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Abstract: The present investigation focuses on a mathematical study of creeping viscous flow
induced by metachronal wave propagation in a horizontal ciliated tube containing porous media.
Creeping flow limitations are imposed i.e. inertial forces are small compared with viscous forces and
therefore very low Reynolds number (Re<<1) is taken into account. The wavelength of metachronal
wave is also considered as very large for cilia movement. The physical problem is linearized and
exact solutions are developed for the differential equation problem. Mathematica software is used to
compute and illustrate numerical results. The influence of slip parameter and Darcy number on
velocity profile, pressure gradient and trapping of bolus are discussed with the aid of graphs. It is
found that with increasing magnitude of slip parameter the trapped bolus inside the streamlines
increases in size. The study is relevant to biological propulsion of medical micro-machines in drug
delivery.
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Nomenclature

a radius of tube

c wave speed

Da Darcy number

F flow rate in moving frame

h height of tube

K biological medium permeability
P pressure in the moving frame
P pressure in the fixed frame
AP pressure rise

Q flow rate in the fixed frame



Cvylindrical coordinates in the fixed frame

~|
b

R.Z Cylindrical coordinates in the moving frame
t time

w.u  Velocity components in the fixed frame

W .U Velocity components in the moving frame

Z, Reference position of particle
Greek

A wavelength

a eccentricity of the elliptical motion
aj hvdrodynamic slip parameter

Js] wave number

£ cilia length

A wavelength

U dynamic viscosity of fluid

Yo, density of fluid

1. INTRODUCTION

Biological propulsion is increasingly attracting the interest of engineers owing to diverse
applications in medicine, aerospace. naval and even geological systems. Many mathematical
models have been proposed for different organisms and micro-organisms at different length
scales and Reynolds numbers. A most lucid review of the subject has been given by Wu [1] in
which 18 orders of magnitude have been identified for the range of flows studied from
microscopic organisms to large marine mammals (e.g. the blue whale). At the microscopic scale
and in particular in the context of embryological systems. cilia and flagellar propulsion are of
great interest. This area of biological hydrodynamic propulsion has also motivated significant
interest for many decades. as elaborated by Wu et /. [2]. Cilia and flagella lengths may span
from a few microns fo more than 2 mm in the case of some insect sperm flagella. Hence, cilia

and flagella essentially have no difference, although they have been ascribed different



terminologies prior to a proper biological examination of their structures. Cilia have been
established as beating with a whip-like asymmetric mechanism which comprises both an effective
stroke and a recovery stroke. Moreover, when many cilia function collectively, fluid dynamic
interactions may induce beating out-of-phase, and this manifests in the generation of
metachronal waves, and exacerbated hydrodynamics flow. The specific metachrony is termed
symplectic (or antiplectic) when the metachronal wave is in the same (or opposite) direction as
the effective stroke. These features have recently attracted attention in biomimetics and bio-
inspired engineering systems. notably in medical micro-swimmers which offer tremendous
potential in nano-medicine, drug-delivery and so forth, as described by Feng and Cho [3].
Commonly, cells own one or two long flagella. Conversely ciliated cells have many short cilia.
For instance. the mammalian spermatozoa has a single flagellum. the unicellular green alga
Chlamydomonas has two flagella, and the unicellular protozoan Paramecium is covered with a
few thousand cilia, these are used for both locomotion and nutrition. In mammals, many
epithelial cells are ciliated in order to sweep materials across the tissue surface. For instance,
considerable numbers of cilia (more than 107fu11112) cover the surfaces of mammalian respiratory
passages (the nose. pharynx. and trachea). here they dislodge and expel particulate matter that
collects in the mucus secretions of these tissues. The motion of cilia and flagella is controlled by
the Stokes equations (linear) with no-slip boundary conditions on their surfaces and vanishing
fluid disturbance at infinity [4]. The structure of cilia. factors which affect cilia activities,
movement of cilia and flagella and the coordination of the beating of cilia have been addressed
analytically by Sleigh [5]. Lardner and Shack [6] examined cilia effects on transport flow rates in
the ductus efferentes of the male reproductive tract. A mathematical model to represent the
microstructure of ciliated organisms was developed by Blake [7]. In continuation of the studies
on cilia movement and its importance in various fields of research, Wu [8] theoretically
investigated the fluid mechanism of cilia motion. Brennen [9] presented an oscillatory thin shear
layer (boundary layer) theory for cilia movement. Sleigh and Aiello [10] studied water
movement by cilia. Agarwal and Uddin [11] investigated the fluid flow with variable viscosity
by cilia transport; Blake [12] developed a spherical envelope approach for cilia motion. Miller
[13] focused on the movement of Newtonian fluids sustained by mechanical cilia oscillation:

Barton and Raynor [14] presented an analytical approach for cilia induced mucous flow: Smith er



al. [15] addressed viscoelastic fluid flow effects on cilia transport. Dauptain er al. [16] studied
computationally the hydrodynamics of cilia movement from a fluid-structure interaction (FSI)
viewpoint. specifically simulating ctenophore Pleurobrachia pileus marine micro-organisms
(quasi-spherical geometry) for multiple flexible cilia with 3-dimensional models. Khaderi and
Onck [17] presented three dimensional computations for cilia movement. Khaderi er al. [18]
further studied the non-reciprocal motion due to beating of artificial cilia. Another interesting
communication by Khaderi et al. [19] reports on magnetically-actuated artificial cilia for
microfluidic propulsion.

The above biological propulsion simulations were restricted to purely fluid media. In recent
years significant interest has also developed in transport phenomena in biological porous media.
Many organs in the human body comprise permeable materials including kidneys. lungs, tissue
and the human skin [20]. Porous media hydrodynamics further arises in circulation of
cerebrospinal fluid in the brain. In biomedical engineering, flow in porous media is integral to
the fabrication of artificial physiological organs including artificial kidneys, gastric tract and
lungs [21]. Almost invariably, biological materials (tissue etc) are heterogeneous and exhibit
strongly anisotropy. These complex constitutive properties originate from the cellular
microstructure. Although intrinsically the porous media arising in different organs of the body
are anisofropic, approximations can be made to simulate transport through them. A popular
approach is the Darcy model which has been used for microvasculature via networks of one-
dimensional segments, whereas the capillary bed is often approximated as a spatially-averaged
Darcy compartment. Darcy’s law and its modification assumes that the rate at which a fluid
flows through a permeable substance per unit area is equal to the product of the permeability (a
property of the material through which the fluid is flowing) and the pressure drop per unit length
of flow. divided by the viscosity of the fluid. A porous medium is generally defined in
continnum mechanics [22] as a medium which contains a number of small holes distributed
throughout the matter. Khaled and Vafai [23] have shown that convective flow models for
porous media are accurate for modelling hemodynamics in fumours and muscles and in
particular mimick quite well the impeded transport of physiological fluids in vessels clogged
with fatty cholestoral plaques and clots. Interstitial fluid mechanics also lends itself well to

porous media transport since the tissue may be approximated as a medium of dispersed cells



separated by connective voids, the latter permitting percolation of nutrients, minerals and other
substances to cells within the tissue. Darcy’s law however neglects the friction within the fluid
and exchange of momentum between the fluid and solid phases. Modifications of Darcy models
have therefore been developed for some time. A good example of flow with boundary condition
at the interfaces of a porous medium was presented by Saffiman [24]. Most physiological vessels
feature porous media characteristics and considering this fact many works have been reported in
literature. An interesting transport problem in porous media (of the moving boundary type) is
peristalsis, and arises in intestinal fluid dynamics. Representative studies in this area have been
communicated by for example Miyamoto et al. [25] who studied the two-dimensional laminar
flow in a circular porous tube and considering a small water absorption or secretion in the
intestinal perfusion experiment whereas Jeffrey ef al. [26] discussed the flow fields generated by
peristaltic reflex in isolated guinea pig ileum. Elshehawey et al. [27] developed another model
for peristaltic transport through an asymmetric porous medium channel and focused the
application to intra uterine fluid motion in a sagittal cross-section of the uterus. Other recent
investigations on peristaltic flow of Newtonian fluid and non-Newtonian fluids have been
presented and span many multi-physical aspects of the subject including power law fluids [28],
magnetohydrodynamics [29] and Maxwell rheological pumping through porous media [30].

A careful inspection of the scientific literature has revealed however that the creeping flow
induced by metachronal wave propagations of viscous fluid in a porous ciliated tube is yet to be
studied mathematically in the literature. Porous media offer a well-tested mechanism for flow
control in hydrodynamic propulsion. The present work aims to therefore address this topic for
the first time. Analytical solutions are developed for the linear partial differential equations
generated. Linearization is achieved by neglecting inertial forces relative to viscous forces, using
the low Reynolds number approximation from hydrodynamic lubrication theory. Numerical
results are presented graphically and the influence of key geometric and hydromechanical
parameters (e.g. Darcy number) on transport characteristics is elaborated in detail. The
simulations presented herein further elucidate the mechanism of creeping viscous flow induced
by cilia motion and are relevant to gastric fluid mechanics and also biomimetic devices

exploiting surface modifications for optimized propulsion [31-35].



2. MATHEMATICAL MODEL
Let us consider incompressible Newtonian flow in a ciliated tube with hydrodynamic slip at the

wall. The tube interior wall is ciliated with metachronal waves and the flow is generated due to

the collective beating of cilia. We select a cylindrical coordinate system (E.Z ) . where the Z -

axis is orientated along the center line of the tube and R — axis is normal to it. Cilia deform in a
wave-like fashion with a propagation velocity, ¢, along the wall of the outer tube. Keeping in
view the geometry of the metachronal wave pattern, it is assumed that the envelope of cilia tips

can be expressed mathematically in the following form:

- Axi
des Direction of the Metachronal Wave

Period of Envelope

Fig. 1. Geometry of the problem

Fig. 1: Schematic of the biological propulsion problem

The envelops of the cilia tips can be expressed mathematically [1, 9] as follows:
— —_ —fe - 2 _ =
R=H=f(Z.1)= a+ascos{§(2 —ct)).
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where a denotes the mean radius of the tube. ¢ is the non-dimensional measure with respect to

(1)

the cilia length, A and ¢ are the wavelength and wave speed of the metachronal wave
respectively, Z, denotes the reference position of the particle and ¢ is a measure of the

eccentricity of the elliptical motion. The velocities of the transport fluid are essentially those



induced by the cilia tips. and may be defined as:
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In the fixed coordinates (E.f} the flow in the tube is unsteady. It becomes steady in a wave

frame (¥,Z) moving with the same speed as the wave moves in the Z — direction. The governing
equations for the viscous flow through porous medium in moving frame is expressed as:
Continuity equation:
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The transformations between the two frames are
F=R.Z=Z—ct,u=U, w=W —c. p(h ) P(_Rr) )

The governing equations for the regime can be written via these transformations as follows:
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Corresponding boundary conditions are as defined in Ellahi et al .[31] . Nadeem and Sadaf [35]

&
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Introducing the following non-dimensional variables, which are defined in the nomenclature:
W a’p s p_ X o *
.p=—.D,=—. —_
o

L= w= a2y
A 1 c ac 7 cAu A

Where ¢

Making use of these variables in Eqns. (9.10). and using the assumptions of low Reynolds

number and long wavelength, the non-dimensional governing equations can be written as:
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The non-dimensional boundary conditions on the ciliated porous walls are prescribed as:
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3. ANALYTICAL SOLUTIONS
Integrating Eqn. (13) and using boundary conditions (14 a, b), axial velocity is obtained as:
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The volumetric flow rate ( F ) is defined as:
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Integrating the above expression for flow rate, we have:

5| \{% |(@reapeos(2 1) (F 42’ |-2705 [ Dyim )

f(F+ﬂf12)ID(L)

dp 2,Tfa’,6c0.‘s( 21 -1 , / \." D,
i : 17
E D, hlny (- ) (h = 204D, )1, 1) (a7
Flow rate in moving and fixed frames are related as follows:
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The pressure rise (AP) is readily found by integrating the pressure gradient w.r.t. = over the

interval [0.1] as follows:

_ rdp
AP:I—d:. (19)
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The stream function in the wave frame (obeying the Cauchy-Riemann equations,

0 cy . . L . .
u =H—wand1'=—ﬁ—yj may be computed by using Eqn. (18). Visualization of streamlines is

cy cx

achieved with Mathematica symbolic software.
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4. NUMERICAL RESULTS AND DISCUSSION

In this section. the effect of several physical parameters i.e. slip parameter (¢;) and Darcy
number (Da) on velocity profile, flow rate, pressure gradient and stream lines are elaborated with
the help of Figs. (2-5).

Figs. 2 represent the change in the velocity of the fluid with respect to certain changes in the

constraints.
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Fig. 2. Velocity profile (axial velocity vs. radial coordinate) for (a) Slip parameter slip parameter

a, . (b) Darcy number D,, . (¢) Flow rate Q. (d) Cilia length parameter e.
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Fig. 3. Pressure rise versus flow rate for (a) Slip parameter slip parameter «,. (b) Darcy number

D, . (¢) Cilia length parameter e.

14



dp/dz

4(a)

_ _ _ — = ()]

[ c=040=01,p=02 A
Da:'|,O:D.1 semnsanan g, =03

- - - - =, =04

4(b)

-0.3
I _ S a D=1
| c=04,0=01,p=02 - — - D -1
| ©,203,Q=03  teereeees D,=12
= ===0D-=13
04}
s |
- s A - T N s -
o . T e s e N T
o R - et T -
05} ST T
i 7\ /D
[~ w— -1
L~ / \ s ~ / A s
v ' S— ]
-06F
—




dp/dz

Fig.4. Pressure gradient vs. axial coordinate for (a) Slip parameter slip parameter ¢, . (b) Darcy

number D, . (¢) Flow rate Q. (d) Cilia length parameter &.
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Fig. 5. Streamlines for the velocity profile for slip parameter slip parameter
o, =0.1,0.110.12,0.15 respectively.
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The parabolic nature of the velocity profile is clearly evident from these figures. Fig. 2a shows
that velocity is inversely proportional to slip parameter ( 7, ). Greater slip at the wall is found to
counteract axial momentum development and manifests in a drop in axial velocity. Fig. 2b
depicts the effects of Darcy number on velocity profile and it is observed that the velocifty is
directly proportional to permeability of the medium. Greater permeability corresponds to a
significant decrease in Darcian impedance i.e. the drag force associated with solid fibers in the
regime. Fig. 2c represents the influence of flow rate on velocity profile and it is apparent that if
flow rate is increasing, velocity also increases. Propulsion is therefore enhanced with greater
flow rates. Fig.2d reveals that velocity profile diminishes with increasing cilia length parameter
(e). Cilia spacing and length influences the viscous resistance per cilium and thereby the axial
flow. The latter is assisted with greater cilia length and this aids in pressure rise in the lower
channel half space. The introduction of extra energy to the flow at the lower wall however must
be compensated for by an extraction at the upper wall. and these features are also related to
synchronicity of beating cilia. The special case of £ =0 implies vanishing cilia and absence of a
metchronal wave- in this scenario the flow is a purely peristaltic mechanism due to flexibility of
the walls, and is therefore not considered here.

Figs. 3 illustrate the pressure rise evolution with flow rate for various parameters. A linear
relation between flow rate and pressure is observed and there are three regions of pumping (i)
pumping region (AP >0) (ii) free pumping (AP =0) and (iii) augmented pumping region
(AP <0). The effect of slip parameter on pressure rise is shown in Fig.3a and it is evident that
pressure diminishes with rise of slip parameter in the pumping region whereas the converse
response is computed in the augmented pumping region. The impact of Darcy number on
pressure rise is illustrated in fig.3b and exerts a similar effect as with the slip parameter. From fig
3c, it is seen that pressure rise is an increasing function of amplitude in the pumping region
whereas it is decreasing function in augmented pumping region.

Figs. 4a-c depict the pressure gradient distributions with axial coordinate for various
hydromechanical and geometric parameters. Inspection of the figures reveals that pressure

gradient increasing with small changes in slip parameter and Darcy number ( «,.D,) and also
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cilia length parameter (g). In all cases, the maxima (peaks) surface at z=0.5,1.5 , however the

relative minima change with modification in parameter values.

Figs 5a-d present the streamline visualizations for the influence of slip parameter. These
streamlines constitute a family of curves which are tangential to the velocity vector at any instant
of the flow. These show the direction of the fluid element at any point in time. The plots
generally demonstrate that with increasing the magnitude of slip parameter (¢;). the trapped
bolus inside the streamlines increases in size whereas the number of bolus decreases. In much of
a digestive tract such as the human gastrointestinal tract, smooth muscle tissue contracts in
sequence to produce a peristaltic wave, which propels a ball of food (called a bolus while in
the esophagus and upper gastrointestinal tract and chyme in the stomach. So trapped bolus are
enclosed streamlines. From the graphs we can see that near the tube walls more trapped bolus
occurs because there is some fluid resistance and at center fluid moves easily and free stream
occurs at the center of the tube. So that’s why at the center of the fube no tapped bolus occurs all
the bolus are near the walls of the tube.

Evidently in summary the geometric and hydrodynamic parameters result in non-trivial

modifications in the propulsion characteristics and these warrant further exploration in the future.

5. CONCLUDING REMARKS

In this paper. a mathematical study has been conducted for creeping flow induced by a
metachronal wave generated by beating of cilia tips in viscous propulsion through a porous
medium-filled tube. The study has been motivated by further expounding biological propulsion
mechanisms e.g. motion induced by cilia tips in uro-dynamics, breathing in the human
respiratory system, sperm movement in reproductive system. Furthermore the study is pertinent
to biomimetic propulsion mechanisms exploiting surface treatments via artificial cilia. The work
it is envisaged will further stimulate much-needed laboratory investigations which would serve
to garner vital experimental data. Although confined to viscous (Navier-Stokes) fluids and
viscous-dominated porous media transport (Darcy model), some useful deductions can be made
from the computations, namely:

1. Velocity is a decreasing function of slip parameter whereas it is an increasing function of

Darcy number.
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2. Greater flow rate elevates axial velocity whereas the latter decreases with increasing axial
coordinate.

3. Pressure rise reduces with increasing the effects of slip velocity and permeability (higher
Darcy number) in the pumping region whereas the reverse trend is observed in the
augmented pumping region.

4. Axial coordinate and Darcy number exert the opposite effect on the pressure rise.

5. The size of trapped bolus of stream line increases with increasing the magnitude of slip
parameter.
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