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Abstract 

A robust controller is designed for active steering of a high speed train bogie with solid axle wheel sets 

to reduce track irregularity effects on the vehicle’s dynamics and improve stability and curving 

performance. A half-car railway vehicle model with seven degrees of freedom equipped with practical 

accelerometers and angular velocity sensors is considered for the H∞ control design. The controller is 

robust against the wheel/rail contact parameter variations. Field measurement data are used as the track 

irregularities in simulations. The control force is applied to the vehicle model via ball-screw 

electromechanical actuators. To compensate the actuator dynamics, the time delay is identified online 

and is used in a second order polynomial extrapolation carried out to predict and modify the control 

command to the actuator. The performance of the proposed controller and actuator dynamics 

compensation technique are examined on a one-car railway vehicle model with realistic structural 

parameters and nonlinear wheel and rail profiles. The results showed that for the case of nonlinear wheel 

and rail profiles significant improvements in the active control performance can be achieved using the 

proposed compensation technique. 

Keywords: Robust control; Active Suspension; Sensors; Actuator; Dynamics Compensation; 

Railways. 

 

1. Introduction 

Railways play an essential role in transportation nowadays. High speed, relatively cheap operation and 

maintenance cost as well as safe and environmental friendly service are some of the railways’ most 

important features. The cost efficiency in railway operations can be explored from different points of 

views such as running speed, ride comfort, safety, wheel/rail contact wear, maintenance cost and so 

forth. The bogie system of high speed trains contains primary and secondary suspension components 

which can significantly affect the overall dynamics behaviour of railway vehicles on different 

operational scenarios. Therefore, special attention should be paid to the bogie suspension system design. 

In this regard, several passive and active systems are developed during the past few decades in order to 

meet various design requirements and improve the railway vehicles’ performance from different 
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perspectives such as ride comfort, safety, and wheel/rail contact wear, see e.g. [1-6]. Although passive 

suspension systems might provide satisfactory running behaviour at low to medium speeds, application 

of such systems at high speeds might lead to a poor ride comfort and steering problems such as instability 

and lack of excellent curving performance. 

Active elements are often used in substitution of or in combination with passive components to improve 

the vehicle’s dynamics. The mainstream of the active control design in railway application is considered 

for the secondary suspension system. Orvnäs et. al. [7] designed a robust controller based on the H∞ 

concept to improve ride comfort and lateral stability of carbody. The controller has been designed for a 

quarter-car model and tested on a full scale vehicle model developed in multibody dynamics software 

SIMPACK. The results shown that remarkable ride comfort improvement can be achieved by means of 

the proposed control technique. Colombo et. al. [8] proposed an active hydraulic anti-roll bar which 

limited the carbody tilt on curves. Three control strategies have been examined and the results revealed 

an improvement in the vehicle’s running speed on curves while ride comfort remain unchanged or 

improved. Matamoros-Sanchez and Goodall [4] combined inerter-based suspensions with active control 

schemes to improve ride comfort. A novel nonlinear control strategy has been also proposed to 

compliment the implementation of skyhook damping. The results shown a significant vertical ride 

comfort enhancement with a smaller control effort. Gajdar et. al. [9] proposed an optimal and a robust 

controller for a wheel set system. The effects of parameters uncertainties have also been considered and 

a new controller designed to account for that. 

One of the most elementary steps in bogie suspension design for high speed trains running on curves is 

to assure that the system runs stable and reflects an appropriate curving performance and steering which 

are mostly dominated by the primary suspension components. In this regard, several active control 

schemes have been studied to improve the vehicle’s performance with respect to stability, curving 

performance, and steering, see e.g. [10-12]. Pearson et. al. [13] compared the stability performance of a 

classical controller and an optimal controller designed based on the linear quadratic regulator (LQR) 

theory for a set of operational scenarios and parameter uncertainties. The results tested on an 

experimental roller rig revealed that the proposed active controllers can significantly reduce the lateral 

motion of the bogie leading axle in comparison with to the passive case. Uncertainties in the wheel/rail 

contact parameters due to the track irregularities might negatively affect the controller performance. Mei 

and Goodall [14] designed a robust controller for active steering of a bogie with independently rotating 

wheels. The proposed controller is shown to be robust against the structural as well as the wheel and rail 

contact parameters uncertainties. The results showed that the proposed controller not only reduced the 

lateral motion of the wheel set but also enhanced ride comfort in comparison with to the case with 

passive control. The time delay due to the actuator dynamics in such actively controlled wheel sets might 

induce negative damping and make the system unstable. Therefore, it is necessary to compensate the 

time delay to be able to have the actuator output as close as possible to the ideal control command. The 
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actuator dynamics effects on the suspension system performance is investigated in a few studies. The 

mainstream of the work on actuator delay compensation is done by taking into account the actuator 

dynamics during the control design process, see e.g. [15, 16]. Li et. al. [17] employed the parallel-

distributed compensation technique to design a reliable fuzzy H∞ performance analysis criterion for a 

Takagi-Sugeno fuzzy system with actuator delay and fault. The results revealed that better suspension 

performance can be achieved using the proposed scheme. Shin et. al. [18] designed a multi-level 

controller (which incorporated the actuator dynamics) to compensate the time delay and dynamic 

friction torque. The ride quality was improved by using the proposed method.  

The time delay in suspension system applications is frequency dependent and should be compensated 

for online. Here, in addition to the weighting functions used to account for the actuator dynamics during 

the control design process and a PI controller which is tuned to reduce the error between the control 

command and the actuator output, a compensation technique which works based on the modification of 

the control command is proposed to further compensate the actuator dynamics and improve the active 

control performance.   

1.1. Motivation 

Although the robust control design of a bogie with independently rotating wheels is carried out in [14], 

similar problem for vehicles with solid axles has not been considered before. The motion dependency 

of wheels in a solid axle setup makes it more difficult to stabilize the system for such cases. Therefore, 

the main aim of the current study is to design a robust controller for bogie system of high speed trains 

with solid axles. Accelerometers, angular velocity sensors, and ball-screw electrohydraulic actuators are 

employed to provide a practical solution for the considered problem. Due to the actuator dynamics there 

is a dynamic time delay between the controller output and actuator output which may compromise 

system performance or even make the system unstable. Therefore, in addition to a PI controller, the time 

delay is identified online and is used in a second order polynomial extrapolation to predict and modify 

the controller command and further compensate the effects of the actuator dynamics. The performance 

of the proposed robust controller and actuator dynamics compensation technique is then examined on a 

one-car full scale railway vehicle model with realistic structural parameters, nonlinear wheel and rail 

profiles, and filed measurement track irregularities.     

2. Vehicle Model 

A half-car railway vehicle model shown in Fig. 1 is considered for the robust control design. The vehicle 

model consists of two wheel sets, one bogie frame, and a half-carbody. The bogie frame and each wheel 

set can make a lateral and a yaw motion, while the half-carbody only allows a lateral motion. Therefore, 

the vehicle model has 7 degrees of freedom (DOF). The bogie has solid axle wheel sets with linear wheel 

profiles. In addition to the abovementioned rigid components the vehicle model includes a set of primary 

and secondary suspensions. All the spring and dampers are passive and modelled as linear elements. 
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The target is to design a robust controller for active steering of the vehicle. The control torque is then 

applied to the wheel sets via a set of electromechanical actuators connecting the wheel sets to the bogie 

frame in the longitudinal direction.  

 

Fig. 1: Half-car railway vehicle model. 

The Kalker’s linear contact theory [19] is employed to attain the contact forces acting on wheel sets. It 

should be noted that the assumptions and theories used to develop the mathematical model of the vehicle 

such as rigid body elements, linear wheel profiles, two DOFs wheel sets and bogie frame as well as the 

Kalker’s linear theory are sufficient for the purpose of suspension control design of high speed bogies, 

see e.g. [13, 14]. 

The equations of motions of the system are given as follows: 
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The subscripts L and T denote leading and trailing wheel sets. Rest of the parameters and the 

corresponding values are introduced in Table 1. The system equations of motion described by Eqs. (1-

7) are represented in the state space form as follows: 

 A B  x x u w ,  (8) 

here,  

 TwL wL wL wL wT wT wT wT b b b b v vy y y y y y y y     x       , 

TAct Act
L TT T   u , 

 TL cL tL T cT tT1 1R y R y w . 

Vectors x, u, and w represent the system state vector, the two control torques, and inputs from the track, 

respectively. The explicit expressions for matrices A, B, and Γ are given in the appendix.  
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Table 1: Vehicle’s structural parameters and variables. 

Parameter Description and values 

Cp, Cs Lateral primary damping (37 kNs/m) and lateral secondary damping (12 kNs/m) 

f11, f22 Longitudinal and lateral creep coefficients (10 MN, 10 MN)  

TAct Control force from actuator 

g Gravitational acceleration (9.81 m/s2) 

Ib, Iw Bogie frame yaw inertia (3200 kg·m2) and wheel set yaw inertia (766 kg·m2) 

Kp, Ks Lateral primary stiffness (511 kN/m) and lateral secondary stiffness (471 kN/m) 

Lg Half gauge of wheel set (0.75 m) 

Lv Half spacing of axles (1.225 m) 

mb, mv, mw Bogie frame mass (3447 kg), vehicle mass (34460 kg), wheel set mass (1376 kg)  

r0 Wheel radius (0.445 m) 

R Radius of curvature of the track (3500 m) 

Vs Vehicle speed (300 km/h) 

yb, yw, yv Bogie frame, wheel set, and half-carbody lateral displacements 

yt Lateral random track irregularity 

θc Cant angle (6·π/180 rad) 

λ Wheel conicity (0.3) 

ψb, ψw Yaw angle of bogie frame and wheel set 

  

3. Robust Control Design 

One of the key factors in railway operations (especially at high speeds) is running stability which is 

particularly important for safety and ride comfort. Therefore, the controller should first of all stabilize 

the wheel set motion. Active steering of the vehicle and excellent curving performance with a realistic 

control effort are also some of the design requirements. Furthermore, the controller has to be robust 

against parameter uncertainties in the wheel/rail contact patch. The H∞ control design technique is one 

of the most well-known robust control design schemes. This method has been employed in [14] for 

robust control of a railway vehicle with independently rotating wheels. One of the targets here is to 

utilise the H∞ scheme for robust control of a railway vehicle with solid axles.  

In order to satisfy the abovementioned design requirements it is not necessary to control all the states of 

the system. A global sensitivity analysis on the wheel/rail contact properties with respect to the wheel 

set dynamics proved that the contact properties such as creepages, contact forces, and contact patch 

dimensions are mostly sensitive with respect to the wheel set lateral and yaw motions, see [20, 21]. The 

lateral wheel set motion should be below certain limit (8 mm in most of the cases) to avoid a flange 

contact. On the other hand, the wheel set yaw motion can significantly affect the contact forces. 

However, a study on optimization revealed that it is only necessary to minimize the wheel set lateral 

motion, see e.g. [14, 22]. The same concept is followed here and the leading and trailing wheel set lateral 

motions (i.e. ywL and ywT) are considered as the first set of two variables in the vehicle model output 
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vector (y). As part of the control design task and from practical point of view one should also expect an 

appropriate control effort. Consequently, the control torques acting on the leading and trailing wheel 

sets are also defined as the second set of two variables in y. Furthermore, the dynamic response of the 

wheel set should also be part of the output vector (y). This is done by considering practical 

accelerometers and angular velocity sensors to measure the lateral acceleration and yaw angular velocity 

of the leading and trailing wheel sets (i.e. wLy , wTy , w L , wT ). Finally, the system output vector y is 

defined as follows: 

  T1 Ctrl Ctrl
wL wT L T wL wL wT wT

2

y
y y T T y y

y
 

 
     

 
y      (9) 

Here TCtrl is the ideal control effort (with no actuator dynamics taken into account). Indeed, an ideal 

actuator is considered during the control design process and it is assumed that the actuator output is 

equal to the ideal control command, i.e. TAct =TCtrl. The actuator dynamics and the respective control 

torque TAct will be considered later on to check the performance of the designed controller on the 

dynamics behaviour of the vehicle when the actuator dynamics is taken into account.  

The input vector for the control design problem (uin) is defined as: 

 T1 n n n n T Ctrl Ctrl
wL wL wT wT L T

2

u

u
y y T T 

 
     

 
inu w   ,  (10) 

where, the superscript n indicates the sensor noise associated with the respective measured parameters. 

For the purpose of control design, the state space equations of the system (Eq. (8)) should be modified 

based on the system output and control input vectors defined by Eqs. (9, 10) to attain the augmented 

state space form of the system equations: 

  1 2 inA B B x x u   (11) 

 1 11 12
in

2 21 22

C D D

C D D
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Matrices B1, B2, C1, C2, D11, D12, D21, and D22 are defined in the appendix. The MATLAB-Simulink 

block diagram of the system used for the control design is shown in Fig. 2.  

The matrices WiR and WiD are defined as the input weighting matrix on a straight track with irregularities 

and a track with deterministic inputs, respectively. The matrix (Wfy) is a dynamic weighting factor used 

to shape the frequency response of each of the wheel sets’ lateral displacement and provide stability 

once track irregularity exist which is defined as: 

 
2 2

f f 2 2

2 2

2
W diag

2
y y y

y y
y y y

s s
k

s s
  

  

  
  



  
     

  (13) 



S.M. Mousavi Bideleh et al. 

8 
 

 

Figure 2: Block diagram of the robust control design. 

In a similar manner the matrix (WfC) is a dynamic weighting factor used to account the actuator dynamics 

and capacity constraints and is defined as:  
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  (14) 

It should be noted that the weighting matrices (WiR, WiD, Wfy, and WfC) shown in block diagram of Fig. 

2 are only introduced for the controller design purpose and are not generally part of the system state 

equations. Indeed, these matrices have to be tuned during the control design process to give an 

appropriate controller. Once the controller is designed, the weighting matrices could be removed and 

the controller effects on the vehicle dynamics performance can be studied. 

The target of control design is to stabilize the closed-loop system (G) and attenuate the effects of the 

track inputs on the dynamic output of the system. This is done by minimizing the H∞ norm of the transfer 

function between the track inputs and the system outputs (i.e. min Ĝ


). The track inputs cause 

uncertainties in the wheel/rail contact parameters and are identified by the vector w which includes the 

deterministic operational scenario ( L cL T cT1 , ,1 ,R R  ) and measured track irregularities ( tL tT,y y ). 

The MATLAB robust control design toolbox “μ-tools” is employed to carry out the H∞ control design. 

The robustness of the proposed controller is checked via μ-synthesis against variations in the contact 

parameters. In particular, the longitudinal and lateral creep coefficients (f11, f22) and wheel conicity λ.  

The vehicle performance is optimized by tuning the controller parameters and weighting matrices. Final 

values are given in Table 2.   
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Table 2: Parameters of the weighting matrices. 

Parameter Definition and value 

Kfy Coefficient of the weighting matrices on the wheel set lateral displacements (sqrt(2.5)) 

KTc Coefficient of the weighting matrices on the control torques (5e-6) 

WiD Input weighting matrix on the deterministic track input (0.5*I2×2) 

WiR Input weighting matrix on the random track input (0.5*I4×4) 

y , 
y   Frequencies of the dynamic weighting on the wheel set lateral displacements (1, 100 Hz) 

y , 
y  Damping ratios of the dynamic weighting on the wheel set lateral displacements (1, 1) 

c , 
c  Frequencies of the dynamic weighting on the control torques (1, 100 Hz) 

c , 
c  Damping ratios of the dynamic weighting on the control torques (1, 1) 

  

4. Compensation of Actuator Dynamics  

Although the effect of actuator dynamics has been taken into account within the dynamic weighting 

matrices, the actuator model has not been considered in the computer simulations carried out in [14]. 

The controller output represents the ideal control force and in practice actuators should be utilised to 

apply the control force to the vehicle. Due to the actuator dynamics in the vehicle suspension 

applications a delayed response from the ideal control force to the actuator output is inevitable. The 

actuator time delay can induce negative damping and make the system unstable. Therefore, special 

attention has to be paid to the actuator dynamics compensation to make the actuator output as close as 

possible to the ideal control force. In this section, first the actuator mathematical model used in this 

study is introduced and then a method for actuator dynamics compensation is proposed.     

4.1. Actuator Model 

Ball-screw electromechanical actuators are one of the most widely-used elements in active control of 

vehicles and are applied to control the wheel set lateral displacements in this study. This type of actuators 

constitutes of an electric motor and a ball-screw mechanism which converts the motor torque into a 

linear force as shown in Fig. 3.  

 

Figure 3: The ball-screw actuator and its equivalent mechanical model. 



S.M. Mousavi Bideleh et al. 

10 
 

The mathematical model of the ball-screw actuator is described as [23, 24]: 
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  (15) 

Here, Actx  and Actx   denote the relative displacement and relative velocity of the actuator’s ends which 

can be directly measured from the vehicle model. The rest of the actuator parameters in Eq. (15) are 

defined in Table 3. 

Table 3: The ball-screw electromechanical actuator parameters [13]. 

Parameter Definition 

xAct Relative displacement of the actuator 

xm Displacement of the ball-screw 

θm Rotation angle of the motor 

FAct Actuator force 

va, ia Voltage and current of the motor 

msc Screw mass (2 kg) 

ksc Screw stiffness (1.131e7 N/m) 

csc Screw damping (7540.7 Ns/m) 

km Motor series stiffness (1e7 N/m) 

cm Motor damping (0.0084 Nm/rad.s) 

Jm Motor Inertia (0.00115 kgm2) 

n Screw pitch (1/87) 

kt Motor torque constant (0.537 Nm/A) 

ke Motor back-emf gain (0.435 V/rad/s) 

larm Winding inductance (0.904 mH) 

rarm Winding resistance (0.112 Ω) 

 

4.2. Compensation Technique 

In practice, a local controller (in this case PI controller) is often tuned to minimize the error between the 

desired control command and the actuator output. In this study, a compensation technique is proposed 

in addition to the PI controller to further compensate the actuator dynamics. 

The actuator time delay can be considered as a constant in many applications such as earthquake 

engineering, see e.g. [25]. However, in the vehicle dynamics and suspension system applications the 

actuator time delay is dynamic and hence frequency dependent. In order to alleviate the actuator dynamic 
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effects on the vehicle performance it is necessary to estimate the time delay online and use an appropriate 

dynamics compensation procedure.  

To estimate the delay, the control command (input to the actuator from controller) and the actuator’s 

output are predicted using the polynomial extrapolations as shown in Fig. 3. The extrapolation can be 

applied using polynomials with different orders. The resulting amplitude magnification and phase for 

different prediction methods depend on the polynomial order and frequency, see e.g. [25, 26]. For the 

actuator model in question, the second-order polynomials showed a satisfactory compensation 

efficiency and are used in this paper. It should be noted that the number of points considered for 

prediction the control command and actuator’s output using the second-order polynomials are optimised 

to yield higher efficiency. 

 

Figure 4: Fitted curves on control command and the actuator’s output. 

At time q the actuator output (FAct) is estimated as a second-order function of time: 

 2
Act A A A
q q q qF a t b t c     (16) 

The control command at the time q is
C trl
qF . By taking 

A ct C trl
q qF F  and solving Eq. (16), the desired time 

d
qt  in which the actuator’s output is equal to the control command C trl

qF  is determined as follows: 

 
   2

A A A Ctrl

d
A

4

2

q q q q q
Aq

q

b b a c F
t

a

   
   (17) 

where, the root closer to the current simulation time qt  is chosen as d
qt . The time delay at the time q is 

then equal to d
q q qt t   .  

Therefore, the desired time at q ( d
qt ) is calculated using Eq. (17) and is known. Since, the integration time 

step (t=1e-5 s) is smaller than the time delay (i.e. t   ), it is assumed that the time delay remains 

constant between two time steps. Consequently, the control command for the next integration step q+1 
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(i.e.  1 1
Ctrl
q qF t  ) can be found by evaluating a polynomial extrapolation of the control command signal 

at time 1
d

q qt t t    .  

The schematic diagram of the compensation procedure is shown in Fig. 5. Using the control command 

from the H∞ controller (FCtrl) and measured actuator output (FAct), the compensation block estimates the 

desired time at step q ( d
qt ) and accordingly predicts the desired control signal for the next time step, i.e. 

 1 1
Ctrl
q qF t  . This is done with the aid of second order polynomial extrapolation using polyfit block in 

MATLAB SIMULINK. The modified control command is then applied to the actuators. As 

aforementioned, the number of points used to predict the control command are optimised to attain the 

best performance. In addition, a PI controller is also tuned to further compensate the actuator dynamics 

and reduce the error between the control command and actuator’s output.  

 

Figure 5: Block diagram of the compensation technique. 

5. Results 

The simulation results associated with the half-car railway vehicle model shown in Fig. 1 as well as a 

full scale one-car railway vehicle with nonlinear wheel and rail profiles are scrutinised in this section. 

5.1. Results of the half-car vehicle model 

The radius of curvature and cant angle for the considered operational scenario are shown in Fig. 6. 

 

Figure 6: Operational scenario for the simulations. 

The running speed is Vs = 300 km/h. To check the controller performance in disturbance rejection, real 

measurement data from the Swedish Transport Administration (Trafikverket) are applied to the model 

as the lateral track irregularities. 
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The power spectral density (PSD) of lateral displacement of the leading axle for the ideal case (No Act 

Dyn) and the two cases with actuator dynamics: no compensation and with compensation are 

demonstrated in Fig. 7. It should be noted that the vertical axis is in the logarithmic scale and “No Act 

Dyn” corresponds the case that the control demand (from the controller) is directly applied to the vehicle 

model.  

It can be seen that the compensation technique appropriately compensates the actuator dynamics 

inasmuch as the system response for the case with no actuator dynamics is close to the case with 

compensation technique. 

 

Figure 7: PSD of lateral displacement of the leading axle for the ideal case (No Act Dyn) and the two cases with 

actuator dynamics: with and without compensation. 

The longitudinal contact forces acting on the leading and trailing wheel sets are plotted in Fig. 8. Since 

the values are relatively small and close to one another, it can be deduced that the controller provides 

excellent curving performance.  

 

Figure 8: Longitudinal contact force of the front and rear wheel sets. 
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The PSD of the control forces are plotted in Fig. 9. The vertical axis is in the logarithmic scale. It can 

be seen that a similar pattern to the lateral displacement of the leading axle is followed here. The 

proposed compensation technique properly reduced the actuator dynamics effects and the actuator 

output is close to the ideal control command when the compensation technique is used. The origin of 

the peaks in the graphs corresponding to the case “Act Dyn (No Comp)” is the actuator dynamics and 

respective effects on the dynamics behaviour of the vehicle. From Figs. 7 and 9 it can be seen that the 

vehicle response is sensitive with respect to the exciting frequencies around 16 Hz when the actuator 

dynamics is not compensated.  

 

Figure 9: Control Force PSD for the Ideal case (No Actuator Dyn) and the two cases with Actuator Dynamics: 

with and without compensation. 

To compare the energy consumed by the actuator in the case of with and without using the compensation 

technique, the PSD of the actuator’s input voltage as well as the actuator’s output force-input velocity 

are shown in Fig. 10 and Fig. 11, respectively. Note that the vertical axis in Fig. 10 is in the logarithmic 

scale.  

 

Figure 10: PSD of the actuator’s input voltage for the case of with and without compensation. 

It can be seen that the proposed compensation technique requires less input voltage. Furthermore, the 

area covered by the actuator’s output force-input velocity is much less than the case without 
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compensation. Consequently, the proposed technique consumes less energy in comparison with the case 

with no compensation which is beneficial.  

 

Figure 11: Actuator’s force-velocity graph. 

From the simulation results obtained in this section for a railway vehicle with linear wheel and rail 

profiles, it can be deduced that the controller yields a satisfactory performance when operating at Vs = 

300 km/h on the specified track with realistic irregularities. It should be noted that although the 

compensation technique improved the performance, using the actuator without compensation also lead 

to system stability for the vehicle model in question. In the next section the target is to explore the 

controller and compensation technique performance for a railway vehicle model with nonlinear wheel 

and rail profiles.   

5.2. Simulations on a full scale one-car railway vehicle 

In this section, the performance of the proposed controller is tested on a one-car railway vehicle model 

with 50 degrees of freedom developed in the multibody dynamics software SIMPACK, see Fig. 12. The 

structural parameters used to develop the vehicle model are in-service data provided by the Bombardier 

Transportation, Västerås, Sweden. The wheel and rail profiles are created based on the nominal S1002 

and 60 E1 profiles, respectively. Two ball-screw electromechanical actuators are attached to each wheel 

sets to apply the control torque. Accelerometers and angular velocity sensors are considered on each 

wheel set in the SIMPACK vehicle model to carry out the required measurements. On the other hand, 

the actuator model and block structures required to calculate the control torques are implemented in 

MATLAB/SIMULINK. Therefore, SIMAT module is used to perform the simulations in the 

SIMPACK/SIMULINK co-simulation interface. More details on the vehicle model and co-simulation 

process can be found in [6, 21]. 
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Figure 12: Application of the proposed controller for a full scale one-car railway vehicle model. 

Measurement data from Swedish Transport Administration are used as the track irregularities in the 

lateral direction. 

The lateral displacement of the leading axle is plotted and compared in Fig. 13 for the case of passive 

control and the proposed robust controller. It can be seen that a significant improvement can be achieved 

using the active control technology. It should be noted that the vehicle runs at Vs = 300 km/h and the 

passive case corresponds to the in-service data from Bombardier Transportation, Västerås, Sweden. 

 

Figure 13: Lateral displacement of the leading axle: Active Vs. Passive control. 

The PSD of the carbody’s lateral acceleration and PSD of the leading axle’s wear are plotted in Fig. 14 

(a) and Fig. 14 (b), respectively. It can be seen that using the proposed robust controller ride comfort is 

improved in comparison with the passive case. The differences in the amplitudes of the wear PSD 



Accepted for publication in Vehicle System Dynamics, 2016 

  17 

diagrams shown in Fig. 14 (b) for the active and passive cases are due to the fact that the actuators and 

passive components (spring and dampers in particular) have different structures and might affect the 

dynamics behaviour of the wheel set in different ways. The rout mean square (RMS) of the wear index 

showed that wear is slightly reduced with the aid of active control. However, wear is generally small 

when the vehicle operates on tracks with large curve radii and straight tracks.  

 

Figure 14: Active controller performance vs. passive: a) PSD of carbody lateral accelerations; b) PSD of wear. 

To study the effects of the compensation technique on the dynamics performance of the vehicle, a 

suitable reference for comparison has to be chosen. The schematic diagram of the control strategy is 

plotted in Fig. 15 (a-c) for the ideal case (No Act Dyn) and the cases with actuator dynamics: with and 

without compensation. Here, blocks VM, Ctrl, Act, and Comp represent the vehicle model, controller, 

actuator model, and compensator, respectively. Vectors, yi and fi (i=a, b, c) denote the vehicle’s outputs 

and input control forces, respectively. The controller command in the case of no compensation is 

represented by fbc. The ideal case (Fig. 15 (a)) and the respective vehicle’s outputs and control force 

inputs are considered as the reference for comparison the vehicle performance with and without the 

compensation technique. It should be noted that only the lateral displacement and the control force 

applied to the leading axle are chosen for comparison. 

 

Figure 15: Schematic block diagram of the control technique for the ideal and the two cases with actuator 

dynamics: a) Ideal (No Act Dyn); b) Without compensation; c) With compensation. 

The lateral displacement error (i.e. yb-ya and yc-ya) of the leading axle and the actuator’s output force 

error (i.e. fb-fa and fc-fa) with respect to the ideal case (No Act Dyn) are compared in Figs. 16 (a), (b) for 

the case of with and without compensation. From Fig. 16 (a) it can be seen that the lateral displacement 
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error in the case of without compensation grows rapidly, while remains within the same limits when the 

compensation technique is in use.    

 

Figure 16: The error between the ideal case (No Act Dyn) and the two cases with actuator dynamics (with and 

without compensation): a) Wheel set’s lateral displacement; b) Actuator’s output force. 

The respective actuator’s output force errors for the case of with and without compensation reflect a 

similar behaviour and as the integration time increases, the error of the control force with respect to the 

ideal case remains within the same range for the case of with compensation technique, while it increases 

for the one associated with the case of no compensation, see Fig. 16 (b).  

Such a behaviour might make the system unstable and has not been observed for the vehicle model with 

linear rail and wheel profiles. This proves the significance of the proposed compensation technique in 

practice once dealing with the nonlinear wheel and rail profiles. 

It is important to note that for the case of control without compensation (Fig. 15 (b)), comparison of the 

actuator’s output (fb) and the controller command (fbc) showed that the error (i.e. fb-fbc) is bounded. 

Consequently, the source of the noticeable difference with the ideal control force in Fig. 16 (b) might 

be the controller command (fbc). This could be due to the fact that the parameters of the dynamic 

weighting matrix (Wfc) used to account the actuator dynamics during the control design process (see 

Fig. 2) might not be properly tuned from this point of view. Retuning the controller parameters showed 

that those errors can be reduced. As a result, using the proposed compensation technique or retuning the 

controller parameters might reduce the errors shown in Fig. 16.  

Variations in the mass of carbody (mv) can significantly affect the vehicle dynamics behaviour [27]. 

Therefore, the performance of the controller and compensation technique is checked from this 

perspective. In this regard, the initial carbody mass is decreased (by 45%) and increased (by 142%) 

which are the limit values employed in [27] to carry out the assessment analysis of the dynamics 

behaviour of a railway vehicle with respect to the inertia properties. The lateral accelerations of the 
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leading bogie frame are compared in Fig. 17 for the case of initial, decreased, and increased carbody 

mass. 

 

Figure 17: Lateral acceleration of the leading bogie for the initial, decreased and increased carbody mass. 

It can be seen that regardless of the variations of the carbody mass, the proposed controller and 

compensation technique stabilise the system and lead to an appropriate vehicle dynamics behaviour. 

6. Conclusions 

A robust controller was designed based on the H∞ concept to improve the steering and curving 

performance of railway vehicles with solid axle wheel sets. A half-car railway vehicle model with 7 

DOF was considered for the control design purpose. The paper addressed the practical issues regarding 

control of railway vehicles by introducing accelerometers and angular velocity sensors to measure the 

lateral accelerations and yaw angular velocities of the wheel sets. Furthermore, actuator dynamics has 

been taken into account and ball-screw mechanical actuators were employed to apply the control torque 

to the vehicle model. In addition to a PI controller tuned to alleviate the actuator dynamics, a 

compensation technique was introduced. The procedure worked based on the online estimation of the 

actuator’s time delay and accordingly modifying the control command to suppress the actuator dynamics 

effects. The controller performance was also tested on a full scale one-car railway vehicle model with 

50 DOF developed in the multibody dynamics software SIMPACK.  

The following concluding remarks have been achieved: 

 The proposed robust controller stabilised the system and yield excellent curving performance. 

 For the vehicle model with realistic structural parameters, nonlinear wheel and rail profiles, 

and input track data, the proposed robust controller has shown improvement in the vehicle’s 

performance in comparison with the passive case.   

 The proposed compensation technique demonstrated remarkable performance improvement 

for both vehicle types considered in this study. 
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 Although the linear vehicle model run stable even without an actuator dynamics compensation, 

the simulation results proved the significant role of the proposed compensation technique in 

the system dynamics performance when nonlinearities such as realistic wheel and rail profiles 

are taken into account.  
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Appendix 

The explicit expressions for matrices A, B, and Γ in Eq. (8) used to represent the system state space 

model are given as follows: 

1,1 1,2 1,4 1,9 1,10 1,11 1,12

2,1

3,2 3,3

4,3

5,5 5,6 5,8 5,9 5,10 5,11 5,12

6,5
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a a a 9,6 9,9 9,10 9,13 9,14

10,9

11,1 11,2 11,5 11,6 11,11 11,12

12,11

13,9 13,10 13,13 13,14

14,13

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

a a a a a

a

a a a a a a

a

a a a a

a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 14 14

, (A-1) 

here, 

 1,1 22 s p w2a f V C m   , 1,2 p wa K m  ,   1,4 22 w2a f m ,   1,9 p wa C m , 

1,10 p wa K m ,    1,11 p v wa C L m ,    1,12 p v wa K L m , 

2,1 1a  , 
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   3,2 11 g 0 w2a f L r I  ,    2
3,3 11 g s w2a f L V I  , 

4,3 1a  , 

5,5 1,1a a , 5,6 1,2a a , 5,8 1,4a a , 5,9 1,9a a ,  

5,10 1,10a a , 5,11 1,11a a  , 5,12 1,12a a  , 

6,5 1a  , 

7,6 3,2a a , 7,7 3,3a a , 

8,7 1a  , 

9,1 p ba C m , 9,2 p ba K m , 9,5 9,1a a , 9,6 9,2a a , 

 9,9 p s b2a C C m   ,  9,10 p s b2a K K m   , 9,13 s ba C m , 9,14 s ba K m , 

10,9 1a  , 

 11,1 v p ba L C I ,      11,2 v p ba L K I ,   11,5 v p ba L C I  ,    11,6 v p ba L K I  , 

2
11,11 v p b2a L C I  ,   2

11,12 v p b2a L K I  , 

12,11 1a  , 

13,9 s va C m ,   13,10 s va K m  ,   13,13 s va C m  , 13,14 s va K m  , 

14,13 1a  . 

T

3,1 11,1

7,2 11,2 2 14

0 0 0 0 0 0 0 0 0 0 0 0
B

0 0 0 0 0 0 0 0 0 0 0 0

b b

b b


 
  
 

, (A-2) 

where, 

3,1 w1b I , 7,2 w1b I , 11,1 b1b I  , 11,2 b1b I  . 

T

1,1 3,1 9,1 13,1

1,2 9,2 13,2

5,3 7,3 9,3 13,3

5,4 9,4 13,4

3,5

7,6 6 14

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

   
  

   
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




 
 
 
 

   
 
 
 
  

, (A-3) 

here, 
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2
1,1 sV  , 1,2 g   , 

 2
3,1 11 g w2 f L I  ,    3,5 11 g 0 w2 f L r I  , 

5,3 1,1  , 5,4 1,2  , 

7,3 3,1  , 7,6 3,5  , 

2
9,1 s 2V  , 9,2 2g   , 9,3 9,1  , 9,4 9,2  , 

13,1 9,1  , 13,2 9,2  , 13,3 13,1  , 13,4 13,2  . 

The matrices B1, B2, C1, C2, D11, D12, D21, and D22 used in Eqs. (11) and (12) to represent the augmented 

state space form of the system equations are defined as: 

1 14 4B 0  , (A-4) 

 2 14 8
B B


  , (A-5) 

where, matrices Γ and B are introduced by Eqs. (A-3) and (A-2), respectively.  

1

4 14
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0 0 0 0 0 1 0 0 0 0 0 0 0 0
C
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

 
 
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 
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T
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2 4
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11 4 2D 0  . (A-11) 
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