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ABSTRACT 

 

A mathematical model for mixed convective slip flow with heat and mass transfer in the 

presence of thermal radiation is presented. A convective boundary condition is included and slip 

is simulated via the hydrodynamic slip parameter. Heat generation or absorption effects are also 

incorporated. The Rosseland diffusion flux model is employed. The governing partial differential 

conservation equations are reduced to a system of coupled, ordinary differential equations via 

Lie group theory methods. The resulting coupled equations are solved using shooting method. 

The influences of the emerging parameters on dimensionless velocity, temperature and 

concentration distributions are investigated. Increasing radiative-conductive parameter 

accelerates the boundary layer flow and increase temperatures whereas it depresses 

concentration. An elevation in convection-conduction parameter also accelerates the flow and 

temperatures whereas it reduces concentrations. Velocity near the wall is considerably boosted 

with increasing momentum slip parameter although both temperature and concentration 

boundary layer thicknesses are decreased. The presence of a heat source is found to increase 

momentum and thermal boundary layer thicknesses but reduces concentration boundary layer 

thickness. Excellent correlation of the numerical solutions with previous non-slip studies is 

demonstrated. The current study has applications in bio-reactor diffusion flows and high-

temperature chemical materials processing systems. 
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1. INTRODUCTION 

Slip flows occurs in a diverse range of technological applications including sheet processing 
[1]

, 

nuclear power systems 
[2]

, and foam production 
[3]

, fluidic cells in medicine 
[4]

. Slip flows require 

a modification of the classical “no-slip” velocity boundary condition at a wall with a “slip 

boundary condition” and have stimulated considerable interest in recent years. Ulmanella and Ho 

[5]
 found via experiments, the velocity for various micro-sized channels. The velocity is a 

function of shear rate, type of liquid and surface morphology. The possibility of temperature 

jump along with velocity slip was described by Bocquet and Barrat 
[6]

. The velocity slip and 

temperature jump was modelled by Bocquet and Barrat 
[6]

 via the introduction of velocity slip 

length and temperature slip length terms, respectively. Many analytical and numerical methods 

have been employed to simulate a wide spectrum of slip flows. Nandeppanavar et al. 
[7]

 studied 

analytically and numerically the effects of first and second order slip parameters on thermal 

convection boundary layer flow from a stretching sheet. Turkyilmazoglu 
[8]

 investigated 

analytically the influence of hydrodynamic and thermal slip conditions on double-diffusive 

magnetic convection of a nanofluid. Tripathi et al.
 [9] 

used a homotopy semi-computational 

method to study peristaltic slip flow of a non-Newtonian fluid, showing that pressure difference 

is strongly reduced with increasing wall slip effect. Wang 
[10]

 reported on the interaction of 

surface (momentum) slip on rotating Poiseuille and Couette flows, showing that for the former 

case slip enhances longitudinal flow rate at low rotation, but decreases it at high rotation, 

whereas in the latter case, longitudinal drag is reduced with greater slip. Mahmoud 
[11]

 employed 

a Chebyshev spectral numerical code to study velocity slip and variable thermophysical property 

effects on stagnation-point flow in a porous regime. Taamneh and Omari 
[12]

 examined the slip-

flow and heat transfer in non-Newtonian inelastic fluids in a porous medium micro-channel 

numerically. Anand [13] presented slip effects on heat transfer for power law fluid in a 

microchannel which is subjected to constant heat flux boundary condition. Jamalabadi et al. 
[14]

 

studied combined convection flow in a vertical channel with slip boundary conditions using an 

entropy generation minimization method. Abbas et al. 
[15]

 studied stagnation-point flow of a 

hydromagnetic viscous fluid past stretching/shrinking sheet taking into account slip boundary 

condition. Water slip flow in superhydrophobic microtubes within laminar flow region was 

examined by Yu et al. 
[16]

. Nandy 
[17]

 studied unsteady flow of Maxwell fluid toward a permeable 

shrinking surface with Navier slip. Haq et al. 
[18] 

studied thermal slip effects on MHD stagnation 
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point flow of nanofluid past a stretchable sheet. Effects of hydrodynamic slip on the steady flow 

of an incompressible electrically conducting fluid past a channel with porous plates are reported 

by Ibáñez 
[19]

. 

 

Double-diffusive (thermo-solutal) convection flows are also of interest in many branches of 

engineering sciences including energy storage 
[20]

, nuclear reactor leakage hazards 
[21]

, nano-

technological materials processing 
[22],

 heat exchangers 
[23].

 In natural convection heat and mass 

transfer, thermal and species buoyancy effects play a significant role. Slip flows with combined 

heat and mass transfer have also received some attention, primarily in chemical engineering 

applications. Das 
[24]

 investigated partial slip and thermal radiation effects on magnetized non-

Newtonian heat and mass transfer from an inclined surface.  

 

Thermal radiation heat transfer also arises in many chemical engineering processes. At a high 

temperature, thermal radiation may change the distribution of temperature in the boundary layer 

and this affects the heat transfer at the wall. A variety of radiative heat transfer models have been 

utilized for transport modelling. Owing to the complexity of solving the integro-differential 

equation of radiative transfer these models are frequently algebraic flux approximations [
25]

. 

Radiative flux was observed to significantly modify the critical Rayleigh and wave numbers and 

affect convection strongly. Mahmoud 
[26]

 employed the Rosseland diffusion flux model to study 

mixed convection-radiation flow from a horizontal permeable surface aligned parallel to a 

uniform free stream. Gupta et al. 
[27] 

used a variational finite element method and Rosseland flux 

model to simulate non-Newtonian radiative-convection flow from a shrinking polymeric sheet 

showing that the flow is accelerated substantially with increasing thermal radiation effect which 

also supplements energy transfer to the flow and enhances thermal boundary layer thickness. The 

Rosseland diffusion model was also implemented by Khan et al. 
[28]

 for radiative nanofluid slip 

flow. Hussain et al. 
[29]

 presented homotopy solution of boundary layer flow of a micropolar fluid 

towards a porous stretchable sheet. Mohan Krishna et al. 
[30]

 studied radiation effects on MHD 

flow over a moving plate. Srinivasacharya and Reddy 
[31]

 investigated radiation effects on mixed 

convection heat and mass transfer over a flat plate in porous medium filled with power-law fluid. 

An experimental work on mixed convection and radiation heat transfer in a horizontal duct with 

variable wall temperature was presented by Ganesan et al. 
[32]

. Ashraf et al. 
[33]

 studied 

http://www.sciencedirect.com/science/article/pii/S0016003212001639
http://link.springer.com/search?facet-creator=%22M.+Bilal+Ashraf%22
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convective heat and mass transfer in MHD mixed convection flow of Jeffrey nanofluid over a 

radially stretching surface with thermal radiation. Mixed convection–radiation on stagnation-

point flow of nanofluids past a stretching/shrinking sheet in a porous medium was investigated 

by Pal and Mandal 
[34]

. 

 

In the present study a mathematical model is developed for buoyancy-driven mixed thermal 

convection-radiation slip flow from a vertical plate with species diffusion. A convective surface 

boundary condition is also prescribed and heat source/sink effects included. The Rosseland 

diffusion flux model is used for radiative heat transfer. Via Lie group theory methods the 

conservation equations are rendered into similarity ordinary differential equations and solutions 

developed with numerical shooting method. Selected solutions are verified with comparison to 

earlier non-slip flows. 

 

2. MATHEMATICAL FLOW MODEL 

Newtonian viscous incompressible double-diffusive mixed convection is studied. The geometry 

and the rectangular coordinates, x  and y , and the corresponding velocity components, u  and v  

and flow configuration are illustrated in Fig. 1 (in which i represents momentum while ii 

represents thermal and concentration boundary layers; in general thermal and concentration 

boundary layer thickness are not the same). It is assumed that the uniform temperature of the 

ambient fluid is T , the unknown temperature of the plate is wT  and the left surface of the plate 

is heated from a hot fluid of temperature )(  TT f  or is cooled from a cooled fluid )(  TT f  

by the process of convection. This then yields a heat transfer variable coefficient ( / )fh x L . It is 

assumed that the thermal radiation is present in the form of a uni-directional flux, applied 

transverse to the wall surface and obeys the Rosseland diffusion approximation. This formulation 

allows the transformation of the governing integro-differential equation for radiative energy 

balance into a Fourier-type diffusion equation analogous to that describing heat conduction or 

electrostatic potential (Coulomb’s law). The model is generally applicable for optically-thick 

media in which radiation is only known to propagate a limited distance prior to experiencing 

scattering or absorption. Implicit in this approach is the assumption that refractive index of the 

medium is constant, intensity within the fluid is nearly isotropic and uniform and wavelength 

http://www.sciencedirect.com/science/article/pii/S0920410514004100
http://www.sciencedirect.com/science/article/pii/S0920410514004100
http://www.sciencedirect.com/science/article/pii/S0920410514004100
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regions exist where the optical thickness is greater than five. It is further assumed that the 

concentration (low) of the ambient fluid is the uniform concentrationC , the unknown 

concentration of the plate is ( ).wC C  Fluid properties are assumed to be invariant except 

density, which is assumed to vary only in those changes that drive the flow (i.e., the Boussinesq 

approximation). A heat source (or sink) is also present. The governing boundary layer equations 

based on scale analysis in dimensional form relevant to our problem may be presented as follows 

(Bejan 
[35]

): 
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 

  
 (4) 

Following Karniadakis et al. 
[36 ] 

 to get physically realistic results, we adopt velocity slip 

boundary condition at the wall and hence  the boundary conditions at the wall are: 

10, , , , at 0,f f w w

x u T x
v u N k h T T C C y

L y y L

    

                
 (5a) 

Based on problem description, the far filed boundary conditions are  

1/2

, , as ,e r

x
u u u T T C C y

L
  

 
     

 
 (5b) 

where T  is the temperature C  is the concentration, k  is the thermal conductivity, D  is  the 

mass diffusivity of species of the  fluid, T  is the volumetric thermal coefficient, C  is the 

volumetric concentration coefficient, g  is the acceleration due to gravity, 1 is the Stefan-
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Boltzmann constant, 
1k  is the Rosseland mean absorption coefficient, 

p

k

c



 is the thermal 

diffusivity of the fluid,   is the density of the fluid,   is the viscosity of the fluid, ( / )fh x L is 

the heat transfer coefficient, 1N is the velocity slip factor,    
1/2

0 / /Q x Q x L is the volumetric 

heat generation or absorption, 0  stand for stationary free stream (purely free convection)  

whilst 1   stand for moving free stream (mixed convection). 

 

2.1 TRANSFORMATION OF MODEL AND LIE GROUP ANALYSIS  

We introduce the following boundary layer variables to transform Eqns. (1)-(5) to dimensionless 

form. 

1/2

1/2

Re
, , , , , , ,

Re

e
e

r r f wU U

u T T C Cx y u v L
x y u v u

L L T T C C
 


 

 

 
      

 
 (5) 

where Re r
U L


  is the Reynolds number based on the characteristic length L , 

 r T fU g T T L    is the reference velocity. We introduce the dimensional stream function 

  defined as ,u v
y x

  
  
 

 into Eqns. (2)-(4) to reduce the number of equations and 

dependent variables. This leads to the following three dimensionless partial differential equations 

for momentum, heat and species conservation. 

 

2 2 3 2

2 3
0,

2
N

y x y x y y

    
     

    
   

     
 (6) 

 
2

2 1/2

Pr
Pr 1 ,0Nr G

xy x x y y


    
  

 

   
  

    
 (7) 

2

2
.0Sc

y x x y y

     
 
 

    
  

    
 (8) 

 

Here Pr /   is the Prandtl number, /Sc D  is the Schmidt 

number, ( ) / ( )C w T fC C TN T     is the buoyancy ratio parameter, ( 0N  corresponds to  
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buoyancy-aiding flow and 0N   to buoyancy-opposing flow), 3

1 116 / 3Nr T k k   is the 

radiation-conduction parameter and 0

p r

Q L
G

C U
 is the internal heat generation (source)/absorption 

(sink) parameter. 

 

The transformed boundary conditions in Eqn. (5) become: 

1/2 2

1

2 1/2

( )Re ( )
, 0, (1 ), 1 at  0 ,

Re

, 0, 0 as    .

f

x

Lh xN x
y

y L x yy k

y
y

   
 


  

   
      

  


   



 (9) 

 

The transformed boundary layer equations and boundary conditions i.e. Eqns. (7)-(10) constitute 

a strongly coupled, highly nonlinear boundary value problem. Analytical solutions are extremely 

difficult. To obtain direct numerical solutions of these equations are also complicated and 

computationally expensive. Similarity solutions have proven to be an efficient tool to solve 

various transport problems. In view of this, we implement a linear group of transformations 

which combines the two independent variables ( , )x y  into a single independent variable   

(similarity variable) and reduce Eqns. (7)-(10) into a system of coupled ordinary differential 

equations with the corresponding boundary conditions. Group theory methods have proved an 

efficient and very useful in recent years and have been successfully used to a wide range of 

complex flows in chemical engineering. These include nanofluid transport in porous media 
[37]

, 

bioconvective flow 
[38]

, chemically-reacting boundary layer flows 
[39]

, rotating disk problem 
[40]

, 

MHD flow
 [41]

. In accordance with the group theory methodology, we scale all independent and 

dependent variables as follows: 

5 6 74
1 1

1 2 ,3, , , , ,f fx x A y y A A A A h h A N N A
    

          
       (10) 

 

where , ( 1,2,...,6,7)iA i  are constants. We seek the values of i such that the forms of the 

Eqns. (7)-(10) are invariant under the transformations. Eqns. (7)-(10) will be invariant if i  are 

satisfies the flowing relations 
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1 2 3 2 4 5 6 2 7 2, , ,4 3 0, .                    (11) 

 

Now, we seek “absolute invariants” (functions having the same form before and after the 

transformation under this group of transformations 
[35-39 

. An inspection of Eqns. (11) and (12) 

that revealed that  

 

1/4 1/4
.

y y

x x




  (12) 

 

This combination of variables is therefore invariant under this group of transformations and 

hence, is an absolute invariant. We denote this functional form as:  

4
.

y

x
   (13) 

 

Using the same argument, the other absolute invariants are: 

 

         3/4 1/4 1/4

1 1 00
, , ,, , f f Nx f h x h x N                           (14) 

 

where   is the similarity independent variable, ( ), ( )f    and ( )  are respectively the 

dimensionless velocity,  temperature and concentration functions,  
0fh is the constant heat 

transfer coefficient and  1 0
N  is the constant hydrodynamic slip factor.  

 

2.2. Governing similarity equations 

Substituting Eqns. (14) and (15) into Eqns. (7) - (9), generates the following ordinary differential 

equations: 

 

 
2

2

2

1
3 2 +  + =0,
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3
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4

Sc
f     (17) 
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subject to the boundary conditions: 

(0) 0, (0) ''(0), (0) 1 (0) ,  (0) 1, ( ) , ( ) ( ) 0,Ncf f af f                      (18) 

where primes denote differentiation with respect to  . Here   1/2

0
/ RefNc h L k  is the 

convection-conduction parameter,   1/2

1 0
Re /a N L  is hydrodynamic slip parameter.  

 

Examination of Eqns. (16)-(19) reveals some interesting special cases. In the absence of species 

diffusion i.e. neglecting the concentration equation and also negating heat source/sink effect 

( 0)G  and momentum slip ( 0)a  , taking the isothermal ( Nc ), non-radiating ( 0)Nr   

plate scenario, in the absence of free stream ( 0)   and under the following minor 

modification: 

 

   3/2 1/22 , , 2f F          (19) 

Eqns. (16)-(18) reduce to: 

 

2''' 3 '' 2 ' 0,F F F F      (20) 

 

'' 3Pr ' 0,F    (21) 

 

The simplified boundary conditions (19) contract to:  

 

(0) '(0) (0) 1 '( ) ( ) 0.F F F           (22) 

 

Eqns. (21)-(22) with the boundary conditions Eqn. (23) correspond to the classical model of 

Ostrach 
[42] 

and provide an excellent benchmark for validation of the numerical solutions. 

 

2.3 Quantities of physical interest 

The physical parameters of interest in the present problem are the skin friction factor (surface 

shear stress), ,f xC  the local Nusselt number (surface heat transfer rate) xNu  and the local 

Sherwood number (surface species diffusion rate) xSh all of which are derived from spatial 
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gradient functions of velocity, temperature and concentration, respectively. The appropriate 

expressions are:  

2

0 0 0

, , .
( )

f x x x

e f wy y y

u x T x C
C Nu Sh

u x y T T y C C y



    

       
         

         
    (23) 

Using Eqns. (6), (14), (15), we have from Eqn. (24): 

 

1/2 1/2 1/2Re ''(0), Re '(0), Re '(0),x fx x x x xC f Nu Sh        (24) 

where Re /x eu x   is the local Reynolds number. 

 

 

3. RESULTS AND DISCUSSION 

Equations (16)-(18) with the boundary conditions (19) were solved numerically Runge-Kutta-

Fehlberg fourth-fifth order numerical method from Maple 17 software. The step size was 

assumed to be 0.001 and the convergence criteria was taken as 10
-6

. The asymptotic boundary 

conditions, given by Eqn. (19), were replaced by using a value of 12 for the similarity variable 

max  as follows:  

max 12, (12) 1 (12) (12) 0.f        (25) 

The choice of max 12   ensures that all numerical solutions approached the asymptotic values 

correctly. In order to validate the accuracy of the Maple numerical quadrature solutions, we 

compare our results with those of Bejan 
[35]

. The comparison is shown in Table 1 and excellent 

agreement is clearly achieved.  In order to further justify the correctness of the present 

computations, Eqns. (21)-(22) subject to boundary conditions (23) have also been solved and 

solutions compared with Ostrach 
[42]

. Again excellent correlation is observed in Table 2. 

Confidence in the present results is therefore high.  
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Table 1. Comparison of heat transfer rates for various Prandtl numbers with .Nc   

Pr  Present  

 4/1Pr)0(   

Bejan 
[34] 

4/1RaNu  

0.01 0.180 0.162 

0.72 0.387 0.387 

1 0.401 0.401 

2 0.426 0.426 

10 0.464 0.465 

100 0.489 0.490 

1000 0.497 0.499 

 

Table 2.  Comparison of surface shear stress and heat transfer rate for different Prandtl numbers. 

 ''(0)F  '(0)  

Pr Ostrach 
[42]

 Present Ostrach 
[42]

 Present 

0.72 0.6760 0.67602 0.5046 0.50463 

1 0.6421 0.64219 0.5671 0.56715 

10 0.4192 0.41919 1.1694 1.16933 

 

Graphical results for the variation of the dimensionless velocity, temperature and concentration 

(species diffusion) fields with distance transverse to the plate are provided in Figs. 2-16. 

Generally we prescribed the following parameter values: N = 0.5, a = G = Nc = Nr = 0.1, Pr = 

0.72 (air), Sc = 0.24 (Hydrogen), unless otherwise stated. These correspond to buoyancy-

assisted flow with thermal buoyancy force being twice the magnitude of species (concentration) 

buoyancy force, weak slip, weak heat generation, weak convective boundary condition, weak 

thermal radiative flux compared with thermal conduction heat transfer, carrier fluid of air and 

hydrogen gas as the diffusing species 
[41]

. Since both Sc and Pr are less than unity, both species 

diffusivity and thermal diffusivity will exceed momentum diffusivity. Furthermore throughout 

the computations we consider the case of mixed convection i.e., 1   and there is moving free 

stream (velocity at the boundary layer edge is non-zero), as reflected in the free stream boundary 

condition in Eqn. (19).  
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Figs. 2-6 illustrate the influence of the governing thermophysical parameters on velocity 

evolution in the boundary layer. With an increase in convection-conduction parameter (Nc) there 

is a significant acceleration in the boundary layer flow (Fig. 2) in close proximity to the plate. A 

prominent peak arises near the plate and this is progressively displaced closer to the plate as Nc 

is increased. As anticipated further from the plate the influence of Nc vanishes.  Nc embodies the 

relative influence of thermal convection heat transfer to thermal conduction heat transfer. For Nc 

> 1. 0, thermal convection dominates thermal conduction. For Nc < 1 thermal conduction is more 

significant than thermal convection. In consistency with this the maximum flow velocity is 

observed for the highest value of Nc i.e. 1.0. Fig. 3 reveals that a significant acceleration in the 

flow is achieved with an increase in momentum slip parameter. This was also noted by Sahoo 

and Do 
[43]

 even for viscoelastic flows. As with the convection-conduction parameter, Nc, 

momentum slip arises only in the boundary conditions (19) where the velocity boundary 

condition is equal to the product of momentum slip and shear stress at the plate. For the no-slip 

case, a = 0 and clearly velocity is minimized. A velocity overshoot appears for all profiles near 

the plate and progressively migrates closer to the plate with increasing momentum slip. Similar 

observations have been reported by Mahmoud 
[11]

. The strong influence of slip at the wall is of 

significance in the efficiency of materials processing operations. Inspection of Fig. 3 also 

indicates that the slip velocity at the wall is greater than zero for a > 0. In accordance with slip 

flow theory, fluid velocity at the wall is also different from the wall velocity in proportion to the 

local velocity gradient normal to the wall, although this requires much finer resolution of the 

boundary layer structure and is beyond the scope of the present discussion. Fig. 4 depicts the 

velocity field response to a variation in radiation-conduction parameter; Nr. Nr represents the 

relative contribution of thermal radiation to conduction heat transfer. For Nr = 1 both modes of 

heat transfer have the same contribution as described by Modest 
[25]

. For Nr < 1 thermal 

conduction dominates over thermal radiation flux. For Nr > 1 thermal radiation contributes more 

than thermal conduction. All three cases are computed in Fig. 4. Evidently velocities are 

minimized for Nr = 0 for which thermal radiation flux vanishes. Increasing Nr accelerates the 

flow in particular in the vicinity of the near-wall regime. The increasing contribution of thermal 

radiation serves to augment the thermal diffusivity of the fluid regime which supplements 

thermal energy in the boundary layer and this boosts the velocity. Boundary layer thickness is 
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therefore enhanced with increasing thermal radiation. Velocity overshoots are also observed in 

Fig. 4 as with Figs. 2 and 3. In all these figures the buoyancy-aided case (N >0) is studied and 

backflow never arises i.e. velocity magnitudes are always positive everywhere in the boundary 

layer. In Fig. 5, we have computed the response of the velocity field with a change in heat 

generation parameter (G) for the buoyancy-opposed case, N = -1. This implies that the species 

buoyancy force is in the opposite direction to thermal buoyancy force.  In Fig. 5 momentum wall 

slip is also negated (a=0). Even a slight increase in the heat source effect leads to a marked 

elevation in velocity magnitudes. In contrast to Figs. 2-4, we observe that a velocity shoot is 

absent. The velocity profiles all grow monotonically from the plate to a maximum in the free 

stream. Flow reversal also does not arise anywhere. The addition of thermal energy to the flow 

regime with increasing G values effectively serves to accelerate the flow. Fig. 6 shows that a 

positive increase in buoyancy ratio parameter, N strongly accentuates the flow near the plate 

whereas the converse response is induced with a negative increase in N. The parameter, N, strong 

couples the momentum field to the concentration field via the linear body force term, N arising 

in eqn. (16). When both thermal and species buoyancy forces are acting in unison (N>0) the 

momentum is boosted considerably in the boundary layer and velocity shoots are computed. 

However when buoyancy forces are opposing each other, the flow is decelerated markedly and 

velocity overshoots vanish.  

 

Figs. 7-11 depict the distributions of temperature in the boundary layer with various parameters. 

A marked increase in temperature is generated with a rise in convection-conduction parameter 

(Nc) as observed in Fig. 7. The maximum enhancement is evidently at the plate. Thermal 

boundary layer thickness will therefore be increased. Conversely a noticeable reduction in 

temperature is caused with an increase in momentum slip parameter (Fig. 8). Slip velocity has 

been shown to increase heat transfer rates from the bounding surface to the fluid as elucidated in 

Das 
[24]

. This is due to an increase in advection in a region where diffusion is dominant. This has 

also been observed by Turkyilmazoglu 
[7]

. Fig. 9 reveals that increasing presence of thermal 

radiation (i.e. larger values of Nr) induces a substantial heating of the fluid regime and elevates 

thermal boundary layer thickness considerably. Thermal diffusivity of the fluid medium is 

augmented by thermal radiation, which aids in transport of heat into the boundary layer leading 

to temperature enhancement. A similar response was documented by Das 
[24]

. Owing to the 
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convective surface boundary condition at the plate (Nc = 0.1) temperatures vary at the plate for 

each profile, but are clearly maximized for Nr = 2, for which thermal radiation contribution is 

double that of thermal conduction. An increase in heat source parameter (G) in Fig.10 also aids 

thermal diffusion in the boundary layer and strongly increases temperatures both at the plate and 

for some distance transverse to it. Fig. 11 demonstrates that for buoyancy-opposed flow (N < 0) 

temperatures are increased whereas for buoyancy-assisted flow (N >0) they are depressed. 

Thermal boundary layer thickness is therefore enhanced with increasingly vigorous buoyancy 

opposition.  

 

Figs. 12-16 depict the distributions of the dimensionless concentration with various parameters. 

Concentration values are slightly depressed with increasing convection-conduction parameter 

(Nc) as shown in Fig. 12. Species diffusion is therefore opposed somewhat with increasing 

convection at the plate. Similarly a weak reduction in concentration is associated with a 

significant rise in momentum slip parameter (Fig. 13). Species diffusion is therefore most 

efficient in the regime for the no-slip case (a = 0). Concentration boundary layer thickness is 

therefore reduced with increasing velocity slip at the plate. Inspection of Figs 14, 15 shows that 

increasing thermal radiation (Nr) and heat generation (G), there is a fall in species 

concentrations. With buoyancy-opposed flow (N <0) the concentration boundary layer thickness 

is however enhanced (Fig. 16) whereas the opposite is apparent with buoyancy-aided flows (N 

>0). In all the computations presented very smooth profiles have been achieved testifying to the 

satisfaction of convergence and the adequate specification of a far-field value of transverse 

coordinate, . 

 

4. CONCLUSIONS 

Numerical solutions have been presented for the nonlinear buoyancy-driven mixed convection 

heat and mass transfer in slip flow from a vertical surface with thermal radiation and heat source 

effects. Lie group theory has been employed to derive similarity equations. Very good 

correlation between the present numerical method and earlier classical computations of Ostrach 

[42]
 and Bejan 

[34]
 have been obtained. It has been observed that:  

(i) A rise in momentum slip parameter (a) elevates flow velocity but reduces temperature 

and concentration values.  
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(ii) Increasing radiative-conductive (Nr) parameter increases velocity and temperature but 

lowers concentration.  

(iii) With higher values of convection-conduction parameter (Nc) the velocity is enhanced 

as is fluid temperature whereas concentration of the diffusing species is decreased. 

(iv) An increase in heat generation parameter (G) leads to an acceleration of the flow and 

increasing temperature whereas it decreases concentration.  

(v) Increasing positive values of buoyancy-ratio parameter (N) corresponding to 

opposing flow accelerates the flow but reduces temperature and concentration; the 

converse response is computed for increasingly negative values of N (buoyancy-

opposed flow). 

The present study has considered Newtonian fluids. Future efforts will examine double-diffusive 

slip flows of viscoelastic fluids 
[44]

 and will be communicated imminently. 
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Nomenclature 

a  hydrodynamic slip parameter (-) 

A  parameter of the group (-) 

pc  specific heat at constant pressure (J kg
−1

 K
−1

) 

f xC  local skin-friction coefficient (-) 

C  concentration (kg m
-3

) 

wC  wall concentration (kg m
-3

) 

C  ambient concentration (kg m
-3

) 

D  mass diffusion coefficient (m
2 

 s
-1

)  

)(f  dimensionless stream function (-) 

G  heat generation/ absorption parameter (-) 

g  acceleration due to gravity (ms
-2

) 

fh  heat transfer coefficient (Wm
-2

K
-1

) 

k fluid thermal conductivity (Wm
-1

K
-1

)  

1k
 

Rosseland mean absorption coefficient (m
-1

) 

L  characteristic length (m) 

N  buoyancy ratio parameter (-) 

Nc  convection-conduction parameter (-) 
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Nr  radiation-conduction parameter (-) 

1N  velocity slip factor (-) 

xNu  local Nusselt number (-) 

Pr  Prandtl number (-) 

p  pressure (Nm
-2

)  

Q  generation/absorption parameter (-) 

Re  Reynolds number (-) 

Rex   local Reynolds number (-) 

Sc  Schmidt number (-) 

xSh  local Sherwood number (-) 

T  fluid temperature inside boundary layer (K) 

fT  fluid temperature on the left of the plate (K) 

wT  wall temperature (K) 

T  ambient temperature (K) 

vu ,  velocity components along the x  and y axes (ms
-1

) 

eu  velocity at the edge of the boundary layer (ms
-1

) 

rU  reference velocity (ms
-1

) 

yx,  Cartesian coordinates along and normal to plate (m) 

Greek symbols   

  thermal diffusivity (m
2
 s

-1
) 

i  constants (-) 
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T  volumetric thermal expansion coefficient  (K
-1

) 

C  volumetric solutal expansion coefficient (K
-1

) 

  dynamic viscosity of the fluid  (Nsm
-2

) 

1
 

Stefan-Boltzmann constant (Wm
-2

K
-4

) 

  kinematic viscosity of the fluid (m
2
 s

-1
) 

)(  dimensionless concentration function 

  independent similarity  variable (-) 

)(  dimensionless temperature (-) 

  fluid density (kgm
-3

) 

  stream function (-) 
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Figures Captions 

Fig. 1 Flow configuration and coordinate system   

(a) heat transfer from wall to fluid, (b) heat transfer from  fluid to wall. 

Fig.2: Effect of convection-conduction parameter on the dimensionless velocity. 

Fig.3: Effect of momentum slip parameter on the dimensionless velocity. 

Fig.4: Effect of radiation-conduction parameter on the dimensionless velocity. 

Fig.5: Effect of heat generation (source) parameter on the dimensionless velocity. 

Fig.6: Effect of buoyancy ratio parameter on the dimensionless velocity. 

Fig.7: Effect of convection-conduction parameter on the dimensionless temperature. 

Fig.8: Effect of momentum slip parameter on the dimensionless temperature. 

Fig.9: Effect of radiation-conduction parameter on the dimensionless temperature. 

Fig. 10: Effect of heat generation (source) parameter on the dimensionless temperature. 

Fig. 11: Effect of buoyancy ratio parameter on the dimensionless temperature. 

Fig. 12: Effect of convection-conduction parameter on the dimensionless concentration. 

Fig. 13: Effect of momentum slip parameter on the dimensionless concentration. 

Fig. 14: Effect of radiation-conduction parameter on the dimensionless concentration. 

Fig.15: Effect of heat generation (source) parameter on the dimensionless concentration. 

Fig.16: Effect of buoyancy ratio parameter on the dimensionless concentration. 
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