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Abstract: 

A mathematical model is developed to examine the effects of the Stefan blowing, second 

order velocity slip, thermal slip and microorganism species slip on nonlinear bioconvection 

boundary layer flow of a nanofluid over a horizontal plate embedded in a porous medium with 

the presence of passively controlled boundary condition. Scaling group transformations are 

used to find similarity equations of such nanobioconvection flows. The similarity equations 

are numerically solved with a Chebyshev collocation method. Validation of solutions is 

conducted with a Nakamura tri-diagonal finite difference algorithm. The effects of nanofluid 

characteristics and boundary properties such as the slips, Stefan blowing, Brownian motion 

and Grashof number on the dimensionless fluid velocity, temperature, nanoparticle volume 

fraction, motile microorganism, skin friction, the rate of heat transfer and the rate of motile 

microorganism transfer are investigated. The work is relevant to bio-inspired nanofluid-

enhanced fuel cells and nano-materials fabrication processes. 

 

Keywords: Second order slip, Porous media; Stefan blowing, Bioconvection, Chebyshev 

collocation method, Nakamura second order difference scheme, Gyrotactic micro-organisms. 

 

1. INTRODUCTION 

Convective flow of fluids containing nanoparticles and micro-organisms is an important area 

in modern bio-nano-materials processing applications (Das et al. 2015). Sakiadis flows, 

which involve boundary layers on continuous moving surfaces, are characteristic of these 

materials processing operations (Mustafa and Khan 2014). Convective flows over vertical, 

inclined and horizontal extruding sheets are examples of such flows. Porous media may also 
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be employed as filtration media to further control such processes (Bég et al. 2013). Boundary 

layer flowsinvolving nano-bioconvection transport can be modelled by the conservation laws 

of mass, momentum, energy, nano-particle species and micro-organism species. The moving 

sheet boundary in materials processing operations may also be perforated allowing removal 

of fluid via wall suction or blowing (injection) of fluid via mass flux of certain species from 

the surface to the ambient medium. Species transfer i.e. mass diffusion depends on the flow 

field and the flow field is also influenced by the mass blowing at the wall. There is therefore 

strong coupling between momentum and concentration fields. In order to include injection i.e. 

blowing effects, the Stefan blowing factor, can be introduced as a wall condition to provide a 

correction in the conservation equations. Models of boundary layer flow are generally solved 

with no-slip boundary conditions. However, in flows at the nanoscale e.g. hard disk drives, 

micro-pumps, micro-valves and micro-nozzles, slip phenomena may exhibit at the wall. 

Especially most non-Newtonian liquids are characterized by slip conditions which in general 

are governed by a nonlinear relation between the slip velocity and the traction.  

 

Substantial investigations pertaining to bioconvection in nanofluids have been reported in 

recent years. Kuznetsov (2010) studied the bioconvection in a horizontal layer filled with 

micro-organisms suspended in a nanofluid using the Buongiorno model. Zaimi et al. (2014a) 

showed that Brownian diffusion and thermophoresis are major factors for producing relative 

velocity between nanoparticles and the base fluid.The problem was solved using aGalerkin 

method to obtain the analytical solution for the critical Rayleigh number. The effect of 

gyrotactic microorganisms is to destabilize compared to nanofluid where the nanoparticles 

can either reduce or increase the value of the critical Rayleigh number depending on the 

nanoparticle distribution.Kuznetsov (2011a) explored the onset of nanofluid bio-thermal 

convection in a horizontal layer of finite depth for the case when the suspension contains 

gyrotactic and o-xytactic micro-organisms. Kuznetsov (2011b) also investigated oscillatory 

and non-oscillatory bio-thermal convection of nanofluid in a suspension containing both 

nanoparticles and gyrotactic microorganisms. Kuznetsov (2011c) further examined nano-

bioconvection flow in water-based suspensions considering oscillatory instability. Tham et al. 

(2013a) obtained numerical finite-difference solutions for steady mixed convection from a 

horizontal circular cylinder embedded in a porous medium saturated by a nanofluid 

containing both the nanoparticles and gyrotactic microorganisms in a stream flowing 

vertically upwards. Tham et al. (2013b) also studied steady mixed nanofluid convection from 

a solid sphere. Xu and Pop (2014) explored the effect of nanoparticle volume fraction, 

distributions of temperature and density of motile microorganisms on fully-developed mixed 

bioconvection flow in a horizontal channel filled with a nanofluid containing nanoparticles 

and gyrotactic microorganisms. Zaimi et. al.(2014b) used similarity transformations to study 

the unsteady flow and heat transfer of a nanofluid over a contracting cylinder. Kuznetsov and 

Nield (2009) extended the Cheng–Minkowycz problem to the case where a porous medium is 

saturated by a nanofluid. Kuznetsov and Nield (2013) further extended this work (Kuznetsov 

and Nield, 2009) to the more realistic approach of the boundary being passively rather than 

actively controlled. Fang & Jing (2014) investigated flow, heat and mass transfer of a viscous 

liquid from a stretching sheet by including Stefan blowing effects due to mass transfer under 

high flux conditions.  Their results showed that the blowing effect due to mass transfer can 

influence velocity profiles, drag, heat flux, and temperature and concentration profiles. 

Kuznetsov(2011c) proposed a nanofluid formulation in which both nanoparticles and motile 

(oxytactic) microorganisms are simulated to investigate the stability of the suspension in a 

shallow horizontal layer. The motility of micro-organisms assists in enhancing mass transfer, 

microscale mixing, and improves stability of the nanofluid. An analytical solution using the 

Galerkin method was developed which provided important physical insights into the behavior 
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of this system; in addition, it was also shown that the oscillatory mode of instability is 

possible in such system. In another work, Fang (2014) investigated an unsteady stagnation-

point flow over a moving wall considering the coupled blowing effect from mass 

transfer. Rana and Bég (2014) investigated the flow of an incompressible Al2O3–water 

nanofluid along an inclined permeable plate under transverse magnetic field in a steady 2D 

mixed convention boundary layer, observing that at a given Richardson number, heat transfer 

is enhanced with an increase in magnetic field for both pure water and nanofluids, however it 

is greater in the latter case. Tiwari and Das (2007) conducted a computational investigation 

on the behavior of nanofluids inside a two-sided lid-driven differentially heated square cavity, 

showing that the fluid flow and heat transfer in the cavity are affected by Richardson number 

and the direction of the moving walls. Buongiorno (2006) developed a non-dimensional 

equilibrium model for mass, momentum and heat transport in nanofluids based on the fact 

that only Brownian diffusion and thermophoresis are the dominant mechanisms.  This study 

was aimed at explaining the increase in nanofluid heat transfer coefficient above pure fluids, 

an effect which cannot be predicted by traditional pure fluid correlations.  This study also 

identified that the unusual heat transfer coefficient increase may be attributable to a change in 

temperature and thermophoresis within the boundary layer.  Kothandapani and Prakash 

(2015) studied the influences of thermal radiation and chemical reactions on peristaltic flow 

of a Newtonian nanofluid with inclined magnetic field in a vertical channel. They used 

homotopy perturbation method for their solution and found that the temperature increases as 

the non-uniform parameter increases whereas it decreases with larger thermal radiation 

parameter. Uddin et al. (2015) studied the two-dimensional magnetohydrodynamic boundary 

layer flow from a convectively heated permeable vertical surface of an electrically-

conducting, chemically-reacting nanofluid. They found that velocity and temperature 

increases while the nanoparticle volume fraction decreases with the increasing order of 

chemical reaction. Moreover, as the magnetic field parameter increases the flow is 

decelerated while the nanoparticle volume fraction and temperature increase.  It was also 

observed that an increase in convection-conduction parameter has no significant influence on 

nanoparticle volume fraction distribution. Prasad et al.(2015) used the Keller box implicit 

finite difference scheme to explore buoyancy-driven laminar free-convection flow, heat, and 

mass of a non-Newtonian nanofluid from a horizontal circular cylinder to a micropolar fluid, 

demonstrating that with greater Brownian motion parameter, temperature, Sherwood number 

and wall couple stress increase, whereas velocity, concentration, angular velocity, skin 

friction and Nusselt number decrease. On the other hand, an increase in thermophoresis 

parameter accelerates the flow and elevates the concentration, angular velocity, skin friction, 

and Nusselt number, while it decreases the temperature, Sherwood number, and wall couple 

stress. Yadav et al. (2014) investigated magneto-convection in a rotating layer of nanofluid, 

showing that the critical Rayleigh number is lower for nanofluids compared with regular 

fluids at the same values of Taylor and Chandrasekhar numbers.  

 

Classical studies in bioconvection were largely mobilized by Platt (1961) who examined 

bioconvection patterns in cultures of free swimming organism and concluded that the moving 

polygonal patterns in Tetrahymena, ciliates and flagellates cultures which resemble Benard 

cells are not due to thermal convection but generated as a result of a dynamic instability due 

tointernal and mechanical energy input. Much later, Xu (2015) used Lie group analysis to 

investigate bioconvection flow of a nanofluid in a power law streaming flow. Bég et al. 

(2105) investigated boundary layer bioconvective non-Newtonian nanofluid flow from a 

horizontal flat plate in a porous medium saturated with microorganisms, noting that 

bioconvection parameters have significant effects on flow, mass and heat transfer, and motile 

microorganism density numbers.  
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Slip effects are also of great relevance in modern engineering designs. Often referred to as 

non-adherence, slip may be hydrodynamic, thermal or species-related. It may have significant 

effects on temperature and momentum transport in boundary layer flows. Lawal and 

Kalyan(1997) developed an analytical solution for the viscous heating in slit and cylindrical 

tube die flows and proved that the solution can be used to estimate pressure drop and 

temperature rise in die flows of viscoplastic fluids slip occurring at the wall. Das (2012) 

studied the nanofluid slip flow and convective heat transfer over a stretching surface, showing 

that skin friction coefficient decreases with a higher slip parameter and furthermore that slip 

parameter also lowers the temperature for nanofluids. This study also demonstrated that 

nanofluids lower the heat transfer rate compared to their own base fluid. Iliuta et al. (2002) 

proposed an updated slip function for the slit models for hydrodynamics of trickle flow 

reactors. The results showed that the slip function yields liquid holdup and pressure drop with 

an average absolute error of 17% and 19.5% whereas the error for double slit model is 20% 

and 18%. Wu (2008) present a slip model for rarefied gas flows at arbitrary Knudsen number. 

Fang et al. (2010) studied viscous flow over a shrinking sheet with a second order slip flow 

model. Fang and Aziz (2010) discussed viscous flow with second-order slip velocity over a 

stretching sheet. Uddin et al. (2014) investigated the steady 2D magnetohydrodynamic 

laminar free convective boundary layer slip flow of a nanofluid from a stretching/shrinking 

sheet in a quiescent fluid, showing that the velocity increases whereas the temperature and 

concentration decreases with the velocity slip. Uddin et al. (2015a) studied the 

magnetohydrodynamic free convective slip flow of a micropolar fluid over a moving plate. 

The same authors also investigated the hydromagnetic thermo-solutal nanofluid slip flow in a 

Darcian porous medium with zero mass flux boundary condition. Beskok and Karniadakis 

(1994) proposed a mathematical model based on the slip flow theory to simulate heat 

transport and momentum in complex micro-geometries. Their study investigated the influence 

of slip flow on skin friction and mass flow rate and the variation of normal stress with 

Knudsen number.  

 

The aim of the present study is to investigate the collective influence of second order velocity 

slip, thermal slip, zero mass flux and microorganism slip boundary conditions on the free 

convection gyrotactic bioconvection boundary layer flow of nanofluid along an upward 

facing and translating horizontal plate. Lie group analysis is used to derive similarity ordinary 

differential equations governing the flow. Chebyshev collocation method is employed to 

solve the resulting well-posed nonlinear boundary value problem. Validation of solutions is 

achieved with the second order tridiagonal Nakamura difference scheme. The effects of 

relevant parameters on the dimensionless fluid velocity, temperature, nanoparticle volume 

fraction, motile microorganism, skin friction, the rate of heat transfer and the rate of motile 

microorganism transfer are investigated. The present study is relevant to fabrication of nano-

bio-materials in industrial manufacturing systems.  

 

2. MATHEMATICAL BIO-NANO-FLUID FORMULATION 

The gyrotactic bioconvection boundary layer flow of a Newtonian nanofluid over a horizontal 

plate located in a porous medium with a moving free stream is considered. The porous 

medium is assumed to obey Darcy’s law and is isotropic and homogenous. Thermal 

stratification and thermal dispersion effects are neglected. A two-dimensional Cartesian 

coordinate system ( ), yx  is used in which the x axis is directed along the plate and the y

axis is aligned in the direction normal to the plate. The flow model with coordinate system is 

shown in Fig.1. It is assumed that the nanofluid contains gyrotactic microorganisms and the 

flow is steady. It is also assumed that the nanoparticle suspension is stable and the direction of 
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microorganisms’ swimming is independent of nanoparticles. The temperature, nanoparticle 

volume fraction and density of motile microorganisms are prescribed as wT , wC  and wn , 

respectively at the surface, whereas,T , C  and n denote their ambient values. Viscous 

dissipation is neglected in the energy equation. We consider passively controlled boundary 

conditions as proposed by Kuznetsov and Nield (2014).The following equations describe the 

conservation of mass, momentum, thermal energy, nanoparticle, and microorganism, 

respectively, in which the field variables denote the quantities as follows; V : velocity vector, 

T : the temperature, C : the nanoparticle volume fraction, and n :the motile microorganism 

density (Kuznetsov and Nield 2014, Xu and Pop 2014). 
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The appropriate boundary conditions can be formulated, following Karniadakis et al. (2005) 

and Fang (2014) as 
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where 0 1   is the momentum accommodation coefficient and  /x L  is the molecular 

mean free path. Based on Knudsen number ( nK ), the gas flow in micro channels can be 

classified into four flow regimes: (i) the continuum flow regime ( 0.001nK  ); (ii) slip flow 

regime ( 0.001 0.1nK  ); (iii) transition flow regime ( 0.1 10nK  ) and (iv) free molecular 

flow regime ( 10nK  ) (Beskok and Karniadakis 1994). 1
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The following non-dimensional variables are introduced to transform Eqns. (7)-(12) into 

dimensionless form. 
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A dimensionless stream function defined byu
y





and v
x


 


is introduced into Eqns. (7)-

(12), and the following equations emerge: 
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3. SIMILARITY TRANSFORMATIONS 

To order to obtain the similarity variable, we use the following generalized stretching 

transformations (Cantwell 2009): 
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whereαi denotes the arbitrary real positive number whose interrelationship is required to be  

determined for different i = 1,2, …, 12.The boundary layer Eqns. (15) - (18) and boundary 
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Eqn. (22) shows that the PDEs along with their boundary conditions would become 

independent of 1  for the following combinations of the variables: 
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where          1 2 1 10 0 0 0 0
, , , , pN N D E k  are constants of the first order momentum slip factor, 

second order momentum slip factor, thermal slip factor, microorganism slip factor and 

permeability. Here ( ), ( )f    , ( )  and ( )   are respectively the dimensionless velocity, 

temperature, nanoparticle volume fraction and density of motile microorganism and  is the 

similarity independent variable. 

 

 

 

3.2 SIMILARITY DIFFERENTIAL EQUATIONS 
By substituting the transformations in Eqn. (24) into Eqns. (15)- (19), we find the following 

similarity equations:  
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where the prime denotes differentiation with respect to .  Dimensionless slip parameters are 

defined as
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It is noticed that in the absence of pressure gradient (K=0) and in the absence of 

microorganism equation, our model reduces to that previously considered by Uddin et al. 

(2014). To check the validity of our model we have compared our results with Uddin et al. 

(2014) and comparison is given in Table 1. Very good agreement is achieved. Confidence in 

the present computations is therefore justifiably high.  

 

4. PHYSICAL QUANTITIES  

Parameters of engineering interest are the local skin friction factor f xC , the local Nusselt 

number 
xNu , the local density number of the motile microorganisms xNn . Physically, f xC  

indicates wall shear stress, 
xNu denotes the rate of heat transfer and xNn represents the rate of 

micro-organism transfer. They are computed using the following relations: 
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By substituting from Eqns. (14) and (24) into Eqn. (30), we obtain that 
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Here Re /x eu x  is the local Reynolds number.  

 

5. CHEBYCHEV COLLOCATION COMPUTATIONAL SOLUTION  

The transformation of the original governing equations into a form of ODEs reduces the 

boundary value problem complexity significantly and facilitates a numerical solution.We aim 

to solve Eqns. (25)–(28) with the boundary conditions (29) using the Chebyshev collocation 

method. Hence, the equations which are of higher order are transformed into second order 

ODEs. Suppose that𝐹1 = 𝑓, 𝐹2 = 𝑓′,  𝐹3 = 𝜃,  𝐹4 = 𝜙, 𝐹5 = 𝜒.Using the new variables in 

Eqns. (25)–(28), the boundary value problem can be formulated as the following system of 

ODEs:  
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′𝐹4
′

𝑃𝑒𝐹5 [
𝑁𝑡

𝑁𝑏
(0.75Pr𝐹1𝐹3

′ +𝑁𝑏 𝐹3
′𝐹4
′ +𝑁𝑡 𝐹3

′2) − 0.75 𝑆𝑐 𝐹1
′𝐹4
′] + 𝑃𝑒𝐹4

′𝐹5
′ − 0.75 𝐿𝑏 𝐹1

′𝐹5
′
]
 
 
 
 
 
 

⏟                                                        
𝑔(𝜂,𝐹,𝐹′)

     (32) 

 

which implies that 𝐹′′ is a function of  𝜂, F:= [𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5]
𝑇and 𝐹′. Note that Eq. (32) 

contains a vector of five variables with five equations in. We now discuss how boundary 

conditions (29) are transformed using the new set of variables. Note that the velocity slip 

boundary condition in (29) contains a third derivative term which poses another difficulty to 

solve Eq. (32). Therefore the velocity slip boundary condition is converted using Eq. (25) as 

follows: 

 

              𝑓′(0) = 1 + 𝑎𝑓′′(0) + 𝑏𝑓′′′(0) (33a) 

From the above equation, we deduce that 

𝑓′′′(0)   =
𝑓′(0)−1−𝑎𝑓′′(0)

𝑏
(33b) 

 

Finally, the boundary conditions for the variables using Eqns. (29) and (33) can be formulated 

as follows: 

𝐹1(0) =
4𝑠

3𝑆𝑐
𝐹4(0)

  𝐹2
′′(0) =

𝐹2(0)−1−𝑎  𝐹2
′(0)

𝑏

𝐹3(0) = 1 + 𝑐𝐹3′(0)

𝐹4
′(0) = −

𝑁𝑡 𝐹3
′(0)

𝑁𝑏

𝐹5(0) = 1 + 𝑑𝐹5′(0)

𝐹1
′(∞) =  𝐹2(∞) = 1   

𝐹3(∞) = 0 

𝐹4(∞) = 0

𝐹5(∞) = 0 }
 
 
 
 
 

 
 
 
 
 

         (34) 

First, nonlinear ODEs are discretized at n-Chebyshev collocation points xj between [-1, 1] 

which is the Chebyshev domain with xj = cos(jπ/n). The derivative of F is approximated by 

Chebyshev derivative DF where D is an (n+1) × (n+1) matrix with   

𝐷00 =
2𝑛2+1

6

𝐷𝑛𝑛 = −
2𝑛2+1

6

𝐷𝑗𝑗 =
−𝑥𝑗

2(1−𝑥𝑗
2)
      for 𝑗 =  1, … , 𝑛 − 1

𝐷𝑖𝑗 = (
𝑐𝑖

𝑐𝑗
)
(−1)𝑖+𝑗

(𝑥𝑖−𝑥𝑗)
  for i ≠  𝑗, 𝑖, 𝑗 =  1, … , 𝑛 − 1

}
 
 
 

 
 
 

(35) 

where  𝑐𝑖 = {
2    𝑖 = 0 or 𝑁
1   otherwise

}. 

 

The second derivative can be calculated using D
2
F where D

2
 = D×D. Finally eqn (32) 

provides a system of 5×(n+1) nonlinear equations. The actual range of physical domain η is 

[0, ∞]. However, it is observed that η = 10 is sufficient to represent the upper bound 𝜂 = ∞. 
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Therefore, the Chebyshev collocation domain [-1 1] are required to be mapped on the physical 

domain [0, 10] where the mapping can be trivially found as 

𝑥 =
𝜂−5

5
           (36) 

In the Chebyshev domain, the system of equations (32) will take the form: 

[
 
 
 
 
 
𝐷2𝐹1
𝐷2𝐹2
𝐷2𝐹3
𝐷2𝐹4
𝐷2𝐹5]

 
 
 
 
 

⏟  
𝐹′′

=

[
 
 
 
 
 
 
 

5𝐷𝐹2
251/𝐷𝑎(𝐹2 − 1) − 25𝐺𝑟 𝐹3 + 25𝑁𝑟 𝐹4 − 25𝑅𝑏 𝐹5 − 3.75𝐹1𝐷𝐹2 − 12.5(1 − 𝐹2

2)

−3.75Pr𝐹1𝐷𝐹3 − 5𝑁𝑏𝐷𝐹3𝐷𝐹4 − 5𝑁𝑡 𝐷𝐹3
𝑁𝑡

𝑁𝑏
(3.75 Pr𝐹1𝐷𝐹3 +𝑁𝑏 𝐷𝐹3𝐷𝐹4 + 𝑁𝑡𝐷𝐹3

2) − 0.75 𝑆𝑐 𝐷𝐹1𝐷𝐹4

𝑃𝑒𝐹5 [
𝑁𝑡

𝑁𝑏
(3.75Pr𝐹1𝐷𝐹3 + 𝑁𝑏 𝐷𝐹3𝐷𝐹4 + 𝑁𝑡𝐷𝐹3

2) − 0.75 𝑆𝑐 𝐷𝐹1𝐷𝐹4] + 𝑃𝑒𝐷𝐹4𝐷𝐹5 − 0.75 𝐿𝑏 𝐷𝐹1𝐷𝐹5]
 
 
 
 
 
 
 

  (37)

⏟                                                                        
𝑔(𝑥,𝐹,𝐹′)

 

 

with the boundary conditions 

𝐹1(0) =
4𝑠

3𝑆𝑐
𝐹4(0)

𝐷2𝐹2(0) =
𝐹2(0)−1−𝑎𝐷𝐹2(0)

𝑏

𝐷𝐹3(0) =
𝐹3(0)−1

0.2 𝑐

𝐷𝐹4(0) = −
𝑁𝑡

𝑁𝑏
(
𝐹3(0)−1

0.2𝑐
)

𝐷𝐹5(0) =
𝐹5(0)−1

0.2𝑑

𝐷𝐹1(𝑛) =  𝐹2(𝑛) = 5

𝐹3(𝑛) = 0 

𝐹4(𝑛) = 0

𝐹5(𝑛) = 0 }
 
 
 
 
 
 

 
 
 
 
 
 

         (38)  

Now expanding D
2
F1it may be shown that: 

𝐷2𝐹1 =

[
 
 
 
𝐷00
2 𝐷01

2 ⋯ 𝐷0𝑛
2

𝐷10
2 𝐷11

2 ⋯ 𝐷1𝑛
2

⋮
𝐷𝑛0
2

⋮
𝐷𝑛1
2

⋮ ⋮
⋯ 𝐷𝑛𝑛

2 ]
 
 
 

[

𝐹1,0
𝐹1,1
⋮
𝐹1,𝑛

] =

[
 
 
 
5𝐹2,0
5𝐹2,1
⋮

5𝐹2,𝑛]
 
 
 
      (39) 

Finally the boundary conditions are required to be set in the equations. The boundary 

conditions are set in the appropriate (boundary) positions by replacing the corresponding 

discretized equations. For the Eqn. of D
2
F1, we replace the first and (n+1)-th equations by the 

corresponding boundary equations provided in (34). 

𝐷2𝐹1 =

[
 
 
 
 

1 0 ⋯         0
𝐷10
2 𝐷11

2 ⋯        𝐷1𝑛
2

⋮
𝐷(𝑛−1)0
2

𝐷𝑛0

⋮
𝐷(𝑛−1)1
2

𝐷𝑛0

⋮              ⋮
⋯
⋯

 𝐷(𝑛−1)𝑛
2

𝐷𝑛0 ]
 
 
 
 

[
 
 
 
 
𝐹1,0
𝐹1,1
⋮

𝐹1,𝑛−1
𝐹1,𝑛 ]

 
 
 
 

 =

[
 
 
 
 
 
4𝑠

3𝑆𝑐
𝐹4(0)

5𝐹2,1
⋮

5𝐹2,𝑛−1
5 ]

 
 
 
 
 

    (40) 

Thus all other boundary conditions are set for DF2, DF3, …,DF5. The resulting system is a 

large nonlinear system of equations of 5×nunknowns with 5×n equations which can be solved 

using aNewton-type iterative method. The system of equations generated has been solved 

using the MATLAB trust-region-reflective algorithm fsolve. Finally the solution is mapped to 

the physical domain using the transformation: 

𝜂 = 5𝑥 + 5           (41) 

 

6. VALIDATION WITH NAKAMURA DIFFERENCE SCHEME 

To verify the accuracy of our Chebychev collocation method (CCM) solutions, we employ an 

alternative method to solve the present boundary value problem. This alternate algorithm, 
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specifically the Nakamura tridiagonal method (Nakamura 1994) was introduced originally to 

solve rheological (e.g. micropolar) heat transfer problems. Hereafter referred to as NTM, in 

this approach the 9
th

 order system of nonlinear, multi-degree, coupled ordinary differential 

equations (25)–(28) with boundary conditions (29) is solved using NANONAK code (Bég 

2013), in double precision arithmetic in Fortran 90. Computations are performed on an SGI 

Octane Desk workstation with dual processors and take seconds for compilation. A reduction 

in the higher order differential equations is fundamental principle to NTM like other 

difference methods. Furthermore, it is particularly effective for simulating complex fluid 

(rheological) boundary layer flows due to their parabolic nature. NTM has been successfully 

deployed in swirling micropolar convection (Gorla and Nakamura 1993), viscoelastic 

Falkner-Skan flows (Béget al. 2004) and quite recently in magnetohydrodynamic external 

boundary layer flows of micropolar biopolymers ((Bég et al. 2014). NTM is equally adept at 

solving both one-dimensional (ordinary differential system) and two-dimensional (partial 

differential system) non-similar non-Newtonian flows. Intrinsic to this method is the 

discretization of the boundary layer regime using an equi-spaced finite difference mesh in the 

transformed coordinate (). The partial derivatives for f, g,  with respect to  are evaluated 

by central difference approximations. An iteration loop based on the method of successive 

substitution is utilized to advance the solution. The finite difference discretized equations are 

solved in a step-by-step fashion on the domain. For the energy, nano-particle species and 

motile micro-organism density conservation Eqns. (26) - (28) which are second order multi-

degree ordinary differential equations, only a direct substitution is needed. However a 

reduction is required for the third order momentum Eqn. (25). We apply the following 

substitutions:  

 

  P = f
 /
         (42) 

 

  Q =          (43) 

   

  R =          (44) 

 

                       S =          (45) 

 

The ODEs (25)-(28) then retract to: 

 

 

Nakamura momentum equation: 

    11

/

1

//

1 TPCPBPA      (46) 

Nakamura energy equation: 

    22

/

2

//

2 TQCQBQA       (47) 

Nakamura nano-particle species equation: 

    33

/

3

//

3 TRCRBRA       (48) 

Nakamura motile micro-organism density number equation: 

    44

/

4

//

4 TSCSBSA       (49) 

 

Here Ai=1,2,3,4, Bi=1,2,3,4, Ci=1,2,3,4are the coefficients of Nakamura matrix, Ti=1,2,3,4 

are the Nakamura source terms comprising the parameters, variables (P, Q, R, S) and their 

derivatives. The Nakamura Eqns. (46)–(49) are transformed to finite difference equations and 

these are orchestrated to form a tridiagonal system which is iteratively solved due to the high 

nonlinearity of the numerous coupled and multi-degree terms in the momentum, energy, 
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nano-particle species and motile micro-organism density conservation equations. The 

boundary conditions (29) are also easily transformed. Further details of the NTM approach 

are provided in the comprehensive treatise of Nakamura (1995). More recent and 

sophisticated applications covering many different non-Newtonian flows (with magnetic 

effects) are also reviewed by Bég (2012). Tables1-4 provide both CCM MATLAB and NTM 

solutions for shear stress function, f"(0), dimensionless wall heat transfer rate, -θ'(0), 

dimensionless wall nano-particle mass transfer rate function,  -ϕ'(0)/ϕ(0) and dimensionless 

motile micro-organisms wall mass transfer rate, -χ′(0) for a variation in six key 

thermophysical parameters, namely
 1 w

C
s

C





 (mass blowing/suction parameter), 

  1/2

1 0
Re

0
N

a
L

   (first order velocity slip), 
 2 0

2

Re
0

N
b

L
  (second order velocity slip),

  1/2

1 0
ReD

c
L

 (thermal slip), 
  1/2

1 0
ReF

d
L

 (microorganism slip) and Gr
2

3)(



 LTTg w 


(thermal Grashof number). All other model parameters are prescribed as Lb=Pe=Rb=Sc=2, 

Da = 0.5, Nb = Nr  =Nt = 0.1 in Tables 1-4.The agreement is very close in all the tables 

testifying to the accuracy of the CCM MATLAB solutions. Confidence in CCM 

computations is therefore very high. In Table 1, we observe that with positive s values 

(suction) the shear stress values generally decrease whereas they strongly increase with 

negative s values (mass blowing at the wall).Increasing first order hydrodynamic slip (a) is 

found to generally reduce shear stress magnitudes i.e. decelerate the boundary layer flow. 

Increasingly negative values of second order hydrodynamic slip (b) with all other parameters 

fixed, induce an even greater deceleration in the flow i.e. they more prominently reduce the 

shear stress (f"(0)) values. A strong increase in thermal slip (c) results in a much weaker 

deceleration in the flow for blowing (s<0) and a solid wall (s =0) whereas the converse effect 

i.e. weak acceleration is induced with suction at the wall (s>0). Increasing micro-organism 

slip is observed in Table 1 to again decelerate the flow, however in this case this is only 

apparent for suction or blowing. With a solid wall (s=0) greater micro-organism slip weakly 

enhances skin friction i.e. shear stress magnitudes. With decrease in thermal Grashof number 

(Gr =-4) shear stress values are generally enhanced whereas with increase i.e. for Gr =4, they 

strongly decrease. This indicates that an assistive buoyancy force (Gr>0 and Gr>0 in the 

momentum eqn.(25)) decelerates the boundary layer flow whereas an opposing buoyancy 

force accelerates the flow, a characteristic which has been reported in many studies and is 

documented in detail by Gebhartet al. (1988). 

 

Table 1: Values of f"(0)when  Lb=Pe=Rb=Sc=2, Da = 0.5, Nb = Nr  = Nt = 0.1. 

 

s a b c d Gr f"(0)[CCM MATLAB] f"(0) [NTM] 

-1 

0 

1 

 

0.1 

 

-0.5 0.5 0.5 1 

0.8498531 0.84990 

0.7385858 0.73860 

0.272482 0.27248 

-1   
   

0.1036811 0.10369 

0 10 -0.5 0.5 0.5 1 0.0901492 0.090150 

1   
   

0.037396 0.037401 

-1   
   

1.4479129 1.447912 

0 0.5 0 0.5 0.5 1 1.5642195 1.564220 

1   
   

1.5562531 1.556254 

-1   
   

-0.2275983 -0.227598 
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0 0.5 -5 0.5 0.5 1 -0.4027906 -0.402791 

1   
   

-0.6767009 -0.676701 

-1   
   

0.6581322 0.6581320 

0 0.5 -0.5 0.1 0.5 1 0.5716338 0.5716331 

1   
   

0.2171846 0.2171843 

-1   
   

0.5652345 0.5652342 

0 0.5 -0.5 2 0.5 1 0.5080153 0.5080151 

1   
   

0.4503765 0.4503763 

-1   
   

0.679755 0.6797548 

0 0.5 -0.5 0.5 0 1 0.5677279 0.5677277 

1   
   

0.2995202 0.2995201 

-1   
   

0.6417392 0.6417391 

0 0.5 -0.5 0.5 1 1 0.5730997 0.5730996 

1   
   

0.0631091 0.0631090 

-1   
   

0.7588097 0.7588096 

0 0.5 -0.5 0.5 0.5 -4 0.9000447 0.9000444 

1   
   

0.4509315 0.4509312 

-1   
   

0.4950872 0.4950871 

0 0.5 -0.5 0.5 0.5 4 0.3688626 0.3688624 

1   
   

0.0790472 0.0790471 

 

Table 2: Values of -θ'(0), when  Lb=Pe=Rb=Sc=2, Da = 0.5, Nb = Nr  = Nt = 0.1. 

 

s a b c d Gr -θ'(0) [CCM MATLAB] -θ'(0)[NTM] 

-1 

0 

1 

 

0.1 

 

-0.5 0.5 0.5 1 

0.607438 0.607439 

1.008712 1.008711 

1.503294 1.503290 

-1   
   

0.657162 0.657161 

0 10 -0.5 0.5 0.5 1 1.046634 1.046631 

1   
   

1.506314 1.506312 

-1   
   

0.561513 0.561511 

0 0.5 0 0.5 0.5 1 0.949240 0.949242 

1   
   

1.484832 1.484833 

-1   
   

0.677280 0.677281 

0 0.5 -5 0.5 0.5 1 1.071530 1.071531 

1   
   

1.514872 1.514874 

-1   
   

0.620913 0.620916 

0 0.5 -0.5 0.1 0.5 1 1.019095 1.019097 

1   
   

1.504013 1.504013 

-1   
   

0.356276 0.356278 

0 0.5 -0.5 2 0.5 1 0.396366 0.396362 

1   
   

0.426287 0.426282 

-1   
   

0.634018 0.634014 

0 0.5 -0.5 0.5 0 1 1.007277 1.007274 

1   
   

1.497892 1.497893 

-1   
   

0.611347 0.611341 

0 0.5 -0.5 0.5 1 1 1.034068 1.034067 

1   
   

1.513349 1.513347 

-1   
   

0.471824 0.471823 

0 0.5 -0.5 0.5 0.5 -4 0.942547 0.942545 
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1   
   

1.498561 1.498562 

-1   
   

0.672204 0.672202 

0 0.5 -0.5 0.5 0.5 4 1.049958 1.049956 

1   
   

1.507061 1.507059 

 

Table 3: Values of -ϕ'(0)/ϕ(0),when  Lb=Pe=Rb=Sc=2, Da = 0.5, Nb = Nr  = Nt = 0.1. 

 

s a b c D Gr 

 

-φ'(0)/φ(0) 

 [CCM MATLAB] 

 

-φ'(0)/φ(0) 

 

[NTM] 

-1 

0 

1 

 

0.1 

 

-0.5 0.5 0.5 1 

0.953982 0.953983 

3.143614 3.143612 

22.743586 22.74359 

-1   
   

1.093983 1.093984 

0 10 -0.5 0.5 0.5 1 3.461709 3.461706 

1   
   

22.762038 22.762037 

-1   
   

0.835513 0.835512 

0 0.5 0 0.5 0.5 1 2.695851 2.695849 

1   
   

22.621909 22.62191 

-1   
   

1.154128 1.154127 

0 0.5 -5 0.5 0.5 1 3.684549 3.684548 

1   
   

22.806773 22.806774 

-1   
   

0.990660 0.990663 

0 0.5 -0.5 0.1 0.5 1 3.228023 3.228024 

1   
   

22.746791 22.746788 

-1   
   

1.550431 1.550433 

0 0.5 -0.5 2 0.5 1 2.944010 2.944013 

1   
   

5.827033 5.827034 

-1   
   

1.024188 1.024187 

0 0.5 -0.5 0.5 0 1 3.143874 3.143876 

1   
   

22.970731 22.970733 

-1   
   

0.966659 0.966657 

0 0.5 -0.5 0.5 1 1 3.337841 3.337843 

1   
   

22.473316 22.473318 

-1   
   

0.638963 0.638965 

0 0.5 -0.5 0.5 0.5 -4 2.667635 2.667636 

1   
   

22.767563 22.767564 

-1   
   

1.134764 1.134762 

0 0.5 -0.5 0.5 0.5 4 3.481403 3.481405 

1   
   

22.741677 22.741678 

 

 

Table 4: Values of-χ′(0)when  Lb=Pe=Rb=Sc=2, Da = 0.5, Nb = Nr  = Nt = 0.1. 

 

s a b c D Gr 

-χ′(0) 

[CCM 

MATLAB] 

 

-χ′(0) 

 

[NTM] 

-1  -0.5 0.5 0.5 1 0.353847 0.353845 
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0 

1 

0.1 

 

-0.341015 -0.341014 

-0.916316 -0.916314 

-1   
   

0.338232 0.338234 

0 10 -0.5 0.5 0.5 1 -0.358415 -0.358416 

1   
   

-0.877928 -0.877930 

-1   
   

0.369275 0.369272 

0 0.5 0 0.5 0.5 1 -0.296581 -0.296585 

1   
   

-1.158394 -1.158393 

-1   
   

0.332735 0.332737 

0 0.5 -5 0.5 0.5 1 -0.363668 -0.363664 

1   
   

-0.768862 -0.768863 

-1   
   

0.349562 0.349559 

0 0.5 -0.5 0.1 0.5 1 -0.346816 -0.346812 

1   
   

-0.907642 -0.907644 

-1   
   

0.364792 0.364790 

0 0.5 -0.5 2 0.5 1 0.374168 0.374164 

1   
   

0.454835 0.454832 

-1   
   

0.427789 0.427784 

0 0.5 -0.5 0.5 0 1 -0.298392 -0.298397 

1   
   

-0.668139 -0.668131 

-1   
   

0.296029 0.296022 

0 0.5 -0.5 0.5 1 1 -0.410949 -0.410941 

1   
   

-1.242199 -1.242190 

-1   
   

0.369968 0.369959 

0 0.5 -0.5 0.5 0.5 -4 -0.310925 -0.310930 

1   
   

-0.980525 -0.980529 

-1   
   

0.343265 0.343266 

0 0.5 -0.5 0.5 0.5 4 -0.351406 -0.351410 

1   
   

-0.866608 -0.866611 

 

 

Table 2 indicates that with blowing at the wall, heat transfer rates are lower than with suction 

at the wall. With greater first order (a) and second order slip (b), however heat transfer rates 

are generally enhanced irrespective of whether blowing or suction is present at the wall. With 

increasing thermal slip (c) there is generally a strong reduction in wall heat transfer rate. With 

increasing micro-organism slip (d) the heat transfer rate decreases for blowing at the wall 

whereas it is elevated weakly with greater suction or for the case of a solid wall. With 

negative thermal Grashof number, the heat transfer rate decreases whereas with positive 

Grashof number it increases, in particular for the case of wall blowing (mass injection) i.e. 

s<0). Table 3 shows that nano-particle mass transfer function is massively greater for the case 

of suction and lowest for blowing, implying that reduction in fluid momentum encourages 

nano-particle diffusion at the wall. With greater first order (a) and second order 

hydrodynamic slip (b), -φ'(0)/φ(0) function values strongly increase. With increasing thermal 

slip (c), nano-particle mass transfer function increases for the case of blowing at the wall; 

however -φ'(0)/φ(0) function values significantly fall for the solid wall case (a=0) or with 

suction at the wall (a>0). With increasing micro-organism slip (d), nano-particle mass transfer 

function, -φ'(0)/φ(0) rises for the solid wall case (s=0) but drops when blowing (s<0) or 

suction (s>0) are present. With increasing Grashof number, i.e. when Gr = 4 compared to 

when it is -4, the nano-particle mass transfer function, -φ'(0)/φ(0)strongly increases for the 

blowing or solid wall case but slightly reduces when wall suction is present. Table 4 
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demonstrates that with increasing first order hydrodynamic slip (a), motile micro-organism 

density transfer rate decreases for both the case of a solid wall or wall blowing, but increases 

for the wall suction scenario. Similarly with increasing second order hydrodynamic slip (b), -

χ′(0) again falls for both wall blowing and the solid wall, but rises for the wall suction case. 

With greater thermal slip (c), the motile micro-organism density transfer rate, -χ′(0), is 

consistently enhanced for all three wall cases i.e. for blowing, solid wall or suction cases. 

Conversely, with rising micro-organism slip (d) -χ′(0) consistently drops for all three cases of 

blowing, solid wall or wall suction. Finally an elevation in Grashof number (Gr) from 

negative to positive values, induces strong decrease in the motile micro-organism density 

transfer rate, -χ′(0), for both the wall injection (blowing) and solid wall cases but results in a 

slight elevation for the wall suction case. As elaborated earlier, very close agreement for all 

computations for all the values of the thermophysical and bioconvection parameters is 

achieved between CCM MATLAB and NTM approaches. 

 

7. CHEBYCHEV COLLOCATION RESULTS AND DISCUSSION 

In order to establish the influence of the emerging bioconvection and thermal parameters on 

the flow variables i.e. dimensionless velocity f'(η), temperature θ(η), the nanoparticle volume 

fraction ϕ(η) and the microorganism concentration χ(η), with zero mass flux boundary 

conditions, extensive computations have been conducted with the MATLAB CCM approach. 

In the simulation, we consider a water based nanofluid with the following prescribed values: 

Pr = 6.8 (water), Rb= 1, Nr = Nt = 0.1. Unless otherwise stated, the following  default values 

are imposed in the computations: a = 0.1, b = -0.5, c = 0.5, d = 0.5, Gr = 1, Lb = 2, M = 2, 

Nb = Nr  = Nt = 0.1, Pe = 2, Rb = 2, Sc = 2.  Figs. 2-13are provided to illustrate the results. 

In all these figures, field quantities must approach asymptotically towards zero in the free 

streami.e., f' (η)→ 0, θ(η)→0, ϕ(η)→0 and χ(η)→0 as η→ ∞. This is satisfied by f'(η), ϕ(η), 

θ(η) and χ(η) which clearly tend to zero as η→ 20 (i.e., the infinity boundary condition 

imposed for η is sufficiently large) as observed in all the figures. This confirms that the 

correct numerical solutions are obtained. Our solutions f'(η), ϕ(η), θ(η) and χ(η) at η= 20 have 

the accuracy of the order of O(10
-10

).The NTM solutions discussed earlier have an accuracy of 

O (10
-8

) which is more than sufficient for low-speed, heat and mass transfer in boundary layer 

flows. 

 

 
 

Fig. 1: Coordinate system and nanofluid bioconvection wall slip flow model. 
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Fig. 2: Variation of  f'(η), θ(η) with different values of a and s. 

 

 

 

 

 

 

 
Fig. 3:Variation of  ϕ(η) and χ(η) with different values of a and s. 
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Fig.4:Variation of   f'(η) and θ(η) with different values of b and s. 

 

 
Fig. 5:Variation of   ϕ(η) and χ(η) with different values of b and s. 

 

 
 

Fig.6:Variation of  f'(η) and θ(η) with different values of c and s 
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Fig. 7:Variation of  ϕ(η) and χ(η) with different values of c and s. 

 

 

 
Fig.8:Variation of  f'(η) andθ(η) with different values of d and s. 

 

 
Fig. 9:Variation of  ϕ(η) and χ(η) with different values of d and s. 
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Fig.10:Variation of f'(η) andθ(η) with different values of Gr and s. 

 

 
Fig. 11: Variation of  ϕ(η) and χ(η) with different values of Gr and s. 

 

 

 
Fig.12:(a)Variation of  a and b on f''(0) over s;(b) effect of b and c on -θ'(0)over s. 
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Fig. 13:(a):Effect of Sc and Le on -ϕ'(0)/ϕ (0); (b)effect of Sc and Pe on -χ′(0) over s. 

 

Figs. 2(a)-(b) illustrate the collective influence of first order hydrodynamic slip (a) and wall 

mass flux parameter (s) on velocity and temperature distributions. With strong blowing (s=-1) 

the velocity is enhanced with a corresponding overshoot near the wall. This overshoot is still 

present with the solid wall case (s=0) but vanishes with the wall suction case (s=0). With 

increasing first order hydrodynamic slip, there is a significant acceleration in the flow near the 

wall. Temperatures are very weakly influenced by first order hydrodynamic slip and are found 

to be slightly reduced i.e. the regime is cooled and thermal boundary layer thickness decreases 

with greater first order slip. Blowing is observed to significantly elevate temperature (and 

thermal boundary layer thickness) whereas suction induces the opposite effect i.e. cools the 

regime and thermal boundary layer thickness decreases.  

 

Figs. 3(a)-(b)present the variation in nano-particle concentration function and motile micro-

organism density number function with wall mass flux and first order hydrodynamic slip. 

With greater suction (s>0) the nano-particle concentration increases, especially near the wall, 

whereas further from the wall the contrary response is computed. Blowing therefore depresses 

nano-particle concentration. With greater hydrodynamic slip (a), the nano-particle 

concentration values are weakly reduced throughout the boundary layer regime. Motile micro-

organism density function conversely increases with wall suction (s>0) and enhanced with 

mass blowing (s<0). The effect is particularly amplified at the wall. With greater 

hydrodynamic slip, there is a general weak decrease in motile micro-organism density 

function values for both suction and solid wall cases; however there is a weak increase for the 

mass blowing case, close to the wall although subsequently the trend is reversed nearer the 

free stream. 

 

Figs. 4(a)-(b) depict the velocity and temperature response with combined effects of wall 

mass flux and second order hydrodynamic slip (b). A significant deviation in profiles is 

observed for the velocity distributions (Fig. 4(a)) compared with those in Fig. 2(a). While 

second order slip substantially elevates the velocity, the profiles are all monotonic decays 

from the wall and there is no velocity overshoot present, as in the case of Fig 2a for first order 

hydrodynamic slip effects. In the absence of second order slip, the velocity profiles ascend 

from the wall and exhibit parabolic profiles, similar to the case when first order slip is very 

small (Fig. 2(a)). In all cases, irrespective of the second order slip parameter values, strong 

blowing (s<0) induces flow acceleration whereas strong suction generates the opposite effect. 

Temperatures (Fig. 4(b)) demonstrate monotonic decays and are found to be reduced with 
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increasing second order hydrodynamic slip effect. The effect is markedly greater than for first 

order hydrodynamic slip (Fig. 2(a)). Blowing is found to strongly enhance temperatures 

whereas suction reduces them. 

 

Figs. 5(a)-(b) present the distributions in nano-particle concentration function and motile 

micro-organism density number function with wall mass flux and second order hydrodynamic 

slip. Very similar profiles are observed for the nano-particle concentration, for which again it 

is apparent that blowing reduces concentrations whereas suction enhances them. However 

second order slip is found to increase more prominently the concentration values than first 

order slip (Fig. 3(a)).  Motile micro-organism density function, as plotted in Fig. 5b, is weakly 

elevated with blowing (s<0) whereas it is enhanced with wall suction (s<0). The effect is 

strongest again, close to the wall (plate). With greater second order hydrodynamic slip (b), 

there is consistently a reduction in motile micro-organism density function values. 

 

Figs. 6(a)-(b) illustrate the influence of wall mass flux (s) and thermal slip on the velocity and 

temperature distributions. With strong blowing (s=-1) the velocity is significantly elevated 

throughout the boundary layer, and again a distinct velocity overshoot arises near the wall. 

With strong suction velocity magnitudes are depleted; however flow reversal is never induced 

as magnitudes of velocity remain positive throughout. Increasing thermal slip serves to 

strongly reduce velocity magnitudes i.e. decelerates the flow and increases momentum 

boundary layer thickness. Temperatures are also markedly depressed with greater thermal 

slip, c and with suction (s>0). Temperatures are however enhanced with blowing (s<0) with a 

corresponding increase in thermal boundary layer thickness.  

 

Figs. 7(a)-(b) show the variation in in nano-particle concentration function and motile micro-

organism density number function with wall mass flux (s) and thermal slip (c) effects. 

Increasing thermal slip generally decreases nano-particle concentrations especially near the 

wall (plate).This effect is however stifled further into the boundary layer. With greater wall 

suction nano-particle concentrations are effectively boosted whereas they are reduced with 

greater blowing effect. Increasing thermal slip is found to reduce motile micro-organism 

density number function values significantly and also smooths out the erratic profile for the 

wall blowing case. The profiles for the solid wall (plate) and wall suction are smooth 

monotonic decays even at low values of thermal slip. Greater suction generally decreases 

motile micro-organism density number function values, whereas greater injection enhances it.  

Figs. 8(a)-(b) illustrate the velocity and temperature evolutions with different  micro-

organism (mass) slip (d) and wall mass flux (s). The flow is generally accelerated with greater 

mass slip effect and with greater blowing (s<0). Temperatures very weakly rise with greater 

mass slip and also with blowing, whereas they strongly fall with greater wall suction.  

 

Figs. 9(a)-(b) show the variation in in nano-particle concentration function and motile micro-

organism density number function with wall mass flux (s) and micro-organism slip (d) effects. 

Increasing mass slip generally results in a very slight reduction in nano-particle concentration 

values whereas increasing wall suction causes a strong elevation. Increasing blowing at the 

wall leads to significant fall in nano-particle concentrations i.e. a reduction in nano-particle 

concentration boundary layer thickness. Motile micro-organism density function is very 

strongly enhanced, in particular near the wall, with greater mass slip effect. It is also 

accentuated strongly with greater wall suction and markedly depleted with greater wall 

blowing effect. 
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Figs. 10(a)-(b) present the velocity and temperature field response to variation in thermal 

Grashof number (Gr) and wall mass flux (s) effects. With negative Gr values (implying 

adverse buoyancy effect), the flow is strongly decelerated whereas the converse effect is 

sustained for positive Gr (assistive buoyancy effect). With Gr = 4, the presence of wall 

blowing accelerates the flow whereas for Gr =-4 it retards the flow. The opposite effects are 

generated with wall suction. Temperatures are observed to be enhanced with negative Gr 

(opposing buoyancy) and reduced with Gr = 4 (assistive buoyancy). Wall blowing however 

results in rise in temperature for both negative and positive values of Grashof number, 

whereas wall suction results in strong drop in temperature, i.e. a reduction in thermal 

boundary layer thickness. 

 

Figs. 11(a)-(b) show the distributions of nano-particle concentration function and motile 

micro-organism density number function with a change in thermal Grashof number (Gr) and 

wall mass flux (s). Negative Gr values (opposing buoyancy) generally induce a reduction in 

nano-particle concentrations whereas positive Gr values generate the contrary effect. This is 

especially prevalent for the solid wall and blowing cases. With increasing suction nano-

particle concentrations are boosted whereas they are lowered with greater blowing at the wall. 

Motile micro-organism density function is found to be generally reduced with positive Gr 

values whereas it is higher for negative Gr values. Micro-organism density is therefore 

encouraged with opposing buoyancy and inhibited with assistive buoyancy. Increasing wall 

suction tends to reduce significantly values of micro-organism density function throughout the 

boundary layer regime, whereas wall blowing generates the converse trend.  

 

Fig.12(a)  illustrates the collective effects of first (a) and second order hydrodynamic slip (b) 

and wall mass flux (s) parameters on wall skin friction (surface shear stress function) 

Increasing first order slip massively reduces skin friction for any value of s. Increasing second 

order hydrodynamic slip also generally reduces the wall skin friction. However greater values 

are computed when wall suction is present (s>0) compared to when wall blowing is present 

(s<0).  

 

Fig. 12(b)shows the response in wall heat transfer rate (temperature gradient) with different 

values of thermal slip (c), Brownian motion parameter (Nb) and wall mass flux parameter (s). 

Increasing thermal slip generally strongly reduces the wall heat transfer rate when wall 

suction is present; however when wall blowing is present there is a slight decrease in heat 

transfer rates. With increasing Brownian motion effect (higher Nb values), the nano-particles 

are reduced in size. This decreases the heat transfer rate to the wall since greater temperatures 

are induced in the body of the fluid with smaller nano-particles and thermal energy is retained 

in the fluid with lower transport rates to the wall. The opposite effect is apparent with smaller 

Nb values which imply larger nano-particles, lower temperatures and therefore higher heat 

transfer rates to the wall.  

 

Finally,Figs. 13(a)-(b) demonstrate the effects of different bioconvection parameters 

(bioconvection Schmidt number, Lewis number and Péclet number) on the nano-particle wall 

mass transfer rate and the motile micro-organism wall mass transfer rate, respectively. In Fig. 

13(a), increasing bioconvection Lewis number (Le) significantly reduces the nano-particle 

wall mass transfer rate when blowing is present (s<0) whereas it enhances it when suction is 

present (s>0). With increasing Schmidt number (Sc) nano-particle wall mass transfer rate is 

elevated for the case of wall injection (s<0) whereas for wall suction (s>0) the opposite effect 

is induced. In Fig. 13(b), with greater bioconvection Péclet number, there is a strong depletion 

in the motile micro-organism wall mass transfer rate when suction is present. However when 
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injection (mass lowing) is present, there is a very weak increase in motile micro-organism 

wall mass transfer rate. Increasing micro-organism wall mass slip parameter (d) is found to 

slightly reduce motile micro-organism wall mass transfer rate when wall injection (s<0) is 

present but induces a massive decrease when wall suction (s>0) is present.  

 

8. CONCLUSIONS 

A mathematical model has been developed for 2-dimensional, steady laminar incompressible 

gyrotactic bioconvection boundary layer flow of a nanofluid from an upward facing 

horizontal permeable plate adjacent to a porous medium. First and second order 

hydrodynamic slip, thermal slip and also microorganism mass slip at the wall have been 

incorporated, as have passive nanofluid boundary conditions at the wall (plate). Wall mass 

(Stefan blowing or suction) effects have also been studied as these are significant also in 

nano-bio-materials processing. The transformed similarity ordinary differential equations 

have been derived using Lie group analysis. The resulting, well-posed ordinary differential 

two-point boundary value problem has been solved with Chebyshev collocation algorithm. 

Verification of the numerical solutions has been achieved with an alternative computational 

technique, namely the Nakamura tridiagonal second order finite difference method. Very 

good correlation has been achieved with extensive details of both methods described. 

Additionally, validation with previous published solutions has also been included. A 

parametric investigation of the influence of the emerging bioconvection, nanofluid and other 

thermophysical parameters on the evolution of velocity, skin friction, temperature, heat 

transfer rate, nano-particle concentration, nano-particle wall mass transfer rate, motile micro-

organism density number function and wall micro-organism mass transfer rate has been 

conducted. Some key observations from the present computations are: 

(i)There is greater sensitivity of the velocity field to second order slip then first order 

hydrodynamic slip. 

(ii)Thermal and mass slip also exert a strong effect on nano-particle and micro-organism 

density distributions.  

(iii) Wall suction induces significant deceleration effects in the velocity field whereas it is 

observed to enhance nano-particle and motile micro-organism concentrations.  

(iv)Mass slip is found to increase micro-organism density function, temperature and velocity 

whereas it reduces slightly the nano-particle concentration.  

(v)Positive Grashof number is observed to accelerate the bioconvection nanofluid boundary 

layer flow and also raise temperatures and nano-particle concentrations, whereas it reduces 

the motile micro-organism density function.  

 

The effects of other parameters including Brownian motion, bioconvection Lewis number, 

Schmidt number and Péclet number on the transport variables are also elucidated in detail. 

The present model has been confined to steady-state Newtonian flow. Future investigations 

will address both time-dependent and non-Newtonian bioconvection nanofluid flows in 

porous media, and these are also relevant to nano-materials processing operations. 

 

SYMBOLS USED 

b  chemotaxis constant  

C  nanoparticle volume fraction  

wC  wall nanoparticle volume fraction  

C  ambient nanoparticle volume fraction 

BD  Brownian diffusion coefficient 

nD  diffusivity of microorganisms 
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TD  thermophoretic diffusion coefficient 

)(f  dimensionless stream function 

g  acceleration due to gravity 

j  vector flux of microorganism 

k thermal conductivity  

K  consistency coefficient 

0K  permeability of the porous medium 

L  characteristic length 

Lb  bioconvection Lewis number 

Le  Lewis number 

m  power law index 

nn  volume fraction of motile microorganisms 

Nb  Brownian motion parameter 

xNn  local density number of the motile microorganisms  

Nt  thermophoresis parameter 

xNu  localNusselt number 

Pe  bioconvection Péclet number  

Pr  Prandtl number 

p  pressure 

mq  wall mass flux 

nq  wall motile microorganisms flux 

wq  wall heat flux 

Ra  Rayleigh number for the porous medium 

xRa  local Rayleigh number for the porous medium 

Rb  bioconvection Rayleigh number 

xSh  local Sherwood number 

T  nanofluid temperature 

wT  wall temperature  

T  ambient temperature 

vu ,  velocity components along x  and y axes 

vu
~

,
~

 average directional swimming velocity of microorganisms along axes 

cW  constant maximum cell swimming speed 

yx,  Cartesian coordinates ( x axis is aligned along  and y axis is normal to the plate) 

 

Greek symbols 

m  effective thermal diffusivity of the porous medium 

)(  rescaled nanoparticle volume fraction 

  similarity variable 

  density of motile microorganisms 

)(  dimensionless temperature 

  kinematic viscosity of the fluid 

f  fluid density 
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p  nanoparticle mass density 

 
f

c  heat capacity of the fluid 

 
p

c  heat capacity of the nanoparticle material 

  ratio between effective heat capacity of nanoparticles and heat capacity of fluid 

)(  rescaled density of motile microorganisms 

  stream function 

 

Subscripts/superscripts 

w  condition at the wall 

  free stream condition 

'  differentiation with respect to   
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