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Sequential regression measurement error models
with application
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Abstract: Sequential regression approaches can be used to analyze processes in which covariates are
revealed in stages. Such processes occur widely, with examples including medical intervention, sports
contests and political campaigns. The naïve sequential approach involves fitting regression models
using the covariates revealed by the end of the current stage, but this is only practical if the number
of covariates is not too large. An alternative approach is to incorporate the score (linear predictor)
from the model developed at the previous stage as a covariate at the current stage. This score takes
into account the history of the process prior to the stage under consideration. However, the score is
a function of fitted parameter estimates and, therefore, contains measurement error. In this article,
we propose a novel technique to account for error in the score. The approach is demonstrated with
application to the sprint event in track cycling and is shown to reduce bias in the estimated effect of
the score and avoid unrealistically extreme predictions.
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1 Introduction

Consider a stochastic control process or prediction problem in which a random
outcome depends on a set of non-random covariates such that (a) disjoint subsets of
the covariates are revealed in stages and (b) at each stage, a model (explanatory or
predictive) for the outcome is required. Such processes, which have a natural order
given by the discretization of time into stages, occur in many fields: for example,
medics may wish to model patient survival prior to intervention, immediately post
intervention, and prior to discharge taking account of patient, disease and interven-
tion characteristics revealed at each stage; in a sporting context, coaches and players
would like to understand the effect of tactical decisions on overall outcome as the
contest progresses; and politicians may wish to assess the effectiveness of tactics used
during various stages of a political campaign. At each stage, a vector of covariates
is revealed, and a modeller/statistician might take one of the following approaches:
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1. At each stage i = 1, ..., m, fit a model that contains the covariates revealed up
to and including stage i, repeating this process at each stage (naïve sequential
regression).

2. At the first stage, fit a model that contains the covariates revealed at the first
stage, and then at each stage i = 2, ..., m, fit a model that contains the covariates
revealed at stage i plus the estimated linear predictor from the previous stage
i − 1. Elisheva et al. (2000) refer to models, obtained in this way as sequential
models and we will follow their convention of referring to the linear predictor
as the score throughout this article.

The naïve approach (1) may be practical if both the total number of covariates and
the number of stages are not too large. Otherwise, we should anticipate difficulties
regarding covariate selection: for example, if a covariate enters the model at stage i,
should it enter the model at all stages, or should its selection at stage i not influence
selection at other stages? A solution to this problem is to proceed sequentially as in
approach (2), so that a covariate that enters the model at stage i continues to have an
effect at all subsequent stages, albeit becoming more dilute as the sequential model
fitting proceeds. Approaches (1) and (2) are considered further in Section 2.

A drawback of the sequential approach (2) is that the estimates of the covariate
effects can be biased since the score is itself a random variable. This article develops
a measurement error model to alleviate this problem and, to our knowledge, is the
first to do so. In particular, we describe a measurement error model for sequential
generalized linear models (GLMs); we do this in Section 3, with a particular focus
on sequential logistic regression. We will call our approach sequential measurement
error regression. The approach is demonstrated in Section 4 by application to the
sprint event in track cycling; here, the object is to explain race outcome at each of
a number of intermediate stages in the race. The novel technique we develop avoids
biases in the estimates of the effect of the score at each stage and, hence, is essential
for making appropriate inferences about the size of covariate effects. In the example
we describe, such biases were up to 19%, when measured relatively to the size of the
effect. We also demonstrate that the difference in the predicted probabilities of overall
outcome, between the standard sequential approach (2) and the sequential measure-
ment error approach, propagates through the stages leading to unrealistically high or
low values of the predicted probability when not accounting for measurement error.

2 Review of the statistical analysis of sequential processes

A key feature of such sequential processes is that the number of influential covariates
increases with each stage, since the model at stage i should consider all covariates
revealed so far in the process. If there are too many influential covariates compared
to the number of cases, the variability in the parameter estimates becomes large
(Peduzzi et al., 1996; Vittinghoff and McCulloch, 2007). Vittinghoff and McCulloch
(2007) suggest that there should be at least five events per covariate (an event being
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the outcome, either success or failure, whichever occurs least often). Therefore, the
naïve approach (1) will not be applicable for many processes. Each stage could be
considered in isolation, by fitting a model with only the covariates revealed in the
current stage. However, this can lead to the effect of covariates being misinterpreted.
In particular, covariates at one stage may act as surrogates for other covariates
revealed in earlier stages. For example, Hill et al. (2000), when studying coronary
artery bypass treatment, developed a model containing covariates relating to a
bypass operation as well as a covariate to capture pre-operative factors. They found
that one of the operative covariates did not significantly affect outcome, in contrast
to an earlier study that did not account for pre-operative factors.

To overcome this problem, Elisheva et al. (2000), Hill et al. (2000), Van
Wermeskerken et al. (2000) and Welsby et al. (2002) used the estimated score
(or the implied outcome probability) from the model developed at the previous
stage as a covariate in place of all covariates revealed in the prior stages, that is,
approach (2) of Section 1. This estimated linear predictor or estimated score (or its
equivalent) is effectively a collective covariate describing the influential covariates
prior to the current stage. However, the sequential logistic regression approach
of Elisheva et al. (2000) makes the assumption that the score is a non-random
covariate when it is, in fact, a random variable, since it is a function of the fitted
parameter estimates from the preceding model and, therefore, contains intrinsic
measurement errors. Measurement error has three effects, collectively known as
the ‘triple whammy’ (Carroll et al., 2006). First, it causes bias in the parameter
estimates. Second, it leads to a loss of power for detecting relationships between
the outcome and the covariates. Finally, it masks features of the data that would
otherwise be evident in plots of outcome against covariates. While measurement
error methods have been successfully adopted in many fields, for example, blood
pressure monitoring (time-varying measurement) and nutrient intake (significant
measurement inaccuracies), they have not been used to adjust for error when the
score from a model developed in an earlier stage of a process is used as a covariate in
a later stage. We develop a methodology to do just this by combining the sequential
regression approach with a likelihood-based measurement error method.

3 Sequential regression models

Formally, let us suppose that we would like to predict the outcome of a process
comprising m stages and that in the past we have observed n cases. Let us denote the
covariates revealed by stage i as [X̃1, X̃2, ..., X̃i], i = 1, ..., m and the ultimate outcome
by Y. Note, X̃k is then the collection of covariates revealed at stage k and is, therefore,
a matrix. Let the complete set of covariates be denoted by X = [X̃1, X̃2, ..., X̃m].
Further more, denote the jth observation of X̃k by x̃kj and the jth observation of Y, the
ultimate outcome, by yj. Thus, the data (from past cases) are (x̃kj, yj), k = 1, ..., m,
j = 1, ..., n . In the next two sub-sections, we describe the naïve sequential regression
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(3.1) and sequential regression (3.2). In the third sub-section, the novel technique
sequential measurement error regression, which combines sequential regression with
measurement error methods to account for the error in the score, will be derived.

3.1 Naïve sequential regression

The naïve sequential model can be fitted in the standard way. At each stage i =
1, ..., m, data (of past cases) (x̃kj, yj), k = 1, ..., i, j = 1, ..., n is used to fit the regression
Y|(X̃1, X̃2, ..., X̃i), so that at the first stage, we fit the regression model Y|(X̃1) to data
(x̃1j, yj), j = 1, ..., n, and at the second stage, Y|(X̃1, X̃2) to (x̃1j, x̃2j, yj), j = 1, ..., n and
so on. The result is m separate regressions. At each stage, one would expect to carry
out a variable selection procedure, only fitting the important (influential) covariates
and discarding the rest as non-significant. A forward stepwise procedure might be
used for this (e.g., Seber and Lee, 2012). However, the inclusion–exclusion criteria will
not be properly calibrated because many regression models are being fitted. In essence,
the difficulty with this procedure is that it is not clear whether, if a covariate enters the
regression at stage i, it should enter the regressions at all stages or perhaps at all later
stages or whether its selection at stage i should not influence selection at other stages.

3.2 Sequential regression

At the first stage, we fit the regression model Y|(X̃1) using the covariates revealed
at the first stage to data (x̃1j, yj), and then at each subsequent stage i = 2, ..., m, we
fit the regression model Y|(Ẑi−1, X̃i) that contains the covariates revealed at stage
i plus the score estimated from the previous stage i − 1 to data (ẑi−1j, x̃ij, yj). Ẑi−1
is the estimated score obtained from fitting the regression at stage i − 1 and (ẑi−1j),
j = 1, ..., n, its observed values. The regressions can be fitted at each stage using
maximum likelihood estimation.

Variable selection can proceed in a standard way at each stage, using, for
example, forward stepwise, because one is now only selecting covariates from those
revealed at stage i, X̃i. Denoting the covariates selected (from those revealed) at
stage i by Xi, it then follows that the observed value of the score at stage i is given
by ẑij = ˆ̨ i + xijb̂i + ˆ̌

izi−1j, i = 2, ..., m, where ˛i is a constant term, b̂i (a column
vector) is the parameter estimates for the covariates revealed in the current stage
and ˆ̌

i is the parameter estimate for the score, with b̂i particularly being used for the
interpretation of the model at stage i.

3.3 Sequential measurement error regression

The sequential model described above assumes that the estimated score Ẑi−1 is a
non-random variate, that is, measured without error. However, it is strictly not
observed but is estimated with error, since it is a function of the parameter estimates
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( ˆ̨ i−1, b̂T
i−1, ˆ̌

i−1) from the preceding regression. We denote the true unknown score
by Zi−1. There are different methods in the literature that can be used to account for
error. We will adopt a likelihood approach, similar to Rabe-Hesketh et al. (2003). This
approach is well established and has been shown in the literature to reduce the bias in
covariates measured in error both analytically and practically (Thoresen and Laake,
2000). The sequential measurement error regression is derived in the next sub-section,
followed by a discussion of the numerical optimization method used for fitting.

3.3.1 Derivation of the sequential measurement error regression
The likelihood approach maximizes the joint probability density f (Y, Ẑ|X). We will
assume a classical non-differential measurement error, which is appropriate if the
errors do not contain extra information about the outcome (Carroll et al., 2006). This
is a reasonable assumption because the error is in the score, which is the linear predic-
tor from a generalized linear regression model developed at the previous stage and is,
hence, not correlated with the outcome at the current stage. The joint density at stage
i > 1 can be written as an integral containing three components (Carroll et al., 2006):

f (Y, Ẑi−1|Xi) =
∫

f (Y|Zi−1, Xi)f (Ẑi−1|Zi−1)f (Zi−1|Xi) dZi−1. (3.1)

This equation contains three components, and therefore three sub-models are
required to specify the full likelihood. These are:

1. The outcome sub-model f (Y|Zi−1, Xi): This is just a GLM. For logistic regres-
sion (and, therefore, sequential logistic measurement error regression), we set

prob(yj = 1|zi−1j, xij) = exp(˛i + xijbi + ˇizi−1j)
1 + exp(˛i + xijbi + ˇizi−1j)

,

and prob(yj = 0|zi−1j, xij) = 1 − prob(yj = 1|zi−1j, xij). For Poisson log-linear
regression (and, therefore, sequential Poisson log-linear measurement error re-
gression), we set

prob(yj = y|zi−1j, xij) = exp
{
y(˛i + xijbi + ˇizi−1j) − e(˛i+xijbi+ˇizi−1j)

}
/y!

(y = 0, 1, ...). For linear regression (normal errors), we set

f (yj|zi−1j, xij) = 1

�
√

2�
exp

[
− 1

2�2

{
yj − (˛i + xijbi + ˇizi−1j)

}2
]

.

2. The measurement error sub-model f (Ẑi−1|Zi−1): The classical additive measure-
ment error model, ẑi−1j = zi−1j + uij, is assumed (Carroll et al., 2006), where uij

is the additive normally distributed error so that f (Ẑi−1|Zi−1) = N(0, �2
i−1j). The
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assumption of normality is reasonable, since the score is a linear sum of param-
eters, each having an associated uncertainty.

3. The sub-model for the true unknown score f (Zi−1|Xi): This sub-model can be
difficult to specify in general and, therefore, can have a considerable impact
on model robustness. The score Zi−1, however, is the linear predictor from a
GLM which is asymptotically normally distributed (McCullagh and Nelder,
1989) and, therefore, zi−1j ∼ N(�i−1, �2

i−1). For the application which was used
in this article, it was reasonable to assume that Zi−1 is independent of Xi (see
Section 4 for further details). Therefore, this sub-model becomes f (Zi−1). This
assumption will not be valid for all applications, but for this work, we will
continue by assuming that Zi−1 is independent of Xi.

For sequential logistic measurement error regression, the likelihood function is
then

L =
m∏

j=1

∞∫
−∞

{
exp(˛i+xijbi+ˇizi−1j)

1+exp(˛i+xijbi+ˇizi−1j)

}yij
{

1
1+exp(˛i+xijbi+ˇizi−1j)

}1−yij

× 1
�i−1j

√
2�

exp
{
− 1

2�2
i−1j

(
ẑi−1j − zi−1j

)2}× 1
�i−1

√
2�

exp
{
− 1

2�2
i−1

(
zi−1j − �i−1

)2} dzi−1,j.

(3.2)

The process of maximizing this likelihood function with respect to parameter
vector [˛i, bi, ˇi, �i−1, �2

i−1] requires some technical, numerical work, and this is dis-
cussed in the next sub-section. Higdon and Schafer (2001) discuss the identifiability
of such measurement error models. They point out that even when the model is
identifiable (e.g., when sub-model 1 is logistic regression and sub-models 2 and 3
are normal), there is no practical information contained in the parameter estimates
without validation or replication data; hence, the measurement error variance �2

i−1j

should be known.

3.3.2 Fitting the sequential measurement error model
The steps required to fit the sequential measurement error model are as follows:

1. The measurement error variance is estimated using bootstrap samples.
2. The estimated score is calculated from the model at the previous stage.
3. The likelihood is evaluated numerically using Gauss—Hermite quadrature.
4. The log-likelihood is maximized using the Newton—Raphson method.

These steps are discussed further below:
Step 1: In the first step, the measurement error variance �2

i−1j for the observed
score at the previous stage is calculated for each observation. A number of methods
have been suggested for this calculation: (a) via a validation dataset (e.g., Guo
and Little, 2011), where the true score is actually observed; (b) using replicate
measurements of ẑi−1j (e.g., Rabe-Hesketh et al., 2003); and (c) via an instrument
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variable (e.g., Rosner et al., 1990). In the example that we describe later, neither
a validation dataset nor replicate measurements nor an instrument variable were
available. Therefore, we recommend to use bootstrap samples of the original data
to obtain replicated values of the estimated scores, that is, to refit the model at the
previous stage using the bootstrap sample and to use the bootstrap sample variance
of these estimated scores (Efron and Tibshirani, 1993).

Step 2: At each stage, the estimated scores Ẑi−1 must be calculated for each
observation. At the first stage, this is a null step as there is no previous stage. At
the second stage, we can use ẑ1j = g{E(yj|x1j)} = ˆ̨ 1 + x1jb̂1, where ˆ̨ 1, b̂1 are the
estimates from the first stage and g is the link function in the GLM, since there is
no measurement error component in the model fitted at the first stage. At the third
stage, matters are more complicated. To quantify all predictive information from a
previous stage in which there is a measurement error component, the estimated score
is obtained from g{E(yj|ẑi−1j, xij)} evaluated at the maximum likelihood estimate.
Conceptually, this is the linearized predicted outcome from the previous stage and is
calculated as follows. First, we have to calculate the probability density of yj|ẑi−1j, xij:

f (yj|ẑi−1j, xij) = f (yj, ẑi−1j|xij)∫
f (y, ẑi−1j|xij)dy

, (3.3)

then evaluate its expectation and finally transform the result using g. When the
outcome variable is discrete, then the integral in the denominator of Equation (3.3) is
a summation. In the case of logistic regression, g{E(yj|ẑi−1j, xij)} is the logit transform
of the fitted success probability: the fitted success probability is

f (yj = 1|ẑi−1j, xij) = f (yj = 1, ẑi−1j|xij)
f (yj = 1, ẑi−1j|xij) + f (yj = 0, ẑi−1j|xij)

, (3.4)

so that

g{E(yj|ẑi−1j, xij)} = log{ f (yj = 1|ẑi−1j, xij)
1 − f (yj = 1|ẑi−1j, xij)

}.

The terms in the right-hand side of Equation (3.4) are evaluated in the same way
as the likelihood function (3.1; described next) and setting parameters equal to their
maximum likelihood estimates.

Step 3: The likelihood is evaluated numerically using, for example, Gauss—
Hermite quadrature (Hildebrand, 1974), which is an ideal technique for approxi-
mating integrals involving exponentials as follows:

+∞∫
−∞

e−z′2
f (z′)dz′ ≈

A∑
a=1

waf (z′
a),
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where A is the number of sample points used for the approximation, z′
a are the roots

of the Hermite polynomial HA(z′) and wa are the associated weights given by

wa = 2A−1A!
√

�

A2
[
HA−1

(
z′

a

)]2 .

In order to apply Gauss—Hermite quadrature, the likelihood of Equation (3.2)
needs to be transformed to the correct form by defining z′2 as follows:

z′2 =
(
zi−1j − �i−1

)2
2�2

i−1

.

The likelihood (Equation 3.2) can then be written as

1√
�

∏
j

∫ ⎧⎨
⎩

exp
(
˛i + ˇi

(√
2�i−1z′ + �i−1

)
+ bT

i xij

)

1 + exp
(
˛i + ˇi

(√
2�iz′ + �i−1

)
+ bT

i xij

)
⎫⎬
⎭

yij

×
⎡
⎣1 −

⎧⎨
⎩

exp
(
˛i + ˇi

(√
2�iz

′ + �i−1

)
+ bT

i xij

)

1 + exp
(
˛i + ˇi

(√
2�iz′ + �i−1

)
+ bT

i xij

)
⎫⎬
⎭
⎤
⎦

1−yij

× 1√
2��2

i−1j

exp

⎧⎪⎨
⎪⎩−

(
ẑi−1j −

(√
2�i−1z′ + �i−1

))2

2�2
i−1j

⎫⎪⎬
⎪⎭× exp

{− (z′2)}dz′.

This is now in the form of Gauss—Hemite quadrature and can be approximated
numerically as

∏
j

A∑
a=1

wa

⎧⎨
⎩

exp
(
˛i + ˇi

(√
2�iz

′
a + �i−1

)
+ bT

i xij

)

1 + exp
(
˛i + ˇi

(√
2�iz′

a + �i−1

)
+ bT

i xij

)
⎫⎬
⎭

yij

×
⎡
⎣1 −

⎧⎨
⎩

exp
(
˛i + ˇi

(√
2�iz

′
a + �i−1

)
+ bT

i xij

)

1 + exp
(
˛i + ˇi

(√
2�iz′

a + �i−1

)
+ bT

i xij

)
⎫⎬
⎭
⎤
⎦

1−yij

× 1√
2��2

i−1j

exp

⎧⎪⎨
⎪⎩−

(
ẑi−1j −

(√
2�iz

′
a + �i−1

))2

2�2
i−1j

⎫⎪⎬
⎪⎭ .
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Step 4: For computational purposes, it is easier to work with the log-likelihood.
The accuracy of the quadrature depends on the number of points selected. We
recommend evaluating the log-likelihood for increasing number of points starting
with 10 in steps of 10 until a required accuracy is attained. The log-likelihood
is then maximized to determine the unknown parameters, using, for example,
Newton—Raphson method (Collett, 2002), which has been found to work well
for measurement error models (Rabe-Hesketh et al., 2003). We recommend using
the fitted values from the sequential regression as initial values for ˆ̨ i, b̂i, ˆ̌

i in the
maximization procedure for stage i = 2. For stages i > 2, the sequential regression
model can be refitted using the estimated score as calculated at Step 2 to yield initial
values. The mean and standard deviation of ẑi−1j over all j observations provide initial
values for �i−1 and �i−1. Standard errors are obtained from the variance–covariance
matrix. This can be approximated by the negative inverse of the Hessian matrix (the
matrix of the second derivatives of the log-likelihood with respect to the unknown
parameters) which is obtained from the final stage of the Newton–Rapshon process.
The p-values are then calculated in the same way as for normal logistic regression.

At each stage, one would expect to carry out a variable reduction procedure,
proceeding in the same way as for the sequential regression model, Section 3.2.

4 Example: The match sprint in track cycling

We now illustrate our ideas using an example from sport: the match sprint in track
cycling. This is a highly tactical race that takes place between two riders in a velo-
drome. In major competitions, the riders race over three laps of a 250 m track. They
start together and the first across the finish line wins. In major competitions, the event
is organized in knock-out rounds, each round being a best-of-three race. An initial
qualifying round, in which riders race individually against the clock over a ‘flying’
200 m, determines the qualifiers and pairings for the knock-out rounds. The time an
individual sets in the flying 200 m is called the ‘flying time’ and the implied speed the
‘flying speed’: This is an important covariate that we will use later. More details of the
event can be found with UCI (2016). As the outcome of a single race is win or loss,
we use logistic regression. Now, we want to (a) compare the ‘novel sequential logistic
measurement error regression’ (Model 3) with ‘naïve sequential logistic regression’
(Model 1) and ‘sequential logistic regression’ (Model 2) and (b) briefly describe some
tactical implications for riders and coaches that our preferred model suggests.

The factors that determine the outcome of a race are described in the next
sub-section. We then present our results and compare and contrast the three models.

4.1 Factors in the match sprint: Description and data collection

Using video footage, supplied by British Cycling, of 367 races from major competi-
tions between 2006 and 2008 (see Table 1), the times and the position (perpendicular
distance from the inside of the track) at which riders crossed each of the five visible
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Table 1 Number of races, average flying speed in km/hr and the percentage of faster riders (by flying speed)
who won the race for the dataset used to build the models by gender

Gender Number of races Average flying speed (km/hr) % of faster riders who won

Male 203 69.47 75%
Female 164 62.72 66%
Total 367 66.49 71%

Note: Faster rider is the rider with the faster flying speed.

marks (the solid longitudinal lines shown in Figure 1) for each of the races were
found. Times were determined to an accuracy of 1/50th second. Positions were or-
dinally categorized and were also collected at each mark and each virtual mark as
shown in Figure 1 (11 marks in total). The track is not flat but slopes upwards, linearly
from the inside. The slope is greatest at the apex of the curves. Using the known three-
dimensional geometry of the track and the information collected from video footage,
riders’ average speeds over a stage were estimated; this is discussed further in Moffatt
et al. (2014). The flying speeds of riders from the qualifying round were obtained from
the Tissot Timing website (Tissot Timing, 2016). The average flying speeds were 63
km/hr and 69 km/hr for female and male riders, respectively (see Table 1).
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fin
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Figure 1 Plan view of a track, showing the track division for determining speed and position and describing
covariates and tactics: The latitudinal lines divide the track into six positions. The Finish, 200 m and 100 m,
lines divide the track into stages, with stage 1 occurring in lap 1 and stages 2–4 occurring in lap 2. The diagram
also shows the marks on the track at which data were collected, which correspond to either actual markings on
the track (–––), or to virtual marks (– –) where additional information regarding riders’ positions was collected.
Each mark is given a label comprising two numbers: The first number refers to the stage and the second refers
to the mark within the stage.
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The faster rider (rider with the faster flying speed) does not always win; in the
dataset used to build the model, the faster rider won 71% of the time (see Table 1).
The race is, therefore, highly tactical; broadly speaking, riders vie for track position in
the first part of the race and sprint for the finish line in the second part. Riders typically
cannot sustain an early sprint; flat out sprints from the start are rare and will be
unsuccessful unless the trailing rider is taken by surprise or is much weaker. Therefore,
throughout a race, a rider must make decisions about speed and position based upon
an opponent’s speed and position, distance to the finish, and pre-race tactical plans.

In each model (1–3), we assign the reference rider as the faster rider by ‘flying
speed’, and the outcome is recorded from the point of view of this rider. For mod-
elling, we divide the race into the following stages as shown in Figure 1. Stage 1 is the
last 100 m of the first lap (600 m to 500 m to go). Moffatt et al. (2014) found race
tactics not to be important prior to 600 m to go; therefore, this part of the race was
not considered. At the end of stage 1, there are two laps (500 m) to go. Stage 2 is the
next 50 m, stage 3 is the next 100 m and stage 4 is the final 100 m of the second lap
(see Figure 1). Thus, four regressions are fitted at 500 m, 450 m, 350 m and 250 m to
go. Tactically, the second lap is the crux of the race, and riders are committed to their
actions as they enter the final lap: sprinting flat-out to hold the lead while staying
inside the sprinter’s line or slipstreaming and overtaking around the final bend.

4.2 Model fitting procedure

Model 1 was fitted using the standard functions available in the R programming
language (R Development Core Team, 2016). The fitting of Models 2 and 3 was im-
plemented in MATLAB® (2007, Mathworks, Natick, Massachusetts), including the
variable selection procedure. The final set of covariates described in Tables 2 and 3,
which includes first order interactions, was developed from the primary covariates
(positions and average speeds). The final set of covariates relates to the average speed
of the riders over stages, track position at the marks, changes of position and changes
of lead (overtaking). In this example, over 30 covariates were considered at each stage.
This made it impractical to use a variable selection technique which involved fitting
all possible regressions and choosing between them using, for example, Akaike in-
formation criterion or Bayesian information criterion (Dobson and Barnett, 2008).
Instead, a procedure using bootstrap techniques in conjunction with forward step-
wise was used (Sauerbrei and Schumacher, 1992). This involved generating bootstrap
samples and fitting the regression to each bootstrap sample using forward stepwise
to yield a bootstrap regression for each member of the bootstrap sample. Revealed
covariates are selected for the final regression based on the number of times they
appear in the bootstrap regressions. Although this procedure has been criticized for
misselection (Austin, 2008), the broad view is that it selects covariates robustly.

As discussed in Section 3.3.1, for this application we assume that Zi−1 is inde-
pendent of Xi. This means that the true score (which is related to the probability of
winning at the previous stage) is not correlated with the other covariates revealed in
the current stage. This assumption was tested on our dataset by testing for correlation
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between the estimated score and the other covariates for the final model. Pearson
product-moment correlation coefficient was calculated between the estimated score
and the other covariates. No significant correlation (p-value less than 0.05) was
found, indicating that this is also likely to be valid for the true score.

In order to directly compare Models 1 to 3, the same sets of covariates were used.
These covariates were selected when applying the sequential model (Model 2) rather
than the measurement error model (Model 3). This approach is likely to be more
stringent because the sequential regression model is more optimistic about the size
of effects, and this approach also had the advantage of reducing the computational
burden (Moffatt, 2012).

4.3 Results

Tables 2 and 3 show how the interpretative complexity of the naïve sequential
regression (Model 1) increases through the stages. The parameter estimates are
generally more significant and the standard errors are generally larger for the naïve
sequential model (Model 1). There are many more covariates in the naïve sequential
models; therefore, there are not as many events (event being the outcome which
occurred less often, i.e., win or lose in this case) per covariate term. Even at 450 m to
go, there are only nine events per covariate term, reducing to five events per covariate
term at 250 m to go. This suggests that the naïve sequential models in general are
likely to be unstable/poorly estimated at later stages, particularly when there are
many covariates in the models. Peduzzi et al. (1996) found in a simulated study that
the variability in the parameter estimates becomes large and, hence, inaccurate when
there are less than 10 events per covariate.

The sequential regression (Model 2) reduces this complexity; however, as
discussed in Section 3, the sequential model assumes that the estimated score is
measured without error, which is not true. When accounting for error in the score
(Model 3) with a well-established measurement error method for our dataset, the
estimated effect of the score at each stage is between 16% and 19% higher than when
not accounting for error in the score (Model 2). This indicates that not accounting
for the error in the score can lead to the estimate of the effect of the true unknown
score being biased towards zero. The parameter estimates for most of the revealed
covariates are similar for the sequential and sequential measurement error models.
Therefore, the effect of the actions riders apply on win probability at each stage is
similar for the sequential and sequential measurement error models. The key actions
and race states that appear to influence race outcome at each stage are described
in the next sub-section. However, the sequential model which underestimates the
effect of the true unknown score, therefore, conversely overestimates the effects of
revealed covariates. In this way, the sequential model places more importance on
race actions and less on the ratio of flying speeds (the covariate that dominates the
score) than the sequential measurement error model.

The parameter estimates which are most dissimilar for the sequential and
sequential measurement error models are UO(O,4) and DH(4,4)×UO(O,4) in the
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Table 2 Parameter estimates, standard errors and p-values for the three models at stages 1, 2 and 3: 1, naïve
sequential logistic regression; 2, sequential logistic regression; 3, sequential logistic measurement error
regression

Stage Covariate Model 1 Model 2 Model 3
Estimate St. error p-value fEstimate St. error p-value Estimate St. error p-value

Intercept −74.71 14.02 0.00 −74.71 14.02 0.00 −74.71 14.02 0.00
FF 74.63 13.87 0.00 74.63 13.87 0.00 74.63 13.87 0.00
DC(1) −0.24 0.10 0.01 −0.24 0.10 0.01 −0.24 0.10 0.01

1 FI(1,2) −0.75 0.31 0.02 −0.75 0.31 0.02 −0.75 0.31 0.02
FI(1,1) 0.71 0.34 0.03 0.71 0.34 0.03 0.71 0.34 0.03
DC(1) × FI(1,2) 0.26 0.11 0.02 0.26 0.11 0.02 0.26 0.11 0.02

Intercept −78.72 14.64 0.00 1.56 0.66 0.02 1.32 0.68 0.05
FF 80.22 14.55 0.00 − − − − − −
DC(1) −0.32 0.10 0.00 − − − − − −
FI(1,2) −0.74 0.33 0.02 − − − − − −
FI(1,1) 0.75 0.36 0.04 − − − − − −
DC(1) × FI(1,2) 0.37 0.12 0.00 − − − − − −
Z(1) − − − 1.09 0.18 0.00 1.30 0.22 0.00

2 SC(2,1,3) −1.09 0.30 0.00 −1.07 0.30 0.00 −1.04 0.30 0.00
AF(2) −0.90 0.49 0.07 −0.88 0.48 0.07 −0.83 0.49 0.09
RP(2,3) −7.52 2.45 0.00 −7.21 2.42 0.00 −7.15 2.49 0.00
AF(2) × RP(2,3) 5.43 2.01 0.01 5.20 1.99 0.01 5.16 2.04 0.01
RP(2,3) × SC(2,1,3) 1.71 0.69 0.01 1.68 0.69 0.01 1.62 0.71 0.02
μ − − − − − − 1.07 0.05 −
t − − − − − − 0.85 0.04 −
Intercept −94.58 16.57 0.00 −0.38 0.26 0.15 −0.54 0.29 0.06
FF 96.22 16.51 0.00 − − − − − −
DC(1) −0.43 0.11 0.00 − − − − − −
FI(1,2) −0.88 0.35 0.01 − − − − − −
FI(1,1) 0.86 0.38 0.02 − − − − − −
DC(1) × FI(1,2) 0.45 0.13 0.00 − − − − − −

SC(2,1,3) −1.22 0.32 0.00 − − − − − −
AF(2) −1.27 0.53 0.02 − − − − − −

3 RP(2,3) −10.53 2.85 0.00 − − − − − −
AF(2) × RP(2,3) 7.74 2.34 0.00 − − − − − −
RP(2,3) × SC(2,1,3) 1.93 0.74 0.01 − − − − − −

Z(2) − − − 1.21 0.17 0.00 1.40 0.20 0.00
SLI(3,3) 0.84 0.29 0.00 0.80 0.28 0.00 0.85 0.30 0.00
FI(3,1) −1.90 0.47 0.00 −1.86 0.46 0.00 −1.87 0.48 0.00
SI(3,1) −0.26 0.40 0.52 −0.28 0.39 0.47 −0.31 0.41 0.44
FI(3,1) × SI(3,1) 2.50 0.67 0.00 2.43 0.65 0.00 2.44 0.67 0.00

μ − − − − − − 1.14 0.06 −
t − − − − − − 1.04 0.05 −

Note: See Table 4 for the definitions of the covariates. Parameter estimates with p-values greater than 0.05
were only retained in the model to conform with the hierarchical principle.

250 m to go model. The sequential model most likely overestimates these two terms
because there are few instances where riders overtake at this stage. The measurement
error technique, therefore, reduces this likely overestimation. The standard errors
for the parameter estimates are slightly larger for the sequential measurement error
models, as would be expected because the measurement error variance implies
greater uncertainty in the estimation process.
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Table 3 Parameter estimates, standard errors and p-values for three models at stage 4: 1, naïve sequential
logistic regression; 2, sequential logistic regression; 3, sequential logistic measurement error regression

Stage Covariate Model 1 Model 2 Model 3
Estimate St. error p-value Estimate St. error p-value Estimate St. error p-value

Intercept −94.12 17.68 0.00 0.38 0.21 0.07 0.24 0.22 0.28
FF 96.54 17.62 0.00 − − − − − −
DC(1) −0.48 0.12 0.00 − − − − − −
FI(1,2) −0.97 0.38 0.01 − − − − − −
FI(1,1) 1.09 0.41 0.01 − − − − − −
DC(1) × FI(1,2) 0.51 0.14 0.00 − − − − − −

SC(2,1,3) −1.18 0.35 0.00 − − − − − −
AF(2) −1.61 0.59 0.01 − − − − − −
RP(2,3) −10.36 3.06 0.00 − − − − − −
AF(2) × RP(2,3) 7.36 2.45 0.00 − − − − − −
RP(2,3) × SC(2,1,3) 2.16 0.81 0.01 − − − − − −

4 SLI(3,3) 0.86 0.34 0.01 − − − − − −
FI(3,1) −1.83 0.51 0.00 − − − − − −
SI(3,1) −0.38 0.44 0.38 − − − − − −
FI(3,1) × SI(3,1) 2.56 0.72 0.00 − − − − − −

Z(3) − − − 1.02 0.14 0.00 1.19 0.17 0.00
FLD(3,4) −1.07 0.42 0.01 −0.93 0.40 0.02 −0.92 0.41 0.02
DH(4,4) 0.00 0.05 0.92 −0.01 0.04 0.75 −0.02 0.04 0.63
UO(N,4)
UO(O,4) −2.31 0.81 0.00 −2.13 0.77 0.01 −1.85 0.72 0.01
UO(U,4) 0.03 0.66 0.97 −0.14 0.63 0.83 −0.16 0.72 0.83
DH(4,4) × UO(N,4)
DH(4,4) × UO(O,4) 1.60 0.63 0.01 1.60 0.63 0.01 1.43 0.67 0.03
DH(4,4) × UO(U,4) 0.03 0.15 0.82 0.04 0.14 0.78 0.07 0.15 0.62

μ − − − − − − 1.30 0.07 −
t − − − − − − 1.35 0.06 −

Note: See Table 4 for the definitions of the covariates. Parameter estimates with p-values greater than 0.05
were only retained in the model to conform with the hierarchical principle.

Accounting for the error in the score also led to differences in the predicted
win probabilities, which generally increase with the stage. At 450 m to go, for the
majority of races, these differences are within the range −0.02 and 0.02, with 308
(87%) races being within this range (see Table 5). At 350 m to go and 250 m to
go, 114 (32%) and 127 (36%) races have an absolute difference greater than 0.02,
respectively (see Table 5). This illustrates that in a sequential approach, the effects
of measurement errors propagate through stages.

The differences in the probabilities predicted by the sequential and sequential mea-
surement error models were investigated further. It was found that the model which
predicted the higher probability of winning depends on the size of the measurement
error variance as shown in Tables 6 and 7. When the measurement error variance is
high and the estimated score is extreme (i.e., away from the median value), the sequen-
tial measurement error model predicts a less extreme win probability, as there is more
uncertainty in the estimated score. An exception to this is when the estimated score
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Table 4 Definition of model covariates

Covariate Definition

FF Flying speed of faster rider relative to flying speed of slower rider.
DC(1) Distance faster rider is ahead at the start of stage 1 minus the distance the faster rider

is ahead at the end of stage 1.
FI(1,2) Faster rider increased track position between mark 2 in stage 1 and the end of stage 1.
FI(1,1) Faster rider increased track position between mark 1 in stage 1 and the end of stage 1.
Z(i) Score from stage i.
SC(2,1,3) The slower rider stayed in the same track position between marks 1 and 3 in stage 2.
AF(2) Average speed over stage 2 for the faster rider relative to his average speed in the

previous stage.
RP(2,3) The slower rider was behind, and is either below or in the same track position at mark

3 in stage 2.
SLI(3,3) The slower rider either did not increase track position between marks 3 and the end of

the stage 3 and was behind at the end of stage 3, or increased track position between
marks 3 and 4 and was ahead at mark 4.

FI(3,1) Faster rider increased track position between mark 1 in stage 3 and the end of stage 3.
SI(3,1) Slower rider increased track position between mark 1 in stage 3 and the end of stage 3.
FLD(3,4) The faster rider was behind and declined track position between mark 3 in stage 4

and the end of stage 4.
DH(4,4) Distance the faster rider was ahead at mark 4, in stage 4.
UO(N,4) Neither rider over or undertook in stage 4.
UO(O,4) A rider overtook in stage 4.
UO(U,4) A rider undertook in stage 4.

Table 5 Number of races by the absolute difference in win probabilities for the faster rider at 450 m, 350 m
and 250 m to go as predicted by the sequential and measurement error models

Model Difference in probability
≤ 0.01 0.01–0.02 0.02–0.03 0.03–0.04 0.04–0.05 0.05–0.1 >0.1

450 m to go 221 87 24 6 5 5 7
350 m to go 147 94 43 21 12 20 18
250 m to go 134 90 46 27 20 25 9

Note: At 450 m and 350 m to go 12 races and at 250 m to go 16 were excluded due to missing values.

for Model 3 is much more extreme than that for Model 2. Then, the sequential mea-
surement error model predicts the more extreme probability (see Table 7 where the
estimated score for Model 3 is more extreme and, at least, 0.02 lower). Overall, how-
ever, the measurement error model produces less extreme probabilities. A race which
has an extremely high or low score at this stage of the race suggests that the outcome
of the race has been decided. This seems very unlikely to be the case before 250 m to
go and suggests that the extreme probabilities (less than 0.05 or greater than 0.95)
predicted by the sequential model are questionable. For example, at 450 m to go, the
riders are typically riding relatively slowly (around half of their maximum speed) and
only around half of leading riders at this stage go on to win. Figure 2 shows an example
of the effect a high measurement variance has on the difference in the predicted prob-
abilities for a set of influential actions at 450 m to go for one particular race.
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Table 6 The average difference between the probabilities predicted by the sequential (Model 2) and
sequential measurement error (Model 3) models (sequential minus measurement error) by the estimated
score and measurement error variance

Estimated Score Measurement error variance
Low (<0.05) Medium (0.05 >= and <= 0.15) High (> 0.15)

Low (<0.5) 0.013(45) 0.004(46) −0.051(17)
Medium (0.5 ≥ 1.5) −0.004(55) −0.004(71) −0.005(16)
High (≥ 1.5) N/A −0.003(56) 0.02(49)

Note: The numbers in the brackets refers to the number of races.

When the measurement error variance is low and the estimated score is extreme,
the sequential measurement error model predicts a more extreme probability of
winning for the faster rider, as there is more certainty in the estimated score. Tables
6 and 7 show the average difference predicted by the two models and Figure 2
shows an example of the effect a low measurement variance has on the predicted
win probabilities for one race. The exception is when the estimated score for Model
3 is less extreme in comparison to the estimated score for Model 2. Then, the
opposite becomes true in that the measurement error model predicts the less extreme
probability. When the estimated score or measurement error variance is close to
the median value (over all races), the win probabilities are similar at 450 m to go.
At both 350 m and 250 m to go, when the estimated score for Model 3 is close
to the median value, the difference in the win probabilities mostly depends on the
difference between the estimated scores for Models 2 and 3.

W
in

 p
ro

ba
bi

lit
y 

(fa
st

er
 ri

de
r) 

0.55

0.45

0.35

0.25

0.15

AF(2): Average speed of the faster rider
      overstage 2 compared to stage 1

0.95 1.15 1.35 1.55 1.75

Figure 2 Win probability for the faster rider at 450 m to go (end of stage 2) as a function of AF(2), when
SC(2,1,3) = 1 and RP(2,3) = 0 (see Table 4 for covariate definitions) for three cases with a low score Z(1), (–x–) =
−0.12, (– –) = −0.38 and (–•–)= −1.16, and with a low (0.05), medium (0.14) and high measurement error
variance (0.67), respectively. Win probabilities are shown for the sequential model (· · ·) and the (—) sequential
measurement error model.
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Figure 3 The association between observed and predicted responses at each stage for the sequential model
(–•–) and the measurement error model (–x–) as measured by Somers’ D (adjusted using Efron’s 0.682
estimator).

The fit of both Models 2 and 3 were compared by calculating the Somers’ D value,
which is a measure of association between the observed and predicted responses. No
extra data was available to test how well the models fit on a different dataset. Instead,
the Somers’ D value was calculated on the same dataset used to build the model, but
this value was adjusted using Efron’s 0.682 estimator (Efron, 1983), which is used to
adjust for the over-optimism in a Somers’ D value which is calculated based on the
dataset used to fit the model. The Somers’ D value was similar for both the sequential
and sequential measurement error models at all stages, with some evidence of the
sequential model performing better at 350 m to go (see Figure 3). However, because
large differences in the probabilities predicted between Models 2 and 3 were found
for only a few races, the differences between the Somers’ D values will also be small.

4.4 Summary of tactical implications

The key actions and race states that appear to influence race outcome, at each stage,
are discussed here. The relative flying speed (FF) is the most important covariate.
However, all models indicate that the faster rider will not always win and that
tactics (quantified through the revealed covariates) have important effects. The
importance of race tactics is demonstrated and compared for both the sequential and
measurement error models in Figure 4 which shows the percentage of race outcomes
correctly predicted over and above that predicted by assuming the faster rider wins

Statistical Modelling xxx; xx(xx): 1–23

 at University of Salford on December 8, 2016smj.sagepub.comDownloaded from 

http://smj.sagepub.com/


Sequential regression measurement error models with application 19

8

10

12

%
 o

f r
ac

es

2

0

4

6

250300350400450500

Distance to go (m)

Figure 4 Percentage of races accounted for by race states and actions: (–x–) applied up to and including the
end of the current race stage, (–•–) during the current stage for the sequential (– – –) and sequential
measurement error models ( ).

(71%). This gives the proportion of races for which race states and actions applied
before the end of each stage are influential. This is similar for both models, only 1%
at 500 m to go rising to 9% at 250 m to go for the sequential model and slightly
lower (8%) at 250 m to go for the measurement error model. Figure 4 also shows
the proportion of races which can be accounted for by the actions and states applied
during each stage (the percentage of race outcomes correctly predicted over and
above that predicted by assuming that the faster rider wins at the current stage minus
that at the previous stage), which remains approximately constant between 450 m
and 250 m to go at around 3% for both models. Overall, the similar performance
is not surprising considering that for the majority of races, the predicted win
probabilities are similar for the two approaches.

As discussed in the previous section, the parameter estimates for both models
are similar and so are the key actions and race states that appear to influence race
outcome. From the parameters estimates which are displayed in Tables 2 and 3, the
key actions and race states that appear to influence race outcome are identified for
each stage.

In stage 1, a key finding is that the faster rider should increase track position
between mark 1 and mark 2 and then either stay in the same track position or
move to a lower one by the end of stage 1. He/she should also reduce the distance
ahead over the stage if leading to better judge any sudden overtaking attempts or
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save energy for later in the race. A faster rider who is following should reduce the
distance behind if following.

In stage 2, the slower rider can take advantage, if the opponent is not accelerating,
by being behind and either in the same track position or lower than the faster rider
by the end of the stage. The slower rider should also change track position between
marks 1 and 2 in stage 2. Changing track position may allow the rider to save energy
where the track gradient is high.

In stage 3, the faster rider has a very low chance of winning if he/she increases
track position between mark 2 and the end of stage 3 when the opponent does not
increase track position. This implies the faster rider has wasted energy by increasing
track position and, hence, loses an advantage at later stages in the race.

In stage 4, both riders should overtake if behind; the faster rider should also be
far ahead (>2 m). It is better to overtake than undertake or already be leading the
race at the beginning of this stage. A faster rider who is behind and does not over
take or under take considerably reduces his/her chances of winning by decreasing
track position during this stage (see Table 2; FLD(4) = 1), as the rider may have been
unsuccessful in overtaking during this stage, and so overtaking during the remainder
of the race will be more difficult to achieve.

5 Discussion and conclusion

A new approach is presented for analyzing the relationship between the outcome of
a process with several stages and covariates that are revealed at each stage when the
number of influential covariates is large. The approach extends the sequential model
of Elisheva et al. (2000) by accounting for the measurement error in the estimated
score. The approach is applied to the sprint event in track cycling with the aim of
explaining race outcome and the following is found:

1. The score allows stable models to be created while capturing information from
previous stages. Fewer terms in a sequential approach (in comparison to the
naïve approach) also mean that the models are easier to interpret.

2. However, the score is measured with an error. A new approach is developed to
incorporate for this error and we show for our application that not accounting
for measurement error in the score leads to the estimated effect of the score
being biased. For other terms, the bias is small, except for terms where the
corresponding states or actions occurred infrequently in the dataset. The
sequential model places more importance on race actions and less on the ratio
of flying speeds (the covariate that dominates the score) than the sequential
measurement error model.

3. In application to the sprint cycle race, the difference in predicted win probabili-
ties between the sequential and measurement error models is also found, and it
generally increases with each stage. The sequential model would predict on an
average the more extreme probability, which when used in the subsequent stage
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via conversion to a score leads to an even more extreme probability. For some
races, the probabilities predicted by the sequential model are unrealistically
high or low, which are compounded at later stages. The sequential model
predicts high chances of outcomes at 450 and 350 m to go for some races, but
for this event it is highly unlikely that the outcome of the race has been decided
at this stage. This illustrates that the measurement errors propagate through
the stages in a sequential approach.

4. The measurement error technique adjusts the win probabilities (compared to
the sequential approach) depending on the magnitude of the measurement
error. The measurement error model predicts more extreme win probabilities
when the measurement error variance is low and less extreme win probabilities
when the measurement error variance is high. At stages 3 and 4, this effect
also depends on the difference between the sequential and estimated scores,
with the measurement error model predicting more extreme probabilities if the
estimated score is more extreme and vice versa.

It is assumed that the true score is not correlated with the other observed
covariates revealed in the current stage. This assumption is tested and shown to be
valid for the application we described in Section 4. However, this may not be the case
for a different application. Future work could involve adjusting the model to allow
for such correlations. The approach could also be readily extended to incorporate
variable selection techniques when little prior information is available about which
covariates are influential on outcome.

Overall, we would suggest that it is essential to use measurement error techniques
in a sequential approach to avoid bias in the estimation of the parameter for the
score and, hence, to avoid misleading conclusions being drawn when determining the
effects of covariates on outcome, especially when considering the relative importance
of previous and current actions and states. These conclusions are applicable to
the statistical analysis of sequential processes more generally outside of the sports
example presented in this article, including, for example, medical intervention where
extreme predicted probabilities could lead to the wrong decision being made about
the most appropriate treatment. The real benefit of this approach will vary with
application and may be assessed by preforming simulations.
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