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ABSTRACT    
Sheet processing of magnetic nanomaterials is emerging as a new branch of smart materials 

manufacturing. The efficient production of such materials combines many physical phenomena 

including magnetohydrodynamics (MHD), nanoscale, thermal and mass diffusion effects. To 

improve understanding of complex inter-disciplinary transport phenomena in such systems, 

mathematical models provide a robust approach. Motivated by this, herein we develop a 

mathematical model for steady, laminar, magnetohydrodynamic, incompressible nanofluid flow, 

heat and mass transfer from a stretching sheet. A uniform constant strength magnetic field is 

applied transverse to the plane of the stretching flow. The Buonjiornio nanofluid model is employed 

to represent thermophoretic and Brownian motion effects. A non-Fourier (Cattaneo-Christov) 

model is deployed to simulate thermal conduction effects of which the Fourier model is a special 

case when thermal relaxation effects are neglected. The governing conservation equations are 

rendered dimensionless with suitable scaling transformations. The emerging nonlinear boundary 

value problem is solved with a fourth order Runge-Kutta algorithm and also shooting quadrature. 

Validation is achieved with earlier non-magnetic and forced convection flow studies. The influence 

of key thermophysical parameters e.g. Hartmann magnetic number, thermal Grashof number, 

thermal relaxation time parameter, Schmidt number,  thermophoresis parameter, Prandtl number 

and Brownian motion number on velocity, skin friction, temperature, Nusselt number, Sherwood 

number and nano-particle concentration distributions is investigated. A strong elevation in 

temperature accompanies an increase in Brownian motion parameter whereas increasing magnetic 

parameter is found to reduce heat transfer rate at the wall (Nusselt number). Nano-particle volume 

fraction is observed to be strongly suppressed with greater thermal Grashof number, Schmidt 

number and thermophoresis parameter whereas it is elevated significantly with greater Brownian 

motion parameter. Higher temperatures are achieved with greater thermal relaxation time values 

i.e. the non-Fourier model predicts greater values for temperature than the classical Fourier model.  
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NOMENCLATURE 

C        nano-particle (solutal) concentration  q           heat flux 

wC   nano-particle (solute) concentration at the wall TG        Thermal Grashof number 

C ambient nano-particle concentration as y tends to  infinity g           Acceleration due to gravity 

BD   Brownian diffusion coefficient 2           thermal relaxation time 

TD  Thermophoretic diffusion coefficient CB         Solutal Grashof number 

B0    magnitude of magnetic field strength ν Kinematic viscosity of the fluid 

T     Local fluid temperature Pr           Prandtl number 

T∞     Ambient temperature M           Hartmann Number 

vu,  Velocity components along x  and y directions 
bN    Brownian motion parameter 

P        pressure Sc           Schmidt number (=  PrLe) 

  Nanoparticle volume fraction Rex    Local Reynolds number 

  Similarity variable (transformed coordinate)  μ          Dynamic viscosity of nanofluid 

xNu    Local Nusselt number 

n

xSh    Local nanoparticle Sherwood number 

Le     Regular Lewis number 

x, y  Coordinate along and normal to the 

sheet 

 pc  Effective heat capacity of the nanoparticle material   fc  Heat capacity of the fluid 

θ    Dimensionless temperature Nt Thermophoresis parameters 

          non-dimensional thermal relaxation time K Thermal conductivity of the fluid 

 

 

1.   INTRODUCTION  

Nanoparticles provide a bridge between bulk materials and molecular structure. When deployed 

strategically in base fluids the resulting “nanofluids” have been proven to achieve exceptional 

enhancement in thermal conductivity properties, as identified by Choi [1]. This has made them 
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attractive in numerous areas of modern technology including aerospace cooling systems [2], heat 

exchangers [3] and energy systems [4]. When developing customized nanofluids for deployment in 

such applications, manufacturing processes exert a key influence on the constitution of final 

products. In materials processing a popular mechanism employed is that of continuous sheet 

stretching.  The mathematical study of such flows was mobilized over five decades ago by Sakiadis 

who considered Newtonian flows from continuously moving surfaces [5]. This type of flow is 

particularly suitable to being simulated with boundary layer theory. Many subsequent studies have 

appeared examining heat and mass transfer in stretching boundary layer flows including Takhar et 

al. [6], Gorla et al. [7] and Hayat et al. [8]. More recently nanofluid stretching boundary layer flows 

have also been considered and representative works include Uddin et al. [9], Rana and Bhargava 

[10], Nadeem et al. [11] and Rana et al. [12]. The two most popular approaches in simulating 

nanofluid boundary layer transport phenomena are either the Buonjiornio model (which invokes a 

separate species concentration boundary layer equation) and the Tiwari-Das model (which only 

requires momentum and energy boundary layer equations and simulates nano-particle effects via a 

volume fraction parameter). Many researchers have utilized these approaches including Nield and 

Kuznetsov [13], Rashidi et al. [14], Latiff et al. [15] and Ferdows et al. [16]. The vast majority of 

such studies have considered the classical Fourier model for thermal conduction heat transfer. 

However it has been identified that this model may not be accurate for certain situations as it 

produces a parabolic energy equation which implies that any initial thermal disturbance is instantly 

experienced by the medium under examination. A modification to the Fourier law is therefore 

necessitated and in this regard a robust model which has been proposed is the Cattaneo-Christov 

non-Fourier model [17-19]. This features a relaxation time for heat flux and results in a hyperbolic 

energy equation which successfully captures the flux of heat via propagation of thermal waves with 

finite speed. It is relevant to not only materials processing operations [20] but also bio-heat transfer 

[21]. A number of excellent studies have appeared recently employing the Cattaneo-Christov non-

Fourier model including Mustafa [22] who studied rotating viscoelastic heat transfer and also Hayat 

et al. [23] who investigated melting in stretching sheet flow of a non-Newtonian fluid.  

Magnetohydrodynamics (MHD) is the study of the interaction of magnetic fields (which may be 

static or oscillating) and electrically-conducting fluids. It is a subject of immense industrial 

importance in for example metallurgical processing and induction furnaces [24]. MHD also has 

significant emerging applications in biomagnetic flow control [25], Marangoni convection in 

biophysical suspensions [26], hemodynamics [27] and pharmaco-dynamics [28]. In this latter area it 

has also been exploited in targeted drug delivery where nano-particles are coated in magnetic 
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materials to assist in their directability in the human circulatory system. Furthermore in nuclear 

engineering systems, [29] magnetic nanofluids are also being examined, since they combine both 

the thermal enhancement properties of nanofluids with the magnetic manipulation properties of 

electrically-conducting liquids. The former can assist in for example cooling very high temperature 

surfaces and the latter permit manipulation of flow rates and also heat transfer characteristics [30]. 

It is therefore beneficial to investigate the thermofluid dynamics of magnetic nanofluid sheet 

processing as this provides further insight into the heat transfer, mass transfer and momentum 

characteristics of nanomaterials. The investigation of non-Fourier heat conduction phenomena also 

gives a more realistic appraisal of thermo-mechanics of nanofluids [31] which may be exploited 

strategically in reducing heat transfer rates of nuclear power technologies (both for civilian and 

future aerospace propulsion). Such analyses may also be of use in minimizing over-heating of 

hybrid deep-space rocket propulsion systems [32].  

In the present study we therefore examine theoretically, for the first time, the steady, laminar, 

magnetohydrodynamic, incompressible nanofluid flow, heat and mass diffusion from a stretching 

sheet, as a model of magnetic nanomaterials fabrication. We adopt the Buonjiornio nanofluid model 

[33] which emphasizes thermophoretic and Brownian motion effects and introduces a separate 

nano-particle species diffusion equation. The Cattaneo-Christov non-Fourier thermal conduction 

model is also applied [34], which introduces a thermal relaxation effect. The normalized non-linear 

two-point boundary value problem is solved with numerical shooting quadrature.  Validation with 

previous studies is included. The current study has to the authors’ knowledge not appeared in the 

literature thusfar. 

 

 

2. MATHEMATICAL FLOW MODEL  

 

The regime under investigation is illustrated in Fig. 1. Two-dimensional, steady-state, incompressible 

flow of an electrically-conducting nanofluid from a vertical stretching sheet is considered, with 

reference to an (x,y) coordinate system, where the x-axis is aligned with the sheet. A transverse static 

uniform strength magnetic field is applied, which is sufficiently weak to negate magnetic induction 

and Hall current effects. The nanofluid is dilute and comprises a homogenous suspension of equally-

sized nanoparticles in thermal equilibrium [35]. The sheet is stretched in the plane 0y  . The flow is 

assumed to be confined to 0y  . Here we assumed that the sheet is uniformly extended with the linear 

velocity ( )u x ax , where 0a   is constant and x-axis is measured along the stretching surface. Under 

these assumptions, the governing conservation equations for mass, momentum, energy (heat) and 
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nano-particle species diffusion, neglecting viscous and Joule dissipation effects, may be shown to 

take the form: 

 
 

Fig.1. Physical model for the magnetohydrodynamic nanofluid stretching sheet problem. 
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  is the ratio of the effective heat capacity of the nano-particles to the base fluid, u 

and v are the velocity components along the x and y-directions respectively, T is the temperature of 

the magnetic nanofluid, B0 is the magnitude of magnetic field strength, q is the heat flux. In Eq. (3) 

we employ the Cattaneo–Christov thermal conduction model for heat flux, which has the following 

form: 
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Here 2  is the thermal relaxation time. Eliminating q from Eqns. (3) and (5), the modified energy 

conservation equation then assumes the form: 
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Here T is the nanofluid temperature, P is the pressure and the other physical quantities are defined in 

the nomenclature. We note that when 2  0, the thermal relaxation effect is negated and the 

Cattaneo–Christov thermal conduction model reduces to the classical Fourier conduction law. 

Essentially therefore the presence of thermal relaxation makes the energy conservation equation a 

non-Fourier model. The boundary conditions are prescribed as follows:  

 

  ,axxuu w      ,0v   ,wTT      ,wCC   at y = 0.          (8)                       

,0u     ,0v   ,TT   ,CC   as .y            (9)  

                         

To facilitate numerical solutions to the primitive boundary value problem, it is pertinent to 

introduce the following similarity transformations and dimensionless variables: 
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Implementing eqn. (9) in the conservation eqns. (1), (2), (4) and (6), the following nonlinear, 

coupled system of self-similar ordinary differential equations emerges: 
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The transformed boundary conditions assume the form: 

 

  ,00 f     ,10 f    ,10     ,10                                 (13a)                              

      0,f         ,0    ,0       (13b) 

 

where primes denote differentiation with respect to   i.e. the transformed transverse coordinate. 

Furthermore the following dimensionless numbers are invoked in eqns. (10)-(12):  
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These represent respectively the square of the Hartmann magnetic body force number, local 

Reynolds number, thermal Grashof number (ratio of thermal buoyancy force to viscous force, 

thermal buoyancy ratio parameter, Prandtl number, Brownian motion parameter, thermophoresis 

parameter, Schmidt number, thermal relaxation parameter, solutal (species) Grashof number (ratio 

of concentration buoyancy force to viscous force),  and species buoyancy ratio parameter. 

Expressions for the skin friction coefficient (wall shear stress function), local Nusselt number (wall 

heat transfer rate) and the local Sherwood number (wall nano-particle mass transfer rate) may also 

be defined as follows: 
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It is important to note that the present boundary value problem reduces to the classical problem of 

magnetohydrodynamic flow, and heat and mass transfer due to a stretching surface in a viscous 

fluid when Nb and Nt  0 neglecting nanoscale effects, in Eqns. (10) and (11). Furthermore the 

non-Fourier model contracts to the classical Fourier model when   0  i.e. thermal relaxation time 

effects vanish.   The functions defined in eqns. (15)-(17) provide an important estimate of the wall 

heat and mass transfer characteristics which are useful in materials processing design.                                          



8 

 

 

 

 

3. NUMERICAL SOLUTIONS OF TRANSFORMED EQUATIONS AND VALIDATION 

 

The nonlinear ordinary differential equations (10)-(12) subject to the boundary conditions (13) have 

been solve numerically using an efficient Runge–Kutta fourth order method along with a shooting 

technique. The asymptotic boundary conditions given by Eq. (13) were replaced by using a value of 

15 for the similarity variable max . The choice of max 15   and the step size 0.001  , ensured 

that all numerical solutions approached the asymptotic values correctly. For validation of the 

proposed scheme, a comparison for the Nusselt number with the literature [36, 37] has been shown 

in Table 1, for the magnetohydrodynamic case without thermal buoyancy. Furthermore additional 

benchmarking of solutions has been documented in Table 2 with non-magnetic, Fourier-model 

based solutions given earlier in [38-41].  Very good correlation is achieved for all values of 

Hartmann number (M) in Table 1 and for all Prandtl numbers (Pr) in Table 2 with published 

solutions.  

 

Table 1 Comparison of results for skin friction for ( 0rG ). 

 

M Present 

results 

 

Salahuddin et al. 

[36] 

Akbar et al. 

[37] 

 

0.0 1 1 1 

0.5 -1.11803 -1.11801 -1.11803 

1 -1.41421 -1.41418 -1.41421 

5 -2.44949 -2.44942 -2.44949 

10 -3.31663 -3.31656 -3.31663 

100 -10.04988 -10.04981 -10.04988 

500 -22.38303 -22.38393 -22.38303 

1000 -31.63859 -31.63846 -31.63859 

 

 

 

 Table 2 Comparison of results for Nusselt number for pure fluid i.e,    

0Nt Nb  with 0M  , 0   and 0rG . 

Pr Present 

results 

 

Khan et al. 

[38] 

Khan & Pop 

[39] 

 

Wang  

[40] 

Kandasamy et al. 

[41] 

0.07 0.0663 0.0663 0.0663 0.0656 0.0661 

0.20 0.1691 0.1691 0.1691 0.1691 0.1691 

0.70 0.4539 0.4539 0.4539 0.4539 0.4542 

2 0.9114 0.9114 0.9113 0.9114 0.9114 

7 1.8954 1.8954 1.8954 1.8954 1.8952 
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20 3.3539 3.3539 3.3539 3.3539 -- 

70 6.4622 6.4622 6.4621 6.4622 -- 

In these Tables, skin friction is shown to decrease significantly with greater M value whereas 

Nusselt number is observed to be consistently elevated with greater Pr value (which is a 

thermophysical property of a particular fluid). The former is attributable to the decelerating effect of 

magnetic field via the Lorentzian magnetohydrodynamic drag. The latter is caused by the decrease 

in thermal conductivity of fluids with greater Prandtl number which enhances heat transfer to the 

wall, reduces temperatures in the body of the fluid and thereby elevates Nusselt number. Therefore, 

we are confident that the applied numerical scheme is very accurate. 

 

4. RESULTS AND DISCUSSION   

 

Extensive numerical computations have been conducted. The results are depicted in Figs.2–7 in 

which the influence of selected parameters on momentum, heat, and mass transfer characteristics 

are presented graphically.  
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Fig. 2.  Velocity profile for different values of thermal buoyancy ratio (Gr) and Hartmann number 

(M). 

 

Evidently a significant acceleration accompanies an increase in thermal buoyancy ratio (Gr), since 

thermal buoyancy (free convection current) effect aids in momentum diffusion in the boundary 

layer. Gr in fact defines the ratio of thermal Grashof number to the square of Reynolds number and 
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invokes therefore not just thermal buoyancy force and viscous force but also inertial force. This has 

been emphasized in many seminal works in buoyancy-driven flows, notably by Gebhart et al. [42]. 

It has also been observed in other studies of nanofluid dynamics, for example Gorla et al. [43] and 

Nadeem et al. [44]. Thermal buoyancy encourages flow but reduces the momentum boundary layer 

thickness. It is therefore a primary mechanism used in materials processing operations to generate 

greater momentum flux. Conversely increasing Hartmann number, which symbolizes the relative 

contribution of Lorentzian magnetohydrodynamic drag force to viscous hydrodynamic force, results 

in a strong deceleration in nanofluid boundary layer flow. The velocity is therefore markedly 

decreased with greater M value and the momentum boundary layer thickness is increased. This has 

also been observed in other studies of magnetic nanofluid boundary layers, including [45]. 




(

)

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

G
r
= 0

G
r
= 0.3

M = 2, 3, 4

Nb = Nt = 0.5, Sc = 10,  = 0.1, Pr = 3.97

(a)



(

)

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Nt = 0.1

Nt = 0.5

Nb = 0.1, 0.3, 0.5

G
r
= 0.2, Sc = 10,  = 0.1, Pr = 3.97, M = 3

(b)



(

)

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Pr = 3.97

Pr = 6.2

 = 0, 0.3, 0.6

G
r
= 0.2, Sc = 10, Nt = 0.3, Nb = 0.5, M = 3

(c)  

Fig. 3.  Temperature profiles for different values of (a). Hartmann number (M) and thermal 

buoyancy ratio (Gr) (b). Brownian motion parameter  ( bN ) and thermophoresis parameter (Nt). (c) 

thermal relaxation time ( ) and Prandtl number (Pr). 
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Fig. 4.  Nanoparticle volume fraction (species concentration) profiles for different values of (a). 

thermal buoyancy ratio (Gr) and Schmidt number (Sc). (b). Brownian motion parameter ( bN ) and 

thermophoresis parameter (Nt) (c) thermal relaxation time ( ) and Prandtl number (Pr). 
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The asymptotically smooth profiles computed in fig. 2 also testify to the selection of an adequately 

large infinity boundary condition. Velocity profiles descend sharply from the sheet surface 

indicating that there is a deceleration in the nanofluid flow for relatively short migration into the 

thickness of the boundary layer. The weak nature of the magnetic field (M=2 is the maximum 

Hartmann number studied and corresponds to the Lorentzian force being double the viscous force) 

manifests in a distinct absence of any velocity overshoot at or near the wall. A similar response has 

been reported by Uddin et al. [46] also for magnetized nanofluids. 

Figs 3a-c illustrate the collective effects of several key parameters on temperature distribution, 

(). Evidently in fig. 3a a marked enhancement in temperature accompanies a rise in Hartmann 

number. The supplementary work expended in dragging the nanofluid against the imposed 

transverse magnetic field is dissipated as thermal energy. This results in a heating of the nanofluid 

regime and increase in thermal boundary layer thickness.  Indeed this effect has been computed by 

numerous researchers for both viscous conducting and nanofluids- see for example Sutton and 

Sherman [47] and Mustafa et al. [48]. With increasing thermal buoyancy ratio however there is a 

slight depletion in temperatures. Thermal buoyancy force is known to cool boundary layer flows 

while simultaneously accelerating them, as emphasized by Gebhart et al. [42]. In fig. 3b we observe 

that an increase in Brownian motion parameter (Nb) strongly elevates temperatures. Larger 

magnitudes of Nb physically corresponds to smaller particles and vice versa for smaller values of 

Nb. Smaller particles are able to enhance thermal conduction in the nanoscale and this globally 

results in increase in the bulk temperature of the fluid, as highlighted by Choi [1] and later by 

Buonjiornio  [33]. Although other mechanisms may contribute to thermal conductivity enhancement 

such as ballistic collisions and macro-convection, one of the dominant mechanisms (certainly for 

laminar flows) is now believed to be Brownian motion. The influence of the other key mechanisms, 

namely thermophoresis, is also depicted in fig. 3b. Greater values of thermophoresis parameter (Nt) 

are also observed to elevate temperatures and therefore increase thermal boundary layer thickness. 

Thermophoresis encourages nanoparticle transport away from a hotter surface towards a colder 

zone. This results in transport of thermal energy into the body of nanofluid and thereby increases 

temperatures. With increasing Prandtl number (Pr), there is a significant reduction in temperature, 

as shown in fig. 3b. We consider Pr >1 implying that momentum diffusivity greatly exceeds the 

thermal diffusivity in the fluid. For greater Pr values, thermal conductivity in the fluid must also 

decrease and this explains the decrease in temperature as Pr ascends from 3.97 to 6.2. Thermal 

boundary layer thickness will therefore also be reduced in the nanofluid sheet regime. With 

increasing thermal relaxation parameter () the nanofluid temperature is noticeably elevated. 
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Therefore the Fourier model () evidently under-predicts nanofluid temperatures, whereas the non-

Fourier model ( >0) produces greater magnitudes of temperature. The implications for materials 

processing is that a better estimate of actual temperatures can be achieved with the non-Fourier 

(Cattaneo-Christov) model via a relative simple modification of the heat conduction model. This 

may have an impact on better designing nanomaterials for specific applications.  

Figs 4a-c illustrate the combined effects of a number of thermophysical parameters on the nano-

particle volume fraction (species concentration), (), in the boundary layer. An increase in 

Schmidt number (Sc) as displayed in fig. 4a clearly enhances the nano-particle volume fraction i.e. 

encourages nano-particle diffusion in the boundary layer. Nano-particle species (concentration)  

boundary layer thickness will therefore also be increased. The Schmidt number embodies the ratio 

of momentum diffusivity to species (nano-particle) diffusivity. When Sc > 1, as studied in this 

paper, momentum diffusion rate exceeds species diffusion rate. As Sc increases from 6 to 7, this  

results in slower nano-particle migration which manifests in a depleted concentrations of nano-

particles although a more homogenous distribution throughout the boundary layer transverse to the 

sheet plane is achieved. Schmidt number is therefore a key parameter via which nano-particle 

transport can be manipulated. Increasing thermal buoyancy ratio (Gr) generates a similar effect and 

also reduces nano-particle volume fraction. Therefore greater thermal buoyancy force  

simultaneously  decreases nano-particle concentration boundary layer thickness. In fig. 4b we 

observe that while increasing thermophoresis parameter (Nt) substantially boosts the nano-particle 

concentration, an increase in Brownian motion parameter (Nb) has the contrary influence and 

considerably suppresses nano-particle volume fraction magnitudes. With increasing Prandtl number 

(Pr) as shown in fig. 4c, the nano-particle volume fraction is initially elevated in close proximity to 

the wall but thereafter the effect is reversed as we approach the free stream. Further from the wall 

the nano-particle (volume fraction) magnitudes are slightly decreased. With greater thermal 

relaxation effect, in fig. 4c, there is a weak elevation in nano-particle concentration values. This is 

understandable since the effect is achieved indirectly via the coupling of the energy and species 

diffusion boundary layer equations. The prominent influence of thermal relaxation is on 

temperatures and a diminished effect is sustained therefore by the nano-particle concentration field.  

Fig. 5 presents the evolution in skin friction (dimensionless surface shear stress) i.e. velocity 

gradient wat the wall, with Hartmann number (M) and thermal buoyancy ratio (Gr). There is a 

strong elevation in skin friction with greater magnetic field strength to which the Hartmann number 

is proportional. The profiles are all linear and maximized at low values of thermal buoyancy ratio 

and minimized at high values of thermal buoyancy ratio. Clearly therefore increasing thermal 
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buoyancy effect decelerates the boundary layer flow (decreases skin friction) and also serves to 

elevate momentum boundary layer thickness.  

Figs 6a-c show the response in wall heat transfer rate i.e. Nusselt number with various thermo-

physical parameters. In fig 6a an increase in Hartmann number (M) clearly suppresses Nusselt 

number implying a decrease in heat transported to the wall. This agrees with our earlier 

computations of temperature response (fig. 3a) since higher magnetic field body force will heat the 

nanofluid boundary layer and this will transfer heat into the body of the fluid away from the wall. 

Higher thermal relaxation () values again also induce a fall in Nusselt number values and this is 

explained by the increase in temperatures (fig. 3c) described earlier. This causes the decrease in 

Nusselt number at the wall. Higher thermal buoyancy ratio (Gr) however elevates the Nusselt 

number and physically this is consistent with the depletion in temperatures computed in fig. 3a with 

greater thermal buoyancy force effect. With increasing thermophoresis parameter (Nt), as plotted in 

fig. 6b, Nusselt number is also depressed and again this is due to the elevation in temperatures 

within the nanofluid boundary layer regime with greater thermophoretic effect (as computed earlier 

in fig. 3b).With stronger Brownian motion (higher Nb values), again Nusselt number is reduced and 

once again this is directly attributable to the elevation in temperatures within the nanofluid sheet 

(fig. 3b). Heat transfer rate to the wall must therefore simultaneously decreases. Fig 6c shows that 

the Nusselt number is enhanced with greater Prandtl number (Pr) but suppressed with greater 

Schmidt number. Increasing thermal buoyancy force (higher Gr values) however generate a steady 

ascent in Nusselt number magnitudes implying that greater heat is transferred to the sheet (wall) 

with larger thermal buoyancy force since the boundary layer is cooled and thermal boundary layer 

thickness is decreased.  

Figs 7a-c present the evolution of local Sherwood number (dimensionless nano-particle wall mass 

transfer rate) with various thermal, magnetic and nanoscale parameters. Increasing Hartmann  

magnetic parameter (M) is found to considerably reduce Sherwood number i.e. greater magnetic 

field applied transverse to the sheet results in a decreased migration of nano-particles towards the 

wall, since nano-particle concentrations in the boundary layer are elevated (as shown earlier). 

Conversely greater thermal relaxation time (  ) very strongly enhances local Sherwood number 

magnitudes, for any magnetic field scenario. Evidently greater thermal relaxation therefore 

encourages mass diffusion of nano-particles towards the wall (sheet). With greater thermal 

buoyancy effect (higher Gr values) local Sherwood number is also markedly and steadily elevated 

as testified to by the linear nature of the ascending profiles. Fig 7b shows that with increasing 

Brownian motion parameter (Nb), there is a strong elevation in local Sherwood number values, 
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irrespective of the values of thermophoresis parameter (Nt) and thermal buoyancy ratio (Gr). This 

increase is due to the elevated migration of nano-particles towards the wall with greater Brownian 

motion (smaller particle size) effect. On the other hand, an increase in thermophoresis parameter 

(Nt) generates the opposite effect and significantly depresses local Sherwood number since it 

elevates nano-particle concentrations within the nanofluid body regime. An increase in Gr values 

(greater thermal buoyancy effect) consistently enhances mass transfer rates to the wall and results in 

an increase in local Sherwood number magnitudes. Fig. 7c shows that while increasing Schmidt 

number elevates the local Sherwood number values very considerably, a rise in Prandtl number has 

the converse effect (although weaker) and noticeably reduces local Sherwood number. Increasing 

thermal buoyancy ratio (Gr) once again achieves a steady elevation in local Sherwood number 

magnitudes, although the rate of ascent is much less pronounced than in figs 7a and b.  

 

5. CONCLUSIONS  

A mathematical model has been developed to simulate the steady, laminar, magnetohydrodynamic, 

incompressible electrically-conducting nanofluid flow, heat and mass transfer from a stretching 

sheet in the presence of a transverse static magnetic field. The Buonjiornio nanofluid formulation 

has been adopted which invokes a species diffusion equation for the nano-particle migration. The 

non-Fourier Cattaneo-Christov heat flux model has also been employed to provide a more realistic 

estimation of temperature distribution in actual nanofluids. Via suitable scaling transformations and 

the deployment of carefully selected dimensionless variables, the dimensionless nonlinear partial 

differential conservation equations have been transformed to an ordinary differential boundary 

value problem with appropriate boundary conditions. A numerical solution has been presented 

based on an optimized fourth order Runge-Kutta algorithm combined with shooting quadrature. The 

solutions have been validated, where possible, with earlier published results for non-magnetic and 

forced convection (buoyancy absent) scenarios. The emerging boundary value problem has been 

shown to be dictated by a number of key thermophysical parameters, namely Hartmann (magnetic 

body force) number, thermal buoyancy ratio, thermal relaxation time parameter, Schmidt number,  

thermophoresis parameter, Prandtl number and Brownian motion number. The influence of these 

parameters has been computed for velocity, skin friction, temperature, Nusselt number, Sherwood 

number and nano-particle concentration distributions. The present investigation has shown that: 

(i)Increasing Brownian motion parameter strongly elevates temperatures and local Sherwood 

number values whereas it decreases nano-particle volume fraction and Nusselt number values. 
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(ii) Increasing magnetic parameter is found to decelerate the boundary layer flow (i.e. reduce 

velocities) and also reduce heat transfer rate at the wall (Nusselt number) whereas it enhances 

temperatures and local Sherwood number magnitudes. 

(iii) Increasing thermal buoyancy parameter significantly decreases nano-particle volume fraction 

whereas it weakly reduces temperatures in the nanofluid. 

(iv) Increasing thermal relaxation time (i.e. the non-Fourier model) markedly elevates temperatures 

throughout the boundary layer whereas initially it weakly increases nano-particle volume fraction 

(species concentration) and thereafter slightly depresses magnitudes towards the boundary layer 

free stream. The Fourier heat conduction model (vanishing thermal relaxation time) under-predicts 

temperatures compared with the non- Fourier model.  

(v) Increasing thermophoresis parameter increases both temperatures and nano-particle volume 

fraction, whereas it decreases both the Nusselt number and local Sherwood number.  

(vi) Increasing Schmidt number reduces the Nusselt number whereas it elevates the local Sherwood 

number. 

(vii) Increasing Prandtl number strongly elevates Nusselt number whereas it weakly reduces the 

local Sherwood number. 

 

The present study has been confined to Newtonian nanofluids. Future investigations will consider 

rheological aspects and will be communicated imminently.  
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