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Abstract

Consider uniform flow past an oscillating body. Assume that the resulting far-field flow 

consists of both steady and time periodic components. The time periodic component can 

be decomposed into a Fourier expansion series of time harmonic terms. The form of the 

steady terms given by the steady oseenlets are well-known. However, the time-harmonic 

terms given by the oscillatory oseenlets are not. In particular, the Green's functions asso­ 

ciated with these terms are presented.

In this thesis, the oscillatory oseenlet solution is presented for the velocity and pressure, 

and the forces generated by them are calculated. A physical interpretation is given so that 

the consequences for moving oscillating bodies can be determined.

As the frequency of the oscillations tend to zero, it is shown that the steady oseenlet solu­ 

tion is recovered. Also, as the Reynolds number of the flow tends to zero, it is shown that 

the oscillatory stokeslet solution is recovered. In this latter case, the oscillatory oseenlets 

solution is an outer matching to the inner oscillatory stokeslet solution. An application of 

this new representation is discussed for future work.
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Chapter 1

Introduction

The problem of uniform flow past an oscillating body is a general one, examples being the 

flapping flight of birds and insects, the swimming of mammals, fish and micro-organisms, 

the oscillating of Micro-ElectroMechanical Systems (MEMS), and acoustic devices under 

water. What differentiates this diverse set is the Reynolds numbers for stream velocity and 

velocity of oscillation, and the dimensionalised frequency of oscillation. What is common 

in most of this diverse set is the aim to achieve a steady forward propulsion, this lends 

itself to the Oseen linearisation in the far-field.

The current literature on time dependent Oseen and associated Stokes flows subdivides 

into transient analysis and oscillatory analysis, with the majority of work on transient 

rather than oscillatory analysis.

Price [1] use transient oseenlets in order to model ship motions. Also, Chan and Chwang 

in [2], and Lu and Chwang in [3] describe the unsteady (transient) stokeslet and oseenlet 

and give applications related to acceleration and free surface waves. Childress [4] uses



transient oseenlets to model the effect of flapping of a swimming mollusc. A numerical 

solution of the transient oseenlet analysis is employed. However, for a steady oscillatory 

motion of the swimming mollusc, an oscillatory oseenlet would be beneficial.

Riley's work [5] [6] and Amin's work [7] do employ an oscillating rather than transient 

analysis to model the flow generated by fixed oscillating bodies. Here the focus is on 

matching the inner Stokes- type flow to an outer flow. However, there is no uniform 

stream for these problems and the outer flow is not an Oseen flow and very different from 

it. Clarke et. al [8] consider the problem of a MEMS device vibrating in a fluid at rest. The 

device is treated as a slender body and the Stokes approximation is used. The oscillatory 

stokeslet given by Pozrikidis [9] is used. A further development on Clarke's work would 

be to consider the effect of a uniform rather than stationary flow field, which would for 

example replicate blood flow. Within such a development, the oscillatory stokeslet is an 

inner near-field description to be matched to an outer far-field oscillatory oseenlet. In 

order to enable this, there is a requirement for the oscillatory oseenlet solution. lima [10] 

considers a butterfly flapping and whether it can sustain hovering motion. He formulates 

a far-field periodic Oseen representation for a small steady uniform flow motion and then 

lets that motion tend to zero. This representation is not expressed in terms of oseenlets, 

and instead uses an approach based upon that of Imai [11]. Yet the representation by 

singular (stokeslet, oseenlet) solutions has many advantages, one being that a body can 

be represented in a straightforward way by a distributed superposition of them [12], and 

another being the additional insight into the physical understanding of the flow such a 

model provides.

The omission of the oscillatory oseenlet representation within the literature is noticeable, 

and restricting the armoury of techniques to be used on these important problems. In the 

present work, we therefore give the oscillatory oseenlet solution and indicate how it can



be applied to good effect on these problems.

In this thesis, we shall give the time-harmonic oscillatory oseenlet representation and 

the force it generates. Furthermore, we shall show that it reduces to the steady oseenlet 

and oscillatory stokeslet solutions in appropriate limiting cases. It is noted that a steady 

streaming velocity perturbation is also expected in practice, but this shall not be detailed 

as this steady Oseen solution is well known,see [13]. Also, it is noted that the flow may 

not be time-harmonic but time-periodic, for example in the formulation given by Lighthill 

in [14]. However, the time-periodic solution can be expressed as fourier series of time- 

harmonic terms, see for example lima [10], for those problems which require a time- 

periodic rather than time-harmonic solution.

1.1 B asic concepts

We give here definitions of some concepts that are used in this thesis.

1.1.1 Viscous flow

Fluids are divided into viscous and inviscid fluids depending on their resistance to stress. 

Fluids which resist a stress are called viscous fluid and the viscosity measures the fluid 

resistance to a shear force or to flow. Hence, water has low viscosity relative to honey 

which has a high viscosity. Fluids which have no resistance to stress are known as inviscid 

fluids.

Fluid with high viscosity is called slow viscous flow, and the viscous effects are dominant 

the flow over the inertial effects. A dimensionless number which parameterise the flow, is



used to measure the relative importance of the inertial effects to the viscous effects, that 

is Reynolds number

Reynolds number

The Reynolds number is a dimensionless number which determines the relative impor­ 

tance of inertial and viscous effects, defined as:

_ , 7 , fluid density x speed x length Reynolds number = ———————————————————. (1.1)
viscosity

The Reynolds number can be written as a ratio of the convective acceleration ( convective 

acceleration unit volume has dimension ^-) to the viscous forces ( viscous force unit 

volume has dimension ^), where p is the fluid density, U is a velocity scale which could 

be the body velocity, L is a length scale, which could be a body length and IJL is the fluid

viscosity:
UUL UL

L L2 IJL v

The Reynolds number may be small (Re <C 1) in the sense of slow velocity U, high 

viscosity v, small size length L, or for the fluid density p is much lower than fluid viscosity 

IJL even for the case where the viscosity is very low. The cases of small Reynolds number 

flow are called slow viscous flows, in which the inertial forces associated with acceleration 

of fluid particles are small compared to the viscous forces arising from shearing motions 

of the fluid, see [15], [16], and [17].



1.1.2 Incompressible and Newtonian fluid

In this thesis we deal with a Newtonian, incompressible fluid. In particular, an incom­ 

pressible fluid with constant density is considered. That means, it is fluid in which the 

volume of any material region is unchanged with time, see [18].

The implication of incompressibility Consider a fixed closed surface S in the fluid, 

with outward unit normal n. At some points on the surface 5, the fluid is entering the 

region V which is bounded by 5, and at some other points on the surface 5, the fluid is 

leaving. The velocity along the normal n is u.n, where u is the fluid velocity and taking 

a small surface element dS of the surface S, then the volume of the fluid leaving through 

dS is u.n dS. Thus, the net volume rate at which fluid is leaving V is J fs u.n dS.

fluid entering point

fluid leaving point

V
u.n

Figure 1.1: region V

Because of the incompressibility / L u.n dS — 0 which is called no outflow condition.



using the divergence theorem gives

u.ndS= V.udV = 0 (1.3)
s

for any region V within the fluid, where V = (, , ) denotes the gradient operator 

[19]. It can be shown that V. u = 0 must be true for all fluid points, as follows. Suppose 

that V. u ^ 0 then either V. u > 0 or V. u < 0 at some points. If V. u > 0 for some 

point x0 in the fluid and assuming that V. u is continuous, then V. u > 0 in some small 

sphere SXo around the point x0 . Taking V — SXo leads to

0< / / / V.udV^Q, (1.4) J J Jv(=sxo )

and if V.u < 0 for some point x0 in the fluid then in a similar way to above, we have

0> / / / V.udV^O. (1.5) 
J J Jv(=sxo )

There is a contradiction between both cases and (1.3). Hence, V. u = 0 for any point 

within the incompressible fluid, see [20].

The fluid is called Newtonian if the shear stress and the velocity gradient are related 

linearly, and the constant of proportionality is known as the viscosity. The Newtonian 

fluid agrees with Newton's law of viscosity, which is described by the equation

viscosity

shear stress exerted by fluid '^v*-^'
velocity gradient

where: <7y denotes the shear stress; u^ is the velocity component in the i direction of a 

Cartesian coordinate system xi and i, j = 1, 2, 3.



1.1.3 Velocity potential of incompressible fluid

In certain cases, the fluid velocity may be expressed in terms of a single valued function 

</>, and such a function is called the velocity potential. (If a velocity potential exists, then 

it can be chosen such that the density of the fluid is either a function of the pressure only 

or a constant, [21], Art. 17). The velocity is described by

u =

For incompressible fluid the velocity potential exists and is harmonic, resulting from ap­ 

plying the divergence which gives

V2 0 = V • u = 0,

where V is gradient operator, V2 = V • V is the Laplace operator and the dot denotes 

the inner product. The existence of the velocity potential for incompressible fluid is sat­ 

isfied by the fundamental theorem of vector calculus, which states that any sufficiently 

smooth, rapidly decaying vector field in three dimensions can be resolved into the sum 

of an irrotational (zero curl) vector field and a solenoidal (zero divergence) vector field; 

This implies that any such vector field F can be considered to be generated by a pair of 

potentials: a scalar potential 0 and a vector potential A.

1.1.4 Steady and unsteady flow

Flows can be classified as steady flow and unsteady flow.

Steady flow: when all conditions of a flow remain unchanged over time, the flow is said to

be steady. The conditions may vary from one point to another within the flow but remain



unchanged at the same point.

Unsteady flow: when the flow conditions change with time at any point, the flow is said to 

be unsteady. Unsteady flow may be classified itself into transient flow (time-non periodic) 

and oscillatory flow (time-periodic).

1.1.5 Uniform flow

Flow is said to be uniform if the velocity remains unchanged at every point within the 

fluid, in other words, it is a flow during which the instantaneous velocity is always con­ 

stant. Hence acceleration is zero, and a constant velocity implies that the direction of 

the flow is along a straight line and average velocity and instantaneous velocity have the 

same magnitude. An example of uniform flow is the flow with constant velocity U in the 

^-direction of coordinate system x = (x\, x2 , x3 ) = (x,y,z)\

= 0, j ^ i,

where the unit vector Xi is perpendicular to the plane XjXk,j, k ^ i. For i = 1, the uniform 

flow Ui — Ux, is in positive direction of x.

1.2 Thesis Overview

In the second chapter, the derivation of the equations of motion has been considered both 

in dimensional and dimensionless form to give the background to the thesis. In chapter 

three, we introduce the steady Stokes flow, and give the Green integral representation of 

the steady Stokes flow and the construction of the steady stokeslets is given in terms of

8



potentials using the approach used by Lamb [21] for the Oseen flow. Also, the Green's 

Integral Representation of the Steady Stokes Velocity is given and the integral repre­ 

sentation of the force. Finally, we compute the force generated by the steady stokeslet. 

The new result in chapter three is constructing the steady stokeslets using a different ap- 

proach,involving the Oseen potentials, to the approach that has been used in literature to 

obtain the stokeslets.

In chapter four, we consider the oscillatory Stokes flow. The Oscillatory stokeslets are first 

given using the singularity method by Pozrikidis [9], we obtain the oscillatory stokeslet 

in terms of potentials, using a similar approach which we used in chapter three for the 

steady stokeslets. The potentials representation will enable us later to show that the oscil­ 

latory stokeslets can be recovered from the oscillatory oseenlet at a particular limit. The 

Green's surface integral representation of the flow is given and we establish the behaviour 

of the flow in the far field and at high frequencies. The representation of the flow velocity 

in terms of the oscillatory Stokes solutions which requires to know the behaviour of the 

stokeslets close to the point force, is given. Also, we present the force integral representa­ 

tion and the force generated by the oscillatory stokeslets.This is the first time in literature 

to represent the stokeslets in terms of potentials and results which are given in this chapter 

are identical to the existing results using the singular method.

In chapter five, the steady Oseen flow is considered and well known results are given in 

some details. These include obtaining the steady Oseenlet, flow Green's surface integral 

representation, and the force generated by a steady oseenlet.

In chapter six, we consider a uniform flow past an oscillatory body in an unbounded fluid 

region. The Green's integral representation for oscillatory Oseen flow is given. Lamb and 

Goldstein used potential decomposition of fluid velocity to obtain the steady oseenlet, 

we use a similar decomposition for Green functions rather than fluid velocity to obtain



the oscillatory oseenlet. At particular limits we demonstrate that the oscillatory oseenlets 

reduce to known cases. The asymptotic series of the oseenlet around zero are presented, 

which are then used to obtain the Green's integral representation of the Oseen velocity.

We show that the oscillatory oseenlets reduce to the steady oseenlets when the frequency 

tends to zero. The problem of uniform flow past a steady body in an unbounded region 

and Oseen's approximation are given as well as the Green's integral representation of 

Oseen flow. Following the Lamb and Goldstein decomposition, the steady oseenlets and 

the asymptotic series of the oseenlet around zero are presented, which are then used to 

obtain the Green's integral representation of Oseen velocity. Finally, the force is given as 

a far field integral in more detail.

For the first time in the literature, the time-harmonic oscillatory Oseenlets for velocity 

and pressure are represented in chapter six. The oscillatory oseenlets are constructed 

in terms of potentials and the reduction to the steady oseenlets and to the oscillatory 

stokeslets in appropriate limits are given. We give the Green's integral representation of 

the oscillatory Oseen equation and we demonstrate that the oscillatory oseenlets can be 

written in Pozrikidis's form of the oscillatory stokeslets. The integral representation of the 

oscillatory Oseen velocity and the expansion of the oseenlets around zero are represented. 

The force generated by the oscillatory oseenlets is given in terms of the velocity, pressure 

and the frequency. In the last chapter, applications discussion of our results and future 

work are presented.
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Chapter 2

Equations of Motion

Fluids display such properties as not resisting deformation, or resisting it only slightly, 

and the ability to flow which can be described as the ability to take on the shape of a 

container. Ideal fluids (inviscid and incompressible) can only be subjected to normal, 

compressive stress which is called pressure and real fluids are capable of being subjected 

to shear stress.

In fluids, shear stress is a function of the rate of strain, and depending on the form of 

this relation between shear stress and the rate of strain and its derivatives, fluids can be 

characterised as non-Newtonian fluids (where stress is proportional to rate of strain, its 

higher powers and derivatives) and Newtonian fluids (where stress is directly proportional 

to rate of strain).

In this thesis, we will deal only with Newtonian Fluid which is named after Sir Isaac 

Newton, and the constant of proportionality is known as the viscosity. The behaviour of 

fluids can be described by the Navier-Stokes equations which are a set of partial differen­ 

tial equations based on:

11



• Continuity (conservation of mass)

• Conservation of linear momentum (Newton's second law of motion)

The study of fluids in motion (fluid flow) is fluid dynamics which is a sub-discipline of 

fluid mechanics. It has several sub-disciplines itself, including aerodynamics (the study 

of gases in motion) and hydrodynamics (the study of liquids in motion).

2.1 Continuity Equation

The continuity equation is a differential equation that describes conservation of mass. In 

fluid dynamics, it is a mathematical statement that the rate at which mass enters a system 

is equal to the rate at which mass leaves the system.

The continuity equation is governed by the physical laws of the moving fluid in a fixed 

control volume V, taking into account the flow through the surface S enclosing V and the 

forces which act on the fluid.

Ensuring that mass is conserved in V gives the rate of increase of mass in V equal to 

the rate at which the fluid is flowing into V through the surface S. 

This is can be written as

where the minus sign is necessary because n is the outward unit normal. 

So
r r r do r r = o.

12



Applying the divergence theorem / fs u.n ds = / / fv V.u dV, where V 

for a continuously differentiate vector field u, gives

Since V is an arbitrary volume, then

This is the continuity equation, which is the local form of the conservation of mass law.

In the case of an incompressible fluid, for which the density p is a constant, the conti­ 

nuity equation simplifies to

** = 0 or V.u = 0, (2.1)

which means that the divergence of the velocity field is zero everywhere, see [16] or [22].

2.2 Stress

When external force is applied on a body, internal forces are produced within the body as 

reaction. The measurement of these forces is called stress. Types of external forces are:

• Body forces, such as gravity and electronic magnetic forces, which are force per 

unit of mass acting on all volume elements AF. We let body forces be denoted by 

b

• Surface forces, such as pressure, act across an internal or external surface element 

AS1 in a material body. Let surface forces be denoted by f.

13



• Point forces, when a force is applied on very small area which can be consider as a 

point, then the force is called a point force.

In general, the stress is not uniformly distributed across a section of the material body. 

Therefore, it is necessary to define the stress at a specific point P in the body, which is 

assumed to be a continuum.

2.2.1 Cauchy's stress principle

Consider a continuum body subjected to a surface force f and body force b. Let V be an 

arbitrary volume enclosed by the surface S and n be the outward normal at point P G A5. 

The resultant forces are given by A/; exerted across A5 upon the material within V by 

the material of outside V.

X i
Figure 2.1: AS3 is the projection of AS on the xix2 .plane

14



The distribution of force on the area AS1 is not always uniform, as there may be a moment 

AM at P due to the force Af.

Cauchy's stress principle states that as AS tends to zero, in the limit ^ becomes Jj| 

and AM vanishes. The resulting vector ^ is defined as the stress vector t^ at the point 

P,

• = lim - ort^= lim (2.2)
AS AS^O AS

Considering the projection onto the plane normal to n3 , gives

cos 7

where 7 is the angle between the plane AS and the plane Axi Ax2 , see figure (2.1). As n 

is perpendicular to A S, then

11.63 
cos 7 - ———r - n.e3 = n3 , (2.4)n||e3 |

where n is the outward pointing normal to the surface and e* = Xi is the unit vector in the

ith coordinate direction. So
AxAx

(2.5)

gives Axi Ax2 = A5n3 = A53 , where A53 is the projection of AS on the plane perpen­ 

dicular to x3 axis. A similar argument holds for ASi and AS^, giving

15



Taking the limit when AS —> 0 yields

Ifan A5j
*o AS 

From (2.2) we have
, (n) _ W Z __ ~",/ I ~"^ J __ "V 't rr\ £\

dS dSj dS dSj

where the repeated suffix implies a summation over j. This gives the stress vector at the 

point P across a surface S. The stress depends on both the location in the body and also 

the plane across which it is acting. From Newton's third law (law of action and reaction), 

the stress vector acting on opposite sides of the same surface are equal in magnitude and 

opposite in direction,

2.2.2 Stress Tensor

The stress at a point P in the body is defined by all the stress vectors t^ and normal 

vectors n associated with all planes that pass through that point. Fortunately, according 

to Cauchy's fundamental theorem, we need to know the stress on three mutually perpen­ 

dicular planes, then the stress vector on any other plane passing through that point can be 

found through coordinate transformation.

Since the unit vector Xi is perpendicular to the plane XjXk ,j, k ^ z, we can write

16



For the three coordinate planes, the stress vector can be written by taking n = x,

X\

= t 2}

t (*3 ) =

In index notation

In (2.6) replacing n by x, gives
x} =

3 2:3

(2.7)

X-

33

-V — -

12

11

Figure 2.2: Components of stress in three dimensions

Denote T^ by tfj \ the nine stress vector components. Therefore

17



j(n) = f (n) (n) (n) ] _1 ~
dS ' dS '

T32 n3 , T23n2 + r33n3

\

T13

\ T32

\

(2.8)

This gives the relation between the stress vector t^ and the stress tensor

2.2.3 Normal and Shear stresses

Normal stresses are the stress vector components which are perpendicular to the planes 

(TLI 5 T22,733)* while the shear stresses are the stress vector components which are tangents 

to the plane (ri 2 , ri 3 , r2i , r23 , r3 i, r32 ).

2.2.4 The shear stress and the strain rate tensor

The shear stress a^ is related to the velocity gradient f^-, which can be decomposed
3

into symmetric part which is the strain rate tensor e^ and antisymmetric part that is the

18



vorticity tensor

1 f duj duj. 1 f duj
o(~0 —— ~^~ ~n —— / ~f~ o~ ——
2 ox ox 2

where efj = ±(f^- + g-), and ^zj = |(|^- - ). The antisymmetric tensor Q^- rep­ 

resents fluid rotation without deformation , and cannot by itself generate stress. While 

the strain tensor e^ generates the stresses alone [19] For Newtonian fluid, the relation 

between the stress a^ and the velocity gradient |^-, is linear. The most general linear

relation is
_ A o^m _

&ij — **-ijmp~£\ —

where

~r

which is an isotropic tensor (that is defined as the tensor whose components do not change 

under a rotation of the coordinate system, see [19]). Taking into account that there is 

no stress generated by the vorticity, A and // are scalar constants, and Ajmp must be 

symmetric in i and j because a^ is also symmetric.

2.2.5 The Constitutive Relation for Newtonian Fluid

At rest, fluid has no tangential stress acting on its surface, only the normal component of 

stress on the surface appears, which is internal stress due to the pressure p. The stress 

tensor is isotropic, and any isotropic second order tensor is proportional to the Kronecker 

delta, therefore

19



For fluid in motion, due to viscosity additional components of stress appear and the shear 

stress develops. Now we can decompose the stress r^ into two parts,

Ti = -pdi +(Ti. (2.11)

Substituting (2.10) into (2.1 1) and using the symmetric property of e^, gives

= pOi \ s*-im€"m = P^i i AOi Om ~r

~i 

— PUij ~r A0jjemm + Z/X

. (2.12)

Since emm — V • u = 0 for an incompressible fluid, then

(2.13)

This relation is called the constitutive relation.

2.3 The Navier-Stokes Equation

The Navier-Stokes equation describes the motion of a Newtonian fluid. It is a non-linear 

differential equation which does not explicitly establish a relation among the variables 

of interest ( velocity and pressure). Rather they establish a relation between the rates of 

change of the variables. The non-linearity is due to the convective acceleration, which is 

an acceleration associated with the change in velocity over position.

20



Usually, the Navier-Stokes equation is too complicated to be solved in a closed form. 

However, in some cases, such as Stokes and Oseen flows, the equation can be simplified 

to a linear equation.

2.3.1 Derivation

Newton's second law implies that the rate of increase of momentum in a control volume 

V must equal the sum of the rate at which momentum is flowing in through the boundary 

5 and the total forces acting on the contents of V. We can write this in mathematical form 

as

rijnjdS

where: p is density; u\ is Navier-Stokes velocity; F is body force per unit mass acting on 

the fluid and r^ is the stress tensor. 

Applying the divergence theorem gives

Since V is an arbitrary volume, we can write
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Under the incompressible assumptions, the density p is a constant, and it follows that the 

second term will simplify to

Qu\
because -^ — 0 from the continuity equation. So we get the following

Qu\From (2.13), TH = —p'Si* + MTT^ + Jr2")' wm'ch yields

where p^ is the fluid pressure. Using the continuity equation (2.1), gives

d2 u\
(2.17)

By substituting (2.17) into (2.15), we get

The force F can be absorbed in the pressure for a conservative force field R = ^-, in
OX i '

which case the last term in (2.18) will be absent. The resulting equation (2.18) is the 

Navier-Stokes equation, which can be written in terms of the material derivative f-t =
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dt "•" aj~fa- d!5
P-FTT = -TT-+/4

9n!

drTjCtej

with continuity equation P1 = 0.

In operator form this is

- -Vpf + ^VV, V.uf - 0. (2.20)

It is worth observing the meaning of each term in the Navier-Stokes equation:

unsteady acceleration
,~s^^ convective acceleration Divergence of stress

P (
^ pressure and other body forces viscous term 

inertial force
(2.21)

Only the convective term is non-linear and it is an acceleration caused by a change in 

velocity u^ over position. The pressure term includes any other conservatives, such as 

gravity.

2.3.2 Stokes and Oseen Approximation

In the Navier-Stokes equation (2.21), we have three terms: the inertial term of two com­ 

ponents (which are unsteady acceleration and convective acceleration), the pressure term 

and the viscous term. In the low viscous flow limit, we estimate the inertial term to be 

small, more specifically the convective acceleration is assumed small. It is negligible only 

if the remaining terms are not small by comparison.

Neglecting the convective acceleration term is called Stokes's approximation, while Os­ 

een 's approximation represents the convective acceleration by a linear term which is the
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combination of a uniform flow velocity and a velocity due to a body which is passing by 

the uniform flow.

2.3.3 Why Oseen's approximation is needed

For uniform flow past a solid body, the pressure and the viscous terms near the body 

are certainly not small, but far from the body both terms are expected to decay toward 

zero, see figure (2.3). So the Stokes' approximation may fail in the far field, where a 

better approximation may be to neglect the viscous term and let the pressure and inertial 

terms balance each other. Thus, Oseen replaces the inertial term -£*- = -£*- + u^-^ in 

the Navier-Stokes equation by %• + Uj££ where U is uniform velocity. In the far field

region, the fluid velocity tends to the uniform flow velocity U. Therefore the Oseen's 

approximation is valid far from the body, but the condition u^.n = 0 must be satisfied on 

the body surface. This approximation fails near the body where the inertial term is small 

compared to pressure and viscous terms, but it becomes more appropriate far from the 

body, in the far field, see [21] and [17].

Near field

Uniform flowU

pressure and viscous terrm 

are not small

Far field

pressure

viscous term

0

0

U U

Figure 2.3: Near and Far Fields
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2.4 The Stokes Equation

The Stokes equation describes slow viscous or low Reynolds number flows, in which the 

convective acceleration term on the left-hand side of the Navier-Stokes equation (2.19), 

is small compared to the rest of the terms and may be neglected. Thus the non-linear 

term pu. Vu is negligible and then the inertial term can be approximated by the unsteady 

acceleration .

2.4.1 Derivation of the Stokes Equation

Starting with the Navier-Stokes equation

,du\ t\ _ __ < 
dt i '

the non-linear term can be neglected, which approximates (2.22) to

_ dp d2 Uj 
dt

The resulting equation is the unsteady Stokes equation. For steady flow the term ^ will 

be zero, so the steady Stokes equation will be

0 = - Vp + //V2u, (2.24) 

where V2 = ~ aL + a/L + « ^L, = dxddx . is the Laplacian operator. Taking the
C/tC 1 \J JLr 1 C/«JL'2 t-'«*/ 2 ^"O ̂ "O \J JLl *1 \S *ts *l "• •*• ^J

divergence gives

V2p - 0. (2.25)

25



2.5 The Oseen Equation

The Oseen equation describes the flow of a viscous and incompressible fluid in a uniform 

flow field, as formulated by Carl Wilhelm Oseen in 1910 [23], [17]. In 1911 Horace Lamb 

was able to use the Oseen equation to derive improved expressions for the viscous flow 

around a sphere, improving on Stokes flow, and deriving a solution for the viscous flow 

around a circular cylinder, see [24], [17].

Consider a uniform flow with velocity U past a body. Far from the body the flow may be 

decomposed into the incident flow and a disturbance flow with velocity u due to the body. 

A similar decomposition can be introduced for the pressure.

2.5.1 Derivation of the Oseen equation

We have seen that the incompressible, Newtonian fluid flow is governed by the Navier- 

Stokes equations and continuity equation

„ + ^O 4. „ 4.= -Vpf + /zV2uf , V.uf = 0. (2.26)

Let U be a uniform flow which is parallel to the Xi-axis. A body with an arbitrary shape 

is fixed in the stream. Oseen decomposes both the velocity and pressure as

u\ = U6n + Ui + O(s2 ), pf - p0 + p + O(e2 ). (2.27)

The notation *O 'means 'of order of', 6ij is the Kronecker delta, and e < 1, e = O(|^|). 

The perturbation velocity and pressure are u and p, respectively, which depend on the 

position and time in the unsteady case and on position only in the steady case.
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By Oseen's approximation the velocity u is approximately equal to the uniform flow ve­ 

locity U thus the Oseen approximation depends on the condition that ^ -c 1. 

Applying Oseen's approximation to the non-linear term puj ̂ - of the Navier-Stokes equa­ 

tions, gives

After neglecting quadratic terms in u, the resulting equations are the Oseen equations, 

which are
^v 0 (228)

dx\ dxi dxjdxj 

Taking the divergence of the above equation yields

* d - ^^ w2.u)) = -V p

Therefore

V2 p = 0. (2.29)

Away from the body, the velocity u tends to zero. That means the fluid flow perturbation 

to the uniform flow U in the far field is small. Now taking the Oseen equation to the far 

field and applying the condition that u —> 0, yields Vp —> 0, thus we may choose p —> 0 

in the far field.

2.6 Force Integral Equation

As shown in section (2.2), the force on a body can be divided into body forces and surface 

forces. The surface forces can further be resolved into normal and tangential components.
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Let us consider dA as an area element of a surface A and dF as the force on the element 

dA, then the stress on the element dA is

dFTA = dA '

which implies

dF = TA dA => F = I \ TA dA.'A

The total force acting on the surface is

TijHj dA. 
A

,

rft

For any volume V that enclosed the surface A and for an incompressible fluid dx £ = 0, 

then from the divergence theorem, see [16], the last integral is zero

(2.30)

This gives
r r,

[—p5ij + /•*-7^7-) nj dA (2.31)

which gives the integral equation of the force per unit area acting on the body.

2.7 Navier-Stokes Equations in Dimensionless form

In this section we derive the dimensionless Navier-Stokes equation, which gives better 

understanding of physical meaning and implications. Partial or full removal of units from
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an equation is known as dimensionalisation, which is used to write an equation in terms 

of dimensionless variables. This transformation gives the following advantages;

1. Gives minimum set of parameters on which the field depends

2. Simplifying the notation

3. Easier assessment to the relative impact of the terms

4. In dynamic similarity problems, dimensionless form allows the system to be adapted 

to a similar one.

2.7.1 How to obtain the dimensionless form

The dimensionless equation is obtained by following the next procedure;

1. Writing the differential equation, initial and boundary conditions which describes 

the problem.

2. Identify a parameter for each dependent or independent variable that needs to be 

parameterised. Parameters are dimensional constants with the same dimensions as 

the variable they parameterise and they depend on the nature of the problem. These 

parameters should be kept to small set. For example, if a problem involving position 

x, velocity u and time t, these three variables involve only two dimensions, length 

L and velocity U, so two parameters should be chosen. Time parameter is either 

defined as the ratio of the velocity and the distance (t = ^) or identified with the 

frequency of oscillation for oscillatory flow, see [25].

3. Substitute the parameters in the equation to give dimensionless form of the equa­ 

tion.
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We use dimensional analysis throughout this thesis and we only use the dimensionless 

form to show the physical implications and in the applications discussion. In the introduc­ 

tion, we define the Reynolds number which is dimensionless number, here we introduce 

another dimensionless number, Womersley number. Reynolds number and Womersley 

number are necessary to solve an incompressible fluid flow problem. Since the magni­ 

tude of the dimensionless variables and their derivatives is of order unity, the importance 

of the terms is determined by the magnitude of their multiplication to the Reynolds num­ 

ber and/or Womersley number [25].

2.7.2 Womersley Number

The Womersley number, named after John R Womersley (1907-1958), is dimensionless 

number which is defined as the ratio of the unsteady (transient or oscillatory) accelera­ 

tion to the viscous term in Navier-Stokes equations. This number arises in solving the 

Navier-Stokes equations for oscillatory flow and it expressing the ratio between the flow 

frequency and the viscous forces. We denote it by R^, and it can be written as

(2.32)

The Womersley number is also called transient (or oscillatory) Reynolds number. In case 

that the viscous forces are dominant in the flow, the Womersley number is low and in the 

case the flow is dominated by oscillatory inertial forces, the Womersley number is large.
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2.7.3 Derivation of the dimensionless Equations

We consider a flow of an compressible viscous fluid past a body of a finite size, recalling 

the Navier-Stokes equations

= -Vpf + /A7V, V.uf - 0. (2.33)

We use a parameter velocity U and a parameter length L, and define the dimensionless

variables by

~ x ~ ^ + + x= -j-,u = —,t = ut,

where u is the period of oscillation, and tildes denote dimensionless quantities. This 

implies V = £ V, V2 = jp V2 where V is the gradient with respect to the dimensionless 

position vector x and J^ = cjj^. By using this scale the terms of the Navier-Stokes 

equation will have the following orders

„, TT . „ ^,, ^,> , = 0(pUu),pUj — = 0(—— ),/,- = O(-)., ,

The choice of a correct scale for the pressure depends on the flow under consideration, 

if we consider Stokes flow, then for steady case both terms on the left-hand side tend to 

zero and the pressure term will balance with the viscous term. Hence, the pressure term 

H = O(^) so that p = O(^-). Therefore, p = -±p. Substituting the dimensionless 

variables into the Navier-Stokes equation becomes

pU2 _ diii /j,U dp uU+ t^-rUj—— = ~^-^r + TT^- (2.34) dt L dxj L2 dxi L2 dxt dxi

31



Focusing on the nonlinear term we multiply the equation by the factor

U dt dxj pUL dx 

The factor ^ can be written as

LUJ

„ = JJL dp n d2 Uj (235} 
3

U v // "pUL' Re

where R^ = ^— is the dimensionless Womersley number, and Re is the Reynolds num­ 

ber (1.2). 

So
R2 diii _ dui I

(2.36)Re dt dxj Re dxi 

The dimensionless Navier-Stokes equations are

(2.37)

One can see that for very small values the dimensionless numbers, Re «C 1 and

1, terms on the left-hand side of equation (3.7) may be neglected and then the Stokes

equation governs the flow
r\ ~ <AO ~
O O*Uj _

From this equation we can see that the Stokes flow has only dependence on time through 

time-dependent boundary conditions, and the flow can be found without the knowledge of 

the flow at any other time. Also the Stokes equation is linear which allows superposition 

of solutions.

When flow has small Reynold number Re < 1 and R^ approximately equals to unity
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1), the second term on the left-hand side, that is the inertial convective term, is 

small compared to the other terms and may be neglected, then the unsteady Stokes equa­ 

tion reveal;

(2.39)
at

As the acceleration term is present in (2.39), then the flow depends on the history of the 

motion. Also, the unsteady Stokes equation is linear, which gives ability to use variety of 

solution methods, such as Laplace and Fourier transform, and superposition of solutions.

Stokes flow has variety of applications in biology hydrodynamics, engineering and physics, 

such as flow due to movement of micro-organism (when Re is small due to the very small 

size), flow due to the motion of an air bubble in honey (Re is small due to honey high 

viscosity), and flow past a red cell blood (which has small diameter).

For Oseen's flow, we need to introduce another dimensionless variable for pressure, scal­ 

ing the terms using a velocity parameter C/, length L, and frequency uj and define dimen­ 

sionless variables as
x

> , , L U pU2

where tildes denote dimensionless quantities. This implies V = | V, V2 = | V2 where
L* LJ

V is the gradient with respect to the dimensionless position vector x and ^ = uj-. 

Substituting the dimensionless variables into the equations leads to

PU dp^ + -T UJ^T = --TST +di ^ L ' J dx v L

To focus on the nonlinear term we multiply the equation by factor - (from the convec-
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tive acceleration term),

_ = dp 
' j ~U ' di 3 dxj 

since Re = ^-^, then we can write

U di
„ _ 1+ u T^- = — 7^

Now, since the factor ^ can be written in terms of both the Reynolds and Womersley

numbers
2 _ r 2PUJ _ ^L.UpL (jjL 
^ n U n U

Then the dimensionless form of the Navier-Stokes equations is

du dp 1 d2u
lie ot

and

V.u = 0.

In the case of Ru tends to zero the steady Oseen equation is recovered

du _ dp 1 d2 u

The equation (2.40) can be apply when the Reynolds number is small or high. For 

Re <C 1, the equation represent the far field . When Re w 1 both Stokes and Oseen 

equations give good representation of the near field with equal accuracy. The unsteady 

Oseen equation will recove when R^ « 1. Applications will be discussed in chapter 7.
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Chapter 3

Steady Stokes Flow

3.1 Introduction

Steady (or time-independent) flow is when the change of fluid velocity with time is zero, 

the equation of motion for steady flow is obtained by omitting the time- dependent terms 

of the Navier-Stokes equations. Stokes steady flow has been in the literature for many 

years, it is named after George Gabriel Stokes also it is called creeping flow(for which 

Re —> 0). In this chapter, we introduce the steady Stokes flow in section one, and in 

section two we give the Green integral representation of the steady Stokes flow. In section 

three, the construction of the steady stokeslets is given in terms of potentials using similar 

approach to the approach used by Lamb [21] for the Oseen flow. The Green's Integral 

Representation of the Steady Stokes Velocity is given and also the integral representation 

of the force. Finally, we compute the force generated by the steady stokeslet. Throughout 

this thesis, the superscripts s denotes the Stokes solutions.
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3.2 Statement of the problem

Consider uniform steady incompressible fluid flow in an unbounded domain past a sta­ 

tionary body. At low Reynolds number flow, the Stokes approximation is valid in the 

near field and linearises the Navier-Stokes equations. Recalling (2.19) the Navier-Stokes 

equation for an incompressible fluid is

Du] _ drf d2 u\
Dt

where ij = 1,2,3. Dropping the inertial force p- which encloses the time-dependent 

term p^- and the convective acceleration term puLVu^, the viscous force is balanced by 

the pressure and the body force which can be absorbed into the pressure. This gives the 

steady Stokes equations

= 0 (3.2)
OXj OXiOXi

with the continuity equation

V • us = 0. (3.3)

Taking the divergence of (3.2) and using the continuity equation, we find that the associ­ 

ated pressure satisfies the Laplace equation

VV = 0. (3.4)
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The equations

- 0,

V-us = 0,

VV = 0, (3.5)

represent the Steady Stokes flow. One can note that the Stokes' approximation reduces 

the degree of the Navier-Stokes equations (2.19) from two to one. Recalling the dimen- 

sionless Navier-Stokes equations

du du _ dp 1 d2 u
Re dt dxi dxi Re

And

V.u = 0.

We can see that when both Reynolds and Womersley numbers are small, Re <C 1 and 

Ru <IC 1, the left-hand side terms are small compare to the right hand-side terms, and may 

be neglected. In this case, the pressure term balance with the viscous forces term which 

means that the Stokes equation recovers

dp d2u _

3.3 Green's Surface Integral Representation

We introduce the Green's functions (us (m),ps (m)), m = 1, 2, 3, for the velocity and 

pressure field, which with the general velocity us and pressure ps , satisfy the surface 

integral representation of steady Stokes equation which we shall construct. Consider
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distinct Cartesian coordinates yj and Zj = Xj - yj, the coordinate y parameterise a point 

on or within a fixed closed surface and the coordinate x shall refer to a general fluid point. 

The four solutions us , ps , us^ and ps^ then satisfy the equations

0 (3 . 8)

and the Green equations are

(39)
r\ r\

Since z = x — y, then the adjoint equation in y is satisfied as -^- = — -J-, which is

x dyj (3.10)

Next, following Oseen [13], we dot product (3.8) with Uj\z) and take it from the dot 

product of (3.10) with itj(y), to obtain the following equation
J

Applying the continuity equation V • us = 0 gives 

d f ol .

(3.12)
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Consider a volume V of fluid bounded by the surface S enclosing the body. The diver­ 

gence theorem applied to (3.12) enables us to write

d

the equation (3.13) represents the Green's surface integral of the steady Stokes equations

3.4 Steady Stokeslets

The Green's functions (the fundamental singular solutions) for a point force are called 

stokeslets, the steady stokeslets due to a point force in unbounded fluid are well known and 

have been in the literature such as [25] and [26]. Consider solutions of the steady Stokes 

equations (3.2) and the continuity equation (3.3), us (m ) = (us3-), j, m = 1, 2, 3, where 

m corresponds to a stokeslet pointing in xm direction and j corresponds to the components 

of velocity in the Xj direction. In this section, we obtain the steady stokeslets in terms of 

the potentials 0 and x similar to the approach used by Lamb [21] for Oseen flow, but 

which is also applicable for the steady Stokes flow. Then, we employ the stokeslets to 

represent the steady Stokes velocity. The Green equations (3.9) are satisfied by the steady 

stokeslets, which gives

-Vps(m) + /xVV(m) - 0, V • us(m) - 0. (3.14)

The Lamb-Goldstein velocity decomposition suggests the form of the Green's functions 

is
flj.s(m)^-— x> & .m (315)u~j 
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where the velocity potential 0s(m) (z) is associated with flow outside the wake and the ve­

locity xs is associated with the wake velocity. As we are dealing with an incompressible

fluid the potential <ps^ is a harmonic function satisfying V 2 0s ^m ^ = 0. Taking the diver­

gence of the decomposition (3.15) and applying the continuity equation, we find that the

potential xs satisfies the continuity equation; Vxs = 0.

Substituting the decomposition (3.15) into the Green's steady Stokes equation (3.14),

gives

, s/xy. N = 
i X. \ ej ) u im)J

a #y
jm

(3.16)

using V0S = 0 gives

The pressure solution is given by Oseen [13] as

Ps(m) W - -^
4?r az ft

where .R = |z = ^z2 + ^2 + 2:3 Substituting (3.18) into (3.17) and using

-). nR } u
... ^ ... j

Let

(3.20)

Next, we turn our attention to compute the potential 0s (m\ which disappears from the 

flow equation (3.17). However, <p can be obtained as a harmonic function, a particular
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solution choice is
1 r)R 1 r...

(3.21)
STT/J, R 

The complete steady stokeslets solutions are

•jdzm 47T/4 #

Since d2fl — ^gi _ £& me stokeslets can be written as
OZ-iOZm. JL rt

(3.22)

rn rn 
+ >'8 R

which decay to zero at infinity and are the steady stokeslet solutions given by Oseen [13]

3.4.1 Green's Integral Representation of the Steady Stokes Velocity

The Green's surface integral representation of the steady Stokes flow has been given in 

(3.13) as

= 0. (3.24)

We consider the surface 5 consisting of a surface Sg, a sphere radius £ —> 0 around the 

point z = 0, a surface SB enclosing the body, and a large spherical surface SR of radius R 

extending to infinity, enclosing the body and centred at the point z = 0, see figure (3.1).
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Volume V enclosed by S

Figure 3.1: The surface S and the relation of the points x and y

We re- write the integral over the surface S as a sum of the integrals over the surfaces Ss, 

SB, and SR ,

-0- 0.25)+ +
S ss J JSB JSR

Next, we calculate the contributions over the surface Ss as 6 — » 0, and over SR as R — > oo, 

to give integral representation for the steady Stokes velocity usAx).
J

The Contribution over the Surface S§ as 6 —> 0.

The integral over the surface Ss is denoted by ISs , which is

Ss
. (3.26)
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Let us split ISs into parts, /i, /2 , /s and 74 , thus ISs = I\ + h + h + h and these are 

considered separately. This is done in order to simplify the work, where

ss

(3.27)

Since z = x — y, then y = x — z and nj = ^ (R — 6) points outward the control volume 

V, see figure (3.1).

Obtaining l\

We can show that this integral vanishes as 6 —»• 0,

h — I I uj (Z)P (y)njdS — I I u- (z)p (x — zJrijdS. (3.28) 

From the Taylor series

-z) =P
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and using the steady stokeslets (3.23) the integral I\ becomes

ri6 H

where zm = O(R) and dS = O(R2 ).

Obtaining

Similarly to above

47T J J Ss 

1
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0(R2 ) = 0(R) - 0 (3.29)

7 = u° aWzndS= ua x-z)p m z)ndS (3.30)

A 04 ,, ZjZmdS + 0(R) (3.31) 
4?r /T J JSs



Using Zj = Rn3 and the divergence theorem we compute

/» /i /*/"/* £i

= R Zm nj dS = R 
S5 J JSS J J JV

4?r 
v 3

Combining (3.31) and (3.32) when R (= 8) -> 0 we find

4?r

Obtaining /a

r = Ss 3 "' du
\J Tt~n ^"i ^"= -fi • • '

= R6jm I I I dV = —6im R4 . (3.32)

(3.33)

8?r
O(R) -> 0, (3.34)

dus (y)as 6 —> 0. The Taylor series for -^- around z = 0 and the approximation (4.59) has 

been used.
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Obtaining /

In similar way to 72 , we can take Uj(y) outside the integral to give

si m (z)
3 ' dS

ni dS. (3.35)
./-M/l (

Ss

( \From (3.23) the steady Stokes solutions uS (z), we can obtain the derivatives — , 

as follows since

~ O zz

87T/, R

Differentiating both sides with respect to y/, gives

Using --, gives

d 6jm
R
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(3.38)



So

h =

U (X) r r.

(339)
this by the use of HI = g and zm = z/^m . Since f Js dS = ^R2 and / /5 ZjZmdS 

^j-8jmR4 , the integral becomes

T' -

as 6 -> 0. From (3.29), (3.33), (3.34) and (3.40) we find that

The Contribution over the Surface SR as R —> oo

Now, we determine the far field integral

tij(ro) (z)p'(y)nj.d5+

(3.41)

(3.42) 
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where the surface SR is a sphere with large radius R as shown in figure (3.1). From the 

definition of the steady stokeslets and their associated pressure we can see that both decay 

to zero at infinity,

and

p»(^)(z) = —(-^) - 0(R~2 ). (3.44)
/I /TT ' '-»

Also

S(m) / \

j (Z) 1 Zi . Zj Zm ZjZm i ^ /-w 7->-2

substituting the stokeslets, the pressure and (3.45) into the integral over SR and letting R 

tends to infinity, lead to

ISR = 0(R). (3.46)

Thus the far field integral is non-zero, meaning that it is necessary to match Stokes flow 

to a far field Oseen flow to resolve this integral. In particular, the moment calculated in 

far-field Stokes flow is unbounded (Filon's paradox) [27] and is resolved by matching to 

a far field Oseen flow, see Imai [11]. With this matching in mind and using (3.41) and 

(3.46), we find

(3 .47)

which is the representation of the flow velocity in terms of the steady Stokes solutions.
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3.5 Force Integral Representation in Steady Stokes Flow

The surface force on the body due to the fluid action, is given in equation (??) as

FJ=
sB

where SB is the body surface, n is the outward normal of SB and r is the stress tensor of 

steady Stokes flow, which is

Applying the divergence theorem to (3.48) for the volume V which is bounded by the 

surfaces SB and the far field spherical surface SR of radius R, gives

Fj= Tiini dS- / / ^dV, (3.49)
J II III /"IT*,J JSR J J JV uxl

where n is the unit normal vector pointing outside the volume V. From the steady Stokes 

equations (3.2) and the continuity equation (3.3) we find that

dps

dp5 d2 usj _

Therefore, there is no contribution of the volume integral and the force can be written as 

the far field integral
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rjinidS, (3.51) 
sR

which is the same as the result given by Blake ( [28], page 309) and Pozrikidis ([26], page 

3).

3.5.1 Force Generated by steady Stokeslet

In this section we compute the forces generated by the steady stokeslet, using the force 

far field integral representation in terms of the stokeslets, as follows.

Recall the force representation (3.51), which is

F*= TjimdS. (3.52) 1 'SR

Substituting the steady stokeslets uSj gives

denotes the force generated by the steady stokeslets, where

s (m) _ ~
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R 
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To work out the force we expand the derivatives,

o s 
OU3

s(m)

s(m)

SO

R3 

The stress tensor in terms of stokeslets is

Therefore, the forces are

So the m-stokeslet gives a unit force in the m-direction.
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= ^JL ZjZmdS- (3 - 58)
From (3.32)

(3.59)



3.6 Conclusion

The steady stokeslets are obtained using potentials, which are similar to known solutions 

for the steady Stokes flow. This is the first time in literature to represent the stokeslets in 

terms of potentials and results which are given in this chapter are similar to the existing 

results using the singular method. The Green integral representation of the flow is given 

and we show that the steady stokeslet generate a unit force in the direction of the point 

force. In chapter six we will show that at a particular limit the oscillatory oseenlet reduces 

to the steady stokeslet.
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Chapter 4

Oscillatory Stokes Flow

In this chapter we consider the oscillatory Stokes flow. The Oscillatory stokeslets are first 

given using the singularity method by Pozrikidis [9], we obtain the oscillatory stokeslet 

in terms of potentials, using a similar approach which we used in chapter 2 for the steady 

stokeslets. The potentials representation will enable us later to show that the oscilla­ 

tory stokeslets can be recovered from the oscillatory oseenlet at a particular limit. After 

introducing the oscillatory flow in section one, we give the Green's surface integral rep­ 

resentation of the flow in the section two. In section three, we construct the oscillatory 

stokeslets using potentials representation, and then we show that they are similar to the os­ 

cillatory stokeslets given by Pozrikidis. Also, in section three we establish the behaviour 

of the flow in the far field and at high frequencies. The representation of the flow velocity 

in terms of the oscillatory Stokes solutions which requires to know the behaviour of the 

stokeslets close to the point force, is given in section four. In section five, we present the 

force integral representation and the force generated by the oscillatory stokeslets.
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4.1 The Governing Equations

The time-dependent incompressible Navier Stokes equations are given by

, , + pw x)—— = ———^ + ^ ' (4.1)

where: w] is the velocity component in the j direction of a Cartesian coordinate system 

Xj and j, / = 1,2,3; pt is the fluid pressure; £ denotes time; p is the fluid density; and // 

is the fluid viscosity.

In the near-field the Stokes approximation is valid, the inertial convective term on the left- 

hand side of (4.1) is small compared with the rest of the terms and thus may be neglected. 

The flow is governed by linearised Navier-Stokes equations

at 

We consider linearised oscillatory flow. Thus we seek time-periodic solutions of the form

oo 

If/. (\\ —

n——oo 
oo

(4.3)

where i is the imaginary number v-1, ujn = -4p and T is the time period of the motion. 

Since the left hand side of (4.3) represents real variables, then u™ = u* ( ~n} and psn = 

ps(-n) where the bar denotes the complex conjugate and the superscripts s denotes the
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Stokes solutions. Substituting (4.3) into (4.2) gives for each n

r)nsn (v} O Us-^^w—^+M^r1 - <4 -4>
For simplicity we omit n from equation 4.5 and subsequent equations, and becomes

(4 - 5)

This equation represent the oscillatory Stokes flow. Also one can show from the time- 

periodic representation (4.3) that the Stokes velocity satisfies the continuity equation 

V • us = 0. Taking the divergence of the oscillatory Stokes equation (4.2) gives the Stokes 

pressure to satisfy the Laplace equation

VV = 0. (4.6)

4.2 Green's Surface Integral Representation

In this section we give the Green's surface integral representation of the oscillatory Stokes 

equations, following the Green's integral formulation as given by Oseen [13], except ap­ 

ply it to the oscillatory rather than the steady or transient case. Consider four solutions 

for the velocity and pressure field given by u?(y), ps (y) and i^(m) (z), ps (m)(z) where 

1 < ra < 3. The first solution refers to a general velocity and pressure field, and the sub­ 

sequent three solutions refer to the specific Green's functions satisfying a Green's integral 

which we shall construct. 

We consider distinct Cartesian coordinates ^ and Zj = xj - yjt the coordinate y param-
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eterises a point on or within a fixed closed surface and the coordinate x shall refer to a 

general fluid point. The four fluid solutions then satisfy the equations

(4.7)

and
*-Q , ax(m) (z) ...."-- (4- 8)

Since z = x — y, then the adjoint equation in y is satisfied as -j^- = —•/-, which gives•

. (z) = — — -^ + // ' —— (4.9)

Following the method of Oseen [13] to get Oseen's Greens function representation, we 

dot product (4.7) with u^ and take it from the dot product of (4.9) with id.
J J

m) , i r s(m); — —— — - —— r s+^K L J

, =o. (4.10)

uApplying the continuity equation g-1 = 0 then gives

_d_ 
dyj "

This holds within a volume V^ of fluid bounded by the surface S where the Stokes ap-
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proximation is valid, and parameterised by the coordinate system y. Then, applying the 

divergence theorem gives

, , , af ,(z)—^—ni + /ms (y)^^——ra^dS = 0, (4.12)

where n is the unit vector normal to the surface S pointing outwards from the control 

volume V. In this way, we have obtained the Green's surface integral representation of 

the time-harmonic Stokes equation, which is identical to the Green's representation for 

the steady Stokes flow (3.13), as the oscillatory part has canceled from the governing 

differential equation and we note that this can be obtained from the Green's surface rep­ 

resentation of time-harmonic Oseen equations (which is identical to the steady Oseen 

representation), by letting the forward uniform flow U be zero.

4.3 Oscillatory Stokeslets

The form of the oscillatory stokeslets are given by Pozrikidis [9], but we need them here 

in terms of the potentials 0 and x which are the potentials introduced by Lamb [21] to 

represent the Oseen equations. This representation then enables us to infer the form of 

the oscillatory stokeslests from the oscillatory oseenlets. The oscillatory stokeslets must 

satisfy (4.8) for the oscillatory Stokes equation, which is
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+ M ./. • (4.13)
<7Zj

The velocity decomposition

S (m), x <<>z s(m}f '(z) = — + wf '(z) (4.14)

is assumed for the stokeslets, which is the Lamb-Goldstein velocity decomposition used 

in Oseen flow [21], [29]. Where the velocity potential ^m\z] is associated with flow 

outside the wake and the velocity Wj \z) is associated with the wake velocity. But we 

shall use the Lamb-Goldstein velocity decomposition here as it is equally applicable for 

Stokes flow. The potential 0s (m) has to satisfy Laplace equation as we consider viscous 

incompressible flow, so

V2 0s(m) =0 (4.15)

and this potential is associated with flow outside the wake. In contrast, the velocity w^
o s(m) / \

is associated with the wake velocity. Taking the divergence of (4. 14) and using UjQz =

0 and 8 ^s ™ & = 0, shows that the wake velocity satisfies the continuity equation

= 0. (4.16)

Substituting the decomposition (4.14) into (4.13) gives
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. . d2 ,00s(m) (zK d2 w m\z) 
z - - + MTT-T;- o + ^

(4.17) 

From (4.15), ^^=0, then

. , . s(m) piu—-—— + piuw^ '(z) - n J —— = ——-——. (4.18)

In section 4.1 we have shown that the oscillatory Stokes pressure satisfies the Laplace 

equation (4.6). Furthermore, in the steady case limit a; —>• 0, then the solution for the 

oscillatory stokeslet must tend to the solution for the steady stokeslet. The steady Stokes 

pressure also satisfies the Laplace equation. So, the solution for the pressure for both 

steady and the amplitude oscillatory stokeslets must be the same. The steady stokeslet 

solution for pressure is given by Oseen [13], consequently, this is also the oscillatory 

stokeslet solution for pressure given by

where the radial distance from the stokeslet singularity is given by R = z

Now, since both the pressure ps(m) (z) and the potential 0s(m) (z) are harmonic functions, 

the pressure term can be removed from the oscillatory Stokes equation (4.18) for the 

stokeslet by the particular choice

(4.20)
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or

zpo;0s(m) (z) - -ps(m\z) (4.21)

which gives

puj 4np(jjdzm \R
(4.22)

Substituting (4.20) into (4.18) implies that

= 0 (4.23)

where h = \/—. The equation (4.23) can be re-written in operator form as

0. (4.24)

Following Lamb's approach for decomposing the Oseen equation, we introduce the po­ 

tentials xs^ and Xs * sucn mat

dzj (4.25)

In order to obtain the steady results, we must choose xs(m) such that in the steady limit 

uj —> 0 the oscillatory dependence disappears hence this term cancels with the potential 

term 0s(m) . Therefore we must have
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9 r)s (™)(z ) = —— —- — - —— , (4.26) 
V j 47T pcj dzm \ R '

and consequently

R
(4.27)

Therefore, the oscillatory stokeslet solutions are

R

4.3.1 Pozrikidis' form of Oscillatory stokeslets

In this section we show that the oscillatory stokeslets (4.28) are similar to the oscilla­ 

tory stokeslets given by Pozrikidis in [9]. Expanding the partial derivatives in (4.28) 

and collecting like terms produces Pozrikidis' form, as follows. First expand the partial 

derivatives, such that

92 (*}
f\ f\ 1 7) 1

OZ-i OZm V -Tt /
J ' ' L \ '

A-u]m o^R* + 6 1 

Sjm (~1\

nZj

V

y • 7 i 6 j 4m 1' 3

R \R*J R* \
(4.29)
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and

R
-hR

"jm -hR
R3

8jm i h 1

R \ R R2

+

-/i« , ~j~<» /^ , _ . _ e + - [ + R + R* }
-hR

(4.30)

The coefficient -r1— can be written as

1 -2 (4.31)

where h2 = ^. Working out the terms in the oscillatory stokeslets (4.28), gives the first 

term

!_ ~R -26 m -lJjm I __±_ ^ ~j~m

h21 R \R2 J ' R3 \R* 
2

R \h'2 R2 , \h2 R2 J }, (4.32)

the second term

d2
R

,-HR
8?r//'/i2L R \ R

2 Or 6 O 
I i

1
# .R2
2 2

R

2 +
6 6 ,-hR

(4.33)
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and the third term

ih' h2 -2 (e.
-hR'

4-n-puj V R Jjm
h2 R

(434)

Substituting (4.32), (4.33), and (4.34) into the oscillatory stokeslets 4.28, gives

R
-2

^R2 hR + h2 R2 )

h2 R2 hR (4.35)

which can be written as

. s (m)(^\ — ~~ f°im A(~.\ . zi Zm B(r)} (4.36)

which is the form given by Pozrikidis [9], where r = hR and the functions A(r) and B(r) 

are defined as

nr>
(4.37)

r r (4.38)

However, the form we presented here is more beneficial for us, as we seek later to use 

oscillatory stokeslets in order to infer the form of the oscillatory oseenlets in terms of the
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potentials cj)s (m\ xs(m) and xs *.

It is also noted that letting h —> 0 or R —»• 0 in (4.36), the steady stokeslet solution is 

recovered, as .4(0) = 5(0) = 1.

4.3.2 Stokeslets in far field and at high frequencies

To establish the behaviour of the flow in the far field and at high frequencies, we expand 

the oscillatory stokeslet u* in an asymptotic series for large R and for large a;, obtain­ 

ing the result given in [9],[25]. In order to obtain the asymptotic series we expand the 

oscillatory stokeslet in a Taylor series for small -^ in the far field and for small £ at high 

frequencies.

For simplicity, we start with the equation (4.35)

R h2R2 2e~ hR
hR h2 R2

-hR
h2 R2

3 3
hR (4.39)

where Risa. radius of a large sphere encloses the oscillating body and h = 

The asymptotic series for large R

Expanding the oscillatory stokeslets in a Taylor series for small R* = ^, gives

(z) = OR* 3R*dR* (4.40)
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where

The derivatives of the oscillatory stokeslet are

u i
v ' XTT// L "'"" *" h'^ v

p*5 E>*4 z?*5

and the second derivatives is

^ 6 3 /i2

(4.41)

a/?*
+^-zm {30—- - 2e~h/R*(hR* + 6#*2 4-

/i n n~
(4.42) 

then the second term becomes

h h2
•A D*5

•)}]

(4.43)

(4.44)
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then the third term becomes

D*5

-— 
/i2

8/i/ 3
D*5 D*

h h2 

(4.45)

Therefore the Taylor series around R* — 0 is

(4.46)

writing R* in terms of -R we obtain the asymptotic series of the oscillatory stokeslets in 

the far field as

(4 -47)
which is the same as the series given by Pozrikidis in [9] and [25]. 

The asymptotic series for large frequencies

Similarly, we expand the oscillatory stokeslets in the Taylor series for small h* = £ , 

when h is large

(4.48)
where ws(m) can be written in terms of h* as

(4.49)
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Obtaining the derivatives and the series terms

dh R R R2
<-> 0- + -

the first term becomes

dh — + 2+

R
(4.51)

the second derivative

Rh
3 Zm f 12f _ - 4- —— 4- —— 4- 

/I*3 /I*2
4-

and the second term is

/i*2
»6 R2 7?J *' •'•' ^4- _ 4-34- fi _ 4-+ +t5 + b+

Then the Taylor series around h* = 0 is

(4.52)

(4-53)

(454)
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letting h* = l/h gives the asymptotic series

(4 '55)

From the series (4.47) and (4.55) we can see that the flow behaves in the same way both 

at high frequencies and away from the point force. The first term on the right side of the 

series (4.55) is known as the steady potential dipole, which means that at both the high 

frequency or large distance, the oscillatory stokeslets produce irrotational flow, see [9], 

[25].

4.4 The Integral Representation of the Oscillatory Stokes 

Velocity

In order to obtaining the integral representation of the time-harmonic Stokes velocity, we 

first approximate the oscillatory stokeslets around the point z = 0, to enable us to obtain 

the representation.

4.4.1 The Approximate formula of Oscillatory Stokeslets near R = 0

Recall the oscillatory stokeslets (4.28)

d2 /1\ i d2 ie~hR
R

ih2 e~hR • (4 - 56>
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Considering S& as a sphere radius 6 around the point z = 0. We approximate u^ m' around
J

the point z = 0 as 6 —> 0 (R —> 0), so #n < 1, n > 2. From the Taylor series

-hR ,+ ...
(4.57)

Substituting (4.57) into (4.28), gives

d2 1. d

a 1-fc

(4.58)

-1 2 , d
2

2/ l
2

(4,9)
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which are the steady stokeslet solutions associated with the pressure

ps(m) (z) = —z.m
47T.R3 ' (4.60)

4.4.2 Green's Integral Representation of the Oscillatory Velocity

The Green's surface integral representation of the oscillatory Stokes flow has been given 

in (4.12) as

dufa) ^-^ni }dS = 0. (4.61)

Volume V enclosed by S

Figure 4.1: The surface S and the relation of the points x and y

We consider the surface S consisting of a surface S§, a sphere radius 8 —> 0 around the
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point z = 0, a surface SB enclosing the oscillating body, and a large spherical surface SR 

extending to infinity, enclosing the body and centred at the point z = 0. See figure (4.1).

We re-write the integral over the surface S as a sum of the integrals over the surfaces S$, 

SB, and SR ,

+ / / + / / = 0. (4.62)
'SB J JsR

Next, we calculate the contributions over the surface S§ as 6 —» 0, and over SR as R —> oo, 

to give integral representation for the oscillatory Stokes velocity it(x).

The Contribution over the Surface S$ as 6 —> 0.

The integral over the surface S& is denoted by ISs , which is

* = I! uŝ (i)ps (y}n3 dS + I I u*(y)ps^(z)n3 dS
J JSx J JSx

w 7-s(m), ^"jW , c . / / s( ^ uuj ^ j 0 , A ,-v/ (z)—7^—nidS + IJL I I usAy)—J———nidS. (4.63)
a J OVl I Q J ^" l 'b$ ^yt J J bs

Since the Green's surface integral representation of time-harmonic Stokes equation (4.12) 

is identical to the Green's representation of steady Stokes equation (3.13), then the above 

integral (4.63) is identical to ISs (3.26) for the steady Stokes flow. Also as the oscillatory 

stokeslet tends to the steady stokeslet around zero, then the integral over the surface £5 

for oscillatory flow tends to the the integral over the surface S§ for steady Stokes flow, 

which gives the contribution -usm (x). Hence

Is, - -<(x). (4.64)
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The Contribution over the Surface S1 /? as R

Now we determine

oo

(4.65)

where the surface SR is a sphere with large radius as shown in figure (4.1). We use here 

the asymptotic series of oscillatory stokeslets u* for large R which has been given in 

(4.47), as

— 1,2 Sjm Z-Zm

(4.66) 

and its associated pressure

Substituting the asymptotic series and the pressure into the integral over 5^ and letting R 

tends to infinity, lead to

ISR -> 0, (4.67)
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as both the oscillatory stokeslets and its associated pressure vanish in infinity [9]. Since

ISB + Iss + ISR = 0, and from (4.64) and (4.67), we obtain

SB

J dyk
(4.68)

which is the representation of the flow velocity in terms of the oscillatory Stokes solutions.

4.5 Force Integral Representation in Oscillatory Stokes 

Flow

Denote the surface of the oscillating body by St (x, t) relative to fixed coordinate system 

on the body. The force on the body due to the action of the fluid is then

dS

where for an incompressible fluid

du] du\

is the symmetric Navier-Stokes stress tensor. The Fourier series for time periodic motion 

is
00

u] = Un (4.70)
n=—oo
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Figure 4.2: Volume Vt

2nyrwhere o;n = —-, and T is the time period Then the Stokes force becomes

00
^ sn dS

— — OO

where T*? = -psnfy + j?n , dufn N „-2— 4- ——l— } u. = 
>£/ axj -" J

(4.71)

^n=-oo and P™ is the associated

pressure. By changing the order of the summation and the integral in (4.71) the force F? 

becomes
oo r r

,; dS\ (4.72)F! =
st

Considering a volume Vt , which is bounded by the body surface St and by a large spherical 

surface SR of radius R enclosing the body, figure (4.2), and using the divergence theorem, 

the force on the body becomes
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oo

£
n=—oo

dS -

vt
(4.73)

However,

d
T)

d

dpsn
S3l + Mo ^ + o p! )' (4.74)

a2- sn
Using the continuity equation dx £x = 0 we can write

dx, (4.75)

From the oscillatory Stokes equation (4.5), we obtain

d
(4.76)

Therefore

00

n=—oo

^.sn._ j cT-^ 7T,/ WO —
SR J J JVt

(4.77)

Also, since
d

oyk

by using the continuity equation, the volume integral can be re-written as

75



So

00

n=-oo

However

/ / Vjufnk dS -II y3 usknnkdS. (4.78) 
J JsR J Jst

ipujnyjUsknnk dS

(4.79)

oo

n= —oo

f fII' *JT) 1 /"fI I ipujnyjUk nkdS 
J Jst

oo

oo
oo

S* n = -oo

*
E

n=— oo

flu
dS.

dS

(4.80)

Then

00

E
n=-oo

dS - ipujnyjUlnnk }dS
dt

(4.81)
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So we can write the total force as

oo

n=— oo

where
fsn __ 
J j ~

and

St

(4-82)

(4.83)

(4.84)

4.6 Force Generated by the Oscillatory Stokeslet

Recall the force integral representation (4.79), which is

oo
Fs =

3
n——oo SR

r r r r
dS - I I ipunyjUsknnk dS + / / ipunyjUsknnkdS

J JSn J JSt

where SR is a large spherical surface enclosed the oscillatory body and St is the body 

surface, figure (4.2).

Substituting the oscillatory stokeslets Uj into the force Fj gives F^' the force gener-
. , , s(m)atedbyu^ ; ,

n=-oo

dS-
SR SR

(4.85)
st
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Using the asymptotic series of oscillatory stokeslets uŝ m) for large R which has been 

given in (4.47), as

(4.86)

and its associated pressure

ps(m) (z) = rn

The contribution of the first integral

_ns(m)
HI dS, (4.87)

where r"s(m) = -pns(Tr%/ + n(^fe— + ^fe—)• From the asymptotic series (4.47)

-1 , 2
STTyL/- /I2

-1 , 2
STT//

36 t /?5
-15 ZlZj:

R7 },

(4.88)

and

dus(m) •"ni
...}.

(4.89)
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So

o sdus(m) m

and

_ns(7n) Zl

Then

nsirri)^ ' ni dS = ^{

30

dS —

SR
R5

+ .» ,

SR
HI dS

^nt dS + ...)}.
SR

R1

(4.90)

(4.91)

Since n\ = % and z\ —

nsm ' jr»dS =
-1

SR 4?r 

+ 6
SR

- 30
'SR 

-1, 1

dS+ ...)}.

47T

Sn

1 12
Sn 

^5-
sR

3Q — 
K

dS^^7 JSR ~3 '
z3 zm dS+ ...)}, (4.92)

sR
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since / IsR zi z™ ds = ^jmR4 and / / dS = f #3 , we have

ns(m) , 0r,, 'HI dS -l f 1 4?r I , 1247T

3047T

-1 47T

47T 1 3
U

1 3

(4.93)

when /? —» oo.

The contribution of the second integral (- / Js ip(jjnZjU^m'nkdS)

ns(m)
o 07T)Lt

"'

sR
I 3
Vj-,0 Ojm i D5

^77, x

+ ...

— __ / / ( m * \ Q J W? I— A- \ r>s T-> + ° nfi j "^ T-Sa

+

J_
47T^ J 5fi 

1 1

zmzk

47T 7?4 

2,

d5

rifc c^S

(4.94)

Therefore from (4.93) and (4.94), the total force (4.85) becomes

00

E
n=— oo

00

E

"A 9 r rOjm \ % | / / „• n ns\
.3 3 jm J JSt n ~3 k

r r 
r , / / • ns(m) 7 /-i^jm + / / ipvn ZjUk 'nkdb 

J Jst

rn) j r,'nkdS

elUn ,

-.iuin t

(4.95)

At the limit a; —> 0, FJs(m) tends to the force generated by steady Stokes flow. Considering
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a stokeslet inside the body gives the same result as follows

Recall the integral representation of the force (4.79) in terms the surface S&, which is 

small sphere central at the stokeslet point inside the body and the body surface 5t , as in 

figure (4.3), and that is

v n
Figure 4.3: stokeslet inside the body, R = 6

*7= E
n——oo

dS-
ss s6

[ fipujnyjUsknnk dS + / / ipun yjUsknnk dS
J Jst

Substituting the oscillatory stokeslets into the force, gives

oo
-,s(m) _

n——oo

Jis(m) r
n

ns(m)

(4.96)
st

When 6 —> 0 the oscillatory stokeslets tend to steady stokeslets, so that the oscillatory 

stress tensor Tns^ tends to the steady stokes stress tensor. Therefore from (3.59) the first
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integral gives
ns(m) j ci r //i m\' = 6jm - (4.97)

And the second integral of (4.96) can be computed using the asymptotic series (4.59) of 

the oscillatory stokeslet around zero, as follows

0 nk
Ss

ss

dS
*• LJ'Z v ' ' 

5,5

pUJn 2 47T

= O(R2 ) -» 0 (4.98) 

as 6 -* 0. By (4.97) and (4.98), the force generated by the oscillatory stokeslet is

a(m) _ V- [ [ ns(m) i«n t
3 ^-^ I IQn=-oo J JSt

which is identical to (4.95).
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4.7 Conclusion

In this chapter we represent the oscillatory Stokes flow and obtain the stokeslet using a 

different approach to the singular method which is used by Pozrikidis. The new result 

is that the stokeslet can be obtained using potentials approach and we show that this 

approach gives identical result to known one, using the singular method, see [9], [?]. 

The benefit of using potentials approach is to enable us to use the oscillatory stokeslets 

to infer the form of the oscillatory oseenlets. The behaviour of the flow far from the 

point force and at high frequencies is presented by the asymptotic series for large R and 

large u. We show that close to the point force the oscillatory stokeslets reduce to the 

steady stokeslets and then the integral representation is given for the oscillatory velocity. 

Forces are calculated and we show that our results are identical to known results and 

that considering the point force inside or outside the body gives the similar results which 

reduce to the force generated by the steady stokeslet when the frequency is zero.

83



Chapter 5

Steady Oseen Flow

The steady Oseen flow has been studied exclusively, started from the improvement of 

stokes flow that has been made by Oseen to resolve the failure of Stokes approximation 

in the far field, see [23] [13]. Lamb and Goldstein, in [21] and [29], used the potentials 

decomposition for antisysmetric flow to obtain the steady oseenlets, and Chadwick in [30] 

presents the behaviour of the flow close to oseenlet (point force) for general steady flow. 

Fish wick and Chadwick give the Green's integral representation of Oseen velocity and it 

is shown that there is no contribution over the far field surface. In this chapter we repeat 

the known results in some details, and later in chapter 6 we show that the oscillatory 

oseenlets reduces to the steady oseenlet when the frequency tends to zero. The problem 

of uniform flow past a steady body in unbound region and Oseen's approximation are 

given in section 1. In section 2 the Green's integral representation of Oseen flow is given, 

and following Lamb and Goldstein decomposition the steady oseenlets are presented in 

section 3. We show how to obtain the asymptotic series of the oseenlet around zero in 

section 4, which then used to obtain the Green's integral representation of Oseen velocity. 

Finally, the force is given as a far field integral in more detail.
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5.1 Governing Equations

Steady Oseen equations are obtained by applying Oseen 's approximation to (2.20) the 

steady Navier-Stokes equations [21], which are

uf • V)uf - -Vpf + /zVV (5.1)

and the continuity equation

V • u1" = 0 (5.2)

where u^ and p* are the Navier-Stokes velocity and pressure,respectively. p is the fluid 

density, IJL is the fluid viscosity and V = (gf-> af-> gfr) is the gradient operator. 

We consider a uniform stream U in the x\ — direction past a closed body in an unbounded 

domain. The Oseen approximation \**- , -^| = O(e) and s <C 1 holds , where the notation 

"O "means 'of order of '. Hence, we consider Oseen's linearisation

(5.3)

where x is the unit vector in x\ direction in the Cartesian coordinates system (xi, x2 , 

Substituting (5.3) into (5.1) gives

(5.4)

where <% is the Kronecker delta (6ji = 1 when j = I and zero otherwise), and Uj is 

the Oseen velocity component in the j direction of a Cartesian coordinate system Xj and
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j, / = 1, 2, 3. By considering only the terms of order e we find

lT = , (55)

and

^ = 0 (5.6)

which is the steady Oseen equation, and the velocity satisfies the condition u — > 0 as 

R — > oo. taking the divergence of the equation (5.5) and applying the continuity equation 

(2.1), gives

V2p - 0, (5.7)

o £l2 o2 o2which means that the Oseen pressure is harmonic function, where V — -j^ + -j^ + -j^ 

is the Laplacian operator [17]. Applying the infinity condition u — > 0 as R — > cxo to the 

Oseen equation (5.5) yields

= 0, (5.8)

as R — > co, hence we may choose the solution p = 0 in the far field. Also, the condition 

of no fluid outflow from any surface enclosing the body,

u • n dS = 0, (5.9)
5

is satisfied, where S is a surface enclosing the body.

5.2 The Green's surface Integral Representation

In this section, we give the Green's surface integral representation of the steady Oseen 

equation, see [30]. Considering four solutions given by u,p, u(m) and p(m); m = 1, 2, 3
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where u and p are the Oseen velocity and Oseen pressure, respectively; u(m) and p(m) are 

the fundamental solutions of steady Oseen equations acting at the origin and each yields 

a unit force in the m-direction which is the direction of the force point, see [30]. 

From (5.5), we find that

(510)

which is the Oseen equations in variable y, and

pU > =- +» 3 , (5.11)
OZ\ OZj

where z = x - y, x = (xi, x2 , x3 ) and y = (y±, y2 , y3 ). By using the fact - = --, we 

get the adjoint equation in yj, which is

(5,2)

Following the method of Oseen [13] to obtain the Green's functions representation, we 

dot product (5.10) with Uj(z) and take it from the dot product of (5.12) with Wj(y), and 

find

(5.13)
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Using the continuity equation (5.6) enables us to write

then

8 . (m) . .dUj (y)

This holds within a volume V of the fluid bounded by the surface S where the Oseen 

approximation is valid, and parameterised by the coordinate y. Applying the divergence 

theorem leads to

= 0 (5.16)

where n is the unit vector normal to the surface S pointing outwards from the control 

volume V. This gives the Green's surface integral representation of the steady Oseen 

equations, see [30].

5.3 Steady Oseenlets

Lamb and Goldstein used the velocity decomposition to obtain the steady oseenlets in 

[21J and [29] which decompose the fluid velocity into a potential 0(z) and a wake velocity



w(z), such that

(5.17)

As we consider incompressible flow, the velocity potential </> has to satisfy the Laplace 

equation

0. (5.18)

Taking the divergence vector of the decomposition (5.17), using the continuity equation 

and then V2 0(m)(z) = 0, shows that the wake velocity satisfies the continuity equation

V-w(m) = 0. (5.19) 

Now to obtain 0(m) and w(m) we substitute (5.17) into (5.1 1),

U _ )+M (,20)
OZiOZj OZi OZj OZj

and using the continuity equation 3 Q^Q = 0, gives

+ .
OZj

Since both p^ and (f)^ are harmonic functions, a particular solution is found if we 

choose

pU " = —" v '. (5.22)
OZiOZi OZi1 J J

Integrating for Zj gives
d£—Q. (5.23)

The pressure is given by Lamb [21] as
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from (5.23)

dzl

R

this by the use of -^-(ln(R - zi)) = =£. So

(5 '26)

as stated by Goldstein in [29]. Now we consider the wake velocity \v^m\ since the pressure 

balances with the potential (f)^ in (5.21), we find

pU i - /x . J . - 0, (5.27)

which we re-write as
<92m) z) p[/aU;Sm) (z)-- —— -^ = 0. (5.28)

In operator form

0, (5.29)
\ 

where the constant k = &-. Since the velocity u must be finite and continuous in the fluid
2[4

and satisfies the condition Uj — > 0 at infinity , Goldstein divided iir™' into two parts, 

the first part cancels out the discontinuities in ^ dz and the second part is continuous 

and tends to zero at infinity and both parts satisfy the equations (5.19) and (5.29), see[29] 

page 202. Following Goldstein we write

(5.30)
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since x* is a continuous solution of (5.29), which is

(5.31)

we can write

0, (5.32)

which is the Heat equation, see [31], and its solution given in [21] as

(5.33)

therefore
v*(z] = ———-———— (5 34)
x i fj i * V^^ * /

47rpU R 

Now we consider Y^, since

(5.35)

then

„ (m)

and from the continuity equation —^— , we have

jj j m
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So, from (5.36)

2fc - - (5.38)



then

dz\ 2k dzm

R
1 9 k(R_ Zl} d _

OZm OZi

47rp[7 dz\ (5.39)

hence

(5.40)

Above we used the fact that

a
OZm

a
OZ\

_ =

which is shown next, we have

d
dzm

+e" \u(R- Zl )

d , 1
R'

=

(5.41)

92



and

dẑ1

(5.42)

m
R

d . 1

_ - 9 ,-

(5.43)

Therefore, from (5.41) and (5.43)

OZm

The complete oseenlet solutions are
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where

(5 '46)

as given by Chadwick in [30], which can be written as

'dzr
1 e-k(R-zi)

R
(5-47)

5.4 Steady Oseenlet around the point z = 0

Chadwick [30] gives the asymptotic series of the oseenlet for general steady flow. Here, 

we show how to obtain the series in more details, which we will use in next section for 

integral representation of the velocity. The series is obtained by substituting the Taylor 

series expansion of the exponential e~k ( R-z^ into the oseenlets, and neglect terms of order 

0(R2 ).

(5.48)
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Substitute this into (5.47) gives

4 R

2k

where /c =

k , d zm 1 k(R- Zl )
R

k R6jm -zm Zj/R 8jm
R v R 

As lim/?^o ^ir1 = 1 , we can write

STT/I l R

(5.49)

(5.51)

which means that the steady oseenlet tends to the steady stokeslets close to zero. And 

pressure is

/">(') = i(-p. (5.52)

These are the steady stokeslet solutions [13].
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5.5 Green's Integral Representation of Oseen velocity

To obtain the Green's integral representation for the Oseen velocity, we use the approx­ 

imation formula of the oseenlets (5.51) with the Green surface integral representation 

(5.16), then calculate the contributions over the surfaces. This representation has been 

given by Fishwick and Chadwick in [32], where it is shown that the contribution over far 

field surface SR is zero. 

First recall the Green's surface integral representation (5.16), which is

= 0, (5.53)

where the surface 5 consisting of a surface Sg, a sphere radius 6 — > 0 around the point 

z = 0, a surface SB enclosing the body and a large spherical surface SR extending to 

infinity, enclosing the body and centred at the point z = 0, see figure (5.1). The integral 

over the surface 5 can be rewritten as a sum of integrals over the surface 5$, SB and SR, 

as

+ / / + / / • (5.54)
5,5 J J SB J J Sn

Next, we calculate the contributions over the surface Sg as 6 —> 0 and then over the surface

SR as R —>• oo.
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Volume V enclosed by S

Figure 5.1: The surface S 

The Contribution over the Surface Sg as 6 —>• 0.

Here, we work out the contribution from the integral over the surface Sg, which will be 

denoted by Iss ,

ss
\z)p(y)njdS + / / Uj 

J Js6

-V

For simplicity , we write

(5.55)

ISs = 11 + h + h + /4 +
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where

pUuj(y)u^\z)nidS, 

u(™\z)p(y}n3 dS,
J JS5
r rh =

ss

ss
, , &4m) (z)

h = V I I uAy)—J-——nt dS.
Ss

(5.56)

Since z = x — y, then y = x — z and rij; = ^ (R — 8) points outward the control volume 

V.

Obtaining I\

we can show that this integral vanishes as 6 —> 0,

re r r 
/! = / / pUu(™\z)uj (y)n l dS = pUUj (x) I / u (̂ (z)mdS, (5.57)

II J ** t I J
lie1 I I a

J J o$ ^ J o§

this is because

u(y) = u(x - z) = u(x) + -^-zk + O(R2 ) (5.58)
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z —» 0 as R —> 0, then u(y) —> u(x). And using the asymptotic series of u^ which given 

in (5.51), we can write

ZZ

-pUUj(\) f 6jm

-pUUj(x)

since n\ = ^. Also, we have jfc dS = O(R) and

pUuj(\) f f u(Jn\z)nidS^O(R).
J JSx

Consequently, as R —» 0 this integral vanishes.

Obtaining 72

, thus

(5.59)

(5.60)

I = f f u(̂ (z)p(y)njdS= f f u(™\z)p(x-z)nj dS. (5.61)
J Jss J JS&

From the Taylor series

p(x - z) = p(x) 0(Rt ),
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and from the approximation (5.51) the integral 72 becomes

Q(R2) = Q(R)

where zm - O(R) and dS =

Obtaining 7a

uj (\-z)p m (z)nj dS. (5.63)

Similarly to above and using Cj = /? HJ and the divergence theorem we find

h = —

-Uj

47T Jt- ./ j Sg

-Ui v
I ~D4 / ,'5,5

1 47T 3

(5.64)

100



as 6 -> 0.

Obtaining I4

Sir Ss R R6 dyi oyidzk R
(5.65)

The Taylor series for ^ around ^ — 0 and the approximation (5.51) has been used.

Obtaining

In similar way to 73 , we can take Uj(y) outside the integral to give

M
du(m] (z) 

o m d5. (5.66)
5,

Q f 771-)9u;.
The approximation formula of —^— can be obtained from (5.51) the approximation 

formula of wjm) (z), as following
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Differentiating both sides with respect to yt , gives

STT/X %

So

>V'1 &*

Zl \ i ( Z3 s; i Zm X o ZJ ZmZl \\ —m) + (^3*m + "Body - 3——-——)}.

(5.69)

l Zl

Uj(*)

STT
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this by the use of n, = | and zm =

——. / / ZjZmdS}
ss W J Js5 

ATrR2 ' * * 4?r D3
87T & ^3 - 3

3 '

as /? -> 0. From (5.60), (5.62), (5.64), (5.65) and (5.71) we find that

(5.71)

T — TJL.J-L.T-LT-L-T— n_L.n m i n lss — h + h + h + U + Js — U + U - — - — + U —

(5.72)

The Contribution over the Surface SR as R —> cxo.

Now we consider the far field integral, which is

PUuj (y)u™(z)mdS+ I I u (™\z)p(y)n3 dS + / / Uj (y)p^(z)nj dS
ss J JSR J JSR

(5.73)

where the surface SR is a sphere with large radius R, as shown in the figure (5.1). Chad- 

wick shows in [30] that the far field integral !SR is zero since the velocity u and the 

pressure p tend to zero for large R. More calculations are given by Fishwick in [32], [33] 

to demonstrate that there is no contribution from the integral !SR . Therefore

ISR = 0. (5.74)
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Hence, the integral representation of the velocity is

dyi 

as given in [30].

(5.75)

5.6 Integral representation of the force

Here, we give the force on the body as a far field integral, which given by Chadwick in 

[30], Letting SB be the surface of the body and n be the normal vector pointing outward 

the surface. Then, the force on the body due to the action of the fluid is

sB
4 m dS, (5.76)

where for an incompressible fluid

t tr4 = -P 6il + ^ +3

is the symmetric Navier-Stokes stress tensor, uf and pt are the Navier-Stokes velocity and 

pressure, respectively. So

F,= -PSj, + » + }nl dS (5.77) 
sB
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The last term can be shown is zero as following

du

= »
v

8 t
this by applying the divergence theorem, then using the continuity equation -^ — 0.

Hence
f f dvf

Fj= \ {-ptfy + M-^n/dS. (5.79) 
J JsB oxi

Since on the body the fluid velocity ut is equal to the body velocity us , which is zero 

ut = UB = 0). Therefore, we can add the term pu\u^,

Qu\
-P^ji + M^-2 - pu\u]}nidS 

sB

SR dxi

(5.80)

where SR is a surface in far field region, encloses the body. And the divergence theorem 

used. Since

] du\ t .-
fl

from the Navier-Stokes equations (5.1) and the force becomes

(5.82)
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Substitute the Oseen linearisation (5.3) into (5.82) and consider only the terms that con­ 

tribute to the force and neglecting terms of order £ 2 ,

sR ox i

r r /-$
= 11 {-P8ji + PIT- ~ pUufa} m dS

J Js ox i
(5.83) 

sR

this by the use of / Js uinidS — 0 which is the no outflow condition (5.9). The force 

(5.83) is the same result as the result given in [30]

5.7 Force Generated by the Steady Oseenlet

Considering a single oseenlet inside the body and Ss is a sphere that central at the force 

point (the oseenlet) and whose radius 6 — > 0, see figure (5.2). Recalling the force integral 

representation,

dS
SB 1 3

irJi ~ pUu^m dS, (5.84) 
sB

where Uj and p are the steady Oseen velocity and pressure, r,/ is steady Oseen stress 

tensor and 5# is the body surface. Applying the divergence theorem for the volume V 

which is bounded by the surface Ss and body surface SB , gives
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v n

Figure 5.2: Oseenlet inside the body and R = 6

dS+
ss

O

Z cfxv xi

Since

(5.85)

<~» <~\9 <"»9
/»T) /I"II • (i 111{j /-/ f. cyct/o L/C*/^ ^_/L«yip

(5.86)

this from the continuity equation and the steady Oseen equation

^fl =-
axi

dp
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Therefore, the volume integral vanishes and the total force becomes

JF = T i ~ pUuSn nt dS. (5.87)

Substituting the steady oseenlets uf^ and p^ into (5.87) gives the force

[T™-pUu™Su }n,dS, (5.88)

where

dxi dx«

Using the approximation series of U around zero, which is

(5.89)

gives

(5.90)

Since oseenlet tends to the steady stokeslet around zero. Hence, at the limit 6 —> 0, Oseen 

stress tensor tends to steady Stokes stress tensor rj/m) —> r*/m) . The last integral in (5.90) 

is of order O(8), which gives zero contribution when £ —> 0. And in section 3.5.1, we

demonstrate that

/ / rs,(m) n, dS = 8-
I I ' <jl '"I u//^' "JJTl*
/ / c* «/ «/ 05

Therefore
—-,( rrt i «

(5.91)
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5.8 Conclusion

The results in this chapter are well-known and we give them in more details. We seek to 

use this chapter to infer a form of the oscillatory oseenlets in next chapter. Force generated 

by the steady oseenlets is shown to give unit force in the direction of the point force as 

accepted.
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Chapter 6

Oscillatory Oseen Flow

6.1 Introduction

The steady and transient oseenlets are currently available in the literature [30], [16]. The 

omission of the oscillatory oseenlets representation within the literature is significant. 

In this chapter, the oscillatory oseenlet solution for velocity and pressure are presented. 

Furthermore, the force generated by them is presented and the reduction to the steady 

oseenlets and oscillatory stokeslets in appropriate limits are given. We consider a uniform 

flow U past an oscillating body with velocity u, see figure (6.1).

The far-field is assumed to consist of both steady and time periodic components u = 

us (x) + ut (x, t). The time periodic component ut (x, t) can be decomposed into a Fourier 

expansion series of time-harmonic components. The steady component in terms of the 

steady oseenlets is well-known [13]. However, the time-harmonic components in terms 

of the oscillatory oseenlets do not yet appear to be in the literature.
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This chapter is structured as follows. In the following section two the statement of the 

problem and the governing equations of oscillatory Oseen flow are given. The Green's 

surface integral representation of the oscillatory Oseen equation is placed in the third 

section.

In section four, the Lamb-Goldstein decomposition of the velocity in terms of the poten­ 

tials 0 and x , which is introduced by Lamb [21], is used to obtain the oscillatory oseenlets 

for the velocity and pressure. Then, we demonstrate that the new oscillatory oseenlets re­ 

duce to the steady oseenlets, which are given in [30], and the oscillatory stokeslets, which 

are given in [9]. Furthermore, the Pozrikidis' form of the oscillatory oseenlets is given.

In section five, we present the integral representation of the oscillatory Oseen velocity and 

we expand the oscillatory oseenlets around zero. In section six, the force generated by the 

oscillatory oseenlets is given in terms of the velocity, pressure and the frequency.

6.2 Governing Equations

The time-harmonic Oseen equations are obtained by applying Oseen's approximation to 

the time-dependent Navier-Stokes equations, which are

du

where d- is the velocity component in the j direction of a Cartesian coordinate system Xj,
J

j i _ ^ 2, 3; pt is the fluid pressure; t denotes time; p is the fluid density; and p, is the

fluid viscosity.

Assuming that in the far-field the flow tends toward a uniform stream U in the x\ direction,
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and that the fluid velocity and pressure can be represented by a steady component together 

with a time-periodic component, then applying a Fourier expansion suppose the velocity 

and pressure have the form

oo
tfe™"*

n=—oo
oo

n=— oo

where i is the imaginary number v —1, the frequency ujn — ^p, T is the time period of 

the motion and ^ is the Kronecker delta (6ji = 1 when j = I and zero otherwise). Since 

(6.1) represents real variables, then un, = u~n' and pn — p(~n) where the bar denotes
•J J

the complex conjugate. Linearising the Navier-Stokes equation to a uniform stream U by 

using the form (6.2) and assuming that the Oseen approximation ^|, 2- = O(e) and
^ A'O

e <C 1 holds, where the notation "O 'means 'of order of', yield the time-harmonic Oseen 

equations which are

dp d2 u 1 ^ ^(6.3),
\J Ju^ \J JU *\ C/ Jbl\JJul

where u and p are the Oseen velocity and pressure, respectively. Since the Navier-Stokes 

velocity uf satisfies the continuity equation V • 11* = 0, then the oscillatory Oseen velocity 

u does as well. Also, the pressure is a harmonic function which is seen by taking the 

divergence of the oscillatory Oseen's equation (6.3), given

u__ = __d_dp_
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Re-writing in operator form, gives

r\

u + pU-7—V • u = -V2p + /A7 2 .V • u. (6.4)
OXi

However V • u = 0 and so

V 2p = 0, (6.5)

where V2 is the Laplacian operator, therefore the pressure is harmonic and satisfies the 

Laplace equation. As we move further away from the disturbance created by the oscillat­ 

ing body we assume that u tends to zero, taking the oscillatory Oseen's equation (6.3) to 

infinity and applying the assumption u —> 0 at infinity, yields

Vp = 0. (6.6) 

Thus, we may choose p —> 0 at infinity.
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6.3 Integral Representation of the Oseen Equations

Following the Green's integral formulation as given by Oseen in [ 13], except applying it to 

the oscillatory rather than steady or transient case and in the similar way to the Green's in­ 

tegral representation of the oscillatory Stokes equation in chapter 4, we obtain the integral 

representation for the oscillatory Oseen equations. We consider four solutions for the ve­ 

locity and pressure field given by (u(x),p(x)) and (u(m) (z),p(m)(z)), where m = 1, 2, 3. 

The first solution refers to a general velocity and pressure field, and the subsequent so­ 

lutions refer to the specific Green's functions that satisfy a Green's integral which we 

shall construct. As in the previous chapter, consider distinct Cartesian coordinates yj and 

Zj = Xj — yj. The coordinate y parameterises a point on or within a fixed closed surface 

and the coordinate x refers to a general fluid point. 

The four solutions then satisfy the oscillatory Oseen equation

+ PVS = - + M (6.7)

which is the Oseen equation in variable y, and

Since z = x - y, then the adjoint equation in y gives

, , m)iupu m (z) - pUSn—- = - + M aV ' (6 '9) P v '

-2- = —— Following the method of Oseen [13] to obtain the Green's functionsQz^ dy . •

representation, we dot product (6.7) with ^m) (z) and take it from the dot product of (6.9) 

with v,j(y), and find
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(6.10)

Using the continuity equation enables us to write

(6.11)

So

(6.12)

This holds within a volume V of fluid bounded by the surface 5 where the Oseen approx­ 

imation is vaild, and parameterised by the coordinate y. Applying the divergence theorem 

leads to
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= 0. (6.13)

This is the Green's surface integral representation of the time-harmonic Oseen equations.

We can see that the integral representation of the oscillatory Stokes equations (4.12) can 

be obtained by letting U —> 0 in (6.13), also we note that the representation of the steady 

Oseen equation (5.16) is identical to (6.13), since the oscillatory part of the governing 

differential equation which includes the frequency has cancelled.

6.4 Oscillatory Oseenlets

In this section, we obtain the Green's functions Uj(z) and p^m\z) for the oscillatory 

Oseen equations by using the Lamb-Goldstein velocity decomposition [21], which de­ 

compose the fluid velocity into a potential 0(z) and a wake velocity iy(z), such that

(m)/ x mu] } (z) = — TJ —— + w} '(z). (6.14)
J

As we consider incompressible flow, the velocity potential 0 has to satisfy the Laplace 

equation

(6.15)
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Applying the divergence vector to the decomposition (6.14) and using V • u(m) (z) = 0 

and V 0(z) = 0 shows the wake velocity satisfies the continuity equation

V-w(m) (z) = 0. (6.16)

Substituting (6.14) into (6.8) gives

, m/ ,+ zpcj m z J

.

From (6.15) TO = °' then
\ s it 71 (i 71

rr ,. m , v rr+ pU + (zpu;7i; m (z + pU.
OZj ji

fl

Since V2 p^m^ (z) = 0, a particular solution is obtained if we choose

Integrating gives the pressure to be
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p(m\z) = -(ipu<t>M(z) + p/7)- (6-20)

This choice enables us to remove the pressure term from the equation (6.18), which be­ 

comes

= 0. (6.21)

From (6.20), the potential </>( m ) (z) satisfies the equation

(6.22)

Since the pressure satisfies the Laplace equation, and in the low Reynold number limit the 

pressure associated to the oscillatory oseenlets must tend to pressure associated with the 

oscillatory stokeslets, then we infer they must be the same. Therefore, the pressure for 

the oscillatory oseenlet is given by (4.19) which is

where the radial distance from the oseenlet singularity is given by R = |z|. Near the 

point z = 0 the pressure p(m) (z) is unbounded and integrating directly the equation (6.22) 

produces an indeterminate integral. However, we may remove the term producing the 

singularity within the integrand in order to represent 0(m) by a determinate integral. This
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gives

g-KJZl/f/

e -iuJZi/U
iar'

-oo 
e -iuzi/U

(6.24)

Since -f-

(6.25)

where ^ = -^2, -3 = ^3, ^J is the dummy integration variable, and R' = z'\. For brevity, 

we represent this integral by

(6 76) ^ ^

where the integral sign ^ implies the removal of the singularity in the integration. The 

wake velocity satisfies the equation (6.21), which can be re-written as

p, (6.27)

Letting ^ 7(m) (z) = ^m\i)zkzi where A; = pU/(2^ gives
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. (ra)

2fcfa V v 'e^+Mnw'Wtoe**.

(6.28)

Substituting the derivatives into (6.27) yields

;*X(m) - 0. (6.29)

Where k*2 — k2 + h2 , and h is defined in section 4.3 as h = \ r-^-. Solutions to thisy M

equation are given by [31]. We look for a solution that reduces to the oscillatory stokeslet 

in the limit as U —> 0, given by solutions of the type

where ^*(z)e~fczi satisfies the heat conduction equation (6.29). We pick a solution for x* 

in [31] such that it reduces to the oscillatory stokeslet in the limit as z —> 0. This is given 

by

2k
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From the continuity equation - = 0, it follows that ((z) - = 0, and from

(6.27),

(6 . 32)
then x(m) is given by integrating the equation

2k (X (m) (z)eiu;2l/[/ ) = e-^/^. (6.33)

However, in a similar way as for 0(m)(z), integrating this equation directly produces an 

indeterminate integral. Removing the singularity term gives the determinate integral

_ __ 
-oo dz'm \ R> dz'm R>

(6.34)

For brevity, we represent this integral by

p K t\. pKZ-^

~~R' (6 35) l

where in a similar way to the representation for 0(m), the integral sign ~f implies the 

removal of the singularity in the integration.
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So the complete solution for the harmonic oscillatory oseenlets is given by

m
-k*R'kz

o m 
2k e~ k ' R

(636)

where A: = pU/(2fj) t and fc* = \/^2 + h2 . Expanding the derivatives enables us to re 

write the oscillatory oseenlets in the following form

iuz( IU

e
—oo

dz'jdz'n v »'
-k*R'+kz{ \ / p -k* R+kzi \ \ , i _ -. I c \

# /

6.4.1 Oscillatory Oseenlets and known solutions

We can check the oscillatory oseenlets in the two limiting cases, as uj — > 0 which reduces 

to the steady oseenlets, and as U — > 0 which reduces to the oscillatory stokeslets.

Case u — > 0

When u -+ 0, then A:* -* k, 0(m) reduces to

zi

(6.38)
^»l
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since \/R = — (d/dzi)\u(R — z\), which is the steady oseenlet solution for ^m\ which 

given in (5.26).

Similarly, x (m) reduces to

Y (m) I _ - £ ^ I -_______ \ 7 / 
* L->0 ~ /|,™77 f ^i \ D/ J "2 1

J L/

,-fc(/z'-zi;

_^ dz{
e _ k(RI _2(} 8 u(R/ _ z[)dz(

m

which is the steady oseenlet solution for x^m\ &$ in (5.40) and [13], and we used (5.44) 

which is

^-^ I __ 1^1 KT__ -V-, I v 1 / ~w-\ \ 1 — f __ I"/ fV__ -y, I v i / -r-v \ I >- x* ^ y-vs.(6.40)dz.m
_ \ = d L-k(R- z,}d _ 

\ J d*i V dzm

Finally, x* reduces to

2fc e
(6.41)

#

which is (5.34) the steady oseenlet solution for Y.*. Therefore, the oscillatory oseenlet 

solution reduces to the steady oseenlet solution in the limit as u -^ 0.

Case U -> 0

When U —> 0, then k -> 0 and k* -> /i, ^(m) reduces to
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£/-»0 = = — lim

= — lim

= — lim

oo
g-iwzi/C/

dzm R

R
i d (\

(6.42)

which is the oscillatory stokeslet solution for 0s (m\ given in (4.22). Similarly, x^ re­ 

duces to

X
(m) = = limt/— o 4?rp(7

z\

—oo

d fe
R'

,-hR

= lim i/-*o

= lim

dzm V R J iu/U 
I d fe~hR '

dzm V R 
i d fe~hR

dz Rm
(6.43)

which is the oscillatory stokeslet solution for xs(m) , given in (4.26). Finally, x* reduces

to

= lim t/-»o
~hR

R (6.44)
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which is the oscillatory stokeslet solution for xs*, given in (4.27). Therefore, the oscilla­ 

tory oseenlet solution reduces to the oscillatory stokeslet solution in the limit as U —> 0.

6.4.2 Oscillatory Oseenlets in Pozrikidis' form

In order to re-write the oscillatory oseenlets in similar form to that Pozirkidis has given 

for the oscillatory stokeslets [9] [25], we first expand the derivatives,

}

\ _ Jm I \ i~

-k*R+kzi
,

(6.45)
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-oo

;/

rl^Ki:
d (\

d . 1 . d2 . 1

_ jl '

and

dx^ 
dz-i

+e~
-oo

-oo

47rpC7 R

(6.46)

,-k*R'+kz\
s w~ dz{

-k*R'+kz\

-k*R+kzi

R

(6.47)

Substituting the above derivatives into (6.37) gives
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A:*

(6.48)

The coefficient ^ - ^ as pU =

(6.49)

Taking the limit {/ —> 0, reduces it to the oscillatory stokeslets in Pozrikidis' form (4.36).

6.5 Integral Representation of oscillatory Oseen Velocity

In order to obtain the integral representation of the time-harmonic Oseen velocity, we first 

approximate the oscillatory oseenlets around the point z = 0.
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6.5.1 Green's Integral of Oscillatory Oseenlet around point z = 0

The oscillatory oseenlets are

(m}(r,\ _ r^-iuzi/U
i W ~ A--TT\^

i

— OO 

* D' I l,~'

dz'dz' \R'u^ u^ JL

' -k*R'+kz{ \ / -k*R+kzi
f2/c ——-—— }Sjm }. (6.50)

The Taylor series of e ~ k * R+kzi around the point z = 0, is

2 
- +

2!

(6.51)

By substituting this series into the oscillatory oseenlets we find

1 /*71 *~\0 / -1/ -^1 /i / 1
f _„•,,,. irr I •;,.,-,' in r U / -L

_i r^i w / /^*2fc~fu;zi ^
-oo

+2* ( -
it

The coefficient can be written as , then
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(6.53)

Taking the limit R —> 0 is equivalent to taking the two limits k —» 0 and u; —> 0, therefore

i~ z\

jfe 
x. k*2 R

+ 9 ( rim _ FA. i ^^ u
' V D J m O J m /Jrt ^

e -iuzi/U _

+ 2 (—IT- — /C Ojm +

where = , ^2 = andfc = . So

R J " 1 2
(6.54)

(6.55) 
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and taking the limit u —> 0 gives

(m)

(& (6 '

We obtain that the oscillatory oseenlets approximate to the steady stokeslets around the 

point c = 0 ( R — > 0). This is a similar result as given by Chadwick [30] for the steady 

oseenlets and by Pozrikidis [9] for the oscillatory stokeslets.

6.5.2 Green's Integral Representation of the velocity

The Green's surface integral representation of the oscillatory Oseen flow has been given 

in section (6.3) as

(6 ' 57)

We consider the surface S consisting of a surface 5«j a sphere radius 5 —> 0, around the 

point 2 = 0, a surface SB enclosing the oscillating body, and a large spherical surface SR 

extending to infinity, enclosing the body and centred at the point z = 0, see figure (6.2).
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Volume V enclosed by S

Figure 6.2: The surface S and the relation of the points x and y

We re- write the integral over the surface S as a sum of the integrals over the surfaces S$, 

SB , and SRt

- 0- (6-58)
s5 sB sR

Then we calculate the contributions over the surface S& as 6 — > 0, and over SR as R — > oo, 

to give integral representation for the Oscillatory Oseen velocity Uj(x).

The Contribution over the Surface Ss as 6 -» 0

Comparing the oscillatory oseen case with the steady oseen, we can see that the integral 

representation (6.13) is identical to the integral representation of steady Oseen equations 

(5.16). Aslo, the asymptotic series (6.56) of oscillatory oseenlets around zero is identical 

to the steady oseen case (5.51), both solutions approximate to the steady stokeslets around
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the point 2 = 0. Therefore, the integral over the surface Sg for oscillatory Oseen case, 

gives the same contribution given by the steady Oseen, which is

Ss

(6.59)

The Contribution over the Surface SR as R —> oo

The contribution over the surface SR , for very large R, is

which is identical to the steady Oseen case, since the oscillatory parts of the governing 

differential equation which include the term piuuj have cancelled. The modulus of the far 

field integral over SR for the oscillatory oseenlets is bounded by the far field integral for 

the steady oseenlets. This result, that the oscillatory oseenlets are bounded by the steady 

oseenlets in the far field, is shown as follows

zi

—oo

Away from the body uj -* 0, then

(6.62)_ 00
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Since-^-m^-zO, then

(6.63)

the right hand-side is the steady oseenlet solution for 0(m ) [13]. Similarly

<

Z1 -k*R+kzi

R

dz{

<
<

-I
^ I_ dz' 
d

Odz1
Zl

oo dz(

since .R —> oo leads to LJ -> 0 and k* = k. Now we have

X

- 4)) dz(\

(6.64)

m
(6.65)

which is the steady oseenlet solution for x (m) [13]. Finally x* bounds by

< 2k
R

2k
R (6.66)
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which is the steady oseenlet solution for x* • Therefore, the far field integral (6.60) is 

bounded by the far field integral for steady oseenlets, which has been shown to be zero in 

[32]. So

n, + n Ui (y)^^-nt }dS = 0. (6.67)

From (6.58), (6.59) and (6.67) we find the Green's integral represenation of the oscillatory 

Oseen velocity to be

SB

(6.68)

which is identical to the integral representation of steady Oseen velocity (5.75).

6.6 Integral representation of the force

Denote the surface of the oscillating body by St . The force on the body due to the action 

of the fluid is then

Fj = j f r]inidS (6.69)
V V ij£

where for an incompressible fluid

'du] du\

is the symmetric Navier-Stokes stress tensor.
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Denoting the velocity on the body surface to be it] = uf then the total force Fj is

- PU]U\ + pufuf}n,dS 

{r], - pu}u\}nidS -III -£-(4 - pu]u})dV
K J J JV u-L l

st
(6.70)

The Navier-Stokes equation can be re-written as

usince the continuity equation -^ = 0 holds. So

- pu}u\}nidS

vt st
(6.72)

where SR is an enclosing surface a sufficiently large distance away from the body, and Vt 

is the volume of fluid exterior to St .

On SR, assume that the surface is sufficiently far from the disturbance that the Oseen 

approximation
oo

,.t _ TJX i V^ un^ni ?/ n l <?• U (611}(L- — U Ujl T / U.C. , U-.- <^ L/ , ^D. / 3)
J £—m^* J ^

n=—oo

holds, and
00

(6.74)
n=—oo
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Figure 6.3: the surfaces SR and St

where pn is the pressure associated with the velocity field it". Then

00= £ n iun t 
Tjl 6 ' (6.75)

n=— oo

where we define rf, = -pn bji + // ^r- + -^- , and/ (• •/ \ c/ii' / \j jj •) /
\t-jy

00

+

oo

71=-00

00

n=—oo
00

n—— oo 
oo

n=-oo

oo

+
TTI=—OO

oo

=— oo
oo

m=—oo

oo

m=—oo n=—oo
00

oo

771— — OO

(6.76)
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because from Oseen approximation ittuf = O(e2 ).

du\
___tJ~dT

oo

E
n——oo

oo

n=—oo

The force then becomes

F, = -
oo

St

Since J / HI ds — 0, the term — J fs U2 6ji8nni ds = 0, so

However,

oo

I——OQ •-

r r r- piujnu™dV 
J J Jv

+
st

(6.77)

(6.78)

(6.79)

SR
~ I ( V3 unk nkdS. (6.80) 

J Jst
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The volume integral term becomes

v sR

r r f f
-ipun [ I yjulnkds- / / yjunk nk ds\

J JsR J Jst 
r r r r

ipujnyjulnkds + I I ipun
J JSr, J JSt

Also, consider I such that

00

n=-oo - - St 
oo

J JSt' " Ol

On?

138

SR

(6.81)

n=— oo
00 -Q

^(u"k eM)nk dS
= — 00

a °°y w ,/cn / -j j
n=—oo

(6.82)

-oo -oo ~ 

the body surface, then

Since u\ = USj, + E^-oo ̂ n^ then S^-oo <e"ni = ~ us>* = uk ~ U ^ on
J

dS.' " J r)f St Ot

(6.83)



Therefore

00= E
n=—oo sR

B
dS. 

(6.84)

The continuity equation yields not fluid outflow, which means / fs U[UidS = 0. Thus, 

the term

dS = 0.
sR

Let us therefore write
oo

+ (6 - 85)
n—— oo

where

ni- piujn yjUnk nk } dS (6.86)

and

f= dS. (6.87)

Let us consider the force associated with an oscillatory oseenlet of frequency LU be

where

sR

SR

- piuyjUknk } dS

--*- ) ~' dS.

{(-Pnj +sR dS.

(6.88)
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because / ISR ^ dS = IIIv£^ = 0. Comparing with

dS (6.89)
SB I " cfyi )

as it is defined in [30], we see that all the terms are the same except for an additional term 

/ fSR piuyjiiknk nk dS in fj. However, in the limit as u —> 0, / fs piujyjUknk nk dS = 

0, and so for the steady case Aj = fj as expected from [30]. Also at the limit U —» 0 the 

force generated by the oscillatory stokeslets (4.82) recovers from (6.88).

6.7 Force generated by Oscillatory oseenlet

In order to obtain the force generated by the oscillatory oseenlet we consider an oseenlet 

Uj in the body. A sphere S$ of radius 6, is central at the force point u^ and the volume
J J

Vt is bounded by the body surface St and 85. Considering the body as a fluid we can 

write the force in similar way to what we done in last section taking in consideration that 

J J Jv = f Js — f fs as the normal HI points out of the volume Vt . Hence

oo

n—— oo •-
n n /* /* £$ D (* f*

\ \ ipunyjUnk nk ds eiunt + \ I Pyj -^nkdS + I I pufufm dS.
J Jss J Jst Ol J JSt

(6.90)
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v n
Figure 6.4: oseenlet inside the oscillatory body

(m)Substituting an oscillatory oseenlet u^ ' into the force, gives

oo
/„__ \ * •*1m) = E

n=—oo
w m

n(m) 7nk as
s& st St

ii dS, 

(6.91)

where F- m^ is the force generated by the oscillatory oseenlet, T^m' is the oscillatory

Oseen stress tensor. When
*

0, rj, — > TJI the steady Stokes tress tensor, and we

have shown that / J5 T*I HI dS = 6jm . Hence

dS = (6.92)

Also, around zero the oscillatory oseenlet can be approximated to the steady stokeslet;

____] XJ'm
(6.93)
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so the second and third integrals in the force representation (6.91) can be approximated 

using the approximation series of the oscillatory oseenlet, as follows. The second integral 

is,

m

ss ?r// Ss R

STT/X J V R* 
O(R) -> 0 (6.94)

as R(= 6) —* 0. And the third integral is

M n(m) jr» ip^n i i C^KJ . ZjUC >nk dS « ——— / / ZA-+ +
Ss

ss
"i-dsR2 

-6jmR2 = O(R2 ) -> 0

when <5 —» 0, usingzm = zk 8km , nk — ^, 2? = .R2 and / Js ^m ^^. = ^j-6jk ft3 . Therefore, 

from (6.92), (6.94) and (6.95), the force generated by an oscillatory oseenlet is

^^ /* /* ^ B
{pvi—:—nk -\-pu 4 u, rii} dS (6.96)
V.* *^ J ijJ. i" I I I * J V X

5tn=— oo

As the limit cj —> 0, wf = 0 hence F- m) = ^m which is the force generated by a steady
J •*

oseenlet (5.91). Also, the equation (6.96) shows that the force is oscillatory.
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6.8 Chapter Conclusion

The main new result is presented, which is the description of the oscillatory oseenlet, 

obtained using the approach of potential decomposition. The new solutions are checked 

against known solutions; which are steady Stokes, oscillatory Stokes, and steady Oseen 

flows. The oscillatory oseenlet tends to the steady stokeslet in the near-field limit, and 

this is a similar result satisfied by existing oseenlet solutions in the literature. The force 

generated by the oseenlet is calculated and we show that the forces are oscillating them­ 

selves.
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Chapter 7

Conclusion and Future Work

7.1 Applications Discussion:

7.1.1 Modelling a miniaturized swimming robot

In developing a model for a miniaturized swimming robot, the most important quantities 

for assessing the manoeuvring characteristics are the force and moment calculations. The 

near-field is governed by Stokes flow, but in the far-field the Oseen approximation is valid. 

Similar to the steady case, this is important; In the steady case, for flow past a circular 

cylinder Proudman and Pearson [34] match a near-field Stokes flow to a far-field Oseen 

flow.In the representation presented here in section (6.4.1), we note that the near-field 

limit of the oscillatory oseenlet is the oscillatory stokeslet, and this matching is provided 

in this thesis. For this case of a swimming robot, a near-field stokeslet distribution has the 

additional challenge that the oscillating stokeslets are themselves oscillating rather than 

stationary. Also, the robot is designed to have a slender body tail with elastic response,
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see figure (7.1).

far-field 
Oseen flow

stokeslets
near-field 
Stokes flow

slender body tail 
with elastic response

motor
mechanism
position

\

Figure 7.1: A design for the swimming robot

A slender-body theory has been presented by Chadwick [35] but only for the steady case. 

However, the work in this thesis provides the far-field representation for a formulation to 

model a miniaturized swimming robot motion which is left for future work.

7.1.2 Biological fluid dynamics:

Micro-organisms are very small in size, so that the Reynolds number of their motion, 

that based on a characteristic dimension of the body L and velocity of propulsion U, 

is very small, Re = pUL/p. Hence in the near field (when between R = O(l) and 

R = O(Re~ 1 )) the dominant forces on micro-organisms are viscous forces and the inertia
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forces are negligible, [36], and the flow which is generated by the movement of micro­ 

organisms, is slow viscous flow (with as low as Re = O(1CT5 ) in water) that can be 

represented with same accuracy both by Stokes or Oseen approximation . Away from the 

micro-organism (when R = O(Re~ 1 )) the inertial forces are dominant and can not be 

neglected, so Oseen flow is better to represent the flow.

Self-propulsion Micro-organisms

There are may different types of micro-organisms base on their swimming way, and more 

predominant ones are flagella and cilia. Flagella are consist of a head and one or more 

motile; such as bacteria, sperm cell and make wave-like motion to move. Cilia are hair- 

like organelles and they cover the outer surface of micro-organism. The cilia move back 

and forth to enable the micro-organism to swim, see [36] and [37]. The flow singularity 

solutions which describe point forces (stokeslets) cannot be considered in the far field 

as they represent exact solutions only at zero Reynolds number. In the literature, the 

far field of a swimming micro-organism is represented by a symmetric force dipole or 

stresslet, see [38]. However, the oscillatory oseenlets, that we introduce in chapter 6, 

replace the stokeslets in the far field and give needed representation for low non-zero 

Reynolds number. 

Example: Swimming Flagella 

Considering a flagellum swims with wave its centre-line is

y(x) = (—ut + x, a cos(kx —

where u is the velocity, k is the wavenumber, u is angular frequency, and a is amplitude of 

the wave. The xy is an adopted coordinate system in which x moves along the position of 

the flagellum, see [39]. Using slender body theory and zero net force on flagellum body,
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implies

1 2,u = -a KU
&

which is not small, but the Reynolds number Re = ^ is because of the flagellum size.
A*

To study the effect of the flagellum motion on the far field, the oscillatory oseenlets are 

needed to give the most correct flow representation. Also, the slender theory is applicable 

as the flagellum has slender body.

7.1.3 Micro-Electro-Mechanical System (MEMS)

Clarke et. al [8] consider the problem of a MEMS device vibrating in a fluid at rest. The 

device is treated as a slender body and the Stokes approximation is used. The oscillatory 

stokeslet given by Pozrikidis [9] is used. A further development on Clarke's work would 

be to consider the effect of a uniform rather than stationary flow field, which would for 

example replicate blood flow. Within such a development, the oscillatory stokeslet is an 

inner near-field description to be matched to an outer far-field oscillatory oseenlet. In 

order to enable this, there is a requirement for the oscillatory oseenlet solution.

7.1.4 Acoustic Devices

Considering an acoustic device such as loud speaker under the water, the speaker surface 

vibrates and generates oscillatory wave in the water. To measure the loudness of the sound 

away from the speaker and to make improvement of quality of the sound away from the 

speaker, the far field representation is needed and the oscillatory oseenlet give better far 

field modeling.
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7.2 Conclusion and Future Work

Oscillatory stokeslets are given using potentials shown to be equivalent to Pozrikidis' 

form [9]. The oscillatory oseenlet and corresponding Green's integral representation have 

been presented which enables time-periodic Oseen flow to be modelled. A far-field ve­ 

locity expansion is given. Low Reynolds number limit oscillatory oseenlets reduce to 

oscillatory stokeslets. In the limit as u —> 0 it is shown that the far-field steady Oseen 

velocity expansion of Chadwick [30] is recovered. The force generated by the oscillatory 

oseenlet is shown itself to be oscillatory, and so any net propulsive force is related to the 

steady oseenlet only. This completes all the cases for oseenlets and stokeslets in steady, 

transient and oscillatory flows, the oscillatory oseenlet being the final case not yet present 

in the literature.

Its use for modelling a problem as a far-field formulation is discussed, that being the 

swimming motion of small robotic devices at low Reynolds number where it would be 

matched to a near-field Stokes flow. The matching of the far-field oseenlet to the near- 

field stokeslet required for this application is that presented in this thesis. However, there 

are further challenges left for future work, which are that the stokeslet distribution itself 

may be moving relative to the reference frame and also that the tail exhibits an elastic 

response from the action of the fluid.
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