.3165 

PDL015 0.000113 0.000140 0.804296 0.4225 

RESID(-1) -0.175670 0.305850 -0.574366 0.5666 
     
     R-squared 0.008499     Mean dependent var 1.01E-11 

Adjusted R-squared -0.097971     S.D. dependent var 5.988542 

S.E. of regression 6.275041     Akaike info criterion 6.607815 

Sum squared resid 5867.044     Schwarz criterion 6.926512 

Log likelihood -531.4486     Hannan-Quinn criter. 6.737176 

F-statistic 0.079824     Durbin-Watson stat 1.996212 

Prob(F-statistic) 0.999999    
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Table A14: Results of Breusch-Godfrey LM test of ARPDL(12,3,26,8) model. 
 

     
     F-statistic 0.090604     Prob. F(1,142) 0.7639 

Obs*R-squared 0.105850     Prob. Chi-Square(1) 0.7449 
     
          

Test Equation:    
Dependent Variable: RESID   
Method: Least Squares   
Date: 01/07/15   Time: 22:18   
Sample: 1996M03 2009M12   
Included observations: 166   
Presample missing value lagged residuals set to zero. 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -1.433135 18.82833 -0.076116 0.9394 

PDL01 0.003477 0.165845 0.020963 0.9833 
PDL02 0.011342 0.104549 0.108483 0.9138 
PDL03 -0.000755 0.027244 -0.027703 0.9779 
PDL04 -0.000452 0.004886 -0.092434 0.9265 
PDL05 2.32E-05 0.000937 0.024723 0.9803 
PDL06 4.55E-06 6.30E-05 0.072220 0.9425 
PDL07 -2.54E-07 1.15E-05 -0.022016 0.9825 
PDL08 -1.35E-08 2.52E-07 -0.053338 0.9575 
PDL09 9.03E-10 4.38E-08 0.020588 0.9836 

PDL010 -0.038243 0.494265 -0.077373 0.9384 
PDL011 -0.013540 0.278196 -0.048669 0.9613 
PDL012 0.004063 0.083870 0.048446 0.9614 
PDL013 0.000220 0.013950 0.015774 0.9874 
PDL014 -5.59E-05 0.002878 -0.019436 0.9845 
PDL015 2.01E-06 0.000194 0.010386 0.9917 
PDL016 -1.11E-08 3.46E-05 -0.000321 0.9997 
PDL017 -2.18E-08 8.09E-07 -0.026963 0.9785 
PDL018 1.56E-09 1.29E-07 0.012045 0.9904 
PDL019 0.005785 0.050490 0.114571 0.9089 
PDL020 0.002095 0.014163 0.147903 0.8826 
PDL021 0.000416 0.002214 0.187924 0.8512 
PDL022 -0.000187 0.000907 -0.206658 0.8366 

RESID(-1) -0.075617 0.145462 -0.519842 0.6040 
     
     R-squared 0.000638     Mean dependent var 1.38E-11 

Adjusted R-squared -0.161231     S.D. dependent var 5.356233 
S.E. of regression 5.771900     Akaike info criterion 6.476876 
Sum squared resid 4730.705     Schwarz criterion 6.926801 
Log likelihood -513.5807     Hannan-Quinn criter. 6.659503 
F-statistic 0.003939     Durbin-Watson stat 2.000741 
Prob(F-statistic) 1.000000    
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Appendix B: Cancer Incidence Forecast in UK up to 2020  

 

Appendix B1: Different Cancer Incidence Rates Diagnosed in UK from 1980 to 2030. 

 

 

 
 

Figure B1: Observed and projected cancer incidence rates per 100,000 for various cancers. 

Rates are age standardised within each of the five age-bands. Projections using restricted 

cubic splines up to the year 2030 by Mistry et al., (2011).  
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Appendix B2: Lung Cancer Incidence in UK by Cancer Research UK (2009). 

 

 
 

Figure B2: Males lung cancer incidence prediction to 2024, age-standardised rate and 

number of new cases, UK, from 1975 to 2004.  

 

 

 
 

 

Figure B3: Females lung cancer incidence prediction to 2024, age-standardised rate and 

number of new cases, UK, from 1975 to 2004. 
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Appendix B3: Smoking Prevalence Among Males and Females in the UK According 

to Scottish Intercollegiate Guidelines Network, SIGNV(2005).  

 

 

Figure B4: Trends in smoking prevalence in Britain from 1948 to 2008.  
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Appendix C: R Commands Used in Bayesian Dynamic APC Models  

 

##AGE-PERIOD-COHORT MODEL## 
model 

{ 

### Fit of the Age, Period and Cohort  

for (n in 1:N) { 

deaths[n] ~ dpois(mu[n]); 

# Modelling rate 

log(mu[n]) <- log(pyr[n])+alpha[age[n]]+beta[period[n]]+gamma[cohort[n]]; 

} 

#PERIOD EFFECTS:prior standard deviation 

taup<-K.s*pow(sigmap,-2) 

sigmap ~ dunif(0.01,1); 

####PERIOD REF 1994 

betamean[1]<-0.0; 

betaprec[1]<-taup; 

betamean[2]<-0.0; 

betaprec[2]<-taup; 

for (j in 3:J){ 

betamean[j]<-2*beta[j-1]-beta[j-2]; 

betaprec[j]<-taup; 

} 

#Corner constraint on the first period 

beta[1]<-0 

for (j in 2:J){ 

beta[j] ~ dnorm(betamean[j],betaprec[j]); 

} 

#COHORT EFFECTS:prior standard deviation 

tauc<-K.s*pow(sigmac,-2) 

sigmac ~ dunif(0.01,1); 

####COHORT REF 1994 

gammamean[1]<-0.0; 

gammaprec[1]<-tauc; 

gammamean[2]<-0.0; 

gammaprec[2]<-tauc; 

for (k in 3:K){ 

gammamean[k]<-2*gamma[k-1]-gamma[k-2]; 

gammaprec[k]<-tauc; 

} 

#Corner constraint on the first cohort 

gamma[1]<-0 

for (k in 2:K){ 

gamma[k] ~ dnorm(gammamean[k],gammaprec[k]); 

} 

#### AGE CONSTRAINED ON THE 2nd ORDER DIFFERENCES 

alphamean[1] <- 2*alpha[2] - alpha[3]; 

alphamean[2] <- (2*alpha[1] + 4*alpha[3] - alpha[4])/5; 

for (i in 3:(I-2)){ 

alphamean[i] <- (4*alpha[i-1] + 4*alpha[i+1]- alpha[i-2] 

- alpha[i+2])/6; 

} 

alphamean[I-1] <- (2*alpha[I] + 4*alpha[I-2] - alpha[I-3])/5; 

alphamean[I] <- 2*alpha[I-1] - alpha[I-2]; 

for (i in 1:I){ 

alphaprec[i] <- taua; 

} 

for (i in 1:I){ 

alpha[i] ~ dnorm(alphamean[i],alphaprec[i]); 

} 

#AGE EFFECTS:prior standard deviation 

taua<-K.s*pow(sigmaa,-2); 

sigmaa ~ dunif(0.01,1); 

} 
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##AGE-PERIOD PREDICTION MODEL## 
model 

{ 

 

### Fit of the Age and Period 

for (n in 1:N-M*I) { 

deaths[n] ~ dpois(mu[n]); 

# Modelling rate 

log(mu[n]) <- log(pyr[n])+alpha[age[n]]+beta[period[n]]; 

} 

#Modelling projections 

for (i in 1:M*I) { 

log(pred.mu[i])<-log(pyr[indx[i]])+alpha[age[indx[i]]]+beta[period[indx[i]]]; 

 

pred.rate[i]<-100000*pred.mu[i]/pyr[indx[i]]; 

} 

#PERIOD EFFECTS:prior standard deviation 

taup<-K.s*pow(sigmap,-2) 

sigmap ~ dunif(0.01,1); 

 

 

####PERIOD REF 1994 

betamean[1]<-0.0; 

betaprec[1]<-taup; 

betamean[2]<-0.0; 

betaprec[2]<-taup; 

for (j in 3:J){ 

betamean[j]<-2*beta[j-1]-beta[j-2]; 

betaprec[j]<-taup; 

} 

#Corner constraint on the first period 

beta[1]<-0 

for (j in 2:J){ 

beta[j] ~ dnorm(betamean[j],betaprec[j]); 

} 

 

 

#### AGE CONSTRAINED ON THE 2nd ORDER DIFFERENCES 

alphamean[1] <- 2*alpha[2] - alpha[3]; 

alphamean[2] <- (2*alpha[1] + 4*alpha[3] - alpha[4])/5; 

for (i in 3:(I-2)){ 

alphamean[i] <- (4*alpha[i-1] + 4*alpha[i+1]- alpha[i-2] 

- alpha[i+2])/6; 

} 

alphamean[I-1] <- (2*alpha[I] + 4*alpha[I-2] - alpha[I-3])/5; 

alphamean[I] <- 2*alpha[I-1] - alpha[I-2]; 

for (i in 1:I){ 

alphaprec[i] <- taua; 

} 

for (i in 1:I){ 

alpha[i] ~ dnorm(alphamean[i],alphaprec[i]); 

} 

#AGE EFFECTS:prior standard deviation 

taua<-K.s*pow(sigmaa,-2); 

sigmaa ~ dunif(0.01,1); 

} 
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Appendix D: Cases of Lung Cancer Mortality in KSA from 1994-2009 Prepared in 

the Lexis Diagram. 
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Appendix F: Data for the Research Project. 

 

 

Table F1: Cases of lung cancer among Saudi males from 1994 to 2009 for 16 age groups. 

  Year of diagnosis (1994-2009)   

Age  94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 0 0 0 0 3 0 0 1 0 0 2 0 0 1 0 1 

5-9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

10-14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

15-19 0 1 2 0 0 0 0 0 0 0 2 0 0 1 0 0 

20-24 1 1 0 0 1 0 1 1 0 0 1 0 1 2 0 1 

25-29 1 1 0 2 2 1 0 1 0 1 0 1 1 2 2 2 

30-34 1 3 5 2 4 4 2 2 2 3 4 3 2 1 3 4 

35- 39 6 7 6 8 3 5 3 5 5 5 4 10 1 10 1 2 

40-44 8 9 2 8 4 8 5 2 5 8 11 14 6 15 11 8 

45-49 13 11 9 9 15 4 8 10 7 4 15 17 16 10 17 14 

50- 54 20 16 17 18 19 19 8 18 13 18 26 21 15 26 35 27 

55- 59 29 27 18 25 27 13 19 24 18 13 23 18 24 25 29 26 

60- 64 36 37 36 26 35 27 31 28 44 28 45 42 30 49 41 36 

65- 69 25 34 32 21 34 37 28 16 31 36 24 45 47 58 44 57 

70- 74 29 31 28 21 45 28 30 28 27 28 31 46 43 47 36 41 

75+ 39 30 41 25 27 40 33 11 22 40 45 44 46 75 66 56 

All 208 208 196 165 219 186 168 169 175 183 233 261 232 323 285 276 

 

 

 

Table F2: Population (thousands) of Saudi males at risk from 1994 to 2009 for 16 age groups. 

 

Time period (1994-2009)   

Age  94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 1125 1175 1225 1286 1347 1306 1265 1338 1147 1039 1066 1093 1151 1157 1193 1209 

5-9 1110 1160 1210 1257 1304 1248 1192 1292 1124 1099 1127 1156 1054 1085 1119 1134 

10-14 1023 1022 1021 1072 1123 1092 1062 1072 1056 1055 1082 1109 993 1037 1069 1084 

15-19 777 779 780 796 811 857 902 902 940 925 949 973 947 972 1002 1016 

20-24 580 589 597 621 646 664 683 683 748 741 760 779 921 905 934 946 

25-29 526 526 527 518 510 478 446 546 556 707 725 744 791 764 788 799 

30-34 370 370 370 386 402 417 433 465 454 555 569 584 641 648 668 678 

35- 39 312 320 328 326 325 352 380 390 379 480 493 505 538 529 546 553 

40-44 123 169 216 219 221 266 311 321 331 401 412 422 441 439 453 459 

45-49 187 187 186 188 189 212 235 245 273 305 313 321 358 352 363 368 

50- 54 110 109 107 142 177 181 184 185 203 217 222 338 266 274 283 278 

55- 59 107 107 107 126 144 144 143 143 155 142 146 150 181 202 208 211 

60- 64 11 59 107 132 157 131 105 106 113 123 127 130 141 150 155 158 

65- 69 55 56 56 72 87 97 106 116 103 101 103 106 76 103 106 108 

70- 74 62 61 61 70 80 87 94 94 94 75 77 79 83 89 92 93 

75+ 83 84 84 98 113 123 133 134 132 113 116 119 83 116 120 122 
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Table F3: Cases of lung cancer among non-Saudi males from 1994 to 2009 for 16 age groups. 

 

Year of diagnosis (1994-2009)    

Age 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5-9 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 

10-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20-24 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 

25-29 0 0 0 1 0 0 4 0 2 2 1 0 0 0 0 0 

30-34 0 0 3 1 2 0 1 0 2 2 1 0 3 0 3 3 

35- 39 4 4 2 1 7 3 3 4 3 3 2 5 2 4 5 5 

40-44 5 5 8 6 11 7 6 3 6 6 2 10 8 5 6 6 

45-49 14 14 10 5 9 4 4 7 7 7 6 13 10 14 6 6 

50- 54 15 15 15 12 9 6 9 7 11 12 9 8 15 15 18 16 

55- 59 21 20 13 11 7 2 4 6 11 11 8 14 11 19 12 10 

60- 64 19 17 16 7 11 7 4 12 4 4 9 6 16 17 15 10 

65- 69 9 9 12 4 4 1 6 5 13 14 7 8 12 9 10 9 

70- 74 5 5 7 3 1 3 5 1 3 3 2 5 7 5 8 7 

75+ 7 7 5 5 1 3 2 0 1 0 4 7 5 7 2 7 

All 100 97 92 56 63 37 48 45 63 65 51 77 90 96 85 80 

 

 

 

Table F4: Population (thousands) of non-Saudi males at risk from 1994 to 2009 for 16 age groups. 

  Time period (1994-2009)   

Age 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 232 237 242 242 243 241 240 251 248 218 223 234 234 237 243 306 

5-9 213 214 215 217 218 229 241 252 278 202 207 217 224 226 232 292 

10-14 191 161 131 143 155 174 193 202 240 173 177 185 183 185 190 239 

15-19 95 95 95 95 96 108 120 126 154 147 150 157 140 142 145 183 

20-24 291 296 301 305 310 257 205 214 167 291 298 312 206 208 213 269 

25-29 629 696 763 748 732 619 506 530 455 612 627 656 546 553 567 714 

30-34 650 675 699 728 757 704 651 681 713 693 710 743 770 779 799 1006 

35- 39 598 589 580 589 597 572 547 573 679 659 675 706 780 789 809 1019 

40-44 380 374 368 376 383 376 369 386 486 500 512 536 560 567 581 732 

45-49 230 220 210 208 205 209 213 223 293 330 338 354 373 377 386 487 

50- 54 160 150 140 125 110 112 115 120 158 189 193 202 222 225 230 290 

55- 59 61 56 51 49 48 54 60 63 82 83 85 89 107 109 111 140 

60- 64 31 27 24 24 25 27 29 30 40 39 40 41 42 43 44 55 

65- 69 9 9 9 9 9 11 12 13 18 16 17 17 17 18 18 23 

70- 74 6 6 6 6 6 7 7 7 8 10 10 10 11 11 11 14 

75+ 6 6 6 6 6 7 8 9 9 9 9 9 12 13 13 16 
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Table F5: Cases of lung cancer among Saudi females from 1994 to 2009 for 16 age groups. 

  Year of diagnosis  (1994-2009)   

Age  94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5-9 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 

10-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15-19 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 

20-24 0 1 0 0 0 0 0 1 0 0 3 0 0 0 2 0 

25-29 1 0 0 2 1 0 0 1 1 2 1 1 4 3 1 3 

30-34 1 1 5 3 0 0 0 0 2 3 0 2 1 0 2 2 

35- 39 4 3 1 2 3 2 0 1 2 2 1 3 1 2 1 2 

40-44 4 2 1 4 2 3 2 2 4 4 1 10 6 4 3 7 

45-49 5 6 4 2 2 3 2 5 3 2 5 11 8 10 8 8 

50- 54 5 4 7 8 5 6 9 2 3 8 5 8 5 10 4 20 

55- 59 4 9 6 5 7 8 4 5 6 6 10 7 6 6 10 7 

60- 64 6 8 5 9 6 10 5 9 5 9 13 13 13 7 15 9 

65- 69 12 9 4 6 6 3 9 7 6 6 7 3 11 19 11 19 

70- 74 3 5 10 5 3 3 6 6 3 5 6 11 11 8 11 6 

75+ 8 13 7 11 11 14 11 12 8 12 10 16 13 20 14 18 

All 54 62 51 58 46 52 48 51 44 59 63 86 80 89 82 103 

 

 

 

Table F6: Population (thousands) of Saudi females at risk from 1994 to 2009 for 16 age groups. 

  Time period (1994-2009)   

Age 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 1125 1197 1268 1285 1302 1243 1185 1285 1096 1028 1055 1081 1128 1123 1159 1516 

5-9 1110 1169 1227 1256 1285 1218 1150 1236 1076 1084 1113 1141 1067 1073 1106 1099 

10-14 1121 1089 1057 1071 1085 1058 1031 1041 1018 1126 1156 1185 1007 1037 1070 1063 

15-19 770 767 764 796 829 810 792 892 917 915 939 963 954 952 982 976 

20-24 587 598 608 621 635 643 652 752 787 767 787 806 931 880 908 902 

25-29 517 498 480 520 559 590 621 616 630 684 701 719 756 762 786 781 

30-34 380 379 378 386 393 437 481 491 493 561 575 590 650 646 666 663 

35- 39 314 310 306 327 348 375 402 403 393 486 498 511 542 532 548 545 

40-44 216 212 208 219 229 277 324 328 340 364 373 382 436 426 440 437 

45-49 186 182 178 188 198 214 230 252 280 270 278 285 339 334 345 343 

50- 54 118 142 166 174 182 191 199 193 212 194 199 204 249 267 275 274 

55- 59 124 130 136 125 114 130 146 156 167 149 153 157 177 191 197 196 

60- 64 118 133 148 131 114 121 128 125 136 131 134 138 135 147 152 151 

65- 69 71 77 82 71 60 73 87 82 91 99 101 104 75 108 111 111 

70- 74 67 71 75 70 65 70 75 76 71 83 85 87 72 78 80 80 

75+ 84 95 106 98 89 93 96 95 97 91 93 96 89 116 119 119 
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Table F7: Cases of lung cancer among non-Saudi females from 1994 to 2009 for 16 age groups. 

  Year of diagnosis  (1994-2009)   

Age  94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

5-9 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

10-14 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

15-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20-24 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 

25-29 1 0 0 0 2 0 0 0 1 1 1 0 0 0 1 0 

30-34 5 3 2 0 2 0 0 0 3 3 1 1 5 0 1 2 

35-39 0 2 3 1 1 2 1 0 0 0 1 3 1 2 0 0 

40-44 3 1 1 2 3 0 0 0 3 3 0 3 6 1 1 4 

45-49 1 2 2 2 0 4 1 2 2 2 1 0 2 5 1 3 

50- 54 3 2 2 3 0 3 0 1 3 1 3 3 1 5 3 4 

55- 59 3 5 3 3 1 2 3 0 1 3 1 5 3 4 1 3 

60- 64 2 3 5 4 0 3 1 2 0 0 1 1 5 2 1 3 

65- 69 3 2 2 2 1 2 0 2 1 1 1 6 3 1 3 6 

70- 74 1 0 0 0 1 1 0 2 0 1 1 1 3 4 1 3 

75+ 1 0 0 0 0 0 0 1 1 0 0 5 0 2 4 3 

All 24 20 20 18 11 19 6 12 15 15 12 31 29 26 17 31 

 

 

 

Table F8: Population (thousands) of non-Saudi females at risk from 1994 to 2009 for 16 age 

groups. 

  Time period (1994-2009)   

Age  94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 219 220 221 227 233 231 229 240 219 211 216 226 230 233 239 282 

5-9 234 239 244 229 214 232 249 261 247 193 198 207 209 212 216 257 

10-14 150 167 183 167 150 172 195 204 216 164 168 176 176 178 183 216 

15-19 94 95 96 96 96 108 120 126 142 139 142 149 137 139 143 169 

20-24 115 118 120 121 122 118 115 121 111 156 160 167 148 150 154 182 

25-29 151 161 171 178 186 172 158 165 140 235 240 251 224 227 233 275 

30-34 240 250 260 266 271 251 231 242 208 265 271 284 297 301 309 365 

35- 39 156 161 166 169 171 188 205 214 222 186 190 199 243 246 252 299 

40-44 90 91 91 90 88 99 109 114 142 119 122 128 133 134 138 163 

45-49 49 48 47 45 44 49 54 56 67 71 73 76 73 74 76 90 

50- 54 25 26 27 27 27 29 30 31 35 43 44 46 46 47 48 57 

55- 59 10 11 11 12 12 15 18 19 20 21 22 23 26 26 27 32 

60- 64 12 12 11 11 11 11 11 11 12 15 15 16 14 15 15 18 

65- 69 6 6 5 5 5 6 6 6 7 8 8 8 9 9 9 11 

70- 74 5 5 5 5 5 7 8 9 7 6 6 7 8 9 9 10 

75+ 6 6 6 6 6 6 6 6 7 7 7 8 8 8 8 10 
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Table F9:  Male lung cancer cases per month from 1994 to 2009. 

  Cases per month 

Year Jan   Feb  Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1994 47 21 20 28 24 32 24 20 19 19 19 13 

1995 28 23 17 25 23 27 22 19 23 24 17 12 

1996 35 21 19 24 19 24 18 17 25 21 13 14 

1997 31 16 27 16 24 16 25 15 15 15 11 18 

1998 23 16 31 22 32 21 31 30 25 22 14 16 

1999 22 23 27 23 18 19 18 19 21 17 16 22 

2000 26 24 20 15 25 24 23 27 21 17 18 12 

2001 24 23 14 27 25 20 22 14 22 19 19 17 

2002 34 20 31 24 22 30 20 14 16 24 15 27 

2003 30 29 23 24 24 23 26 22 23 23 17 23 

2004 27 29 27 27 39 28 28 17 28 16 30 30 

2005 25 25 38 38 30 27 28 20 35 32 25 30 

2006 26 29 40 36 35 32 29 21 23 20 15 28 

2007 35 38 34 36 50 38 39 33 31 22 30 40 

2008 36 38 33 31 34 34 32 30 27 30 33 24 

2009 28 39 36 30 32 34 23 30 17 39 30 39 

 

 

 

 

Table F10:  Female lung cancer cases per month from 1994 to 2009. 

  Cases per month 

Year Jan   Feb  Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1994 10 6 5 6 5 4 5 10 7 5 5 6 

1995 9 7 5 6 3 9 5 6 4 10 4 12 

1996 7 4 8 4 3 7 5 7 5 8 2 4 

1997 12 7 5 5 6 8 7 2 2 6 3 7 

1998 1 4 5 3 6 6 8 7 5 8 6 4 

1999 7 6 8 9 11 4 4 5 4 2 3 9 

2000 2 5 3 7 7 1 11 8 4 3 6 4 

2001 6 5 7 6 7 3 8 4 6 5 8 5 

2002 9 1 6 9 4 6 6 9 6 5 7 7 

2003 10 5 4 9 8 6 5 9 7 8 9 6 

2004 10 6 13 9 10 7 5 2 4 4 7 7 

2005 10 8 13 10 11 11 6 11 13 9 7 9 

2006 12 13 8 11 5 6 10 8 6 8 8 16 

2007 9 9 14 5 9 14 7 9 10 11 10 15 

2008 8 8 10 6 13 10 8 11 4 8 9 8 

2009 8 18 14 8 13 14 17 8 12 7 12 10 
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Table F11:  Male smoking population in 10,000 per month from 1994 to 2009. 

  Male smoking population in ten thousand per month 

Year Jan   Feb  Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1994 196 196 195 195 194 194 194 193 193 193 192 192 

1995 192 192 192 193 193 193 194 194 194 195 195 195 

1996 196 196 197 197 198 199 199 200 200 201 202 202 

1997 203 204 205 206 206 207 208 209 210 211 212 213 

1998 214 213 212 211 209 208 207 206 205 204 203 202 

1999 201 200 200 199 199 198 198 197 196 196 195 195 

2000 194 195 196 196 197 197 198 198 199 200 200 201 

2001 201 202 203 205 206 207 208 209 210 211 213 214 

2002 215 216 217 218 219 220 221 222 223 224 225 226 

2003 227 228 229 231 232 233 234 236 237 238 239 241 

2004 242 244 246 248 250 252 254 256 257 259 261 263 

2005 265 265 266 266 266 266 267 267 267 267 267 268 

2006 268 270 273 275 278 280 283 285 288 290 293 295 

2007 298 296 295 293 292 290 289 287 286 284 283 281 

2008 279 282 285 288 290 293 296 298 301 304 307 309 

2009 312 312 312 312 312 312 312 312 312 312 312 312 

 
 

 

 

Table F12:  Female smoking population in 10,000 per month from 1994 to 2009. 

  Female smoking population in ten thousand per month 

Year Jan   Feb  Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1994 31.1 31.5 31.9 32.3 32.6 33 33.4 33.8 34.2 34.5 34.9 35.3 

1995 35.7 35.5 35.4 35.2 35.1 34.9 34.8 34.6 34.5 34.3 34.2 34 

1996 33.9 34 34.1 34.2 34.3 34.4 34.5 34.6 34.7 34.8 34.9 35 

1997 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 35.1 

1998 35.1 35.2 35.2 35.2 35.2 35.3 35.3 35.3 35.4 35.4 35.4 35.5 

1999 35.5 35 34.5 34 33.6 33.1 32.6 32.1 31.6 31.1 30.7 30.2 

2000 29.7 30.5 31.3 32.1 32.9 33.7 34.5 35.4 36.2 37 37.8 38.6 

2001 39.4 39.3 39.1 39 38.9 38.7 38.6 38.5 38.3 38.2 38.1 38 

2002 37.8 38.2 38.5 38.9 39.3 39.6 40 40.3 40.7 41.1 41.4 41.8 

2003 42.1 42.3 42.4 42.5 42.6 42.8 42.9 43 43.1 43.3 43.4 43.5 

2004 43.6 44.5 45.3 46.2 47 47.9 48.8 49.6 50.5 51.3 52.2 53 

2005 53.9 53.9 53.9 53.9 54 54 54 54.1 54.1 54.1 54.1 54.2 

2006 54.2 54.2 54.3 54.4 54.4 54.5 54.5 54.6 54.7 54.7 54.8 54.8 

2007 54.9 55 55.1 55.2 55.3 55.4 55.5 55.6 55.7 55.8 55.9 56 

2008 56.1 56.9 57.7 58.5 59.2 60 60.8 61.6 62.4 63.2 64 64.8 

2009 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 65.5 
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Table F13: Total cases of lung cancer in KSA from 1994 to 2009 for 16 age groups. 

  Year of diagnosis  (1994-2009)   

Age 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 1 0 0 0 3 1 0 1 0 0 2 0 0 1 0 1 

5-9 0 0 2 0 0 1 0 0 1 0 0 0 1 0 0 2 

10-14 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 

15-19 0 2 2 1 0 0 0 0 0 1 3 1 1 1 0 1 

20-24 2 3 0 1 2 0 1 2 0 0 5 1 1 3 2 2 

25-29 3 1 0 5 5 1 4 2 4 6 3 2 5 5 4 5 

30-34 7 7 15 6 8 4 3 2 9 11 6 6 11 1 9 11 

35-39 14 16 12 12 14 12 7 10 10 10 8 21 5 18 7 9 

40-44 20 17 12 20 20 18 13 7 18 21 14 37 26 25 21 25 

45-49 33 33 25 18 26 15 15 24 19 15 27 41 36 39 32 31 

50- 54 43 37 41 41 33 34 26 28 30 39 43 40 36 56 60 67 

55- 59 57 61 40 44 42 25 30 35 36 33 42 44 44 54 52 46 

60- 64 63 65 62 46 52 47 41 51 53 41 68 62 64 75 72 58 

65- 69 49 54 50 33 45 43 43 30 51 57 39 62 73 87 68 91 

70- 74 38 41 45 29 50 35 41 37 33 37 40 63 64 64 56 57 

75+ 55 50 53 41 39 57 46 24 32 52 59 72 64 104 86 84 

All 385 387 359 297 339 293 270 255 296 323 359 452 431 534 469 490 

 

 

Table F14: Person-years-at- risk (in thousands) in five-year age groups and one-year time period 

from 1994-2009. 

  Time Period 

Age  94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 2702 2829 2957 3040 3124 3021 2918 3113 2710 2496 2560 2634 2743 2750 2834 3313 

5-9 2666 2781 2896 2959 3022 2927 2832 3041 2725 2579 2645 2720 2553 2595 2674 2782 

10-14 2485 2439 2392 2452 2512 2496 2480 2519 2530 2517 2582 2655 2358 2437 2512 2602 

15-19 1736 1735 1734 1783 1832 1883 1934 2046 2152 2126 2180 2242 2178 2205 2273 2344 

20-24 1574 1600 1626 1669 1712 1683 1655 1770 1813 1955 2005 2065 2206 2143 2209 2298 

25-29 1823 1882 1941 1964 1988 1859 1731 1857 1781 2238 2294 2370 2317 2305 2373 2569 

30-34 1641 1675 1708 1765 1823 1809 1795 1879 1868 2074 2125 2200 2358 2374 2442 2711 

35- 39 1380 1380 1380 1411 1442 1488 1534 1580 1672 1811 1856 1921 2104 2096 2155 2416 

40-44 809 846 884 903 922 1018 1113 1149 1299 1384 1419 1468 1570 1566 1611 1791 

45-49 653 637 621 629 636 684 733 777 914 977 1002 1036 1142 1137 1170 1288 

50- 54 414 428 441 469 496 512 528 529 607 642 658 790 782 813 836 899 

55- 59 302 304 305 311 318 343 367 381 424 396 406 418 491 528 543 579 

60- 64 272 231 290 298 307 290 273 273 301 308 316 325 332 355 366 382 

65- 69 142 148 153 158 162 186 211 217 218 223 229 235 177 238 245 252 

70- 74 140 144 148 152 156 170 184 186 181 174 178 183 174 186 192 197 

75+ 180 191 203 208 214 228 242 243 245 220 225 231 193 252 260 266 
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Table F15: Cases of lung cancer mortality for males from 1994 to 2009 for 16 age groups. 

  Year of diagnosis (1994-2009)   

Age  94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

5-9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15-19 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 

20-24 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 

25-29 0 1 0 0 1 0 2 1 0 1 0 0 2 0 1 0 

30-34 0 0 1 1 0 3 2 2 2 1 2 2 4 1 1 2 

35- 39 1 1 1 2 2 4 1 3 2 9 1 6 0 5 1 3 

40-44 0 1 0 0 2 4 4 1 3 7 8 5 4 8 10 4 

45-49 1 3 2 2 6 3 5 6 6 13 5 9 15 11 9 11 

50- 54 0 0 2 11 4 15 6 18 6 14 14 11 12 13 26 17 

55- 59 1 1 2 12 15 5 9 19 11 12 13 13 17 20 17 18 

60- 64 1 2 4 6 18 9 15 20 30 23 24 28 24 35 28 28 

65- 69 1 0 2 7 11 10 16 10 13 19 16 31 33 32 16 36 

70- 74 0 1 3 3 12 11 14 17 17 16 20 25 35 35 28 22 

75+ 1 0 1 15 11 20 19 20 20 15 30 32 31 41 49 39 

All 6 10 18 59 82 84 93 117 111 131 135 162 178 203 186 180 

 

 

 

Table F16: Cases of lung cancer mortality for females from 1994 to 2009 for 16 age groups. 

  Year of diagnosis (1994-2009)   

Age  94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 

0 - 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5-9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15-19 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 

20-24 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 

25-29 0 0 0 1 1 0 0 0 1 0 0 0 1 1 2 1 

30-34 1 0 1 2 0 1 0 0 0 0 1 1 2 0 2 1 

35- 39 0 0 0 0 2 0 2 0 3 0 0 1 0 0 0 0 

40-44 0 1 0 1 1 0 1 0 2 3 0 6 5 1 2 5 

45-49 0 0 0 0 1 1 1 3 1 3 1 5 5 9 5 4 

50- 54 0 0 1 4 2 2 3 1 2 0 5 6 2 10 3 14 

55- 59 1 1 2 5 1 2 0 4 4 3 0 5 2 2 8 7 

60- 64 1 0 0 2 2 3 1 2 2 5 8 5 11 6 12 2 

65- 69 1 1 4 0 2 4 4 4 3 6 3 6 9 9 6 11 

70- 74 0 0 1 0 2 1 1 5 3 4 4 8 10 4 6 5 

75+ 0 0 0 1 2 8 3 3 4 8 4 15 12 12 10 13 

All 4 3 9 16 16 22 16 22 25 32 26 59 61 54 58 63 
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Table F17:  Male lung cancer mortality cases per month from 1994 to 2009. 

  Male deaths per month 

Year Jan   Feb  Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1994 0 0 0 1 3 0 0 1 0 0 0 1 

1995 1 1 1 2 0 0 0 2 0 1 1 1 

1996 2 1 4 2 0 2 1 0 3 0 1 2 

1997 5 3 8 3 8 3 6 4 5 4 3 6 

1998 8 2 13 6 10 5 9 8 5 7 5 7 

1999 5 11 7 7 8 5 5 5 11 6 8 6 

2000 8 6 6 4 13 7 9 10 7 6 7 10 

2001 10 14 8 9 13 11 10 5 9 9 10 6 

2002 17 9 10 10 8 13 7 4 5 9 8 10 

2003 11 12 11 12 8 12 14 10 12 11 7 14 

2004 10 10 15 14 16 12 13 6 16 3 8 11 

2005 11 10 20 21 14 8 16 10 15 14 10 11 

2006 12 7 19 17 14 11 7 9 7 5 7 6 

2007 16 19 9 15 20 21 15 18 9 17 11 12 

2008 16 19 20 15 13 14 16 11 10 14 10 11 

2009 16 15 15 11 15 17 10 9 10 18 16 17 

 

 

 

Table F18:  Female lung cancer mortality cases per month from 1994 to 2009. 

  Female deaths per month 

Year Jan   Feb  Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1994 0 0 0 1 0 0 0 1 0 0 2 0 

1995 1 1 0 0 0 1 0 0 0 0 0 0 

1996 1 1 1 2 0 0 2 0 1 0 0 1 

1997 1 3 1 1 2 3 1 0 0 1 1 0 

1998 0 2 2 1 0 1 3 1 1 2 3 0 

1999 4 1 1 4 3 3 1 1 1 1 2 0 

2000 0 2 1 1 3 0 2 4 1 0 1 1 

2001 1 1 3 1 2 2 5 2 1 1 2 2 

2002 3 1 1 4 2 2 2 4 3 0 1 2 

2003 3 2 2 2 2 1 3 4 3 5 3 1 

2004 2 3 2 4 2 4 4 1 2 2 0 0 

2005 4 5 9 4 2 4 4 7 8 4 4 3 

2006 7 4 3 8 3 4 6 4 5 4 4 11 

2007 4 2 5 3 6 7 5 5 6 4 4 6 

2008 6 5 5 2 4 2 7 6 2 4 4 3 

2009 3 3 6 8 7 4 4 4 7 3 6 4 



193 

 

Table F19: Male population (thousands) at risk forecast from 2010 to 2020 for 16 age groups. 

  Time period  

Age  2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

0 - 4 1507 1498 1490 1482 1473 1465 1450 1435 1420 1405 1391 

5-9 1451 1477 1504 1531 1558 1585 1572 1559 1546 1533 1520 

10-14 1339 1352 1365 1379 1392 1405 1422 1438 1455 1471 1488 

15-19 1209 1218 1228 1237 1246 1256 1283 1310 1337 1364 1391 

20-24 1238 1259 1281 1302 1324 1345 1367 1389 1411 1433 1455 

25-29 1531 1548 1564 1581 1598 1614 1628 1641 1655 1668 1682 

30-34 1694 1708 1722 1736 1750 1764 1806 1847 1889 1931 1973 

35- 39 1639 1705 1772 1839 1906 1973 1973 1973 1973 1973 1973 

40-44 1271 1345 1420 1495 1570 1644 1710 1776 1841 1907 1973 

45-49 892 929 966 1003 1039 1076 1159 1241 1323 1405 1488 

50- 54 614 653 691 730 769 807 846 885 924 963 1003 

55- 59 397 443 489 536 582 628 651 674 697 721 744 

60- 64 254 293 332 371 409 448 475 502 529 555 582 

65- 69 136 139 142 144 147 149 191 232 273 314 356 

70- 74 106 109 112 114 117 120 122 123 125 127 129 

75+ 380 334 288 242 196 149 145 141 137 133 129 

 
            

Table F20: Female population (thousands) at risk forecast from 2010 to 2020 for 16 age groups. 

  Time period  

Age  2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

0 - 4 1433 1427 1422 1416 1411 1405 1389 1373 1358 1342 1326 

5-9 1376 1394 1412 1429 1447 1465 1444 1422 1401 1380 1358 

10-14 1264 1244 1225 1205 1186 1166 1172 1178 1184 1190 1197 

15-19 1099 1053 1006 960 914 867 862 857 851 846 841 

20-24 1075 1069 1063 1058 1052 1046 999 951 904 856 809 

25-29 1090 1124 1157 1190 1223 1256 1231 1206 1181 1157 1132 

30-34 1047 1071 1095 1118 1142 1166 1204 1243 1281 1320 1358 

35- 39 876 910 944 978 1012 1046 1057 1068 1078 1089 1100 

40-44 619 638 658 678 698 718 749 780 811 842 873 

45-49 469 500 532 564 596 628 645 661 678 695 711 

50- 54 371 410 450 489 529 568 597 625 654 683 711 

55- 59 254 281 308 335 362 389 414 440 466 492 517 

60- 64 190 212 234 255 277 299 310 322 333 344 356 

65- 69 129 139 149 159 169 179 208 237 266 295 323 

70- 74 95 100 105 110 115 120 122 123 125 127 129 

75+ 129 133 137 141 145 149 171 193 215 237 259 
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Appendix G: ARPDL Models with Few Number of Lags 

 

G.0. Dynamic modelling with a few number of lags approach 

Suppose that we want to estimate just a few number of lags in our model, say 6 lags for 

both the dependent (     ) and the independent (    ) variables. We use the same procedure 

as we did before for choosing the best lag length and order of the polynomial to select the 

best ARPDL model. Next, we check the validity of the chosen best-fit model by using the 

cross-validation procedure using the one step ahead out-of-sample forecasts. This will 

provide us with a yardstick to compare the presented models with high number of lags. 

This is presented through the following steps:  

1- Choose the best lag length of the independent variable (k).  

2- Choose the best order of the polynomial of the independent variable (r).  

3- Choose the best lag length of the dependent variable (p). 

4- Choose the best order of the polynomial of the dependent variable (q). 

5- Run the ARPDL(p,q,k,r) model and check the model diagnostic plots.  

6- Perform cross-validation using the one step ahead out-of-sample forecast from 2008 to 

2009 and select the best fit model. 

 

G.1. Choosing the Lag Length with OLS for the Independent Variable  

We run the regression 6 times using different lags, starting from lag 6 to lag 1. Then, we 

checked where the fit of the models deteriorates significantly.  

 

Table G1: Choosing the best lag length from OLS 

 
Lag  

coefficient of  6* 5 4 3 2 1 

     0.071 0.065 0.053 0.048 0.041 0.142 

     0.265 0.265 0.265 0.265 0.103 
 

     -0.082 -0.082 -0.082 -0.172 
  

     0.146 0.146 -0.097 
   

     -0.174 -0.261 
    

     -0.094 
     

sum of coefficient 0.132 0.134 0.139 0.141 0.144 0.142 

    0.457 0.451 0.434 0.430 0.427 0.428 

DW 1.84 1.81 1.80 1.76 1.75 1.80 

 

 The best lag length is 6 based on the highest adjusted R-squared. The main problem 

with the OLS estimates is that, no matter how many lags we include, the Durbin-Watson 
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(DW) test shows positive correlation (less than 2). From Table G1, DW suggests a typical 

symptom of collinearity and we should be estimating some more general dynamic models, 

allowing for autocorrelated errors. Thus, we use the polynomial distributed lag model.  

G.2. Choosing the Degree of the Polynomial for the Independent Variable 

Having determined the best lag length of the independent variable (    ). The next step is 

to specify the order of the polynomial by starting with a high-degree polynomial and then 

we decrease it until we obtain a satisfactory fit. So we started with a polynomial of degree 

three and decreased it until we obtained a satisfactory fit as shown in Table G2. 

 

 

Table G2: Choosing the degree of the polynomial. 

  Equation    

  1 2* 3 

coefficient of  3rd order t ratios  p-value 2nd order  t ratios  p-value 1st order t ratios  p-value 

    0.00 -0.09 0.93 0.00 -0.08 0.93 0.02 9.21 0.00 

    -0.09 -1.50 0.14 -0.04 -3.91 0.00 -0.04 -3.94 0.00 

    0.01 0.54 0.59 0.01 0.53 0.60 
  

  

    0.01 0.86 0.39             

    0.45 
 

  0.46 
 

  0.46 
 

  

   6432.09 
 

  6462.73 
 

  6474.40 
 

  

DW 1.870     1.873     1.856     

 

 We compare the adjusted R-squared values for the three models and their 

corresponding DW statistics to select the best order for the polynomial. From Table G2, 

the 2nd-order polynomial is appropriate due to its adjusted R-squared and DW statistic 

(close to 2). Hence, the bet model of the polynomial distributed lag models is PDL(6,2).  

 

G.3. Choosing the Lag Length of    from OLS  

The best lag length of    is as shown (starred) in Table G3. We ran the regression 6 times 

using different lags of   , starting from lag 6 to lag 1. Then, we checked where the fit of 

the models deteriorates significantly.  
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Table G3: Choosing the best lag length of    from ordinary least squares. 

  Lag  

coefficient of  6 5 4 3* 2 1 

     0.29 0.30 0.30 0.29 0.36 0.46 

     0.29 0.28 0.29 0.29 0.30   

     0.11 0.11 0.13 0.14 
 

  

     -0.03 -0.01 0.00 
  

  

     0.01 0.05 
   

  

     0.11 
    

  

    0.316 0.313 0.315 0.320 0.298 0.212 

AIC 6.83 6.82 6.81 6.79 6.81 6.92 

 

 From Table G3, the appropriate lag length of     is 3. This is due to the highest 

adjusted R-squared and lowest value of AIC.  

G.4. Choosing the Degree of the Polynomial     

Here, we started with a third-degree polynomial and decreased it until we obtained a 

satisfactory fit. 

Table G4: Choosing the degree of the polynomial. 

  Equation    

  1 2 3* 

coefficient of  3rd order t ratios  p-value 2nd order  t ratios  p-value 1st order t ratios  p-value 

PDL01 0.29 3.53 0.00 0.26 4.86 0.00 0.23 8.13 0.00 

PDL02 -0.12 -1.06 0.29 -0.07 -1.17 0.24 -0.10 -2.75 0.01 

PDL03 -0.08 -0.71 0.48 -0.03 -0.64 0.52 
  

  

PDL04 0.03 0.49 0.63             

    0.315     0.319     0.321     

   8165.77 
 

  8177.92 
 

  8199.08 
 

  

AIC 6.81     6.80     6.79     

 

 Therefore, the best order of the polynomial is 1. This is due to the highest adjusted R-

squared and lowest value of AIC as shown (starred) in Table G4 above. Hence, the best 

model is ARPDL(3,1,6,2);  

                
      

      
       

 

   

       
      

       

 

   

     G.1  
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Table G5: Results of the autoregressive polynomial distributed lag ARPDL(3,1,6,2) model. 

      
      Variable Coefficient  Std. Error t-Statistic Prob.   
      
      C -4.93  3.72 -1.32 0.18 

    0.01  0.04 0.33 0.74 

    -0.03  0.01 -3.14 0.00 

    0.00  0.01 0.12 0.90 

    0.02  0.04 0.52 0.60 

    -0.06  0.03 -1.84 0.06 
      
      R-squared 0.481866  Mean dependent var 30.85093 

Adjusted R-squared 0.465152  S.D. dependent var 8.729412 

S.E. of regression 6.384109  Akaike info criterion 6.582056 

Sum squared resid 6317.311  Schwarz criterion 6.696891 

Log likelihood -523.8555  Hannan-Quinn criter. 6.628683 

F-statistic 28.83006  Durbin-Watson stat 2.074427 

Prob(F-statistic) 0.000000     
      
      

 

 Note that the created variables from     to     refer to the lag of      whereas the 

variables from     to     refer to the lag of     .  

 After fitting the dynamic regression model it is important to determine whether all the 

necessary model assumptions are valid before performing any forecast. If there are any 

violations, subsequent inferential procedures may be invalid resulting in faulty 

conclusions. Therefore, it is crucial to perform appropriate model diagnostics.  

 The fitted model is shown in Figure G1 together with residual diagnostic plots. This is 

followed by the distribution of the series in the histogram with a complement of standard 

descriptive statistics displayed along with the histogram (see Figure G2). The p-value 

(p=0.31) of the Jarque-Bera test is not less than 0.05 for a 5% significance level and hence 

we do not reject the null hypothesis that the model is normally distributed. Figure G3 

shows leverage plots of the residuals.  
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Figure G1: Fitted and residual plots for the best ARPDL(3,1,6,2) model of lung cancer cases per 

month from 1994 to 2009. 
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 Figure G2: Residual diagnostic of the normality test of the best ARPDL(3,1,6,2) model of 

lung cancer cases per month from 1994 to 2009. 
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Figure G3: Leverage plots for the stability of diagnostics of the best OLS model of lung cancer 

cases per month from 1994 to 2009. 

 

 

G.5. The Breusch-Godfrey Test for Serial Correlation  

From Table G6, the values of both the LM-statistic and the F-statistic are quite low, 

indicating that we do not reject the null hypothesis and hence conclude that there is no 

significant serial correlation. Residuals generated from the model are not serially correlated 

because the p-values are not very small i.e. they are not less than 0.05 for a 5% 

significance level. Hence, we forecast this model and present the k-step ahead forecast as 

shown Figure G4.   

 

Table G6: Results of Breusch-Godfrey LM test of ARPDL(3,1,6,2) model. 
 

     
     F-statistic 2.264395     Prob. F(5,155) 0.0507 

Obs*R-squared 10.95970     Prob. Chi-Square(5) 0.0522 
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G.6. Results  

The one step ahead out-of-sample forecast was performed on the data from 2008 to 2009 to 

check the validity of the ARPDL(3,1,6,2) model (Figure G4). Figure G5 shows the actual 

cases of lung cancer from 1994 to 2009 and the forecast value between 2008 and 2009.    

 

 

 

Figure G4: Actual and forecast ARPDL(3,1,6,2) model with 24 months ahead forecast of lung 

cancer cases per month from 2008 to 2009. 

 

 

 

 

 

 

Figure G5: Actual and forecast ARPDL(3,1,6,2) model with 24 months ahead forecast of lung 

cancer cases per month from 1994 to 2009. 
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Appendix S: ARPDL Models with high Number of Lags 

Here, we have decided to analyze the data between 2000 and 2007. Next, we perform 

cross-validation of the model by using the one step ahead out-of-sample forecasts for the 

next 24 month through the following steps:  

S.1. Choosing the Lag Length with OLS for the Independent Variable  

We run the regression 24 times using different lags, starting from lag 24 to lag 1. Then, we 

checked where the fit of the models deteriorates significantly.  

 

Table S1: Choosing the best lag length from OLS 

  lag  

Model Statistics  24 23* 22 21 

    0.54 0.55 0.50 0.51 

DW 1.94 2.09 2.14 2.03 

AIC 6.66 6.65 6.73 6.71 

 

 The best lag length is 23 regarding to the highest adjusted R-squared. From Table S1, 

DW suggests a typical symptom of collinearity and we should be estimating some more 

general dynamic models, allowing for autocorrelated errors. Thus, we use the polynomial 

distributed lag model.  

S.2. Choosing the Degree of the Polynomial for the Independent Variable 

Having determined the best lag length of the independent variable (    ). The next step is 

to specify the degree of the polynomial by starting with a high-degree polynomial and then 

we decrease it until we obtain a satisfactory fit. So we started with a polynomial of degree 

six and decreased it until we obtained a satisfactory fit as shown in Table S2. 

 

Table S2: Choosing the degree of the polynomial. 

  Equation 

Model Statistics 6th* order 5th order 4th order 3rd order 

    0.56 0.53 0.54 0.40 

DW 2.17 2.15 2.15 1.64 

AIC 6.45 6.49 6.47 6.72 

 From Table S2, the 6th-order polynomial is appropriate due to its highest adjusted R-

squared and lowest value of AIC. Hence, the bet model of the polynomial distributed lag 

models is PDL(23,6).  
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S.3. Choosing the Lag Length of    from OLS  

The best lag length of    is as shown (starred) in Table S3. We ran the regression 12 times 

using different lags of   , starting from lag 12 to lag 1. Then, we checked where the fit of 

the models deteriorates significantly.  

Table S3: Choosing the best lag length of    from ordinary least squares. 

  lag  

Model Statistics 12 11* 10 9 8 

    0.43 0.44 0.43 0.41 0.34 

AIC 6.80 6.79 6.80 6.84 6.95 

 

 From Table S3, the appropriate lag length of     is 11. This is due to the highest 

adjusted R-squared and lowest value of AIC.  

S.4. Choosing the Degree of the Polynomial     

Here, we started with a third-degree polynomial and decreased it until we obtained a 

satisfactory fit. 

Table S4: Choosing the degree of the polynomial. 

  
Equation 

Model Statistics 6th order 5th order 4th order 3rd order 2nd order* 1st order 

    0.42 0.42 0.43 0.43 0.44 0.32 

AIC 6.76 6.73 6.71 6.70 6.67 6.86 

 

 Therefore, the best order of the polynomial is 2 as shown (starred) in Table S4. This is 

due to its highest adjusted R-squared and lowest value of AIC. Hence, the best model is 

ARPDL(11,2,23,6);  

 

               
      

      
       

       

  

   

       
      

     
       

  

   

     

S.1  
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Table S5: Results of the autoregressive polynomial distributed lag ARPDL(11,2,23,6) model. 

 
      
      Variable Coefficient  Std. Error t-Statistic p-value   
      
      C -30.11761  9.751959 -3.088366 0.0030 

    0.042895  0.030885 1.388862 0.1699 

    0.002616  0.012444 0.210257 0.8342 

    -0.004550  0.003812 -1.193765 0.2372 

    -0.000839  0.000409 -2.053707 0.0443 

    9.03E-05  8.17E-05 1.105871 0.2731 

    7.20E-06  2.84E-06 2.537704 0.0137 

    -4.45E-07  4.34E-07 -1.025221 0.3093 

    -0.301532  0.116434 -2.589716 0.0120 

    0.032423  0.012380 2.618874 0.0111 

    0.002726  0.003678 0.741171 0.4614 
      
      R-squared 0.694957  Mean dependent var 36.09722 

Adjusted R-squared 0.644950  S.D. dependent var 8.671078 

S.E. of regression 5.166752  Akaike info criterion 6.262129 

Sum squared resid 1628.415  Schwarz criterion 6.609953 

Log likelihood -214.4366  Hannan-Quinn criter. 6.400599 

F-statistic 13.89721  Durbin-Watson stat 1.922923 

Prob(F-statistic) 0.000000     
      
      

 

 

 Note that the created variables from     to     refer to the lag of      whereas the 

variables from     to     refer to the lag of     .  

 The fitted model is shown in Figure S1 together with residual diagnostic plots. This is 

followed by the distribution of the series in the histogram with a complement of standard 

descriptive statistics displayed along with the histogram (see Figure S2). The p-value 

(p=0.60) of the Jarque-Bera test is not less than 0.05 for a 5% significance level and hence 

we do not reject the null hypothesis that the model is normally distributed. Figure S3 

shows leverage plots of the residuals.  
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Figure S1: Fitted and residual plots for the best ARPDL(11,2,23,6) model of lung cancer cases 

per month from 2000 to 2007. 
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 Figure S2: Residual diagnostic of the normality test of the best ARPDL(11,2,23,6) model of 

lung cancer cases per month from 2000 to 2007. 
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Figure S3: Leverage plots for the stability of diagnostics of the best OLS model of lung cancer 

cases per month from 2000 to 2007. 

 

S.5. The Breusch-Godfrey Test for Serial Correlation  

From Table S6, the values of both the LM-statistic and the F-statistic are low, indicating 

that we do not reject the null hypothesis and hence conclude that there is no significant 

serial correlation. Residuals generated from the model are not serially correlated because 

the p-values are not very small i.e. they are not less than 0.05 for a 5% significance level. 

Hence, we forecast this model and present the k-step ahead forecast as shown Figure S4.   

 

 

Table S6: Results of Breusch-Godfrey LM test of ARPDL(11,2,23,6) model. 
 

     
     F-statistic 0.001338     Prob. F(1,84) 0.9709 

Obs*R-squared 0.001529     Prob. Chi-Square(1) 0.9688 
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S.6. Results  

The one step ahead out-of-sample forecast was performed on the data from 2008 to 2009 to 

check the validity of the ARPDL(11,2,23,6) model. Figure S5 shows the actual cases of 

lung cancer from 2000 to 2009 and the forecast value between 2008 and 2009.    

 

 

 

 

Figure S4: Actual and forecast ARPDL(11,2,23,6) model with 24 months ahead forecast of lung 

cancer cases per month from 2008 to 2009. 
 

 

 

 

Figure S5: Actual and forecast ARPDL(11,2,23,6) model with 24 months ahead forecast of lung 

cancer cases per month from 1994 to 2009. 
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Appendix L: Leverage Plots for the Stability of Diagnostics Check (Model II).  
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Figure L1: Leverage plots for the stability of diagnostics of the best OLS model of lung cancer 

cases per month from 1994 to 2009. 
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Figure L2: Leverage plots for the stability of diagnostics of the best PDL(26,8) model of lung 

cancer cases per month from 1994 to 2009. 
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Figure L3: Leverage plots for the stability of diagnostics of the best ARPDL(12,3,26,8) model of 

lung cancer cases per month from 1994 to 2009. 
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