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ABSTRACT 

A mathematical model is developed to analyse electro-kinetic effects on unsteady peristaltic 

transport of blood in cylindrical vessels of finite length. The Newtonian viscous model is 

adopted. The analysis is restricted under Debye-Hückel linearization (i.e. wall zeta potential 

≤ 25mV) is sufficiently small). The transformed, non-dimensional conservation equations are 

derived via lubrication theory and long wavelength and the resulting linearized boundary 

value problem is solved exactly. The case of a thin electric double layer (i.e. where only slip 

electro-osmotic velocity considered) is retrieved as a particular case of the present model. 

The response in pumping characteristics (axial velocity, pressure gradient or difference, 

volumetric flow rate, local wall shear stress) to the influence of electro-osmotic effect 

(inverse Debye length) and Helmholtz-Smoluchowski velocity is elaborated in detail. 

Visualization of trapping phenomenon is also included and the bolus dynamics evolution with 

electro-kinetic effects examined. A comparative study of train wave propagation and single 

wave propagation is presented under the effects of thickness of EDL and external electric 

field. The study is relevant to electrophoresis in haemotology, electrohydrodynamic therapy 

and biomimetic electro-osmotic pumps.  
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1. INTRODUCTION 

In recent years great interest has developed in transporting erythrocytes and proteins through 

micro-capillaries electro-kinetically using longitudinal (axially-directed) electric fields [1]. 

Electro-kinetics also has immense possible applications in the synthesis of novel chip-based 

miniaturized medical diagnostic kits [2], separation dynamics in blood disorder treatment and 
endothelial electrophysiology [3], electrogenic bioplasma transport [4], continuous-flow 

electro-kinetic-assisted plasmapheresis [5], electro-osmotic manipulation of DNA in 

microfabricated systems [6] and dielectrophoretic manufacture of biopolymers [7]. Electro-

kinetics provides a rich arena for multi-physical simulations. It combines viscous flow, 

electro-physics and depending on the geometry via which the transport takes place, a variety 

of rich boundary conditions (moving wall, oscillatory, micro-channel, transpiration, adhesion 

etc). Ghosal [8] has provided a lucid review of applications in capillary transport, 

emphasizing that careful selection of different chemical, electrical and viscous conditions can 

benefit dispersion rates. In conjunction with the many excellent laboratory-based 

investigations which have been reported on capillary electro-kinetics and electro-

hemodynamics [9], theoretical and computational studies have also stimulated exceptional 

interest in recent years. Simulation has therefore evolved into a very key area of modern 

electro-osmotic fluid dynamics research. The presence of ionic components, nutrients and 

other particles in blood, which respond to bio-electrical and also externally applied electrical 

fields, provides a suitable forum for electro-kinetic simulations in hemodynamics. In many 

narrow vessel or microchannel applications, electrokinetic flow fields can be delineated into 

an internal flow domain controlled by viscous and electrostatic forces and an external flow 

domain regulated by inertial and pressure forces. These two regions are demarcated via a slip 

velocity condition which is determined by the Helmholtz−Smoulochowski equation. Many 

aspects of dielectric phenomena, polarizability, mobility of ions and Debye length effects 

have been addressed comprehensively by Sharp and Honig [10] who have also covered in 

detail finite difference numerical simulations of a standard model in electro-kinetics, the 

Poisson-Boltzmann equation. Liu et al. [11] developed a robust 3D immersed molecular 

electrokinetic finite element method (IMEFEM) to simulate micro fluidic electrokinetic 

assemblies of bio-molecules, blood transport and related problems including pH control 

interactions. They described bio-sensing efficiency, applied electric field threshold, 

biomolecule deformation and nanoscale Brownian motion. Hlushkou et al. [12] presented a 

modified lattice-Boltzmann method for three-dimensional electroosmotic flows in porous 
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media, specifically addressing electro-kinetics in straight cylindrical capillaries with a non-

uniform zeta-potential distribution for ratios of the capillary inner radius to the thickness of 

the electrical double layer from 10 to 100. Sheu et al. [13] investigated computationally and 

experimentally electro-osmotic blood flows in ionic tissue model, as a simulation of the 

meridian passage, elaborating on immediate response and electrical field interaction with the 

blood circulation. Gheshlaghi et al. [14] developed closed-form Fourier series solutions to 

transient electro-kinetic flow in a parallel rotating plate microchannel, noting that period and 

the decay rate of the oscillations are invariant with the Debye-Hückel parameter and that a 

complex time dependent boundary layer structure at the channel walls evolves at greater 

rotational frequencies. Furthermore they observed that both angular velocity and the Debye-

Hückel parameters strongly modify the induced transient secondary (cross) flow. Santiago 

[15] investigated theoretically the influence of effects of fluid inertia and pressure on the 

velocity and vorticity field of electroosmotic insulated wall channel flows, considering 

Strouhal number effects. Alam and Penney [16] described a Lagrangian methodology for 

simulating electro-osmotic mass diffusion in microchannels studying behaviour at high Peclet 

numbers. Luo et al. [17] employed a combination of smoothed profile method (SPM) and 

spectral element discretizations, to study electro-kinetic flows in both straight channels and 

charged micro-tubular cylinders, considering variations in electrical conductivities between 

the charged surfaces and electrolyte solution. Bég et al. [18] studied non-linear electro-kinetic 

flows in circular tubes using a Chebyschev spectral method, considering electrical Reynolds 

number, electrical Hartmann and electrical slip effects. They observed that electrical 

Hartmann number decelerates the ionic flow whereas increasing electrical Reynolds number 

enhances the electrical field distribution. Huang et al. [19] investigated electroosmotic 

dynamics in micro-channels with a modified finite element method. They solved the coupled 

mass, momentum, Laplace (equation for the effective electrical potential) and Helmholtz 

(electrical potential in the electric double layer i.e. EDL) equations at Re=0.0259), observing 

that greater applied electric potential accelerates the tissue fluid owing to  the formation of an 

EDL. Karatay et al. [20] analysed using the CFD-ACE commercial solver and a direct 

numerical simulation (DNS) code, the electro-convective flow induced by concentration 

polarization near an ion selective surface, computing in detail the velocity and ion 

concentration spectra over many frequencies. They also observed that DNS codes compile 

faster than commercial codes solvers in electro-osmotic coupled simulations. Ondal et al. 

[21] investigated the combined electroosmotic and pressure driven flow in a rectangular 

microchannel at high zeta potential and with an overlapping electrical double-layer. They 
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conducted computational simulations to compute the potential distribution without the 

conventional Debye Huckel approximation with a site dissociation model.  

The above studies were generally confined to steady state flows with rigid boundaries. 

However most transport processes in physiology are transient e.g. pusaltile effects due to the 

beating of the heart. An important unsteady propagation mechanisms for transport is 

peristalsis which is a radially symmetrical contraction and relaxation of muscles that 

propagates materials in a wave-like motion along a conduit utilizing deformable walls. This 

mechanism arises in an astonishing range of biological systems including pharyngeal 

physiology [22], vasomotion (periodic oscillations of blood vessels walls) in bat wing 

venules [23], pulmonary and perivascular space (PVS) dynamics [24], bile migration in the 

gastric tract [25]. Peristalsis has also been implemented in several bio-inspired medical 

devices including nano-scale pharmacological delivery  systems [26, 27], fish locomotion for 

underwater robots [28] and biomimetic worm soft peristaltic land crawling robots  [29, 30].  

Although documented for over a century in medical sciences, fundamental studies of 

peristaltic hydrodynamics only materialized in the 1960s. The premier researcher in 

biomechanics, Y.C. Fung with co-workers presented a seminal investigation on the subject 

[31]. This study considered peristaltic pumping generated via the imposition of an 

axisymmetric traveling sinusoidal wave of moderate amplitude on the wall of a flexible 

conduit. The nonlinear convective acceleration terms in the Navier-Stokes equation were 

retained and perturbation solutions developed. Further studies of Newtonian peristaltic 

propulsion considering different aspects including inertial, elastic wall and activation waves 

were communicated by Weinberg et al. [32], Tang and Rankin [33], Carew and Pedley [34] 

and Tang and Shen [35].  

The above studies although very detailed, were restricted to infinite length geometries. 

However the vast majority of real applications of peristalsis involve finite length channels, 

vessels etc. An important work considering transient peristaltic flows in finite length conduits 

was presented by Li and Brasseur [36]. Kumar et al. [37] extended the Li-Brasseur model to 

consider wall permeability. Tripathi and Bég [38] further consider hydromagnetic peristaltic 

flow and thermal convection heat transfer in a finite length channel observing that higher 

pressure is needed to drive electrically-conducting Newtonian fluids compared with non-

conducting Newtonian fluids, whereas, a lower pressure is necessary when strong thermal 

buoyancy effects are present. Toklu [39] presented a detailed simulation of esophageal bolus 

transport in a finite intraluminal geometry integrating actual videofluoroscopic and 
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concurrent manometric geometric data with a viscous Newtonian numerical model. Further 

studies of finite length conduit peristalsis have been communicated by Tong et al. [40], Pal 

and Brasseur [41] in the context of uro-dynamics and by Jaggy et al. [42] for the peristaltic, 

extracorporeal displacement pump (Affinity) employed in cardiopulmonary bypass 

hemodynamics.  

In the present article we consider electro-osmotic Newtonian viscous peristaltic pumping in a 

finite length geometry. Although numerous studies have been communicated on 

magnetohydrodynamic peristalsis e.g. [44], relatively few investigations have appeared on 

electro-kinetic or electro-osmotic peristaltic transport. Bandopadhyay et al. [45], motivated 

by microscale device synthesis, recently considered peristaltic electro-osmotic flows of 

aqueous electrolytes under applied electric fields, evaluating the influence of electro-kinetic 

body force on the particle reflux and trapping of a fluid volume ( bolus) inside the travelling 

wave. Misra et al. [45] investigated analytically the electroosmotic flow of a micropolar fluid 

in a microchannel with permeable walls under periodic vibration. Tripathi et al. [46] reported 

on the combined magnetiohydrodynamic and electro-osmotic unsteady peristaltic propulsion 

of electrolytes in a microchannel under an applied external electric field observing that with 

higher magnetic Hartmann number, the formation of bolus in the regime (associated with 

trapping) is opposed up to a critical value of magnetic field. They also found that stronger 

electro-osmotic effect (i.e. lower Debye length) enhances maximum time-averaged flow rate 

but induces axial deceleration. Goswami et al. [47] studied the pumping characteristics of 

electro-kinetically modulated peristaltic transport of power-law fluids tin narrow deformable 

channels showing that principal influence of electro-osmosis is in weakly peristaltic flow and 

that trapping can be regulated via electric field. Further relevant studies include Johnson [48] 

who micro-machined a four-chamber peristaltic electro-osmotic pump and McKnight et al. 

[49] who considered electrode effects on peristaltic electro-kinetic pumping. In the present 

work analytical solutions are derived for the axial velocity, pressure and stream-function 

using integral methods. Numerical visualization of trapping phenomena under electro-

osmotic effect is achieved with Mathematica software. The present study aims to further 

examine peristaltic electro-osmotic hemodynamics with finite length geometric effects. 

Lubrication theory is applied and a long wave approximation is used [peristaltic wavelength is 

much greater amplitude, which eliminates nonlinear convective acceleration terms from the Navier-

Stokes equations) and with Debye-Huckel linearization, permits the derivation of closed-form 

solutions to the transformed boundary value problem. The work is motivated by applications in 
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ionic diffusion and blood pumping with peristaltic waves in cerebro-spinal zones  [50] and 

potential biomimetic devices exploiting such mechanisms [51, 52]. It may also relevant to 

electrofluid botanical transport [53]. The mathematical model of Li and Brasseur [36] is 

retrieved as a very special case of the present general model. 

 

2. ELECTRO-OSMOTIC PERISTALTIC VISCOUS HEMODYNAMIC MODEL  

We consider the blood flow through capillary as microfluidic circular cylindrical tube where 

blood is an aqueous ionic solution and may be manipulated by means of an externally applied 

electric field. Electro-hydrodynamic properties of blood have been well established in many 

landmark physiological studies. Blood flow is known to generate a concomitant electrical 

force that acts within the blood vessel–the electrokinetic vascular streaming potential 

(EVSP). This amazing phenomenon was first identified by the prominent German 

physiologist, Quincke [54] in the 1860s. More recently with developments in electro-osmotic 

systems, the electro-hemodynamic phenomenon has been exploited in many other areas 

including vascular control [55], hemostasis [56], wound repair [57] and cerebral electro-

therapy [58]. Ionic concentrations within blood and surface charges in haemotological vessels 

are primarily responsible for electro-kinetic effects which generate electrical body forces that 

can be manipulated via external electrical fields. We also consider the tube (blood vessel) to 

be of finite length, and the propulsion processes to be inherently non-steady in the laboratory 

frame of reference. The schematic of the problem under consideration is depicted in Fig. 1 

and mathematically described by the following expression 

],0[)(cos),( 2 Lxtcxatxh 



 ,                                                                        (1) 

where a , , , x , c , t , L  are the radius of tube, amplitude, wavelength, axial coordinate, 

wave velocity, time and tube length. The Poisson-Boltzmann equation to describe the electric 

potential distribution for a symmetric (z: z) binary electrolyte solution (Na
+ 

Cl
-
), is expressed 

as: 

2 e


    ,                                                                                                                            (2) 
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Here   is the permittivity and e  is the density of the total ionic change which is given by, 

( )e ez n n    , in which n and n  are the number of densities of cations and anions, 

respectively. 

 

 

 

 

 

Figure 1: A geometrical description of peristaltic blood flow through the capillary 

augmented by external electric field. The pressures at the left and right reservoirs (inlet and 

exit, respectively) are denoted as 0p  and Lp  respectively. 

The density of the total ionic energy (considering no EDL overlap) is expressed as:  

0

B

e z
n n Exp

K T

  
  

 
,                                                                                                              (3) 

where 0n  represents the concentration of ions at the bulk, which is independent of surface 

electro-chemistry, e   is the electronic charge, z  is charge balance, BK  is the Boltzmann 

constant, T  is the average temperature of the electrolytic solution. This distribution of ionic 

concentration appears to be valid when there is no axial gradient of the ionic concentration 

within the micro-channel and the flow Péclet number is assumed to be significantly small. 

Combining Eqns. (2) and (3), we obtain the modified Poisson-Boltzmann equation in the 

form:  

02 sinh
1 B

ez
n ez

K T
r

r r r 

 
 

     
 

  
.                                                                                         (4) 
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Invoking a normalized electro-osmotic potential function   with zeta potential  of the 

medium along with other non-dimensional variables, namely 



   and 

r
r

a
   (radial 

coordinate) and employing the Debye-Hückel linearization approximation as

sinh
B B

ez ez

K T K T

  
 

 
, Eqn. (4) may be shown to contract to:  

 

21
r m

r r r

  
  

  
,                                                                                                                (5) 

where 
dB

a

TK

n
aezm


 02

, is the electro-osmotic i.e. electro-kinetic parameter which is 

the inverse of the Debye length, d. It is important to note that when the zeta (ζ) potential is 

significant or the background electrolyte is weak, the electric double layer (EDL) can grow 

strongly in thickness and over-lapping may arise. Furthermore if the EDL takes up a 

substantial portion of the channel, velocity profiles can be modified local and the electrostatic 

body force could lead to the expulsion of  counter-ions (to the surface charge). These extreme 

aspects have been elaborated by Saville [59]. However in the present analysis we do not 

consider thick EDLs. These are deferred to a subsequent study  will be no longer be plug 

shaped, and the Solving Eq.(5) subjected to the boundary conditions: 0
0






rr
 and 

1
hr

,  the potential function is obtained as: 

)(

)(

0

0

mhI

mrI
 ,                                                                                                                         (6)      

where 0 ( )I mr  is the modified Bessel function of first kind and zero order [60]. 

The governing equations describing time-dependent, viscous Newtonian electro-osmotic 

blood flow through a deformable capillary under an applied external electric field may be 

presented in an axisymmetric coordinate system ( xr ,  ) as: 

 

,0
)(1





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



r

vr

rx

u
                                                                                                               (7) 
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where ,,,,,  pvu and 
xE  denote the fluid density, axial velocity, radial velocity, pressure, 

fluid viscosity, and external electric field, respectively. Although it is possible to derive 

numerical solutions for the primitive equations (subject to boundary conditions), it is 

advantageous to invoke non-dimensional parameters. These allow a proper scaling of electro-

kinetic flow phenomena and greatly simplify the complexity of the governing equations. 

Proceeding, we define: 

,Re,,,,,,,,
2












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ca

c
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h
h

a

c

v
v

c

u
u

tc
t

x
x   (10) 

where ,  is wave number, and Re is the wave amplitude and capillary-diameter based-

Reynolds number. Eqns. (7) –(9) then take the form: 

,0
)(1











r

rv

rx

u
                                                                                                         (11) 

,
1

Re 2

2

2
2

HSUm
r

u
r

rrx

u

x

p
u

r
v

x
u

t


























































                       (12) 

,
)(1

Re
2

2
223



























































r

rv

rrx

v

r

p
v

r
v

x
u

t
                                   (13) 

where  x
HS

E
U

c




     is the Helmholtz-Smoluchowski velocity. It is assumed that the 

wavelength of the pulse is much larger than the radius of tube; i.e. we assume that the 

lubrication approximation is valid ( = a/<<1). Applying these approximations the 

governing equations finally assume a much more compact and amenable form: 
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)(1
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                                                                                                           (14) 
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                                                                              (15) 
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.0




r

p
                                                                                                                            (16) 

Eqns. (15) and (16) evidently correspond to a non-zero axial pressure gradient and zero radial 

pressure gradient, respectively. The relevant boundary conditions, following Li and Brasseur 

[36] are prescribed as follows: 

0

0
r

u

r 
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, 0,

r h
u




0
0

r
v




r h

h
v

t





, 
00x
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p p


 .                             (17) 

Solving Eqn.(15) with boundary conditions (17), the electro-kinetic modified axial velocity is 

obtained as: 

 

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






 1

)(
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022
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x

p
u HS

.                                                                          (18) 

Using the Eqn. (18) and boundary condition (17), the electro-kinetically modulated radial 

velocity by virtue of the continuity equation is found to be: 

 
2 2 2

1 1

2 2
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4 4 2 ( ( ))
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,                                           (19) 

where 
1( )I mr  is the modified Bessel function of first kind of first order (see Kreyzig [60]). 

Using Eq.(19) and boundary conditions (17), the pressure gradient is obtained as: 
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 ,                                                 (20) 

where 
0 ( )G t  is arbitrary function of t  to be evaluated by using finite length boundary 

conditions (17). The pressure difference can be computed along the axial length by: 
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s

p
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),0(),( ,                                                                                               (21) 

 and 
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The local wall shear stress is defined again following Li and Brasseur [36]: 
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The volumetric flow rate is defined as: 

4
2 1

00
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 
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  
 .                                                       (24) 

The pumping performance is characterized for periodic train waves by averaging the 

volumetric flow rate for one time interval i.e. time-averaged volume flow rate. This is defined 

following Shapiro et al. [61] as: 

1

2 2

0

1 3 / 8Q Qdt Q h        .                                                                               (25) 

Using Eqns. (24) and (25), the pressure gradient is derived in the form of time-averaged flow 

rate as: 

2 2 2 1

4

0

2 ( )8
(1 3 / 8)

( )
HS

hI mhp
Q h U h

x h mI mh
 

    
        

    

.                                             (26) 

 

Using Eqns. (18) and (19), the stream function in the wave frame (obeying the Cauchy-

Riemann equations, 
rr

u





1
and 

xr
v






1
) takes the form: 

 


















2)(

)(
)2(

16

1 2

0

1224 r

mhmI

mrrI
Uhrr

x

p
HS .       

       

                                              (27) 

 

All the above expressions will reduce to the Newtonian viscous expressions in the absence of 

electro-osmosis, of Li & Brasseur [36] for 0HSU   i.e. without external electrical field. The 

derived solutions will also reduce to expressions for thin EDL effects (i.e. only 

electroosmotic slip velocity at the wall is considered, neglecting external electric field 

effects) which is a special case of this study for m  or where thickness of the EDL tends 

to zero ( 0d  ). 
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3. NUMERICAL RESULTS AND DISCUSSION 

Figs.2-10 depict the influence of the electro-osmotic parameter (
dB

a

TK

n
aezm


 02

), 

(which is inversely proportional to Debye length ( d )  or characteristic thickness of electrical 

double layer (EDL)) and  Helmholtz-Smoluchowski (HS) velocity ( x
HS

E
U

c




  ), (which is 

proportional to external electric field ( xE )),on the pumping characteristics of blood flow and 

associated trapping dynamics. The other parameters , , ,c    (i.e. permittivity, zeta potential, 

dynamic viscosity and peristaltic wave velocity) are held constant. All numerical solutions 

were evaluated and graphical plots generated using Mathematica software 

Figs. 2(a-d) illustrate the effect of inverse Debye length i.e. electro-osmotic parameter, on 

pressure distribution at four time instants (t = 0, 0.25 ,0.5, 0.75) for both train and single 

wave propagations along the length of tube. The initial and final pressure ( 0 0Lp p  ) are 

taken as zero in the numerical calculation and dual waves are propagating together for train 

wave propagation case. The length of tube is twice the wavelength. The figures indicate that 

the maximum blood pressure arises for fully contracted walls whereas the minimum is 

associated with fully relaxed walls. It is clear that due to contraction and relaxation of walls, 

there exists a negative pressure gradient and this causes the forward propagation of the blood 

bolus (trapped vorticity zone). For figs. 2(a-d), we have taken the status of bolus at different 

instants which visualizes the rhythmic process of fluid transportation. It is also observed that 

the pressure increases with increasing the thickness of Debye length in train wave 

propagation while opposite trends are observed for single wave propagation. 

Figs. 3(a-d) present the effects of external electric field (as simulated via variation in the 

Helmholtz-Smoluchowski (HS) velocity, UHS), on pressure distribution for train and single 

wave propagation along the tube length at different time instants. Pressure is clearly greater 

in blood flow without external electric field. Pressure is strongly reduced therefore via 

increasing the magnitude of external electrical field for train wave propagation. However the 

influence of external field on pressure for single wave propagation is opposite to that of the 

train wave propagation and pressures are found to be elevated. The patterns of pressure 

distribution without external electric field are consistent with the pattern of pressure 

distribution given by Li and Brasseur [36] providing confidence in the current analytical 

solutions. Numerical values in the Li-Brasseur results are different however since both the 
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equation for peristaltic wave propagation and parameter values are different. However the 

general trends are quite similar for non-electrical peristalsis. 

Figs. 4(a-d) show the evolution in local wall shear stress distribution along the tube length 

for train wave propagation and single wave propagation at different time instants under the 

effects of electro-osmotic parameter (m) i.e. inverse Debye length (d).  There is a significant 

depression at all time stages in the shear stress with increasing m values. The blood flow is 

therefore strongly decelerated with greater electro-osmotic effect, which concurs with many 

other studies in this area, notably Goswami et al. [47]. The alternating nature of wall shear 

stress induced by the peristaltic wave is clearly captured in these figures.  

Figs. 5a-d illustrate the impact of Helmholtz-Smoluchowski velocity on the local wall shear 

stress along the length of tube at 00.5, 2, 0, 2LL p p m      at different time instants (a)  

0,1t   (b) 0.25t   (c) 0.5t   (d) 0.75t  . Solid and dashed colour lines represent the local 

wall shear stress for different values. Initial and final pressure ( 0 0Lp p  ) are taken as zero 

in the numerical calculations and two waves are propagating together for the train wave 

propagation case and a single wave is propagating along the tube length.  
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Fig.2. Pressure distribution along the length of tube at 00.6, 2, 0, 1L HSL p p U       at 

different time instants (a)  0,1t   (b) 0.25t   (c) 0.5t   (d) 0.75t  . Solid and dashed 

colour lines represent the pressure distribution for different values of electroosmotic 

parameter (inverse Debye length) and dotted black lines show the pulse position. 
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Fig.3. Pressure distribution along the length of channel at 00.6, 2, 0, 3LL p p m       at 

different time instants (a)  0,1t   (b) 0.25t   (c) 0.5t   (d) 0.75t  . Solid and dashed 

colour lines represent the pressure distribution for different values of Helmholtz-

Smoluchowski velocity and dotted black lines show the pulse position. 
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Fig.4. Local wall shear stress along the length of tube at 00.5, 2, 0, 0.1L HSL p p U     

at different time instants (a)  0,1t   (b) 0.25t   (c) 0.5t   (d) 0.75t  . Solid and dashed 

colour lines represent the local wall shear stress for different electro-osmotic parameter 

(inverse Debye lengths) and dotted black lines show pulse position. 
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Fig.5. Local wall shear stress along the length of tube at 00.5, 2, 0, 2LL p p m      at 

different time instants (a)  0,1t   (b) 0.25t   (c) 0.5t   (d) 0.75t  . Solid and dashed 

colour lines represent the local wall shear stress for different values of Helmholtz-

Smoluchowski velocity and dotted black lines show pulse position.  
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 

  

Fig.6. Volumetric flow rate against the time for pulse flow at 0.6, 0,xp    (a) for axial 

distance (x), with 1, 1HSm U   from inlet to outlet (b) for different values of electro-osmotic 

parameter (inverse Debye length) (c) for different values of electro-osmotic parameter 

(inverse Debye length) and Helmholtz-Smoluchowski velocity. 
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

Fig.7. Pressure difference across one wavelength vs. time averaged flow rate at 0.6   and 

(a) 1HSU   (b) 20m  . 
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Fig.8. Stream lines in wave form at 0.6, 0.7Q   for different electroosmotic and Helmholtz-

Smoluchowski velocity parameters. 

 

The length of tube is twice of wavelength. The local wall shear stress distribution is U-

shaped, with a maximum at the initial stage. It is reduced when the vessel walls start relaxing 

and constant for the relaxed phase of walls. It again increases when the walls start to contract. 

A similar behaviour is observed for both successive waves in the case of train wave 

propagation also in the single wave propagation scenario. Increasing axial electrical field i.e. 

greater Helmholtz-Smoluchowski velocity clearly damps the peristaltic flow i.e. causes a 

strong deceleration. The flow is therefore accelerated in the case of vanishing electrical field 

(UHS=0). 

Figs. 6(a-c) illustrates that effects of tube length (axial distance, x), electro-osmotic 

parameter (i.e. reciprocal of Debye length), and combined electro-osmotic parameter and 

Helmholtz-Smoluchowski velocity (external axial electric field) on the variation of volume 

flow rate against time for single wave propagation. Fig. 6a reveals that the variation of flow 

rate is oscillatory in nature and it is dependent on a set of values of time and tube length. It is 

also seen that the inlet flow rate is zero at initial stage (inlet flow rate) and alternates with 

progression in time and tube length and finally reduces again to zero (outlet flow rate). Fig.6b 

depicts that volume flow rate enhances with reducing the magnitude of EDL thickness (i.e. 

the value of electro-osmotic parameter, m  from 1-50) and ascends to values very close to the 

flow rate for very thin EDL ( m  ). Fig. 6c shows that the effect of external electric field 

on volume flow rate with EDL thickness effect. It is found that flow rate diminishes with 

 

0HSU   Ref. [61] 

 

(e) 
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increasing effects of external electric field (smaller Debye lengths) and furthermore for low 

value of Debye length, the flow rate is very close to the case of very thin EDL.  

Figs. 7(a & b) are drawn to illustrate the pressure difference across the one wavelength 

against the time averaged flow rate under the influences of electro-osmotic parameter 

(thickness of EDL) and external electric field. It is observed that the relation between 

pressure difference and flow rate is linear and the pressure is maximized at zero flow rate and 

vice-versa. With greater flow rate the pressure decreases. Fig. 7a shows that the pressure 

ascends and approaches that for very thin EDL (i.e. m  ) with increasing the magnitude 

of m  from 0-50 that means the pressure enhances with reducing the thickness of EDL. Fig.6b 

shows that the pressure rises with increasing the effects of external electric field and it is 

minimum for without external electric field. The pressure without electric field is similar in 

pattern to the results of Shapiro et al. [61]. 

Figs.8 (a-g) present the collective effects of electro-osmotic parameter (m) i.e. thickness of 

EDL and Helmholtz-Smoluchowski (UHS) i.e. external electric field on trapping phenomena. 

Furthermore we compare with the trapping phenomenon obtained in the case of very thin 

EDL i.e. with absence of electro-osmotic effect which is the case examined by Shapiro et al. 

[56]. Trapping is special characteristic associated with peristaltic pumping and involves the 

localization of zones of vorticity i.e. circulation which are trapped in the flow. We have 

studied this phenomenon with a representative combination of the values of amplitude of 

peristaltic wave and time averaged flow rate. Figures are plotted for stream lines (radial 

coordinate vs axial coordinate) at characteristic values of amplitude and averaged flow rate 

i.e. 0.6, 0.7Q   encountered in real blood flows. Figs. 8(a-d) illustrate that the effects of 

external electric field on trapping for both cases with finite Debye length (i.e. 10m ) and 

very thin EDL (i.e. m  ). It is apparent that the size of trapped bolus reduces with 

increasing the effects of external electric field. From Figs. 8(a & b) and (c & d), the stream 

lines are very similar for both cases 10m  and m  but the similarity is progressively 

lost when external electric field is stronger. Figs.8 (c, e) show the variation in Debye length 

at 0.1HSU  , and it is observed that the size of trapped bolus reduces with decreasing the 

magnitude of Debye length (i.e. increasing value of electro-osmotic parameter, m ). 
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4. CONCLUSIONS 

A theoretical study has been conducted for the unsteady peristaltic pumping of electro-

osmotic viscous blood flow in a finite length cylindrical vessel. The classical Navier-Stokes 

(Newtonian) fluid model has been employed. Using lubrication and Debye-Hückel 

linearization approximations, closed-form solutions for the normalized and linearized 

boundary value problem have been derived for axial velocity, pressure gradient or difference, 

volumetric flow rate and local wall shear stress. The influence of vessel length, time, electro-

osmotic parameter (inverse Debye length) and Helmholtz-Smoluchowski velocity 

(proportional to axial electric field) on pumping characteristics has been evaluated. Trapping 

bolus dynamics has also been studied both with and without electro-kinetic effects. Also a 

comparative examination of train wave propagation and single wave propagation under the 

effects of thickness of electrical double layer (EDL) and external electric field has been 

included. The present computations, obtained via Mathematica software have shown that: 

(i) Maximum blood pressure arises for fully contracted walls whereas the minimum 

is associated with fully relaxed walls.  

(ii) It is also observed that the pressure is reduced with electro-osmotic parameter i.e. 

increases with increasing the thickness of Debye length in train wave propagation 

with the converse response observed for single wave propagation. 

(iii) Owing to contraction and relaxation of walls, a negative pressure gradient is 

generated which sustains propagation of the blood bolus (trapped vorticity zone) 

in the forward axial direction. 

(iv) Pressure is significantly suppressed with greater external electrical field i.e. larger 

values of the Helmholtz-Smoluchowski velocity, for train wave propagation; the 

contrary behaviour is the case for single wave propagation. 

(v) Similar patterns are computed for pressure distribution to the non-osmotic blood 

flow study of Li and Brasseur [36] i.e. without external electric field. 

(vi) With progression in time, there is a substantial reduction in wall shear stress 

which exhibits a U-shaped profile (and therefore associated axial flow retardation) 

with increasing electro-osmotic parameter (i.e. decreasing Debye electrical 

length).  

(vii) Periodic distributions in wall shear stress are strongly evident indicating the wavy 

nature of peristaltic propulsion.  
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(viii) Local wall shear stress distribution is maximized at the initial stage of propulsion 

and is depressed with wall contraction and constant for wall relaxation, for both 

train wave propagation also single wave propagation cases.  

(ix) Larger strength of axial electrical field i.e. greater Helmholtz-Smoluchowski 

velocity, significantly decelerates the peristaltic blood flow. 

(x) An absence of electrical field accelerates the blood flow indicating that with 

electrical field hemodynamic control is achieved.  

(xi) With increasing electro-osmotic parameter (decreasing Debye length), volume 

flow rate is elevated, tending to the value for very thin EDL (as electro-osmotic 

parameter tends to infinity).  

(xii) Flow rate is reduced with stronger Helmholtz-Smoluchowski velocity i.e. stronger 

external axial electric field. 

(xiii) A linear decay relation is computed between pressure difference and flow rate. 

(xiv)  Pressure is boosted with stronger axial electric field and it is a minimum without 

external electric field. The pressure distributions in the absence of electric field 

resemble those computed by et al. [61].  

(xv) Bolus magnitude is reduced with increasing axial external electric field and also 

with greater electro-osmotic parameter (smaller Debye length). 

An important pathway for extending the current linearized two-dimensional simulations  is to 

deploy computational fluid dynamics (CFD) software for transient 3-D simulations. An 

excellent suite available for modelling such flows is the ANSYS FLUENT code. This has 

been implemented by Laskowski and Bart [62] in conjunction with openFOAM algorithms 

to analyse electro-kinetic flow dynamics in chromatographic devices. Other softwares which 

have been utilized to simulate electro-kinetic dynamics include the SIMION code and the 

finite element code, COMSOL Multi-physics [63]. These simulations have explored ion 

motion at elevated pressure calibrated against experimentally derived ion current data. 

Peristaltic computational fluid dynamics studies include Tharakan et al. [64] with 

applications in gastric transport; however electrokinetics has not been considered. Therefore 

to the authors’ knowledge composite electro-kinetic peristaltic hemodynamics has thusfar not 

been analyzed with general purpose CFD softwares. However recently El Gendy [65] has 

explored peristaltic flows in smart pumps using ANSYS FLUENT and also considered both 

Newtonian and non-Newtonian models. These studies may be further extended to consider 

combined models using the Navier–Stokes equations, energy equations for stationary 
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temperature fields and mass transfer equations for the electrokinetic flow. Another aspect of 

significance which has been ignored in the present simulation is heat transfer. The heat-

conducting properties of blood make this an important feature to analyse in capillary electro-

osmotic flows. Furthermore this provides other key aspects of interest including entropy 

generation minimization via second law thermodynamic simulation. Important studies in this 

regard have been presented by Gorla [66] for micro-channels and Goswami et al. [67] for 

conjugate electro-osmotic heat transfer. These models have however only considered 

Newtonian flows. Non-Newtonian characteristics may feature strongly in micro-capillary 

transport. Important constitutive models which could be considered therefore include power-

law models [68], micropolar models [69] and couple stress models [70]. These would provide 

more comprehensive insight into non-Newtonian biological entropy simulation in electro-

osmotic peristalsis and indeed both couple stress [71] and viscoelastic models [72] are 

currently being explored. 

 

ACKNOWLEDGEMENTS 

The authors are extremely grateful to all the reviewers for their insightful comments which 

have served to improve the present work and have also identified substantial pathways for 

future developments. 

 

REFERENCES  

[1] A.R. Minerick, A.E. Ostafin and H.C. Chang, Electrokinetic transport of red blood cells in 

microcapillaries. Electrophoresis.  14 (2002) 2165-73.  

[2]M. Macka et al., Poly(tetrafluoroethylene) separation capillaries for capillary 

electrophoresis. Properties and applications, J. Chromatogr A., 1039 (2004) 193-9. 

[3] D. P. Trivedi, K. J. Hallock, P. R. Bergethon, Electric fields caused by blood flow 

modulate vascular endothelial electrophysiology and nitric oxide production, 

Bioelectromagnetics, 34 (2013) 22–30. 

[4] E.H. Serpersu, T.Y. Tsong, Activation of electrogenic Rbþ transport of (Na,K)-ATPase 

by an electric field, J. Biol. Chem 259 (1984) 7155–7162.  

[5] X. Xing, M. He, H. Qiu and L. Yobas Continuous-flow electrokinetic-assisted 

plasmapheresis by using three-dimensional microelectrodes featuring sidewall undercuts, 

Anal. Chem., 88 (2016) 5197−5204. 

[6] M. Washizu and O. Kurosawa, Electrostatic manipulation of DNA in microfabricated 

structures, IEEE Trans. Ind. Appl. 26 (1990) 1165–1172. 



25 
 

[7] M. Washizu, S. Suzuki, O. Kurosawa, T. Nishizaka, and T. Shinohara, Molecular 

dielectrophoresis of biopolymers. IEEE Trans. Ind.Appl., 30 (1994) 835– 843. 

[8] S. Ghosal, Electrokinetic flow and dispersion in capillary electrophoresis, Ann. Rev. Fluid 

Mechanics, 38 (2006) 309-338. 

[9] A. Sonnenberg et al., Rapid Electrokinetic isolation of cancer-related circulating cell-free 

DNA directly from blood, Clinical Chemistry, 60 (2014) 500-509. 

[10] Sharp, K. A. and Honig, B. Electrostatic interactions in macromolecules: theory and 

applications. Annual Review of Biophysics and Biophysical Chemistry, 19 (1990) 301–332 

[11] W.K. Liu et al., Immersed molecular electrokinetic finite element method for nano-

devices in biotechnology and gene delivery, Meshfree Methods for Partial Differential 

Equations VI, Lecture Notes in Computational Science and Engineering, 89 (2012) 67-74. 

[12] D. Hlushkou, Kandhai, D., and Tallarek, U. Coupled lattice-Boltzmann and finite-

difference simulation of electroosmosis in microfluidic channels, Int. J. Numerical Methods 

in Fluids, 46 (2004) 507–532. 

[13]T.W.H. Sheu, Huang, V. C., and Rani, H. P. Development of an electroosmotic flow 

model to study the dynamic behaviour in human meridian, Int. J. Numerical Methods in 

Fluids, 56 (2008) 739–751. 

[14] B. Gheshlaghi, H. Nazaripoor, A. Kumar and M. Sadrzadeh, Analytical solution for 

transient electroosmotic flow in a rotating microchannel, RSC Adv., 6 (2016) 17632-17641. 

[15] J. G. Santiago, Electro-osmotic flows in microchannels with finite inertial and pressure 

forces, Anal. Chem., 73 (2001) 2353-2365. 

[16] J. M. Alam, J. M. Penney, A Lagrangian approach for modelling electro-kinetic mass 

transfer in microchannels, Int. J. Heat and Mass Transfer, 55 (2012) 7847–7857. 

 

[17] X. Luo, A. Beskok, G.E. Karniadakis, Modeling electrokinetic flows by the smoothed 

profile method, J. Comp. Physics, 229 (2010) 3828-3847. 

[18] O. Anwar Bég, M. Hameed and T.A. Bég, Chebyschev spectral collocation simulation of 

nonlinear boundary value problems in electrohydrodynamics, Int. J. Computational Methods 

in Engineering Science and Mechanics, 14 (2013) 104-115. 

[19] V. C. Huang, T. W.H. Sheu, Tissue fluids in microchannel subjected to an externally 

applied electric potential, Int. J. Numerical Methods for Heat & Fluid Flow, 19 (2009) 64 – 

77. 

[20] E. Karatay, C. L. Druzgalski, A. Mani, Simulation of chaotic electrokinetic transport: 

Performance of commercial software versus custom-built direct numerical simulation codes, 

J. Colloid and Interface Science, 446 (2015) 67–76. 

[21]M. Mondal, R.P. Misra and S. De, Combined electroosmotic and pressure driven flow in 

a microchannel at high zeta potential and overlapping electrical double layer, Int. J. Thermal 

Sciences, 86 (2014) 48-59. 

http://pubs.acs.org/author/Santiago%2C+J+G
http://www.sciencedirect.com/science/article/pii/S0017931012006412
http://www.sciencedirect.com/science/article/pii/S0017931012006412
http://www.sciencedirect.com/science/journal/00179310/55/25


26 
 

[22] C. de Loubens, Albert Magnin, Eric Verin, Marion Doyennette, Ioan Cristian Tréléa, 

Isabelle Souchon, A lubrication analysis of pharyngeal peristalsis: Application to flavour 

release, J. Theoretical Biology, 267 (2010) 300-311.  

[23] A. Farina, L. Fusi, A. Fasano, A. Ceretani, F. Rosso, Modeling peristaltic flow in vessels 

equipped with valves: Implications for vasomotion in bat wing venules, Int. J. Engineering 

Science, 107 (2016) 1-12. 

[24] K. K. Bokka, Edwin C. Jesudason, David Warburton, Sharon R. Lubkin, Morphogenetic 

implications of peristaltic fluid–tissue dynamics in the embryonic lung, J. Theoretical 

Biology, 382 (2015) 378-385.  

[25] S. Maiti, J.C. Misra, Peristaltic flow of a fluid in a porous channel: A study having 

relevance to flow of bile within ducts in a pathological state, Int. J. Engineering Science, 49 

(2011) 950-966. 

[26] D. Tripathi and O. Anwar Bég, Mathematical modelling of peristaltic pumping of nano-

fluids, Modelling and Simulation of Diffusive Processes, Simulation Foundations, Methods 

and Applications, Springer, Germany, 69-95 (2014). 

[27] M. Costa and Furness, J. B., The peristaltic reflex: an analysis of the nerve pathways and 

their pharmacology. Naunyn Schmiedebergs Arch. Pharmacol., 294 (1976) 47-60. 

[28] I. Rönnestad, Rojas-Garcia, C. R. and Skadal, J., Retrograde peristalsis; a possible 

mechanism for filling the pyloric caeca? J. Fish Biol., 56 (2000) 216-218.  

[29] K. A Daltorio, Alexander S Boxerbaum, Andrew D Horchler, Kendrick M Shaw, Hillel J 

Chiel and Roger D Quinn, Efficient worm-like locomotion: slip and control of soft-bodied 

peristaltic robots, Bioinspir. Biomim., 8 (2013) 035003. 

[30] R J Lock, S C Burgess and R Vaidyanathan, Multi-modal locomotion: from animal to 

application, Bioinspir. Biomim., 9 (2014) 011001. 

[31] F. Yin and Y.C. Fung, Peristaltic waves in a circular cylindrical tube, ASME J. Applied 

Mech., 36 (1969) 93-112. 

[32] S.L. Weinberg, Eckistein EC, Shapiro AH. An experimental study of peristaltic 

pumping, J. Fluid Mech., 49 (1971) 461-497. 

[33] D. Tang and S. Rankin, Numerical and asymptotic solutions for peristaltic motion of 

nonlinear viscous flows with elastic free boundaries, SIAM J. Sci. Comput., 14 (1993) 1300-

1319. 

[34] E.O. Carew and T.J. Pedley, An active membrane model for peristaltic pumping: part 1 - 

periodic activation waves in an infinite tube, ASME J. Biomech. Engng., 119 (1997) 66-76. 

[35] D. Tang, M.C. Shen, Peristaltic transport of a heat-conducting fluid subject to Newton's 

Cooling  law at the boundary, Int. J. Engineering Science, 27 (1989) 809-825. 

[36] M. Li and J. G. Brasseur, Non-steady peristaltic transport in finite-length tubes, J. Fluid 

Mechanics, 248, 129-151 (1993).  

http://www.sciencedirect.com/science/article/pii/S0020722516304050
http://www.sciencedirect.com/science/article/pii/S0020722516304050
http://www.sciencedirect.com/science/article/pii/0020722589900475
http://www.sciencedirect.com/science/article/pii/0020722589900475


27 
 

[37] Y. V. K. Ravi Kumar, S. V. H. N. Krishna Kumari, P. M. V. Ramana Murthy and S. 

Sreenadh, Unsteady peristaltic pumping in a finite length tube with permeable wall, ASME J. 

Fluids Eng., 132 (2010) 101201.  

[38] D. Tripathi and O. Anwar Bég, A study of unsteady physiological magneto-fluid flow 

and heat transfer through a finite length channel by peristaltic pumping, Proc. Inst. Mech. 

Eng H.- J. Engineering in Medicine, 226 (2012) 631-44. 

[39] E. Toklu, A new mathematical model of peristaltic flow on esophageal bolus transport, 

Scientific Research and Essays, 6 (2015), 6606-6614. 

[40] J. C. K. Tong, Ephraim M. Sparrow and John P. Abraham, Numerical simulation of the 

urine flow in a stented ureter, ASME J Biomech. Eng 129 (2006) 187-192. 

[41] A. Pal and J. G. Brasseur, The mechanical advantage of local longitudinal shortening on 

peristaltic transport, ASME J. Biomech. Eng 124 (2001) 94-100.  

[42] C. Jaggy et al., Affinity pump system: a new peristaltic blood pump for cardiopulmonary 

bypass, Perfusion, 15 (2000) 77-83. 

[43] D. Tripathi, and O.A. Bég, Transient magneto-peristaltic flow of couple stress biofluids: 

a magneto-hydro-dynamical study on digestive transport phenomena, Mathematical 

Biosciences, 246 (2013) 72-83. 

[44] A. Bandopadhyay, D. Tripathi and S. Chakraborthy, Electro-osmosis-modulated 

peristaltic transport in microfluidic channels, Physics of Fluids, 28 (2016) 052002. 

[45] Misra, J.C., Chandra, S., Appl. Math. Mech.-Engl. Ed. 35 (2014) 749766. 

[46] D. Tripathi, S. Bhushan and O. Anwar Bég, Transverse magnetic field driven 

modification in unsteady peristaltic transport with electrical double layer effects, Colloids 

and Surfaces A: Physicochemical and Engineering Aspects, 506 (2016) 32–39. 

[47] P. Goswami et al, Electrokinetically modulated peristaltic transport of power-law fluids, 

Microvascular Research, 103 (2016) 41–54. 

[48] D.G. Johnson, Integration technologies for implantable microsystems, PhD Thesis,  

Microsystems Engineering, Department of Electrical Engineering, Rochester Institute of 

Technology Rochester, New York, USA (2013). 

[49] T.E. McKnight, C.T. Culbertson, S.C. Jacobson, J.M. Ramsey, Electro-osmotically 

induced hydraulic pumping with integrated electrodes on microfluidic devices, Anal. Chem., 

73 (2001) 4045-4049. 

[50] Czosnyka M, Piechnik S, Richards HK, Kirkpatrick P, Smielewski P, Pickard JD. 

Contribution of mathematical modelling to the bedside tests of cerebrovascular 

autoregulation, J. Neurology, Neurosurgery, and Psychiatry, 63 (1997) 721-731. 

[51] D.S. Reichmuth, Chirica GS, Kirby B.J., Increasing the performance of high-pressure, 

high-efficiency electrokinetic micropumps using zwitterionic solute additives, Sensors and 

Actuators B-Chemical, 92 (2003) 37-43. 

http://biomechanical.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Jimmy+C.+K.+Tong&q=Jimmy+C.+K.+Tong
http://biomechanical.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=John+P.+Abraham&q=John+P.+Abraham
http://biomechanical.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Anupam+Pal&q=Anupam+Pal
http://biomechanical.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=James+G.+Brasseur&q=James+G.+Brasseur
https://www.researchgate.net/journal/1070-6631_Physics_of_Fluids


28 
 

[52]B.G. Hawkins, Gleghorn JP, Kirby B.J., Dielectrophoresis for cell and particle 

manipulations, Methods in Bioengineering: Biomicrofabrication and Biomicrofluidics, Ed. 

J.D. Zahn, Artech Press, USA (2009). 

[53]H. Ginsburg, Analysis of plant root electro-potentials, J. Theoretical Biology, 37 (1972) 

389-412. 

[54] Quincke G, On the continuation of material particles by the flow of electricity, Ann. 

Phys., 189:513–598 (1861). 

[55] Serpersu EH, Tsong TY. Activation of electrogenic Rb
+
 transport of (Na,K)-ATPase by 

an electric field. J Biol. Chem. 259:7155–7162 (1984). 

[56] Astumian RD, Robertson B. Nonlinear effect of an oscillating electric field on 

membrane proteins. J Chem Phys.91:4891–4901 (1989). 

[57] Gardner SE, Frantz RA, Schmidt FL, Effect of electrical stimulation on chronic wound 

healing: a meta-analysis, Wound Repair Regen. 7 (6): 495–503 (1999). 

[58] Kochetkov AV, Gorbunov FE, The hemodynamic effects of transcerebral electro- and 

electromagnetotherapy in stroke patients, Vopr Kurortol Fizioter Lech Fiz Kult. 1999 Jul-

Aug;(4):17-21. 

 

[59] D.A. Saville, Electrokinetic effects with small particles, Ann. Rev. Fluid Mechanics, 9 

(1977) 321-337. 

 

[60] E. Kreyzig, Advanced Engineering Mathematics, Wiley, New York (1980). 

[61] A. H. Shapiro, M. Y. Jaffrin And S. L. Weinberg, Peristaltic pumping with long 

wavelengths at low Reynolds number, J. Fluid Mech., 37 (1969) 799-825. 

[62] R. Laskowski,  Hans-Jörg Bart, Electroosmotic flow and Joule heating in preparative 

continuous annular electrochromatography, Electrophoresis,  36, 2128–2137 (2015) 

[63] W. Wissdorf, Larissa Pohler, Sonja Klee and  Thorsten Benter, Simulation of ion motion 

at atmospheric pressure: particle tracing versus electrokinetic flow, J. American Society Mass 

Spectrometry, 23(2):397-406 (2011). 

[64] A. Tharakan, I.T. Norton, P.J. Fryer, S. Bakalis, Mass transfer and nutrient absorption in 

a simulated model of small intestine. J. Food Science, 75 (6), E339-E346 (2010). 

[65] M. El Gendy, ANSYS Fluent CFD simulation of peristaltic smart pumps, MSc Thesis 

Aerospace Engineering, Salford  University, Manchester, UK, August (2016). 

[66] R.S.R Gorla, Entropy generation in electro-osmotic flow in microchannels, Int. J. Micro-

Nano Scale Transport, 4, (1), 1-10 (2014). 

 

[67] Prakash Goswami, Pranab Kumar Mondal, Anubhab Datta and Suman Chakraborty, 

Entropy generation minimization in an electroosmotic flow of non-newtonian fluid: effect of 

conjugate heat transfer, ASME J. Heat Transfer 138(5), 051704 (Feb 03, 2016) (9 pages). 

 

https://www.researchgate.net/profile/Walter_Wissdorf
https://www.researchgate.net/researcher/2014666678_Larissa_Pohler
https://www.researchgate.net/researcher/59190527_Sonja_Klee
https://www.researchgate.net/profile/Thorsten_Benter
https://heattransfer.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Prakash+Goswami&q=Prakash+Goswami
https://heattransfer.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Pranab+Kumar+Mondal&q=Pranab+Kumar+Mondal
https://heattransfer.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Anubhab+Datta&q=Anubhab+Datta
https://heattransfer.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=Suman+Chakraborty&q=Suman+Chakraborty


29 
 

[68] C-H. Chen, Electro-osmotic heat transfer of non-Newtonian fluid flow in microchannels, 

ASME J. Heat Transfer 133(7), 071705 (2011). 

 

[69] J.V. Ramana Murthy and S. Jangili, Second law analysis for Poiseuille flow of 

immiscible micropolar fluids in a channel, Int. J. Heat Mass Transfer 65, 254-264 (2013). 

[70] S Jangili, JV Ramana Murthy, KS Sai, Entropy generation analysis of the flow of two 

immiscible couple stress fluids between two porous beds, Comp. Thermal Sciences: 7 (2), 

123-137 (2015). 

 

[71] D. Tripathi, A. Yadav and O. Anwar Bég, Electro-osmotic flow of couple stress fluids in 

a micro-channel propagated by peristalsis, Applied Mathematical Modelling (2016). 

communicated. 

[72] D. Tripathi, A. Yadav and O. Anwar Bég, Electro-kinetically driven peristaltic transport 

of viscoelastic biofluids through a capillary: mathematical modelling, Mathematical 

Biosciences (2016). communicated.  

 


