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ABSTRACT: 
This paper presents an analytical study of magnetohydrodynamics and convective heat transfer of nanofluids 
synthesized by three different shaped (brick, platelet and cylinder) silver (Ag) nanoparticles in water. A two-phase 
nanoscale formulation is adopted which is more appropriate for biophysical systems. The flow is induced by 
metachronal beating of cilia and the flow geometry is considered as a cylindrical tube. The analysis is carried out 
under the low Reynolds number and long wavelength approximations and the fluid and cilia dynamics is of the 
creeping type. A Lorentzian magnetic body force model is employed and magnetic induction effects are neglected. 
Solutions to the transformed boundary value problem are obtained via numerical integration. The influence of cilia 
length parameter, Hartmann (magnetic) number, heat absorption parameter, Grashof number (free convection), 
solid nanoparticle volume fraction, and cilia eccentricity  parameter on the flow and heat transfer characteristics 
(including effective thermal conductivity of the nanofluid) are examined in detail. Furthermore a comparative study 
for different nanoparticle geometries (i.e. bricks, platelets and cylinders) is conducted. The computations show that 
pressure increases with enhancing the heat absorption, buoyancy force (i.e. Grashof number) and nanoparticle 
fraction however it reduces with increasing the magnetic field. The computations also reveal that pressure 
enhancement is a maximum for the platelet nano-particle case compared with the brick and cylinder nanoparticle 
cases. Furthermore the quantity of trapped streamlines for cylinder type nanoparticles exceeds substantially that 
computed for brick and platelet nanoparticles, whereas the bolus magnitude (trapped zone) for brick nanoparticles 
is demonstrably greater than that obtained for cylinder and platelet nanoparticles.Thepresent model is applicable in 
biological and biomimetic transport phenomena exploiting magnetic nanofluids and ciliated inner tube surfaces. 
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1. INTRODUCTION 

Magnetohydrodynamic (MHD) convective heat and mass transfer of metallic-water nanofluids 

induced by cilia motion has garnered some interest owing to emerging applications in biomedical 

engineering, biomimetic thermal design [1] etc. MHD is the study of magnetic properties of 

electrically-conducting fluids including salt water, plasma etc. It is simulated using the equations 

of fluid dynamics coupled with Maxwell’s electromagnetic field equations. Convective heat 

transfer is process of heat transport from one place to another place by movement of fluids which 

works on principle of energy conservation. Modern nanotechnology fluid systems utilize 

nanofluids which are synthesized by the suspension of nanoparticles of size 1-50nm within a 

base fluid e.g. water. The term “nanofluids” was first proposed by Choi [2]. The study of 

nanofluids is a major advance in thermal engineering since heat transfer performance has been 

proven to be substantially better with nanofluids than pure liquids. Nanofluids exhibit superior 

properties compared to conventional heat transfer fluids, as well as fluids containing nano-sized 

metallic particles. Since the radius of nanoparticles is very small then the relative surface area of 

nanoparticles is much larger than conventional particles. As a result the stability of suspensions 

of nanoparticles is comparatively better. Good summaries of recent developments in research on 

the heat transfer characteristics of nanofluids include the reviews by Das et al. [3], Wen et al. 

[4], Trisaksri and Wongwises [5] and Wang and Majumdar [6]. These have identified numerous 

applications of nanofluids in areas ranging from solar collector design to anti-bacterial medical 

systems. These reviews have also emphasized that suspended nanoparticles remarkably increase 

the forced convective heat transfer performance of the base fluid and furthermore that at the 

same Reynolds number heat transfer in nanofluids increases with the particle volume fraction. 

Many studies addressing magnetohydrodynamic nanofluid flows have appeared employing a 

diverse range of nano-particle models and also different numerical and analytical methods to 

solve the conservation equations. These investigations involve models which amalgamate the 

physics of MHD and energy, mass, momentum conservation principles. Uddin et al. [7] used a 

finite element algorithm to investigate magnetic field effects on radiative conducting nanofluid 

transport from a stretching sheet with hydrodynamic and thermal slip effects. Sheikholeslami et 

al. [8] used a Lattice Boltzmann method and KKL (Koo–Kleinstreuer–Li) correlation to 

investigate nanofluid flow and heat transfer in an enclosure heated from below. They observed 
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that heat transfer is elevated with greater magnetic (Hartmann) number and heat source length 

whereas it is reduced with greater Rayleigh number. Bég et al. [9] deployed a homotopy analysis 

method to compute the influence of porous media drag on nanofluid boundary layer flow from a 

sphere. Makinde et al. [10] used the 4th order Runge-Kutta method to analyze free convection 

effects on magnetized stagnation point flow of nanofluids from both shrinking and stretching 

sheets. Turkyilmazoglu et al. [11] obtained closed-form solutions for magnetic nanofluid 

boundary layer slip flow from an extending/contracting sheet, observing that a unique solution 

exists for the stretching sheet scenario whereas multiple solutions are observed for the shrinking 

sheet case. Akbar et al. [12] investigated analytically the influence of different nanoparticle 

geometries (brick, platelet and cylindrical) on heat transfer characteristics in magnetic peristaltic 

nanofluid pumping. They observed that increasing Hartmann number (magnetic body force) 

accelerates the flow for the case of platelet nanoparticles but induces deceleration for brick 

nanoparticles. They further identified that thermal conductivity is a maximum for brick-shaped 

nanoparticles. Bég et al. [13] employed Maple software and finite difference codes to study the 

influence of wall temperature variation and surface tension (Marangoni effect) on hydromagnetic 

nanofluid boundary layer flow. Fullstone et al. [14] used a two-phase approach to simulate agent 

based effects in nanoparticle transport in blood flow. Kahan and Khan [15] studied power-law 

index and mass boundary condition effects on hydromagnetic non-Newtonian nanofluid 

transport. Recent experimental work by Bao et al. [16] has further established the importance of 

magnetic nanofluids in medical engineering including new areas such as lithography, magnetic 

particle imaging, magnetic-assisted pharmacokinetics and positive contrast agents of potential 

benefit in magnetic resonance imaging.  

Biological fluid dynamics has also continued to embrace new frontiers of emerging 

technologies. Medical applications provide an excellent forum for combining many areas of 

science and engineering simulation to develop multi-faceted solutions for complex phenomena. 

Mathematical models are therefore increasingly merging the concepts of engineering mechanics, 

biology and chemistry with a diverse array of computational methods. Surface science in 

medicine has exposed engineers to the mechanism of cilia movement. Cilia are hair-like (nano 

size) structures that can beat and generate metachronal waves in synchrony causing the 

movement of unicellular paramecium. There two types of cilia - motile and non-motile (or 

http://en.wikipedia.org/wiki/Motility
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primary cilia). Non-motile or primary cilia are found in nearly every cell in all mammals and do 

not beat. They are found in human sensory organs such as the eye and the nose. Motile cilia are 

found on the surface of cells and they beat in a rhythmic manner i.e. they exhibit a continuous 

pattern of contraction and relaxation which is very similar to the pattern like peristaltic 

movement. They are found in the lining of the trachea (windpipe), where they sweep mucus and 

dirt out of the lungs and the beating of cilia in the fallopian tubes of female mammals moves the 

ovum from the ovary to the uterus. Considering this oscillating movement as being similar to a 

metachronal wave in living systems, various researchers have developed mathematical models to 

describe the fluid mechanics of this phenomenon. Sleigh [17] discussed the propulsion of cilia as 

metachronic wave. Sleigh and Aiello [18] further reported on the movement of water by cilia. 

Miller [19] investigated the movement of Newtonian fluids sustained by mechanical cilia. Blake 

[20] implemented a spherical envelope approach for simulating ciliary propulsion. Blake [21] 

further reported interesting mathematical results for cilia-induced Stokes flows in tubules. Cilia 

propulsion has also attracted some attention in recent years, largely motivated by biomimetic 

systems and new trends in nanotechnology. Khaderi et al. [22] studied the performance of 

magnetically-driven artificial cilia for lab-on-a-chip applications. Dauptain et al. [23] discussed 

the hydrodynamics of ciliary propulsion. Khaderi et al. [24] further examined metachronal 

motion of symmetrically beating cilia. Khaderi and Onck [25] developed a numerical model to 

analysis the interaction of magnetic artificial cilia with surrounding fluids in three-dimensional 

flow systems, motivated by pharmaco-nano-robotics. Kotsis et al. [26] reviewed developments in 

cilia flow sensors in treatment of polycystic kidney diseases. Brown and Bitman [27] explored 

the roles of cilia in human health and diseases. Akbar and Butt [28] developed a mathematical 

model for heat transfer in viscoelastic fluid flow induced cilia movement. Akbar and Khan [29] 

studied the metachronal beating of cilia in magnetized viscoplastic fluids using a modified 

Casson non-Newtonian model. Akbar and Khan [30] further explored heat transfer in bi-viscous 

fluids induced by ciliary motion. Nadeem and Sadaf [31] presented analytical solutions for 

copper-nano-particle-blood flow under metachronal wave of cilia motion in a curved channel. 

The above studies however did not explore the influence of nano-particle geometry on 

transport phenomena in cilia-induced propulsion. Motivated by novel developments in magnetic-

assisted gastric treatments [32] and biomimetic cilia magnetic propulsion [33, 34], in the present 
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article we present a new mathematical model to study the magnetohydrodynamic flow and 

convective heat transfer effects on cilia movement of Ag-water nanofluids through a cylindrical 

vessel. A Lorentzian magnetic force model is considered in the present study and magnetic 

induction effects are neglected. Analytical solutions for velocity, temperature and pressure are 

obtained under the assumption of low Reynolds number and long wavelength approximation i.e. 

lubrication theory. The influence of three different nano-particle geometries, thermal buoyancy 

and heat source on flow and heat transfer characteristics for silver-water nanofluid are 

investigated. Furthermore geometric effects of the ciliary movement are also studied with the 

help of graphical and numerical results. The present analysis is relevant to further elucidating 

transport phenomena in nanofluid biomimetic cilia-actuated magnetohydrodynamic propulsion 

systems. 

 

2. MATHEMATICAL FORMULATION 

Consider an axisymmetric flow of silver-water suspended nanofluids through a vertical circular 

deformable tube (Fig. 1). A two-phase nanoscale formulation is deployed which is more 

appropriate for biophysical transport, as elaborated in Bég et al. [13] and Fullstone et al. [14]. 

This methodology more realistically described medical (blood) flows compared with the single-

phase formulation in nanofluids since it relates to fluid-particle systems more closely. 

  
Fig.1. Geometry of the problem. 
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The inner surface of the circular tube is ciliated with metachronal waves and the flow occurs due 

to collective beating of the cilia. The nanofluid suspension is electrically-conducting and thermal 

buoyancy (free convection) effects are present. Both magnetohydrodynamics and convective 

heat transfer analysis for nanofluids are therefore taken into account. For 

magnetohydrodynamics, there is an extra term due to the MHD body force, J x B, which is 

required in the momentum equations, where J is the electric current density and B the magnetic 

flux. J  is defined in the generalized Ohm’s law as follows:  

)( BVEJ ×+= σ ,                                                                                                             (1) 

The Maxwell electromagnetic field equations in vector form are: 

eDdiv ρ= , 0=Hdiv ,  
t
BEcurl
∂
∂

−= ,   
t
DJHcurl
∂
∂

+= ,                                           (2) 

where σ  is the electrical conductivity of nanofluid, E  the electric field, D the electric 

displacement field, eρ  the free electron charge density and H the magnetic field strength. Any 

material can be treated as linear, as long as the electric and magnetic fields are not extremely 

strong. In a linear medium, the microscopic field strengths D and H  are related with the field 

strengths E and B via material-dependent constants, viz., the electric and magnetic 

permeabilities, ε  and mm  respectively, and are given by: 

D Eε= ,  mB Hm= .                                                                                                         (3) 

For a linear medium, Maxwell’s equations with no charge density and electric displacement 

reduce to the following forms: 

0=divE ,    0=divB ,      
t
BcurlE
∂
∂

−= ,     JBcurl mm= .                                            (4) 

Introducing the appropriate magnetic field terms (which are linear functions of velocity), the 

governing equations of motion (mass, momentum and energy conservation) for electrically-

conducting nanofluids in a cylindrical coordinate system ( r , z ) may be presented as: 
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where  r   and  z   are the radial and axial coordinates (i.e. z   is taken as the center line of the 

tube and  r   transverse to it),  u   and  w   are the velocity components in the  r   and  z   

directions respectively,  c  is wave velocity, T   is the local temperature of the fluid. Further,  

nfρ   is the effective density,    is the effective dynamic viscosity,  nfpc )(ρ   is the heat 

capacitance,  nfα   is the effective thermal diffusivity, and  nfk  is the effective thermal 

conductivity of the nanofluid, which are defined (see Nadeem and Sadaf [31]) as: 

( )
( )
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−

=+−= f
nfffnf  
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nf p p pnf f s
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c c c
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1 1
.
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s f f s
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s f f s

k m k m k k
k k

k m k k k

ϕ

ϕ

 + + − + −
 =
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Here φ   is the solid nanoparticle volume fraction, sk   and  fk   are the thermal conductivities of 

the particle material and the base fluid, and m  is the geometrical shape factor. Values of shape 

factor for nanoparticles with brick, platelet and cylinder geometries are respectively 3.7, 5.7 and 

4.9. Hamilton and Crosser [A] developed a robust approach to simulate irregular particle 

geometries by introducing a shape factor. According to this model, when the thermal 

conductivity of the nanoparticles is 100 times larger than that of the base fluid, the thermal 

conductivity can be expressed as given in eqn. (9). The thermal conductivity and viscosity of 

various shapes of alumina nanoparticles in a fluid were investigated by Timofeeva et al. [B].  

They analyzed experimental data accompanied by theoretical modelling for different shapes of 

nanoparticles, which are given in Table 1. 

Introducing the following non-dimensional variables: 

(9) 
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in Eqs.(5-8), and using the assumptions of low Reynolds number and long wavelength, the non-

dimensional governing conservation equations reduce to: 
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where ,M  ξ   and rG   are the Hartmann number, heat absorption parameter and Grashof number 

respectively. In our analysis we consider a metachronal wave propagating along the walls of tube 

of mean radius ( a ) of the tube due to beating of cilia with the following dimensions: (ε ) which 

designates the non-dimensional cilia length. Furthermore λ   and  c   are the wavelength and 

wave speed of the metachronal wave,  0Z   is the reference position of the particle and  α   is the 

measure of the eccentricity of the elliptical motion. The tube walls are sustained at constant 

temperature  0T  i.e. isothermal conditions, as shown in Fig.1. If the classical “no slip” boundary 

condition is applied on the inner tube wall, then the velocities of the transporting fluid are just 

those caused by the cilia tips, which can be given (see [17-31])  as: 

0

0
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Eqns. (14) and (15) may also be expressed as: 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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In the fixed coordinate system  ( ),, ZR   flow within the tube is unsteady. It becomes steady in a 

wave frame  ( )zr ,   moving with the same speed as the wave moves in the  −Z  direction. The 

transformations between the both frames are: 

( ) ( )tRZptrzpcWwVvtcZzRr ,,,,,,, , =−==−== . 

The boundary conditions induced by cilia movement are defined as: 
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3. ANALYTICAL SOLUTIONS 

Solving Eqns. (12 & 13) together with boundary conditions, Eqns.(19a & 19b), the axial velocity 

is obtained as: 
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The temperature field emerges as:  
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The volumetric flow rate is defined as: 
( )

0

2
h z

F rwdr= ∫ .                                                                                                                (22) 

Using Eqns. (20) &(22), the axial pressure gradient is obtained : 
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(18) 
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The pressure rise is defined as: 

.
1

0

dz
dz
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The stream function in the wave frame (obeying the Cauchy-Riemann equations, 
rr

u
∂
∂

=
ψ1 and 

zr
v

∂
∂

−=
ψ1 ) can be computed numerically with help of Eq.(20).  

 

4. COMPUTATIONAL RESULTS AND DISCUSSION 

Let us now consider the influence of key physical parameters emerging in the solutions defined 

in the previous section. This allows a parametric appraisal of the fundamental characteristics of 

magnetohydrodynamic convective heat transfer in creeping steady flow of silver nanofluid 

through the circular tube. We explore the effects of Hartmann number ( M ), heat absorption 

parameter (ξ ), Grashof number ( rG ) and amplitude ratio (ε ) and nano-particle volume fraction 

(φ) on pressure rise, pressure gradient, thermal conductivity, temperature profile, velocity profile 

and trapping phenomenon via Figs. (2-7). Thermophysical values of silver nanofluid are 

summarized in Table 1 with respect to different nano-particle geometries. The anti-bacterial 

properties of silver-water nanofluid make it particularly appropriate for medical applications [35-

37].  

 

 

 

 

(23) 

(24) 
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Table.1 Thermo physical properties of water and nanoparticles. 

Property Water (H2O) Silver (Ag) Particles Type Shape Shape factor m 

ρ  997.1 10500 Bricks       3.7 

pc  4179 235 Cylinders      4.9 

k 0.613 429 Platelets      5.7 

 

Figs.2 (a-d) depict the variation of pressure rise against the averaged flow rate under the 

influence of different flow parameters i.e. Hartmann number ( M ), heat absorption parameter 

(ξ ), Grashof number ( rG ) and amplitude ratio (ε ). The relationship between pressure rise and 

flow rate is linear. Pressure is observed to be a maximum when averaged volumetric flow rate is 

a maximum. Fig. 2(a) shows that the pressure rise (∆P) is elevated with increasing magnitude of 

Hartmann number i.e. with greater transverse magnetic field imposition, for the ciliary motion 

scenario. However the reverse trend is computed for the free motion and reverse motion 

scenarios. Magnetic body force is therefore assistive in ciliary propulsion but resistive in free or 

reverse motion. The patterns observed concur with the observations in earlier models [30, 31] 

and also demonstrate quite good correlation with the findings of Khaderi et al. [33] and Lin et al. 

[34], although these studies omitted heat transfer. The hydrodynamic trends nevertheless seem 

similar indicating that the correct behavior is computed based on the solutions developed in the 

present analysis. 
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Figs. 2. Variation of pressure rise (∆P) against averaged flow rate (Q) for different nanoparticle 

shapes with various thermo-physical parameters: (a) M, (b) ξ, (c) Gr and (d) ε. 
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Figs. 3. Variation of axial pressure gradient (dP/dz) against axial coordinate (z) for different 

nanoparticle shapes with various thermo-physical parameters: (a) ξ, (b) Gr, (c) M and (d) φ. 
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Fig. 4. Variation of effective thermal conductivity of the nanofluid (knf /kf) with nano-particle 

volume fraction (φ) for different nanoparticle shapes. 
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Figs. 5. Variation of temperature profile, θ(r, z) with radial coordinate (r) for different 

nanoparticle shapes with various thermo-physical parameters: (a) ξ, (b) φ. 
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Figs. 6. Axial velocity w(r, z) vs. radial coordinate (r) for different nanoparticle shapes with 

various thermo-physical parameters: a) α, b) M, c) φ and d) ξ. 
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Fig.7. Streamline plots for different nanoparticle shapes. 
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Table. 2. Velocity profile for different nanoparticle shapes with fixed 
Hartmann number, M=2, and with z = 0.25, Q = -0.1, Gr = 10, ɛ = 
0.1, β = 0.3, φ= 0.1, ξ =10, α = 0.4. 

        r w (r,z): Bricks w (r,z): Cylinders w(r,z): Platelets 

     -1.0  0.0000     0.0000   0.0000 

     -0.5  0.7587     0.7655   0.7385 

       0  0.5733     0.5107   0.5914 

      0.5  0.7587     0.7655   0.7385 

      1.0  0.0000     0.0000   0.0000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table. 3. Temperature profile for different nanoparticle shapes with fixed 
heat source parameter, ξ=0.2,  and with z = 0.25, ɛ = 0.1,  φ= 0.1. 

        r θ  (r,z): Bricks θ  (r,z): Cylinders θ (r,z): Platelets 

     -1.0  0.0000     0.0000   0.0000 

     -0.5  0.0229     0.0202   0.0212 

       0  0.0306     0.0269   0.0283 

      0.5  0.0229     0.0202   0.0212 

      1.0  0.0000     0.0000   0.0000 
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Table. 4. Pressure rise versus flow rate for different nanoparticle shapes with 
fixed Hartmann number, M=5, and with ɛ = 0.1, φ= 0.4, Gr = 5, β = 0.2, ξ = 
8, α = 0.1. 

        Q P∆ : Bricks  P∆ : Cylinders P∆ : Platelets 

     -1.0  100.8621     106.037   109.485 

     -0.5  69.3524     74.5289   77.9776 

       0  37.8446     43.0211   46.4697 

      0.5  6.33675    11.5132   14.9619 

      1.0 -25.1711   -19.9946  -16.546 
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Fig. 2(b) shows that the pressure increases with increasing magnitude of heat absorption 

parameter i.e. heat intake into the flow increases pressure magnitudes. Fig. 2(c) indicates that 

pressure is elevated with magnitude of Grashof number. Therefore thermal buoyancy force is 

observed to enhance pressures in the regime. Similar observations have been made by Nadeem 

and Sadaf [31]. Free convection effects apparently therefore exert a considerable effect on the 

propulsion in ciliated thermal flow. Fig. 2(d) indicates that the pressure rise is a monotonic 

increasing function of amplitude ratio. A comparative study for different shaped nanoparticles on 

pressure rise is also computed through Figs. 2(a-d) and it is observed that pressure rise for 

platelets case is a maximum as compared to bricks and cylinder nanoparticles. The platelet 

nanoparticle shape therefore would appear to achieve the best pressure enhancement in ciliated 

magnetic bio-propulsion.  

Figs. 3 (a-d) illustrate the influence of several key parameters on the axial pressure gradient. 

The profiles reveal that pressure gradient has a sinusoidal behavior along the axial direction.  

Fig. 3(a) demonstrates that pressure gradient rises with an increase in heat absorption parameter. 

The momentum equation (12) is coupled to the energy equation (13) via the thermal buoyancy 

term, Grθ. Thermal field therefore influences the momentum field considerably via the heat 

absorption term in eqn. (13) which also features nano-particle volume fraction, 

i.e.
( ) ( )

( ) ( )( ) 
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. Figs. 3(b & c) show clearly the monotonic increasing 

behavior with Grashof number (the ratio of buoyancy forces to viscous forces) and nanoparticle 

Table. 5. Axial pressure gradient for different nanoparticle shapes with fixed 
Hartmann number, M=0.5, and with Q = 0.1, ɛ = 0.1, φ= 0.4, Gr = 15, β = 
0.3, α = 0.3, ξ  = 0.4. 

        z dP/dz: Bricks  dP/dz: Cylinders dP/dz: Platelets 

       0  12.1182      13.0816 13.7235 

     0.5  23.2964     23.9414 24.3712 

       1  12.1182     13.0816 13.7235 
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fraction (φ). Fig.3 (d) shows the effect of Hartmann number (magnetic field parameter) on 

pressure gradient. A significant reduction in pressure gradient is observed with increasing 

Hartmann number (ratio of electromagnetic forces to viscous force increases). The increase in 

magnetic drag force relative to viscous force evidently inhibits flow. It is further noticed that 

pressure gradient is greater for platelet nanoparticles as compared with brick and cylindrical 

nanoparticle geometries. 

Fig. (4). presents the variation in the effective thermal conductivity of silver-water 

nanofluid for different shape of the nanoparticles i.e. bricks, cylinder and platelets. Inspection of 

the figure shows that a substantial difference is computed in the thermal conductivities for 

different nanoparticle geometries, with platelet nanoparticles evidently exhibiting the maximum 

thermal conductivity values and brick nanoparticles achieving the lowest effective thermal 

conductivity values. It has been is experimentally observed (see Choi [2] and Das et al. [3]) that 

solid nanoparticle volume fraction is directly proportional to the thermal conductivity of the 

fluid. This observation is consistent with the present computations since it is evident from Fig.4 

that the higher the solid nanoparticle fraction, the greater the thermal conductivity of the fluid. 

Figs. 5(a-b) illustrate the collective influence of different nanoparticle shapes, heat 

absorption parameter and nanoparticle fraction on the temperature distribution in the vertical 

tube. Temperature of the nanofluid is clearly greater at the center of the tube and significantly 

less at the walls of the tube. This observation is consistent with other investigations [31]. It is 

also apparent that temperature rises as we change the shape of nanoparticles from bricks to 

cylinders and platelets respectively. Fig. 5(a) indicates that temperature significantly increases 

with an increase in the heat absorption parameter which is physically logical since thermal 

energy is being introduced into the propulsive flow. Many other classical studies of heat transfer 

have confirmed this trend and the reader is referred to Gebhart et al. [38] and also Tien et al. [39] 

[39]. Fig. 5(b) shows also that increasing nanoparticle fraction markedly elevates temperature 

which confirms the thermal-enhancing properties of nanofluids [2]. This further implies that in 

medical ciliated propulsion systems, nanoparticles can elevate thermal performance considerably 

and this may be of potential benefit in disease treatment where heat enhancement properties may 

assist in the delivery of drugs. 

Figs.6(a)-6(d) present the velocity profile evolution (axial velocity vs radial coordinate) 
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for different nanoparticle shapes i.e. bricks, cylinder and platelets and also for different values of  

the measure of the eccentricity of the elliptical motion (α ), Hartmann number ( M ), 

nanoparticle fraction (φ) and heat absorption parameter (ξ ). It is observed that when eccentricity 

measure of the elliptical motion (α ) is increased and also with greater nanoparticle fraction (φ)), 

velocity profile is somewhat reduced near the tube wall while it is increased in the core region of 

of the tube. Evidently therefore the primary acceleration is in the central zone of the tube. When 

the magnitudes of Hartmann number and heat absorption parameter are increased, velocity 

profile conversely is increased near the tube wall whereas it is depressed at the center of the tube. 

Increasing hydromagnetic body force therefore, as expected, decelerates the core flow whereas it 

accelerates the near-wall flow, and this behavior has been reported in many studies, both of 

conventional magnetic fluids (see Cramer and Pai [40]) and also nanofluids (see Akbar et al. 

[12]). Furthermore these trends corroborate other studies of magnetic nanofluid transport 

including Hayat et al. [41, 42], Malvandi et al. [43] and Servati et al. [44] which also 

demonstrate that the dominant influence of an external magnetic field is to significantly modify 

velocity profiles. Indeed the authors have also observed similar patterns of influence in other 

recent works concerning electromagnetic nanofluid transport phenomena [45, 46]” 

It is also evident that velocity magnitudes are lower for platelet nanoparticles whereas they are 

enhanced bricks nanoparticles.  

Figs. 7(a-c) present streamline distributions for different nanoparticle shapes (bricks, cylinder 

and platelets) and these are obtained by taking the value of stream function as zero. The trapping 

of streamlines is a characteristic phenomenon associated with physiological propulsion in 

deformable vessels. By visualizing center stream lines as circulated/closed for appropriate 

combinations of the values of amplitude and averaged flow rate, it is possible then to examine 

bolus formation dynamics. The plots demonstrate that the number of trapped streamlines for 

cylinder type nanoparticles is greater as compared with brick and platelet nanoparticles, whereas 

the size of the bolus (trapped zones) for brick nanoparticles is markedly larger relative to 

cylinder and platelet nanoparticles. 

In Tables 2-3 further solutions have also been provided for the velocity, temperature, pressure 

rise and axial pressure gradient variation with various parameters for each nanoparticle shape i.e. 

brick, platelet and cylinder silver (Ag) nanoparticles in water. Table 2 shows that axial velocity 
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is generally maximum in the core region (low radial coordinate) with fixed Hartmann number 

(M= 2 indicating that magnetic body force is double the viscous hydrodynamic force) and are a 

maximum for brick nano-particles whereas they are a minimum for cylindrical nanoparticles in 

the core region of the tube. Table 3 shows highest temperatures are associated with the brick 

nano-particles in the core region of the tube whereas the lowest temperatures are computed for 

cylindrical nano-particles. Table 4 indicates that with increasing positive flow rate (Q>0), there 

is a significant decrease in pressure rise for all nano-particle scenarios. However platelet 

nanoparticles generally achieve the highest value of pressure rise whereas brick nano-particles 

produce the lowest magnitudes of pressure rise. Table 5 shows that platelet nano-particles attain 

the highest axial pressure gradient through the tube, whereas brick nano-particles achieve the 

lowest values for pressure gradient.  We further note that detailed elucidation of why certain 

shapes have certain influence requires a more complex surface analysis of the problem. This 

could be explored via molecular dynamics simulations where topology can be very precisely 

simulated rather than via a shape factor, although this is not the focus of the present work. It is 

envisaged that readers may which to further explore this pathway in the future. 

 

 

5. CONCLUSIONS 

A mathematical model has been developed to simulate magnetohydrodynamic convective heat 

transfer in nanofluid flow through a vertical tube induced by metachronal wave propagation 

under a uniform radial magnetic field. Under creeping flow approximations, and using an 

elliptical model for the cilia beating, the conservation equations for mass, momentum and energy 

are transformed from a moving to a stationary frame of reference and solved analytically under 

appropriate boundary conditions. Three different nanoparticle geometries (i.e. bricks, platelets 

and cylinders) are addressed. Closed-form expressions are derived for the effective thermal 

conductivity of nanofluid, axial velocity, temperature, axial pressure gradient and mean 

volumetric flow rate. The influence of cilia length parameter, Hartmann (magnetic) number, heat 

absorption parameter, Grashof number (free convection), solid nanoparticle volume fraction, and 

cilia eccentricity  parameter on the flow and heat transfer characteristics (including effective 

thermal conductivity of the nanofluid) have been examined in detail. On the basis of numerical 
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results derived, some significant findings of the present investigation are summarized below:  

• Pressure rise is a monotonical increasing function of the Hartmann (magnetic) number, 

heat absorption, Grashof number and amplitude ratio parameter. 

• The thermal conductivity for platelets nanoparticles is greater than for brick or cylindrical 

nanoparticles. 

• The temperature is significantly elevated with increasing magnitude of heat absorption 

parameter and also with nanoparticle fraction. 

• Temperature is also strongly dependent on the geometry of nanoparticles and 

progressively higher values are computed for bricks, cylinders and platelet nano-particles 

i.e. the platelet nano-particles attain highest temperatures. 

• Velocity magnitudes are reduced with increasing measure of the eccentricity of the 

metachronal wave and also with nanoparticle fraction near the tube wall whereas the 

opposite trend is computed at the central (core) region of the tube.  

• Velocity magnitude is elevated with greater values of Hartmann number and heat 

absorption parameter near the tube wall with the converse pattern computed in the 

central (core) region of the tube. 

• More streamlines are trapped for cylindrical nanoparticles as compared with brick or 

platelet nanoparticles.  
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