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1 | INTRODUCTION

Abstract

Natural selection is a major force in the evolution of vertebrate brain size, but the role
of sexual selection in brain size evolution remains enigmatic. At least two opposing
schools of thought predict a relationship between sexual selection and brain size.
Sexual selection should facilitate the evolution of larger brains because better cogni-
tive abilities may aid the competition for mates. However, it may also restrict brain size
evolution due to energetic trade-offs between brain tissue and sexually selected traits.
Here, we examined the patterns of selection on brain size and brain anatomy in male
anurans (frogs and toads), a group where the strength of sexual selection differs mark-
edly among species, using a phylogenetically controlled generalized least-squared
(PGLS) regression analyses. The analysis revealed that in 43 Chinese anuran species,
neither mating system, nor type of courtship, or testes mass was significantly associ-
ated with relative brain size. While none of those factors related to the relative size of
olfactory nerves, optic tecta, telencephalon, and cerebellum, the olfactory bulbs were
relatively larger in monogamous species and those using calls during courtship. Our
findings support the mosaic model of brain evolution and suggest that while the inves-
tigated aspects of sexual selection do not seem to play a prominent role in the evolu-

tion of brain size of anurans, they do impact their brain anatomy.

KEYWORDS
anuran, brain anatomy, brain size evolution, comparative analysis, courtship types, mating
system, PGLS, testes mass

Gonzalez-Voyer & Kolm, 2010; Kotrschal et al., 2015; Lemaitre, Ramm,
Barton, & Stockley, 2009; Pitnick, Jones, & Wilkinson, 2006). The sub-

Most theories of vertebrate brain size evolution consider natural
selection as the main evolutionary force shaping its diversification
(Striedter, 2005). Indeed, a great number of comparative and exper-
imental studies demonstrated the interplay between natural selection
and brain size evolution (Aiello & Wheeler, 1995; Gonzalez-Voyer &
Kolm, 2010; Kotrschal et al.,, 2013; Liao, Lou, Zeng, & Merild, 2015;
Sol, Székely, Liker, & Lefebvre, 2007; Tsuboi et al., 2015). Additionally,
within the last years, evidence across a wide range of taxa has ac-
cumulated that sexual selection might also affect brain size evolu-
tion (Boogert, Fawcett, & Lefebvre, 2011; Fitzpatrick et al., 2012;
Garamszegi, Eens, Erritzge, & Mgller, 2005; Garcia-Pena, 2013;

set of studies that provide empirical evidence that sexual selection
and brain size are associated, base their argument on the rationale that
better cognitive skills afforded by larger brains increase the chances
of obtaining mates (Boogert et al., 2011; Garamszegi et al., 2005). We
adhere to the broad definition of “cognition” as comprising “all mech-
anisms that invertebrates and vertebrates have for taking in informa-
tion through the senses, retaining it, and using it to adjust behavior
to local conditions” (Kotrschal & Taborsky, 2010; Shettleworth, 2010).

In contrast to the studies suggesting positive effects of sexual
selection on brain size, other studies propose that sexual selection

should restrict brain size evolution on the grounds of a trade-off. The
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development of costly sexual traits may limit the energy available
for the development of the brain (Fitzpatrick et al., 2012; Gonzalez-
Voyer & Kolm, 2010; Pitnick et al., 2006). However, several studies
did not detect any relationships between the investigated aspects
of sexual selection and brain size, such as testes size (Lemaitre et al.,
2009; Schillaci, 2006), or sexual coloration (Kotrschal et al., 2013). The
degree to which sexual selection impacts brain evolution is therefore
still an open question.

Within the field of sexual selection, the mating system of a species
has been suggested to drive the evolution of its brain size (Garcia-
Pefia, 2013; Pitnick et al., 2006; Schillaci, 2006). Again, two opposing
hypotheses predict the evolutionary relationship between the mating
system and the brain size of vertebrates. The “sexual conflict hypoth-
esis” argues that the ongoing struggle between males and females to
subvert the reproductive investment of the other sex is cognitively
demanding (Arnqvist & Rowe, 2005). As a result, promiscuous spe-
cies will have relatively larger brains than species with genetic monog-
amy (Rice & Holland, 1997). Conversely, the “expensive sexual tissue”
hypothesis contends that more intense sexual selection will constrain
the evolution of brain size again due to energetic trade-offs with
costly sexual organs, ornaments, or armaments (Garamszegi et al.,
2005; Pitnick et al., 2006). Empirical evidence only partially supports
this hypothesis. For instance, while Pitnick et al. (2006) found that bat
species with larger brains have smaller testes than bats with smaller
brains, Dechmann and Safi (2009) did not find such a relationship for
another set of bat species. Besides whole brain size, the mating system
can also affect the size of some brain regions. In primates, for example,
the intensity of male-male competition is negatively associated with
neocortex size and the neocortex is larger in monogamous species
(Schillaci, 2008). Similarly, in cichlid fishes, the region analogous to the
primates neocortex, the telencephalon, is larger in monogamous com-
pared to polygamous species (Pollen et al., 2007). Like the neocortex
in porimates, the fish telencephalon integrates more complex cogni-
tive processes; both are likely selected for by the cognitive challenges
of long-term pair bonds, which are typical for monogamous species. In
contrast, a later study on a greater number of cichlid species did not
find any association between sexual selection and telencephalon size
(Gonzalez-Voyer & Kolm, 2010).

Courtship is often crucial in sexual selection (Andersson, 1994)
and courtship calls and mate searching are two common behaviors
during courtship. They give cues of the male’s reproductive status
during female mate choice as well as during competition among males
(Duellman & Trueb, 1986). Yet despite recognition that species differ-
ences in courtship behavior are modulated via differences in distinct
cell groups in different parts of the brain and that these cell groups
have independent effects (Balaban, 1997), the relationship between
the type of courtship and the evolution of the brain and its regions
remains enigmatic.

Here, we examined the associations between relative brain size,
the size of five main brain regions, and three fundamental traits of sex-
ual selection among 43 anuran species. Within this group, it is already
established how phylogeny and ecology contribute to variation in brain
morphology (Liao et al., 2015). Here, we investigated the effect of the

mating system (monandry vs. polyandry), the courtship type (attract-
ing mates with courtship calls vs. searching for mates quietly), and
the intensity of sexual selection (using testes mass as proxy) on brain
morphology by means of phylogenetically controlled generalized least-
squared (PGLS) regression analyses. Anurans are an excellent model
system to test these relationships because of their diverse breeding
systems, ecology, and life histories (Byrne & Roberts, 2012; Duellman
& Trueb, 1986). The extreme variance in the degree of sexual selection
across species (Byrne, Simmons, & Roberts, 2003) allowed us to com-
prehensively test whether mating system and courtship type are asso-
ciated with differences in brain size and the size of brain regions (viz.
olfactory nerves, olfactory bulbs, telencephalon, optic tectum, and
cerebellum). Olfactory nerves were included because these are also
used by most anurans to process olfactory information, often called
smaller/accessory olfactory bulbs, and they may represent a distinct
olfactory system (Taylor, Nol, & Boire, 1995).

There is debate whether vertebrate brain regions evolve in a mosaic
or concerted manner, that is, whether brain regions increase and/or
decrease with overall brain size or whether specific selection pressures
can select for size changes of brain regions independently (see e.g.,
Barton & Harvey, 2000; Finlay, Darlington, & Nicastro, 2001; Gonzalez-
Voyer, Winberg, & Kolm, 2009; Liao et al., 2015; Yopak et al., 2010). Our
data set allows testing for those alternatives. If anuran brain regions
evolve in a mosaic manner in response to sexual selection, we would
expect single regions to vary independently. Concerted evolution would
be indicated if overall brains but not single regions would vary in size.
For the relationship between brain size and the chosen traits of sex-
ual selection, the hypotheses above give clear, yet at times opposing,
predictions. However, for brain region volumes, it is difficult to make
such predictions. This is so because the function of the separate brain
regions is still only partly understood and because single regions some-
times have multiple functions (Striedter, 2005). However, the olfactory
bulbs and optic tectum mainly integrate olfactory and visual informa-
tion, respectively; those regions are generally more prominent in spe-
cies with better olfactory and visual acuity (Butler & Hodos, 2005). Both
vision and olfaction play prominent roles in anuran mate choice (Liao
& Lu, 2009, 2010), we therefore predict that in species searching for
mates (instead of calling), those regions should be larger to facilitate
mate search efficiency. For volumes of the other regions, we avoid mak-
ing predictions and treat this part of the analysis as a prospect to iden-
tify the regions of the brain that are most affected by sexual selection.

2 | MATERIALS AND METHODS

2.1 | Field sampling

We collected a total of 200 adult male individuals from 43 anuran
species during the breeding seasons 2007-2013 from the Hengduan
Mountains of China. Individuals were transferred to the laboratory
and then killed by double-pithing (Mi et al., 2012, Jin et al., 2016). We
obtained volumetric measures of overall brain size and the five major
different brain regions (viz. olfactory nerves, olfactory bulbs, telen-
cephalon, optic tectum, and cerebellum) for all individuals (Table 1).
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Medulla volume was not determined because pithing damaged the
structural integrity of the brain stem; whole brain mass is not affected
by this method, however (Jiang et al., 2015). All specimens were pre-
served in 4% phosphate-buffered formalin for tissue fixation. After
2 weeks to 2 months of preservation, body size (snout-vent length:
SVL) was measured to the nearest 0.01 mm with calipers. Brains and
testes were dissected out and weighed to the nearest 0.1 mg with an
electronic balance. The number of days samples spent in the buffered
formalin did not affect relative brain weight (Liao et al., 2015) and tes-
tes mass (Zeng, Lou, Liao, & Jehle, 2014). We chose the species on the
basis of diversity of courtship behavior and mating system, access to
samples, as well as on the basis of available phylogenetic information.

2.2 | Brain measurements

All dissections, digital imaging, and measurements were performed
by two persons (LSL and LWB). All measurements were taken with
the experimenter blind to the species identity because specimens
were coded by uninformative ID-number. We used a Motic Images
3.1 digital camera mounted on a Moticam 2006 light microscope at a
400x magnification to take digital images of the dorsal, ventral, left,
and right sides of the brain and brain regions. For dorsal and ventral
views, we ensured that the view of the brain being photographed
was horizontal and that the brain was symmetrically positioned such
that one hemisphere did not appear larger than the other. For paired
regions, we only measured the width of the right hemisphere and
doubled the volume estimate. We used a tpsDig 1.37 software to
measure length (L), width (W), and height (H) of the brain and the five
brain regions from the digital photographs. Brain and brain regions
were defined as the greatest distance enclosed by the given region,

FIGURE 1 Dorsal, ventral, and lateral
views of frog brain. Shown are the
measures (length, width, and height) that
were taken from each of the five brain
structures (viz. olfactory nerves, olfactory
bulbs, telencephalon, optic tectum, and
cerebellum)

Ecology and Evolution 5
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and the used landmarks are shown in Fig. 1. Finally, we used an ellip-
soid model: volume = (L*W*H) 11/(6*1.43) to obtain the volumetric
estimates of different brains (see details in Liao et al., 2015). For
43 species, both intrameasurer and intermeasurer repeatabilities of
the intermeasurer repeatability for all brain traits are very high (Liao
et al., 2015). Average brain size and average size of brain regions
were used in all analyses. Before all analyses, all variables were log, -
transformed to meet distributional assumptions. Because some of
the measurements were smaller than one, all data were multiplied by
1000 prior to log transformation (Sokal & Rohlf, 1995). We found no
evidence for heterogeneity in variability across the five brain regions
(Liao etal., 2015). All data are deposited on Dryad (doi:10.5061/
dryad.j4754).

2.3 | Data analyses

Following Zeng et al. (2014), mating system for each species was clas-
sified as: 1 = polyandry—two or more males simultaneously releas-
ing sperm or sequentially releasing sperm in a time frame that allows
for the occurrence of sperm competition; 2 = monandry—a females
mates with one male over the course of a breeding season by depos-
iting part of a single clutch. The courtship types were classified as:
1 = courtship calls—males have well-developed vocal sacs and attract
mates through their vocalization; 2 = searching mates—males do not
have well-developed vocal sacs and search for females or eggs. The
classification of different species to different categories can be found
in Table 1 based on the references (Liao, Zeng, & Yang, 2013; Zeng
et al., 2014) and our own observation. We used dichotomous vari-
ables because for most species detailed descriptions of mating behav-

ior are unavailable.
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For our comparative analysis, we used the phylogeny of Pyron and

Rana omeimontis

Rana chaochiaoensis
Rana japonica

Rana kukunoris
Odorrana grahami
Odorrana margaretae
Odorrana hejiangensis
Pelophylax pleuraden
Hylarana guentheri
Hylarana daunchina
Pelophylax nigromaculata
Pelophylax plancyi
Amolops mantzorum
Amolops loloensis
Amolops lifanensis
Amolops granulosus
Rhacophorus omeimontis
Rhacophorus dugritei
Rhacophorus chenfui
Polypedates megacephalus
Paa yunnanensis
Chaparana quadrana

Paa boulengeri

Nanorana venbtripunctata
Nanorana parkeri
Fejervarya limnocharis
Bufo minshanicus

Bufo gargarizans

Bufo andrewsi

Bufo tibetanus

Bufo melanosctictus

Hyla annectans chuanxiensis
Hyla annectans jingdongensis
Hyla tsinlingensis
Kaloula rugifera

Kaloula verrucosa
Microhyla ornata

Branchytarsophrys chuannanensis

Branchytarsophrys feae
Megophrys shapingensis
Scutiger muliensis
Oreolalax rugosus
Bombina maxima

FIGURE 2 The phylogenetic tree of the
43 anurans species used in the comparative
analysis following Pyron and Wiens (2011).
Also see Liao et al. (2015)

nerves = 0.377, olfactory bulbs =0.358, telencephalon =0.382,

Wiens (2011) to reconstruct a phylogenetic tree for the 43 species
(Fig. 2). The relationships between (log) brain size, size of five brain
regions, and three indicators of sexual selection (i.e., mating system,
type of courtship, and testes mass) were assessed in a series of phylo-
genetically controlled linear models. To account for the evolutionary
relationships among species, we performed phylogenetically con-
trolled generalized least-squared (PGLS) regression analyses (Martins
and Hansen 1997) using log-transformed data in the APE-package
(R Development Core Team 2011) in R software package (V.2.13.1;
Paradis, Claude, & Strimmer, 2004). The PGLS regression estimates
a phylogenetic scaling parameter A using maximum-likelihood
method. The parameter \ estimates the effect of phylogenetic sig-
nal on the relationship between brain size and other factors ana-
lyzed (A = O indicating no phylogenetic signal, and A = 1 indicating
strong phylogenetic signal). We found strong phylogenetic signals
for all traits examined in our study (\: brain siz = 0.426, olfactory

optic tectum = 0.640, and cerebellum = 0.315). As brains are sub-
ject to a wide range of selective pressures that act simultaneously,
the relationships between both brain and brain regions and sexually
selected traits were assessed using multiple regressions in phyloge-
netic ANOVAs with body size added as a covariate in all analyses to
account for allometric effects.

3 | RESULTS

Across all species of amphibians tested, brain size was positively
correlated with body size when correcting phylogenetic effects
(slope = 3.65,t = 5.85,p < .001; Fig. 3). When controlling for body size,
none of the sexually selected traits (mating system, type of courtship,
testes mass) were significantly related to the amount of variation in

relative brain size, and the same was true also in the case of the size of
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olfactory nerves, optic tecta, telencephalon, and cerebellum (Table 2).
However, the size of the olfactory bulbs was significantly associated
with mating system, being larger in monandrous than in polyandrous
species (Table 2; Fig. 4). Olfactory bulbs size was further significantly
associated with the type of courtship; calling species exhibiting larger
olfactory bulbs than searching species (Table 2; Fig. 5).

4 | DISCUSSION

Here, we find no evidence that three prominent aspects of sexual
selection are related to the overall brain size of 43 species of amphib-
ians. However, both mating system and type of courtship influenced
brain anatomy on a finer scale, albeit partly opposite to our predic-
tions. The olfactory bulbs were larger in monandrous species and

species that use calls during courtship.

TABLE 2 Regression models of (log) brain size and size of different brain structures in relation to various predictor variables for males across
43 anurans species when controlling for phylogeny (PGLS). Body size was added as a covariate and was significantly positively related to brain
size and size of different brain structures in all models. The sample size, partial regression slopes (B) for the predictor variable, t- and p-values

are presented for each model

Source B d.f.
Brain -0.03250 1,43
0.03720 1,43
0.04327 1,43
1.34431 1,43
0.01007 1,43
Olfactory nerves -0.42542 1,43
0.26184 1,43
0.00265 1,43
3.57151 1,43
-0.00224 1,43
Olfactory bulbs -0.28688 1,43
0.12004 1,43
0.00961 1,43
2.10592 1,43
-0.00232 1,43
Telencephalon 0.00140 1,43
-0.00206 1,43
0.05481 1,43
1.18870 1,43
0.01362 1,43
Optic tecta 0.01854 1,43
0.05349 1,43
0.08723 1,43
1.08735 1,43
0.01048 1,43
Cerebellum -0.11904 1,43
0.09630 1,43
-0.04524 1,43
1.53099 1,43
0.01563 1,43

Predictor t p

Mating system -0.43286 6676
Courtship types 0.61762 .5406
Log testes mass 0.98914 .3290
Log body size 5.80040 <.0001
Number of sampling 1.27637 .2870
Mating system -1.91488 .0633
Courtship types 1.46829 .1505
Log testes mass 0.02047 .9838
Log body size 5.20755 <.0001
Number of sampling -0.17103 .8651
Mating system -2.21295 .0331
Courtship types 2.15353 .0256
Log testes mass 0.12719 .8995
Log body size 5.26218 <.0001
Number of sampling -0.30353 7632
Mating system 0.01767 .9860
Courtship types -0.03236 9744
Log testes mass 1.18666 2429
Log body size 4.85819 <.0001
Number of sampling 1.91736 1624
Mating system 0.17360 .8631
Courtship types 0.62404 .5364
Log testes mass 1.40183 1693
Log body size 3.29851 .0022
Number of sampling 1.66567 .1042
Mating system -0.76493 4492
Courtship types 0.77094 4456
Log testes mass -0.4989 .6208
Log body size 3.18686 .0029
Number of sampling 1.70504 .0966
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FIGURE 4 Differences in mean relative bulbus olfactorius size
as a function of mating system across 43 anurans species using
data corrected for phylogenetic effects. The plotted values refer to
residuals from regression of bulbus olfactorius size on body size

0.02 4

0.01 4

Bulbus olfactorius
(Res., [mm®] + S.E.)
o

—-0.01 4

Courtship Searching
calls mates

Courtship types

FIGURE 5 The mean relative bulbus olfactorius size in courtship
types in 43 anurans species when correcting phylogenetic effects.
The plotted values refer to residuals from regression of bulbus
olfactorius size on body size

The social brain hypothesis (Dunbar, 1998; Dunbar & Shultz,
2007) could be applied to predict an association between brain size
and anuran mating system. It states that higher social complexity
selects for larger brains because they should enable individuals to bet-
ter cope with the cognitive challenges of intricate social situations.
Hence, polyandrous anuran species with much shorter interaction
time between individuals could be expected to show relatively smaller
brains than monogamous species that usually spend extended periods
of time together. This may be seen as an analogy to what has been
reported in birds, where species with long-term bonds or more com-
plex social structures face higher cognitive demands and therefore
show larger brain size (Shultz & Dunbar, 2010). In this study, however,
we did not find a significant association between brain size and mating
system. If this negative result holds true, we may speculate that differ-
ences in brood care could underlie this discrepancy between birds and
amphibians. While monogamous birds generally also show extended
periods of brood care, likely allowing the offspring to develop a larger

brain, the anurans in our study do not show brood care. Whether this
is the case should be determined by investigating brain morphology in
brood-caring anurans.

In contrast to the whole brain, the size of the olfactory bulbs was
influenced by mating system. A larger olfactory center is commonly
associated with higher olfactory acuity (Kotrschal, van Staaden, &
Huber, 1998). The fact that we found larger bulbs in monandrous, com-
pared to polyandrous species, was unexpected but may be explained
by a prominent role of olfaction in anuran mate choice (Chivers,
Kiesecker, & Blaustein, 1998). The advantage of choosing better mates
due to better olfactory acuity during male mate choice could drive the
evolution of olfactory bulb size (Verrell, 1985). Alternatively olfactory
bulb evolution in monandrous animals may be driven via selection
on female olfactory ability during mate choice (Candolin, 2003); the
larger olfactory bulbs we observe may be the consequence of the
males’ and females’ brains inability to evolve independently from each
other within species (Finlay et al., 2001; but see Kotrschal, Rasianen,
Kristjansson, Senn, & Kolm, 2012). Future studies in female brain size
and anatomy are needed to determine whether the larger olfactory
bulbs are also found in monandrous females.

The second effect of sexual selection on the olfactory bulbs was
opposite to our predictions; we found smaller bulbs in species search-
ing for mates than in species using courtship calls. Whether this is
directly related to searching/producing courtship calls or driven by
some unknown third factor is currently unclear and will be investi-
gated in upcoming studies.

Signals produced during courtship behavior often provide cues
on male reproductive status and quality (Duellman & Trueb, 1986).
More complex signals should be cognitively demanding to produce,
and sexual selection may so lead to the coevolution of the size of the
involved brain regions and for instance the level of complexity or the
presence/absence of courtship calls. Indeed, in bird species with more
complex song structure, the areas related to song production are larger
(Devoogd, Krebs, Healy, & Purvis, 1993). Even the evolution of the
unusually large human brain may have been driven by complex signals
of courtship such as art, humor, or music (Miller, 2000). Although anu-
ran courtship calls are not directly comparable to those complex, often
learned, vocalizations of bird and mammals, they are produced by motor
pattern generators in the brain (stem) (Satou, Matsushima, Kusunoki,
Oka, & Ueda, 1981), we had therefore expected that whether or not
a species relied on courtship calls during mate acquisition would be
reflected in its brain size. While brain stem data were not available, we
did not find such a difference in whole brain mass. Upcoming experi-
ments will therefore specifically target brain stem volumes.

It is evident that analogous to ecological factors (Liao et al., 2015),
the level of promiscuity can impose selection on specific brain regions
in anurans. Interestingly, in contrast to those ecological factors, which
impact several brain regions, sexual selection seems to only affect the
olfactory bulbs. Both those results support the mosaic hypothesis of
brain evolution and are therefore in line with a range of studies in
other taxa finding evidence for this hypothesis (e.g., fish (Gonzalez-
Voyer et al., 2009), birds (Iwaniuk, Dean, & Nelson, 2004), or mammals
(Barton & Harvey, 2000)).
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Finally, the expensive sexual tissue hypothesis predicts that
intense sexual selection should constrain the evolution of larger brains
due to energetic trade-offs with sexual traits. In species with high lev-
els of sperm competition, as in many amphibians, the size of the testes
provides an adequate indicator of the level of the intensity of sexual
selection (Hosken & Ward, 2001). The fact that we did not find a nega-
tive association between testes mass and brain size in our study, how-
ever, does not support this hypothesis. While this lack of association
may not be surprising due to the relatively small testicular volume of
anurans (Liao et al., 2015), taken together with the lack of association
of brain size with mating system and type of courtship, it becomes evi-
dent that for the aspects we investigated, the expensive sexual tissue
hypothesis is implausible for brain size evolution in the anurans here
investigated. Potentially more fine-scaled proxies of sexual selection,
such as sex ratio during courtship/egg laying or mating effort, may
reveal such relationships in future studies.

In conclusion, while traits of sexual selection appear to be unre-
lated to brain size evolution, aspects of brain anatomy such as the
olfactory bulbs are clearly shaped by both mating system and the

nature of mate acquisition in male anurans.
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