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ABSTRACT 
 
A mathematical model is presented for the laminar free convection boundary layer flow of Casson 

viscoplastic non-Newtonian fluid external to a vertical penetrable circular cone in the presence of 

thermal and hydrodynamic slip conditions. The cone surface is maintained at non-uniform surface 

temperature. The boundary layer conservation equations, which are parabolic in nature, are 

transformed into non-dimensional form via appropriate similarity variables, and the emerging 

boundary value problem is solved computationally with the second order accurate implicit Keller-

box finite-difference scheme. The influence of velocity (momentum) slip, thermal slip and Casson 

non-Newtonian parameter on velocity, temperature, skin friction and Nusselt number are 

illustrated graphically. Validation of solutions with earlier published work is included. The 

computations show that the flow near the cone surface is strongly decelerated with increasing 

momentum slip whereas the temperature and thermal boundary layer thickness are increased. 

Increasing Casson parameter generally decelerates the flow and also decreases temperatures. Both 

velocity and thermal boundary layer thickness are reduced with greater Prandtl number. The study 

is relevant to petro-chemical engineering (polymer) processing systems. 
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Nomenclature: 

Cf skin friction coefficient 

Sf non-dimensional momentum slip parameter  

ST non-dimensional thermal slip parameter 

f non-dimensional stream function 

g acceleration due to gravity 

V transpiration velocity 

Gr Grashof number 

N0 velocity slip factor 

K0 thermal slip factor 

Nu local Nusselt number 

Pr Prandtl number 

T temperature 

u, v  non-dimensional velocity components along the x- and y- directions, respectively 

x, y non-dimensional Cartesian coordinates along and transverse to cone surface 

Greek symbols 

 thermal diffusivity 

 non-Newtonian Casson parameter 

  coefficient of volume expansion 

 azimuthal coordinate 

 dimensionless radial coordinate  

 dynamic viscosity 

 kinematic viscosity 

 non-dimensional temperature 

 density of fluid 

 dimensionless tangential coordinate (free convection parameter) 

 dimensionless stream function 

Subscripts 

w conditions on the wall 

 free stream conditions 






















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1.INTRODUCTION 

Many modern engineering applications involve the study of non-Newtonian fluids. These include 

petroleum drilling muds by Livescu [1], biological gels by Hron et al. [2], polymer processing by 

Loix et al. [3] and food processing by Kechichian et al. [4]. Most commonly, the viscosity of non-

Newtonian fluids is dependent on shear rate. Some non-Newtonian fluids with shear-independent 

viscosity, however, still exhibit normal stress-differences or other non-Newtonian behaviour. 

Several salt solutions and molten polymers are non-Newtonian fluids, as are many other liquids 

encountered in science and technology such as dental creams, physiological fluids, detergents and 

paints. In a non-Newtonian fluid, the relation between the shear stress and the shear rate is 

generally non-linear and can even be time-dependent. The Casson model although simple is useful 

in simulating a number of polymers, for example alcoflood polymers employed in enhanced oil 

recovery by Ghannam and Esmail [5]. The Casson model was originally introduced to describe 

printing inks by Casson [6]. It is a viscoplastic fluid model which exhibits shear thinning 

characteristics, yield stress (below which no flow occurs) and high shear viscosity as elaborated 

by Bird et al. [7]. The Casson fluid model tends to a Newtonian fluid at a very high wall shear 

stress i.e. when the wall stress is far greater than yield stress. To improve processing of many types 

of polymers, numerous investigators have conducted simulations of Casson flow dynamics using 

many computational and analytical methods. These studies have included heat transfer (important 

for thermal treatment), mass transfer (critical to doping modification of polymers), viscous heating, 

magneto hydrodynamics (for electro-conductive polymers) and many other phenomena. Hayat et 

al. [8] used the homotopy analysis method to investigate the dissipative stagnation-point flow and 

heat transfer of a Casson fluid along a stretching surface. Nasir et al. [9] employed a perturbation 

technique to investigate combined heat, mass and momentum transfer in transient flow of Casson 

fluid between a long vertical wavy wall and a parallel wavy wall under convective boundary 

conditions. Reddy et al. [10] used both homotopy analysis and Adomian decomposition methods 

to simulate dissipative magnetized Casson fluid flow in a vertical conduit. Nagarani and Lewis 

[11] studied the transport of Casson liquids in an annular gap under peristaltic waves using 

lubrication theory. They observed that both yield stress and annular gap significantly influence 

pressure rise and frictional resistance on the walls. Pham and Mitsoulw [12] used a finite element 

method to simulate entry and exit Casson fluid flows through abrupt contractions, showing that 

the swelling ratio of the free stream for planar and axisymmetric contraction flows is very sensitive 

http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Shear_rate
http://en.wikipedia.org/wiki/Salt
http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Shear_rate
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to Casson viscoplastic parameter. Tripathi and Bég [13] utilized Mathematica symbolic software 

integration routines to investigate the peristaltic propulsion of Casson, Vocadlo and other 

viscoplastic fluids, showing that the yield stress model selected dramatically influences volumetric 

flow rates and wall shear stress. Xiang and Chen [14] utilized mesh free methods to study 

Poiseuille and other flows of both Casson and Cross non-Newtonian liquids. Shankran [15] used 

FLUENT computational fluid dynamics software to extensively visualize the flow of Casson fluids 

in corrugated channels. Mustafa et al. [16] employed a homotopy power series method to study 

dissipative boundary layer flow of a Casson fluid generated by an impulsively started moving 

sheet, noting that surface shear stress and heat transfer rate are respectively elevated and decreased 

with Casson fluid parameter. Batra and Das [17] obtained analytical solutions for time-dependent 

Casson fluid flow in the annular space between two coaxial rotating cylinders, evaluating in detail 

the influence of Casson parameter and aspect ratio on the extent of core formation. Very recently 

Akbar et al. [18] used integral methods to determine velocity and temperature distributions in 

hydro magnetic dissipative cilia-beat generated propulsion of Casson fluids in two-dimensional 

configurations  

The previous studies invariably assumed the classical “no-slip” condition at the boundary. 

Slip effects have however shown to be important in numerous polymeric transport processes 

including the production stage of polymers from the raw (monomeric) materials and in converting 

high-molecular-weight products into specific products by W.B. Black [19]. Many researchers, 

primarily in chemical engineering have therefore studied, both experimentally and numerically, 

the influence of wall slip on polymer dynamics. Important works in this regard include Wang et 

al. [20] who considered low density polyethylene liquids, Piau et al. [21] who addressed polymer 

extrudates, Piau and Kissi [22] who quantified macroscopic wall slip in polymer melts,  Lim and 

Schowalter [23] who studied boundary slip in polybutadiene flows and Hatzikiriakos and 

Kalogerakis [24] who also studied molten polymer wall slip. Wall slip in thermal polymer 

processing was considered by Liu and Gehde [25] in which slip was shown to significantly modify 

temperature distribution in polymers. Hatzikiriakos and Mitsoulis [26] presented closed-form 

solutions and finite element computations for wall slip effects on pressure drop of power-law fluids 

in tapered dies. Many studies of both momentum (hydrodynamic or velocity) slip and thermal slip 

on transport phenomena have also been reported. Sparrow et al. [27] presented the first significant 

analysis of laminar slip-flow heat transfer for tubes with uniform heat flux, observing that 
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momentum slip acts to improve heat transfer whereas thermal slip (or “temperature jump”) reduces 

heat transfer.  Subba Rao et al. [28] considered velocity on thermal slip effects on thermal 

convection boundary layer flow of Casson fluids with buoyancy effects. Uddin et al. [29] used 

Maple software to compute the influence of anisotropic momentum, thermal, and multiple species 

slip on three-dimensional stagnation point boundary layers in nanofluid bio-convection flows.  

Heat transfer with and without slip in external boundary layers from curved bodies are also 

of interest in polymeric enrobing systems. Subba Rao et al. [30] studied numerically the combined 

effects of thermal and velocity slip and radiative flux on steady Casson enrobing boundary layer 

from a horizontal cylinder in porous media. They noted that greater velocity slip increases thermal 

boundary layer thickness and also momentum boundary layer thickness, whereas greater thermal 

slip decreases momentum boundary layer thickness (i.e. decelerates the flow) and cools the regime. 

Hering and Grosh [31] presented an early classical study on natural convection boundary layers 

non-isothermal cone, showing that similarity solutions exist when the wall temperature distribution 

is a power function of distance along a cone ray. They further documented solutions for an 

isothermal surface as well as for the surface maintained at the temperature varying linearly with 

the distance measured from the apex of the cone for Prandtl number of 0.7. Hering [32] re-visited 

the problem in Hering and Grosh [31] to consider low Prandtl number fluids (i.e. high thermal 

conductivity fluids such as liquid metals) for constant wall heat flux conditions. Further studies of 

heat transfer from conical bodies have been communicated by Alamgir [33] who used an integral 

method, Hossain and Paul [34] who considered surface blowing/suction effects and Chamkha [35] 

who studied the case of heat transfer from a truncated cone with magnetohydrodynamic and 

radiation flux effects. Bég et al. [36] used the network electro-thermal PSPICE code to elaborate 

the influence of buoyancy, wall mass flux, pressure work and dissipation on hydromagnetic 

convection from a non-isothermal cone. Saleem and Nadeem [37] used an optimized homotopy 

method to derive series solutions for thermal convection slip flow from a rotating one, observing 

that increasing hydrodynamic slip decelerates the primary flow nearer the cone surface, accelerates 

the primary flow further from the cone surface and consistently reduces secondary velocity. Very 

recently Bég et al. [38] presented novel solutions based on shooting quadrature for the heat transfer 

from a rotating cone in anisotropic porous media. Basir et al. [39] considered transient nanofluid 

bioconvection boundary layer flow from a stretching horizontal cylinder with four slip 

mechanisms- thermal, velocity, nano-particle mass and micro-organism slip. Several studies have 
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also utilized the Casson fluid in slip modelling. Prasad et al. [40] obtained finite difference 

solutions for nonlinear heat and momentum transfer from a sphere in Darcy-Forchheimer porous 

media with velocity and thermal slip effects. Subba Rao et al. [41] reported on multiple slip effects 

in Casson boundary layer convection from a sphere observing that both thermal and hydrodynamic 

slip significantly alter surface skin friction and Nusselt numbers. 

In the present work, a mathematical model is developed for steady, natural convection 

boundary layer flow in a Casson viscoplastic polymeric fluid external to a vertical permeable 

circular cone maintained at non-uniform surface temperature. A finite difference numerical 

solution is obtained for the transformed nonlinear two-point boundary value problem subject to 

physically appropriate boundary conditions at the cone surface and in the free stream. The impact 

of the emerging thermo physical parameters i.e. Casson non-Newtonian parameter, momentum 

(velocity) slip, thermal slip and Prandtl number on velocity, temperature, wall shear stress function 

and Nusselt number, in the presence of wall suction, are presented graphically and in Tables. 

Validation with previous Newtonian studies is included. Detailed evaluation of the physics is 

included. The present problem has to the authors’ knowledge not appeared thus far in the scientific 

literature and is relevant to thermal treatment of polymeric enrobing systems by Dealy and 

Wissbrun [42]. 

2. MATHEMATICAL THERMO-VISCOPLASTIC FLOW MODEL  

Consider the steady, laminar, two-dimensional, viscous, incompressible, buoyancy-driven 

convection flow from a non-isothermal vertical porous cone embedded in a Casson non-Newtonian 

fluid. Figure 1(a) depicts the flow model and physical coordinate system.  
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            Fig. 1(a) Physical Model and Coordinate System 

The x-coordinate is measured along the circumference of the circular cone from the cone 

apex (O) and the y-coordinate is measured normal to the surface. The gravitational acceleration, g 

acts downwards. Both the circular cone and the fluid are maintained initially at the same 

temperature. Instantaneously they are raised to a temperature in which Tw is the ambient 

temperature of the fluid which remains unchanged. The constitutive equation for an isotropic 

viscoplastic Casson fluid, following Bird et al. [7] in tensorial notation may be stated as: 

 

Here all parameters are defined in the nomenclature. In line with the approach of Yih [43] and 

introducing the boundary layer approximations, the governing conservation equations can be 

written as follows: 
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                 (4)                                                                                                                        

  

where  and  are the velocity components in the  - and - directions respectively,  - the 

kinematic viscosity of the fluid,  - is the non-Newtonian Casson parameter,  - the thermal 

diffusivity, g - acceleration due to gravity,   is the cone apex half- angle and - the temperature 

of the fluid respectively. The boundary conditions are prescribed at the cone surface and the edge 

of the boundary layer regime (free stream), respectively as follows: 

 

At    
0 0

1
0, 1 , ,w w

u T
y u N v V T T K

y y

   
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  
                 (5) 

As   
  

 

Here V represent the transpiration velocity at the surface of the permeable cone. When V  is 

positive, this represents uniform wall suction (or lateral mass flux withdrawal) and when V  is 

negative, this corresponds to surface injection (or blowing) of fluid into the fluid body.                         

In the present case, only suction is considered and therefore, V is taken as positive throughout.  

Furthermore, N0 is the velocity slip factor and K0 is the thermal slip factor. For N0=0=K0, one can 

recover the classical no-slip case. The stream function  is defined by  
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satisfied. In order to write the governing equations and the boundary conditions in dimensionless 

form, the following non-dimensional quantities are introduced (as defined in the nomenclature).  
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In view of Equation (6), Equations (2) - (4) reduce to the following coupled, nonlinear, 

dimensionless partial differential equations for momentum and heat (energy) conservation for the 

regime: 
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The transformed dimensionless boundary conditions are: 
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In the above equations, the primes denote the differentiation with respect to , the dimensionless 

radial coordinate,  is the dimensionless tangential coordinate,   - the azimuthal coordinate, Gr 

is the Grashof (free convection) parameter, the Prandtl number,
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S is the suction (wall mass flux) parameter. Here we assumed the typical values K0 = 0.5, N0 = 0.25 

for finding the non-dimensional velocity and thermal slip parameters.   

The dimensionless local values of the skin-friction coefficient and the Nusselt number, may 

be defined as follows: 
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3. NUMERICAL SOLUTIONS WITH KELLER BOX SCHEME 

The coupled boundary layer equations in a (,) coordinate system remain strongly 

nonlinear. A numerical method, the Keller-Box implicit difference method, is therefore deployed 

to solve the boundary value problem defined by Ens. (7)-(8) with boundary conditions (9). This 

technique has been described succinctly in Cebeci and Bradshaw [44] and Keller [45]. It has been 

used recently in polymeric flow dynamics by Subba Rao et al. [46] for viscoelastic models and 

Prasad et al. [47] for micropolar liquids. The key stages involved are as follows:  

a. Reduction of the Nth order partial differential equation system to N first order equations 

b. Finite difference discretization 

c. Quasilinearization of non-linear Keller algebraic equations 

d. Block-tridiagonal elimination of linear Keller algebraic equations 
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Phase a: Reduction of the Nth order partial differential equation system to N first order 

equations 

Equations (7)-(8) subject to the boundary conditions (9) are first written as a system of 

first-order equations. For this purpose, we reset Eqns. (7) – (8) as a set of simultaneous equations 

by introducing the new variables u, v and t: 

f u      (12) 

f v      (13)  

t      (14) 
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where primes denote differentiation with respect to .  

In terms of the dependent variables, the boundary conditions become: 
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Phase b: Finite Difference Discretization 

A two dimensional computational grid is imposed on the -η plane as sketched in Fig. 1(b). The 

stepping process is defined by:  

0 10, , 1,2,..., ,j j j Jh j J         
    

(18) 

0 10, , 1,2,...,n n

nk n N             (19)  

where kn and hj denote the step distances in the ξ and η directions respectively. 

If denotes the value of any variable at , then the variables and derivatives of Equations. 

(12) – (16) at  are replaced by: 



n

jg  , n

j 

 1/2

1/2 , n

j  





11 

 

 1/ 2 1 1

1/ 2 1 1

1
,

4

n n n n n

j j j j jg g g g g  

               (20) 

  
1/ 2

1 1

1 1

1/ 2

1
,

2

n

n n n n

j j j j

jj

g
g g g g

h



 

 



 
    

 
          (21) 

  
1/ 2

1 1

1 1

1/ 2

1
,

2

n

n n n n

j j j jn

j

g
g g g g

k



 

 



 
    

 
      (22) 

 

 

 

We now formulate the finite-difference approximation of equations. (12) – (16) for the mid-point
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      
1 1

2 1/2 1/2 1/2 1/21/2

1 7 7
1

Pr 4 4

n j j

j j j j jj
j

t t
R h f t u s

h
 

 

   

  
      

 
   

       (30) 

The boundary conditions are 

0 0 00, 1, 0, 0n n n n n

J Jf u u             (31) 

Phase c: Quasilinearization of Non-Linear Keller Algebraic Equations 

If we assume 
1 1 1 1 1, , , ,n n n n n

j j j j jf u v s t    
to be known for , Equations (23) – (27) are a 

system of 5J+5 equations for the solution of 5J+5 unknowns , , , ,n n n n n

j j j j jf u v s t , j = 0, 1, 2 …, J. This 

non-linear system of algebraic equations is linearized by means of Newton’s method as explained 

in [44-47]. 

Phase d: Block-tridiagonal Elimination of Linear Keller Algebraic Equations 

 The linear system (23) – (27) can now be solved by the block-elimination method, since 

they possess a block-tridiagonal structure. Commonly, the block-tridiagonal structure consists of 

variables or constants, but in this case comprises block matrices. The complete linearized system 

is formulated as a block matrix system, where each element in the coefficient matrix is a matrix 

itself. Then, this system is solved using the second order accurate Keller-box method. The 

numerical results are affected by the number of mesh points in both directions. After some trials 

in the η-direction a larger number of mesh points are selected whereas in the ξ direction (tangential 

coordinate) significantly less mesh points are utilized. ηmax has been set at 8 and this defines an 

adequately large infinity boundary condition required to achieve smooth solutions. ξmax is set at 

0 j J 
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1.0 for this flow domain. Mesh independence is therefore achieved in the present computations. 

The computer program of the algorithm is executed in MATLAB running on a PC. The method 

demonstrates excellent stability, convergence and consistency, as elaborated by Keller [44].  

4. NUMERICAL RESULTS AND INTERPRETATION 
 

In order to verify the accuracy of the Keller- box solutions, computations are benchmarked 

with earlier results reported by Alam et al. [48] results as shown in Table 1. With β  , the 

present model reduces to the Newtonian model considered by Alam et al. [48]. The values of the 

skin friction and heat transfer coefficients are shown in Table1 for different values of . Evidently 

skin-friction coefficient decreases with increasing values of   and the local heat transfer 

coefficient conversely increases with the increasing values of . Very close correlation is achieved 

between the Keller-box computational results and the solutions of Alam et al. [48]. Confidence in 

the Keller-box numerical code is therefore justifiably high. Table 2 indicates that skin-friction 

decreases for different values of Sf, ST and Pr. In other words, increasing momentum and thermal 

slip significantly decelerate the flow as does a decrease in thermal conductivity of the polymer 

(Prandtl number is inversely proportional to thermal conductivity). However, the influence of the 

slip parameters on skin friction is more impactful. With increase in  values i.e. as we move along 

the cone periphery away from the apex, buoyancy forces are enhanced. This generates a strong 

decrease in skin friction (deceleration) and an enhancement in heat transfer rate i.e. Nusselt number 

function. Table 3 presents the influence of , ,Prf TS S and  on the wall heat transfer rate i.e. 

Nusselt number, ( ,0)  . An increase in hydrodynamic slip (Sf), thermal slip (ST) and Casson 

parameter (β) induces a substantial decrease in the magnitude of ( ,0)  .  

Table 1. Numerical values of skin-friction and heat transfer coefficient for different values of   

while Pr =0.71, Sf =0.5 and ST =1.0 when   (Newtonian case). 

  Alam et.al results [48] Present results 

( ,0)f        ( ,0)   ( ,0)f        ( ,0)   

0.0 0.891936      0.420508        0.892157       0.421782 
0.5 0.896407      0.620748        0.897843       0.619852 
1.0 0.856963      0.848082        0.848784       0.840231 
1.5 0.779210      1.129365        0.771562       1.119786 
2.0 0.674111      1.441742        0.675320       1.432852 
3.0 0.434152      2.202662        0.412372       2.063725 
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Table 2. Skin-friction coefficient 
1

1 (0)f


 
 

 
 for different values of Sf, ST and Pr with  = 1.0 

 
Sf ST    Pr 1

1 (0)f


 
  

 

 

0.0 

0.6 

1.0 

1.2 

1.0     0.7          0.7897 

0.5591 

0.3862 

0.2943 

0.5 

 

 

 

0.0 

0.5 

1.0 

2.0 

 

 

 

 

0.8136 

0.7087 

0.5999 

0.3662 

  

 

 

 

1.0 

 

 

 

0.001 

0.1 

0.71 

1.0 

          0.9684 

          0.9577 

          0.5999 

          0.5446 

 

Table 3: Values of Nusselt number i.e. (0)  for different values of Sf, ST, Pr and  .  

 

Sf ST Pr   (0)  
0.0 

0.5 

1.0 

        

1.0 

 

 

 

0.71 

 

 

 

1.0 

 

 

 

0.3523    

0.3098   

0.2656 

 0.5 

 

 

                                   

0.0 

0.5 

1.0 

 

 

 

 

 

 

 

 

 

0.4619                           

0.3845  

0.3098 

  

 

 

                                                                     

1.0 

 

 

 

0.01 

0.1 

0.71 

 

 

 

 

 

0.1074 

0.1505           

0.3095 

  

 

 

 

 

 

 

 

 

 

0.71 

 

 

 

 

0.5 

1.4                         

2.0                        

0.3215   

0.3091 

0.3090                          

The contrary response is computed with an increase in Prandtl number (Pr). With 

increasing  values, less heat is transferred from the boundary layer regime to the cone surface 

(the fluid is heated and the cone surface is cooled). This manifests in a decrease in Nusselt numbers 

with greater viscoplastic effect (larger  values). Similar observations have been reported by for 

example Mustafa et al. [16]. With increasing Prandtl number, thermal diffusivity is reduced and 

thermal conductivity is increased. This decreases temperatures in the boundary layer and enhances 

heat transfer rates to the cone surface i.e. boosts Nusselt numbers.  

Figs 2- 9 present velocity and temperature distributions for variations in specific key 

thermo physical parameters, namely hydrodynamic slip (Sf), thermal slip (ST), Casson parameter 
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(β) and Prandtl number (Pr). In all graphs  is constrained as unity and S = 0.5 (wall suction). Fig. 

2 exhibits the effect of velocity slip parameter, Sf on the velocity.  It is seen apparent that the flow 

is markedly decelerated in the vicinity of the cone surface with greater wall momentum slip. 

Velocity peaks some distance from the wall and thereafter momentum slip induces a notable 

acceleration in the flow i.e. decreases momentum boundary layer thickness. The slip effect is 

therefore opposing near the cone surface and assistive further into the boundary layer transverse 

to the cone surface. Greater momentum slip retards the fluid motion near and at the upper wall. 

Moreover, dragging of the fluid adjacent to the cone surface is partially transmitted into the fluid 

partially which induces a deceleration near the wall; however this is eliminated and reversed 

further from the cone surface. The peak velocity is observed to migrate with greater momentum 

slip further from the cone surface. The inhibitive nature of slip close to the boundary and beneficial 

effect further from the boundary has also been confirmed in many other studies including Saleem 

and Nadeem [37]. In all profiles, a smooth decay is observed into the free stream demonstrating 

excellent convergence of the numerical solution and the imposition of an adequately large infinity 

boundary condition.  

Fig.3 presents the evolution in temperature function, (), with transverse coordinate  with 

variation in hydrodynamic slip parameter, Sf. Temperature profiles consistently decay 

monotonically from a maximum at the cone surface to the free stream. All profiles converge at a 

large value of transverse coordinate, again showing that a sufficiently large infinity boundary 

condition has been utilized in the numerical computations. Greater momentum slip substantially 

increases temperatures in the boundary layer and therefore also elevates thermal boundary layer 

thickness. The regime is therefore coolest when slip is absent (Sf =0 i.e. no-slip classical case) and 

hottest with strong hydrodynamic wall slip.  

Figs. 4 and 5 illustrate the influence of thermal slip parameter (ST) on the velocity and 

temperature. Both velocity and temperature are consistently suppressed with an increase in ST. 

Temperatures are strongly depressed in particular at the cone surface. Greater thermal jump 

therefore decelerates the flow and cools the boundary layer. Momentum boundary layer thickness 

is enhanced whereas thermal boundary layer thickness is decreased with increasing thermal slip.  

A similar response has been observed by Basir et al. [49]. Physically, as the thermal slip parameter 

rises, the fluid flow within the boundary layer becomes progressively less sensitive to the heating 

effects at the cone surface and a decreased quantity of thermal energy (heat) is transferred from 
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the hot cone surface to the fluid, resulting in a fall in temperatures, manifesting in a cooling and 

thinning of the thermal boundary layer. This has important implications in thermal polymer 

enrobing, since thermal slip modifies the heat transferred to the polymer material which in turn 

alters characteristics of the final product as explained by Dealy and Wissbrun [42]. 

Figs. 6 and 7, depict the effect of Casson fluid parameter,  on velocity and temperature 

profiles. It is shown that the effect of   enhances velocity near the cone surface but depletes it 

further away. Increasing Casson parameter however consistently weakly decreases temperatures 

throughout the boundary layer.  The influence on velocity field is significantly greater however 

since the viscoplastic effect is simulated solely in the momentum equation (7) via the shear term 

///1
1 f











 and in the velocity boundary condition at the cone surface in eqn. (9), i.e.

)0(
1

1)0( /// fSf f










. However via coupling of the energy eqn. (8) and momentum equation 

(free convection), the effect of viscoplastic parameter is indirectly transmitted to the temperature 

field.  Since the Casson parameter is also present in the wall boundary condition, the acceleration 

effect is only confined to the region close to the cone surface. Further from this zone, the velocity 

slip factor, Sf will exert a progressively reduced effect and an increase in Casson parameter,, will 

manifest with a deceleration in the flow. Overall however the dominant influence of , is near the 

wall and is found to be assistive to momentum development. Only a very small decrease in 

temperature is observed with a large enhancement in Casson fluid parameter as shown in Fig. 7.  

Figs. 8 - 9, present the impact of Prandtl number (Pr) on the velocity and temperature 

profiles along the transverse coordinate i.e. normal to the cone surface. Prandtl number epitomizes 

the ratio of momentum diffusion to thermal diffusion in the boundary layer regime. It also 

represents the ratio of the product of specific heat capacity and dynamic viscosity, to the fluid 

thermal conductivity. For Pr equal to unity both the momentum and thermal diffusion rates are the 

same, as are the momentum and thermal boundary layer thicknesses. An increment in Pr from 0.01 

through 0.1, 0.3, 0.5, 0.7 to 1.0, which corresponds to increasing momentum diffusivity and 

decreasing thermal diffusivity, results in a tangible reduction in velocity magnitudes throughout 

the boundary layer. For Pr <1, thermal diffusivity surpasses momentum diffusivity i.e. heat will 

diffuse at a faster rate than momentum. In this manner for lower Pr fluids (e.g. Pr = 0.01 which 

physically relate to liquid metals), the flow will be accelerated whereas for greater Pr fluids (e.g. 
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Pr = 1 for low weight molecular polymers [42]) it will be strongly decelerated, as observed in 

Fig.9. For Pr < 1, the momentum boundary layer thickness is lesser than thermal boundary layer 

thickness.  
 

5. CONCLUSIONS 

A theoretical study has been conducted of laminar incompressible free convection 

boundary layer flow of a viscoplastic (Casson) fluid from a vertical non-isothermal cone. 

Momentum and thermal slip effects have been incorporated in the model. The transformed 

boundary layer equations for heat and momentum conservation have been solved using a finite 

difference method for the case of suction present at the cone surface. Verification of the accuracy 

of the Keller - box computational code has been achieved via comparison with previous Newtonian 

solutions reported in the literature.  The present investigation has shown that: 

1) Increasing the velocity slip parameter (Sf) reduces the velocity near the cone surface and 

increases the temperature i.e. enhances momentum boundary layer thickness and decreases thermal 

boundary layer thickness. However flow reversal is never computed. 

2) Increasing thermal slip parameter, (ST) consistently decelerates the flow and also decreases 

temperature (and thermal boundary layer thickness). 

3) Increasing Casson viscoplastic fluid parameter (), increases the velocity near the cone surface 

but decreases velocity further from the cone, and also fractionally lowers the temperature 

throughout the boundary layer regime i.e. reduces thermal boundary layer thickness. 

4) Increasing Prandtl number (Pr) decelerates the flow and also strongly depresses temperatures, 

throughout the boundary layer regime.  

 

The present study has neglected time-dependent and mass transfer (species diffusion) effects, 

which are also important in polymer processing and these will be examined in the future. 
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FIGURE CAPTIONS: 

Fig 1(a): Physical Model and Coordinate System 

Fig 1(b): Grid meshing and a “Keller Box” computational cell 
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Fig.2. Influence of Sf on velocity profiles 

Fig.3. Influence of Sf on temperature profiles 

Fig.4. Influence of ST on velocity profiles 

Fig.5. Influence of ST on temperature profiles 

Fig.6. Influence of β on velocity profiles. 

Fig.7. Influence of β on temperature profiles. 

Fig.8. Influence of Pr on velocity profiles   

Fig.9. Influence of Pr on temperature profiles 
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