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ABSTRACT 

The nonlinear, non-isothermal steady-state boundary layer flow and heat transfer of an incompressible 

tangent hyperbolic non-Newtonian (viscoelastic) fluid from a vertical permeable cone with magnetic 

field are studied. The transformed conservation equations are solved numerically subject to physically 

appropriate boundary conditions using the second-order accurate implicit finite difference Keller-box 

technique. The numerical code is validated with previous studies. The influence of a number of 

emerging non-dimensional parameters, namely a Weissenberg number (We), rheological power law 

index (m), surface temperature exponent (n), Prandtl number (Pr), magnetic parameter (M) 

suction/injection parameter (fw) and dimensionless tangential coordinate (ξ) on velocity and 

temperature evolution in the boundary layer regime, is examined in detail. Furthermore, the effects of 

these parameters on surface heat transfer rate and local skin friction are also investigated. It is 

observed that velocity, surface heat transfer rate and local skin friction are reduced with increasing 

Weissenberg number, but temperature is increased. Increasing m enhances velocity and surface heat 

transfer rate but reduces temperature and local skin friction. An increase in non-isothermal power law 

index (n) is observed to decrease the velocity and temperature. Increasing magnetic parameter (M) is 

found to decrease the velocity and increase the temperature. Overall, the primary influence on free 

convection is sustained through the magnetic body force parameter, M, and also the surface mass flux 

(injection/suction) parameter, fw. The rheological effects, while still prominent, are not as dramatic. 

Boundary layers (both hydrodynamic and thermal) are, therefore, most strongly modified by the 

applied magnetic field and wall mass flux effect. The study is pertinent to smart coatings, e.g., durable 

paints, aerosol deposition processing and water-based solvent thermal treatment in chemical 

engineering. 
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NOMENCLATURE: 

A  half angle of the cone 
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B material parameter 

B0 constant imposed magnetic field  

Cf skin friction coefficient 

f non-dimensional steam function 

fw Suction (wall transpiration) parameter 

Grx  local Grashof number 

g acceleration due to gravity 

k thermal conductivity of fluid 

M magnetic parameter 

m power law index  

n surface temperature exponent 

Nu heat transfer rate (Local Nusselt number) 

Pr Prandtl number 

r local radius of the cone 

T temperature of the fluid 

u, v  non-dimensional velocity components along the x and y directions, respectively 

V velocity vector 

We Weissenberg number 

x stream wise coordinate 

y transverse coordinate 

Greek  

  thermal diffusivity 

  the coefficient of thermal expansion 

 non-dimensional concentration 

 the dimensionless radial coordinate  

 dynamic viscosity 

 kinematic viscosity 

 non-dimensional temperature 

 density of non-Newtonian fluid 

 the dimensionless tangential coordinate 

 dimensionless stream function 

 Biot number 

  Time dependent material constant 
















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  Second invariant strain tensor 

Subscripts 

w Conditions at the wall (cone surface) 

 Free stream conditions 

 

1. INTRODUCTION 

Non-Newtonian fluids have been a subject of great interest to researchers recently 

because of their various applications in industry and engineering. Examples of such fluids 

include coal-oil slurries, shampoo, paints, clay coating and suspensions, grease, cosmetic 

products, custard, physiological liquids (blood, bile, synovial fluid) etc. Unlike the viscous 

fluids, the non-Newtonian fluids cannot be described by the single constitutive relationship 

between the stress and the strain rate. This is due to diverse characteristics of such fluids in 

nature. In general, the mathematical problems in non-Newtonian fluids are more complicated 

because of its non-linear and higher-order than those in viscous fluids. Despite their 

complexities, scientists and engineers are engaged in non-Newtonian fluid dynamics. An exact 

solution to the viscoelastic fluid flow induced by a circular cylinder subjected to the time 

dependent shear stress was derived by Fetecau et al. [1]. The problems describing the unsteady 

helical flows of Oldroyd-B and second grade fluids were computed by Jamil et al. [2]. Tan and 

Masuoka [3–4] discussed the stability of the Maxwell fluid in a porous medium and derived an 

exact solution to the Stokes first problem for an Oldroyd-B fluid. Recent investigations include 

the Casson model [5], second-order Reiner-Rivlin differential fluid models [6], power-law 

nanoscale models [7], Eringen micro-morphic models [8], Jeffery’s viscoelastic model [9] and 

Eyring-Powell fluid [10].  

The study of non-Newtonian fluids is an important area for researchers, as the study 

occurs in a broad range of engineering applications, like transmission fluids, paints, transport 

processes in the chemical industry, storage of nuclear waste material and discoveries of the flow 

of oil in petroleum reservoirs. Among these non-Newtonian fluids, the tangent hyperbolic fluid 

[11–12] is a four-constant fluid model capable of describing shear thinning effects. The apparent 

viscosity varies gradually between zero shear rate and shear rate, tending to infinity. Lava, 

ketchup, whipped cream, blood; paints are examples of tangent hyperbolic fluid. This rheological 

model has certain advantages over the other non-Newtonian formulations, including simplicity, 

ease of computation and physical robustness. Furthermore, it is deduced from kinetic theory of 

liquids rather than the empirical relation. Several communications utilizing the Tangent 
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Hyperbolic fluid model have been presented in the scientific literature. There is no single non-

Newtonian model that exhibits all the properties of non-Newtonian fluids. Hyperbolic tangent 

model is one of the non-Newtonian models presented by Pop and Ingham [13].  Nadeem et al. 

[14] made a detailed study on the peristaltic transport of a hyperbolic tangent fluid in an 

asymmetric channel. Recently, Nadeem and Akram [15] investigated the peristaltic flow of a 

MHD hyperbolic tangent fluid in a vertical asymmetric channel with heat transfer. Akram and 

Nadeem [16] analyzed the influence of heat and mass transfer on the peristaltic flow of a 

hyperbolic tangent fluid in an asymmetric channel. Akbar et al. [17] analyzed the numerical 

solutions of MHD boundary layer flow of tangent hyperbolic fluid on a stretching sheet. V. 

Ramachandra Prasad et al. [18] investigated the free convection flow and heat transfer tangent 

hyperbolic fluid from an isothermal sphere with partial slip effects. Very recently Prasad et al. 

[19] investigated the magnetohydrodynamic free convection flow and heat transfer of non-

Newtonian tangent hyperbolic fluid from a horizontal circular cylinder with partial slip. 

For the natural convection from cones, Hering and Grosh [20] examined the laminar free 

convection from a non-isothermal cone. The laminar natural convection over a frustum 

convection about a truncated cone was studied by Na and Chiou [21]. Yih [22] studied the 

effects of radiation on natural convection about a truncated cone. Pop and Na [23] examined the 

couple heat and mass transfer by natural convection about a truncated cone in the presence of 

magnetic field and radiation effects. Hossain and Paul [24] presented the free convection from a 

vertical permeable circular cone with non-uniform surface temperature. Ching yang cheng [25] 

studied the natural convection boundary layer flow of a micropolar fluid over a vertical 

permeable cone with variable temperature. Noghrehabadi et al. [26] examined natural convection 

flow of nanofluids over a vertical cone embedded in non-Darcy porous media. 

Magnetohydrodynamics (MHD) refers to the study of the mutual interaction of fluid flow 

with magnetic fields. MHD transport phenomena arise in numerous branches of modern 

chemical engineering, design for cooling of nuclear reactors, construction of heat exchangers, 

installation of nuclear accelerators and blood flow measurement techniques. Watanabe [27-28] 

studied the characteristics of MHD boundary layer flow past a flat plate with/without pressure 

gradient. Pal and Mondal [29] examined the combined effects of thermal radiation and 

temperature-dependent viscosity on the momentum and heat transfer in the presence of magnetic 

field. Loganathan and Puvi Arasu [30] investigated the effects of thermophoresis particle 

deposition on the non-Darcy mixed convection heat and mass transfer past a porous wedge in the 

presence of suction/injection.  
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The objective of the present study is to investigate the laminar boundary layer flow and 

heat transfer of a Tangent Hyperbolic non-Newtonian fluid from a vertical permeable cone. The 

non-dimensional equations with associated dimensionless boundary conditions constitute a 

highly nonlinear, coupled two-point boundary value problem. Keller’s implicit finite difference 

“box” scheme is implemented to solve the problem [5]. The effects of the emerging 

thermophysical parameters, namely the Weissenberg number (We), power law index (m), surface 

temperature exponent (n), magnetic parameter (M), suction/injection parameter (fw) and Prandtl 

number (Pr) on velocity, temperature, skin friction number, and heat transfer rate (local Nusselt 

number) characteristics are studied. The present problem has to the authors’ knowledge not 

appeared thus far in the scientific literature and is relevant to thermal fabrication (heat treatment) 

of paint sprays, water-based rheological gel solvents and low-density polymeric materials in the 

process engineering industry. 

 

2. NON-NEWTONIAN CONSTITUTIVE TANGENT HYPERBOLIC FLUID MODEL 

In the present study a subclass of non-Newtonian fluids known as Tangent Hyperbolic fluid is 

employed owing to its simplicity.  The Cauchy stress tensor, in Tangent Hyperbolic non-

Newtonian fluid [13] takes the form:   

 
. .

0 tanh

n

      

  
     
   

                     (1) 

where  τ̅  is extra stress tensor,   is the infinite shear rate viscosity, 0  is the zero shear rate 

viscosity,   is the time dependent material constant, m is the power law index i.e. flow 

behaviour index and γ̅̇ is defined as  

. . .1 1
,

2 2
ij ji

i j

    
       

           (2) 

Where   
21
.

2

T
tr gradV gradV     We consider Eqn. (1), for the case when  = 0 because 

it is not possible to discuss the problem for the infinite shear rate viscosity and since we 

considering tangent hyperbolic fluid that describing shear thinning effects so  γ̅̇ < 1.  Then Eqn. 

(1) takes the form 
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0
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1 1

n n

n

      

  

      
           
         

  
     

     

            (3) 

The introduction of the appropriate terms into the flow model is considered next. The resulting 

boundary value problem is found to be well-posed and permits an excellent mechanism for the 

assessment of rheological characteristics on the flow behaviour. 

 

3. MATHEMATICAL FLOW MODEL 

Steady, laminar, two-dimensional, electrically-conducting, incompressible flow of a Tangent 

Hyperbolic fluid from a vertical permeable cone with variable wall temperature, as illustrated in 

Fig. 1.  An induced magnetic field, 0B is assumed to be uniform and acts radially i.e. normal to 

the cone surface. The origin of the coordinate system is placed at the vertex of the cone. Where 

x-coordinate (tangential) is measured along the surface of the cone from the origin and the y-

coordinate (radial) is directed normal to the surface of the cone. Fluid suction or injection is 

imposed at the surface of the cone and the surface of the cone is held at a variable temperature 

proportional to the power of the distance i.e.,   1

n

wT x T Ad x  .  The gravitational acceleration 

g, acts downwards. Magnetic Reynolds number is assumed to be small enough to neglect 

magnetic induction effects. Hall current and ionslip effects are also neglected since the magnetic 

field is weak.  We also assume that the Boussinesq approximation holds i.e. that density variation 

is only experienced in the buoyancy term in the momentum equation.  Additionally, the electron 

pressure (for weakly conducting fluids) and the thermoelectric pressure are negligible. The radial 

magnetic field 0B   is generated by passing a steady electric current along the longitudinal (z-

axis) parallel to the cone, where the cone edges terminate at perfect electrodes which are 

connected via a load.  

Both cone and Tangent Hyperbolic fluid are maintained initially at the same temperature. 

Instantaneously it is raised to a temperature 
 
the ambient temperature of the fluid which 

remains unchanged.  In line with the approach of Yih [31] and introducing the boundary layer 

approximations, the equations for mass, momentum, and energy, can be written as follows:  

   
0

ru rv

x y

 
 

 
                             (4) 

wT ,T



7 

 

   
22 2

0

2 2
1 2 cosA

Bu u u u u
u v m m g T T u

x y y y y


  




     
        

                (5) 

2

2

T T T
u v

x y y


  
 

                           (6) 

where  and  are the velocity components in the x - and y- directions respectively,  - 

kinematic viscosity of the Tangent Hyperbolic fluid and all the other variable are defined in the 

nomenclature. The Tangent Hyperbolic fluid model therefore introduces a mixed derivative 

(second order, first degree) into the momentum boundary layer equation (5).  The non-

Newtonian effects feature in the shear terms only of eqn. (5) and not the convective 

(acceleration) terms. The third term on the right hand side of eqn. (5) represents the thermal 

buoyancy force and couples the velocity field with the temperature field equation (6). The fourth 

term on the right hand side of eqn. (5) represents the hydromagnetic drag. 

 At  0, 0, ,w wy u v V T T x    
 

As  , 0,y u T T  
                (7) 

Here n is the surface temperature exponent and d1 is a constant, Vw is the transpiration velocity 

of the fluid through the surface of the cone. When Vw is positive, it stands for suction or blowing 

and if Vw is negative for injection or blowing of fluid through the surface of the cone. The stream 

function   is defined by ru
y



  

and rv
x


 


, and therefore, the continuity equation is 

automatically satisfied. Where the local radius is defined as  

r(x) = x sin A            (8) 

 

In order to render the governing equations and the boundary conditions in dimensionless form, 

the following non-dimensional quantities are introduced. 

 

 

 

1/4 1/4

1/4

3 2 23/4
1 0

2 2 1/2

, , , , ,
2

cos2
Pr , , ,

w

w

w

e

V x T Ty
Gr rGr f

Gr x T T

g T T x A B xGr
W Gr M

x Gr


      



  

  







 
     

 


         (9) 

In view of the transformation defined in eqn. (9), the boundary layer eqns. (5) - (7) are reduced 

to the following coupled, nonlinear, dimensionless partial differential equations for momentum 

and energy for the regime:  

u v






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   
27 1 1 '

1 ''' '' '' ' '' ''' ' ' ''
2 2 4

e

n n n f f
m f ff f f mW f f Mf f f  

 

      
          

      (10)

           

'' 7 1
' ' ' ' '

Pr 4 4

n n f
f nf f

 
    

 

     
      

   
                                           (11)

 

The transformed dimensionless boundary conditions are:  

0, , ' 0, 1wAt f f f    

  
, ' 0, 0As f                        (12) 

Here primes denote the differentiation with respect to  and
 

1/44

7

w
w

xV
f Gr

n 



. The skin-

friction coefficient (shear stress at the cone surface) and Nusselt number (heat transfer rate) can 

be defined using the transformations described above with the following expressions.   

   
23/4 1 ''( ,0) ''( ,0)

2
f e

n
Gr C n f W f                      (13) 

1/4 '( ,0)Gr Nu                               (14) 

The location,  0, corresponds to the vicinity of the lower stagnation point on the cone. For this 

scenario, the model defined by eqns. (10) and (11) contracts to an ordinary differential boundary 

value problem:  

   
27 1

1 ''' '' ' '' ''' ' 0
4 2

e

n n
m f ff f mW f f Mf 

 
            (15) 

'' 7
' ' 0

Pr 4

n
f nf


 


                       (16)     

 The general model is solved using a powerful and unconditionally stable finite difference 

technique introduced by Keller [32]. The Keller-box method has a second order accuracy with 

arbitrary spacing and attractive extrapolation features.  

 

4. NUMERICAL SOLUTION WITH KELLER BOX IMPLICT METHOD  

The Keller-Box implicit difference method is implemented to solve the nonlinear boundary value 

problem defined by eqns. (10) – (11) with boundary conditions (12). This technique, despite 

recent developments in other numerical methods, remains a powerful and very accurate approach 

for boundary layer flow equation systems which are generally parabolic in nature. It is 

unconditionally stable and achieves exceptional accuracy. An excellent summary of this 

technique is given in Keller [32]. Magnetohydrodynamics applications of Keller’s method are 

reviewed in Bég [33]. This method has also been applied successfully in many rheological flow 



9 

 

problems in recent years. These include oblique micropolar stagnation flows [34], Walter’s B 

viscoelastic flows [35], Stokesian couple stress flows [36], hyperbolic-tangent convection flows 

from curved bodies [19], micropolar nanofluids [37], Jeffrey’s elasto-viscous boundary layers 

[38], magnetic Williamson fluids [39] and Maxwell fluids [40]. The Keller-Box discretization is 

fully coupled at each step which reflects the physics of parabolic systems – which are also fully 

coupled.  Discrete  calculus  associated  with  the  Keller-Box  scheme  has also been shown  to  

be  fundamentally different  from  all  other  mimetic  (physics  capturing)  numerical  methods, 

as elaborated by Keller [32].  The Keller Box Scheme comprises four stages.  

1) Decomposition of the N
th

 order partial differential equation system to N first order equations.   

2) Finite Difference Discretization.  

3) Quasilinearization of Non-Linear Keller Algebraic Equations and finally. 

4) Block-tridiagonal Elimination solution of the Linearized Keller Algebraic Equations  

 

5. NUMERICAL RESULTS AND INTERPRETATION  

Comprehensive solutions have been obtained and are presented in Tables 1 - 3 and Figs. 2 - 7.  

The numerical problem comprises two independent variables (,), two dependent fluid dynamic 

variables (f,) and seven thermo-physical and body force control parameters, namely, We, n, m, 

M, Pr, fw, .  The following default parameter values i.e. We = 0.3, n = 0.5, Pr = 0.71, m = 0.3, M 

= 0.5, fw = 0.5,  = 1.0 are prescribed (unless otherwise stated).  Furthermore the influence of 

stream-wise (transverse) coordinate on heat transfer characteristics is also investigated.   

In Table 1, we compare the present results of the heat transfer rate with those obtained by 

Hossain and Paul [24] for natural convection heat transfer along a vertical permeable cone with 

variable wall temperature and are found to be in excellent agreement.  

Table 2 presents the influence of the Weissenberg number (We), power law index (m), 

suction/injection parameter (fw) on local skin friction and heat transfer rate, along with a 

variation in the transverse (stream wise) coordinate values, .  With increasing We, the skin 

friction and heat transfer rate are reduced.  It is also observed that increasing m reduces skin 

friction but enhances heat transfer rate. And increasing fw is found to reduce skin friction but heat 

transfer rate is enhanced.  

Table 3 document results for the influence of surface temperature exponent (m), magnetic 

parameter (M), Prandtl number (Pr) on skin friction and heat transfer rate along with a variation 

in the traverse coordinate ( ).  It is observed that skin friction is decreased and heat transfer rate 

is increased with increasing m.  And increasing M is found to decrease skin friction and heat 
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transfer rate is also decreased. Furthermore, increasing Pr, decreases skin friction but accelerates 

heat transfer rate.  

Figures 2(a) – 2(b) depicts the effects of Weissenberg number, We on the velocity  and 

temperature  distributions through the boundary layer regime. Very little tangible effect is 

observed in fig. 2a, although there is a very slight decrease in velocity with increase in We. 

Conversely, there is only a very slight increase in temperature magnitudes in fig. 2(b) with a rise 

in We. The mathematical model reduces to the Newtonian viscous flow model as We  0 and m 

 0.  The momentum boundary layer equation in this case contracts to the familiar equation for 

Newtonian mixed convection from a cone, viz. 

27 1 1 '
''' '' '' ' ' ' ''

4 2 4

n n n f f
f ff f f Mf f f  

 

      
        

   
. The thermal boundary 

layer equation (11) remains unchanged.   

Figures 3(a) - 3(b) illustrates the effect of the power law index, m, on the velocity  'f  and 

temperature    distributions through the boundary layer regime.  It is observed the the velocity 

is significantly increased with increasing m. Conversely, temperature is consistently reduced 

with increasing values of m.   

Figures 4(a) – 4(b) depicts the profiles for velocity  'f  and temperature    for various values 

of the surface temperature exponent, n.  It is observed that an increase in n decelerates the flow 

i.e., velocity decreases.  Also, increasing n is found to decrease the temperature throughout the 

boundary layer regime. 

Figures 5(a) – 5(b) depicts the profiles for velocity  and temperature  for various values 

of magnetic parameter, M.  It is observed that an increase in M significantly decelerates the flow 

i.e., velocity decreases.  Conversely, increasing M is found to enhance the temperature. The 

parameter, M, is a Hartmann number. It simulates the relative contribution of Lorentzian 

magnetohydrodynamic drag force relative to viscous hydrodynamic force. As M is increased, 

greater opposition is generated to the flow past the cone leading to deceleration. The 

supplementary work expended in dragging the polymer against the imposition of the transverse 

magnetic field creates heating in the polymer. This dissipation of heat leads to a temperature rise 

and thickening of thermal boundary layers in polymers. Such phenomena are documented 

extensively in magnetohydrodynamic studies, for example in Makinde et al. [41] and Chamkha 

et al. [42]. 

 f 

( )

 f  ( )
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Figures 6(a) - 6(b) shows the influence of the suction/injection parameter fw, on the velocity 

 'f  and temperature    distributions through the boundary layer regime. It is observed that 

the velocity decreases significantly with increasing values of fw, also temperature is substantially 

decreased with increasing fw values.   

Figures 7(a) – 7(b) depicts the velocity  and temperature  distributions with radial 

coordinate, for various local suction variable, . Clearly, from these figures it can be seen that as 

 increases, the maximum fluid velocity decreases.  This is due to the fact that the effect of the 

suction is to take away the warm fluid on the cone and thereby decrease the maximum velocity 

with a decrease in the intensity of the natural convection rate.  Fig. 7(b) shows the effect of  on 

the temperature profiles.  It is noticed that the temperature profiles decrease with an increase in  

and as the suction is increased, more warm fluid is taken away and thus the thermal boundary 

layer thickness decreases.   

 

6. CONCLUSIONS 

Numerical solutions have been presented for the non-similar, buoyancy-driven flow and heat 

transfer of Tangent Hyperbolic flow external to a vertical permeable cone.  The Keller-box 

implicit second order accurate finite difference numerical scheme has been utilized to efficiently 

solve the transformed, dimensionless velocity and thermal boundary layer equations, subject to 

realistic boundary conditions. A comprehensive assessment of the effects of Weissenberg 

number (We), power law index (n), surface temperature exponent (m), magnetic body force 

parameter (M) and suction/injection parameter (fw) on thermo-fluid characteristics has been 

conducted. Excellent correlation with previous studies has been demonstrated testifying to the 

validity of the present code. Generally very stable and accurate solutions are obtained with the 

present finite difference code. The numerical code is able to solve nonlinear boundary layer 

equations very efficiently and therefore shows excellent promise in simulating transport 

phenomena in other non-Newtonian fluids. It is therefore presently being employed to study 

viscoplastic fluids which also represent other chemical engineering working fluids in curved 

geometrical systems.  
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TABLES 

Table 1: Comparison values of  ' ,0  for various values of  with n = 0.5, Pr = 0.1 

 

 ' ,0   

Hossain and Paul [18] Present 

0.0 0.24584 0.24583 

0.1 0.25089 0.25087 

0.2 0.25601 0.25559 

0.4 0.26630 0.26631 

0.6 0.27662 0.27660 

0.8 0.28694 0.28692 

1.0 0.29731 0.29732 

2.0 0.35131 0.35132 
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Table 2: Values of Cf and Nu for different We, m and  (n = 0.5, A = 30
0
, Pr = 071, M = 0.5) 

We m fw 

 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.0 

0.3 0.5 

0.5349 1.4862 0.8319 2.1408 0.9843 2.8296 

0.5 0.4608 1.4848 0.7388 2.1405 0.8953 2.8300 

1.5 0.3561 1.4824 0.5992 2.1399 0.7550 2.8302 

3.0 0.2528 1.4795 0.4545 2.1391 0.6071 2.8302 

5.0 0.1620 1.4765 0.3228 2.1383 0.4565 2.8303 

8.0 0.0725 1.4730 0.1896 2.1372 0.3051 2.8303 

0.3 

0.0 

0.5 

0.5450 1.4758 0.8379 2.1376 0.9883 2.8298 

0.15 0.5231 1.4803 0.8143 2.1391 0.9670 2.8299 

0.2 0.5133 1.4819 0.8031 2.1396 0.9568 2.8299 

0.5 0.4001 1.4930 0.6621 2.1430 0.8200 2.8298 

0.8 0.0432 1.5058 0.1351 2.1469 0.2838 2.8283 

0.3 0.3 

0.0 0.5671 0.9477 0.9697 1.5218 1.1513 2.1848 

0.22 0.5394 1.1709 0.8786 1.7882 1.0435 2.4663 

0.28 0.5295 1.2357 0.8548 1.8628 1.0170 2.5438 

0.32 0.5224 1.2798 0.8393 1.9128 0.9999 2.5956 

0.4 0.5075 1.3697 0.8092 2.0135 0.9673 2.6996 

0.45 0.4978 1.3839 0.7911 2.0769 0.9478 2.7647 

 

 

 

 



24 

 

Table 3: Values of Cf and Nu for different n and  (n = 0.5, A = 30
0
, Pr = 071, M = 0.5) 

N M Pr 

 = 1.0  = 2.0  = 3.0 

Cf Nu Cf Nu Cf Nu 

0.0 

0.5 0.71 

0.5064 1.4184 0.7959 2.0866 0.9496 2.7836 

0.2 0.4986 1.4454 0.7871 2.1081 0.9421 2.8022 

0.35 0.4932 1.4654 0.7803 2.1244 0.9356 2.8161 

0.5 0.4880 1.4853 0.7735 2.1406 0.9291 2.8300 

0.8 0.4832 1.5233 0.7594 2.1805 0.9103 2.8664 

1.0 0.4791 1.5348 0.7385 2.1837 0.8923 2.8692 

0.5 

0.1 

0.71 

0.5259 1.4932 0.8121 2.1425 0.9585 2.8303 

0.5 0.4608 1.4853 0.7735 2.1406 0.9291 2.8300 

0.83 0.4355 1.4796 0.7919 2.1398 0.9083 2.8304 

1.25 0.4351 1.4735 0.7160 2.1389 0.8837 2.8308 

1.78 0.4064 1.4669 0.6822 2.1379 0.8551 2.8313 

2.25 0.3853 1.4617 0.6568 2.1373 0.8330 2.8321 

0.5 0.5 

0.5 0.5982 1.0948 1.0137 1.5315 1.2583 2.0052 

1.0 0.3863 2.0332 0.5888 2.9904 0.6791 3.9732 

2.0 0.2242 3.9541 0.3079 5.9528 0.3487 7.9486 

3.0 0.1603 5.8775 0.2176 8.9010 0.2454 11.9168 

5.0 0.1029 9.7266 0.1419 14.7524 0.1634 19.7737 

7.0 0.0756 13.5869 0.1052 20.6052 0.1225 27.6211 

 


