OSCILLATORY OSEENLETS

RABEA ELHADI ELMAZUZI

Ph.D Thesis 2011



Oscillatory Oseenlets

Rabea Elhadi Elmazuzi

School of Computing, Science & Engineering
College of Science and Technology

University of Salford, Salford, UK

Submitted in Partial Fulfillment of the Requirements of the

Degree of Doctor of Philosophy, April 2011



Contents

1 Introduction

1.1 BaSiCCONMCEPLS . . . v v v v o e e e e e e e e
1.1.1 Viscousflow . . . . . . . . . e
1.1.2 Incompressible and Newtonianfluid . . . . .. . ..... .. ..
1.1.3  Velocity potential of incompressible fluidd . . . . .. .. ... ..
1.1.4 Steady andunsteady flow . . . . .. ... ... ..o
1.1.5 Uniformflow . . . . . . . . . . . . . o
1.2 Thesis OVEIVIEW . . . . . o« o i vt e e e e e e e

2 Equations of Motion
2.1 Continuity Equation

DD SIIESS o v v e e e e e e e e e e e e e e e e e e e e



2.3

2.4

2.5

2.6

2.7

2.2.1 Cauchy’sstressprinciple . . . . . . . .. .. ... 14

222 StressTensor . . . . . . . ... 16
2.2.3 Normal and Shear stresses . . . . . . . . . .. ... 18
2.2.4 The shear stress and the strain rate tensor . . . . . . . . . . . .. 18
2.2.5 The Constitutive Relation for Newtonian Fluid . . . . . . . . .. 19
The Navier-Stokes Equation . . . . . .. ... ... ... ... ..... 20
23.1 Derivation. . . . . . . . ..o e e e e 21
2.3.2 Stokes and Oseen Approximation . . . . . . . . . . . . . . . .. 23
2.3.3 Why Oseen’s approximationisneeded . . . . . . ... ... ... 24
The Stokes Equation . . . . . ... ... ... ... ........... 25
2.4.1 Derivation of the Stokes Equation . . . . . .. ... ... .... 25
The Oseen Equation . . . . . . .. ... .. ... ... ... ..... 26
2.5.1 Derivation of the Oseenequation. . . . . . . ... ... .. ... 26
Force Integral Equation . . . . . . . .. .. ... ... ... ...... 27
Navier-Stokes Equations in Dimensionless form . . . . . . . .. ... .. 28

2.7.1 How to obtain the dimensionless form

2.72 Womersley Number . .. ... ... ... ............ 30

11



2.7.3 Derivation of the dimensionless Equations . . . . . . .. ... ..

3 Steady Stokes Flow

3.1 Introduction . . . . . . . . o e e e e e e e e e e e e e e e e e e e

3.2 Statementof theproblem . . . . . . .. ... ..o

3.3 Green’s Surface Integral Representation . . . . . . . ... ... .. ...

3.4 Steady Stokeslets . . . . . . ...

3.4.1 Green’s Integral Representation of the Steady Stokes Velocity

3.5 Force Integral Representation in Steady Stokes Flow . . . . . .. .. ..

3.5.1 Force Generated by steady Stokeslet . . . . . . ... ... .. ..

36 ConcluSion . . . . v v v e e e e e e e e e

Oscillatory Stokes Flow
4.1 The Governing Equations . . . . . . ... . ... ... .. ........
4.2 Green’s Surface Integral Representation . . . . . . ... ... ... ...
4.3 Oscillatory Stokeslets . . . . .. ... ... o oo

4.3.1 Pozrikidis’ form of Oscillatory stokeslets

4.3.2 Stokeslets in far field and at high frequencies

1ii

35

35

36

37

39

41

49

50

52

53



4.4

The Integral Representation of the Oscillatory Stokes Velocity . . . . . . 68

4.4.1 The Approximate formula of Oscillatory Stokeslets near R=0 . 68

44.2 Green’s Integral Representation of the Oscillatory Velocity . . . . 70
4.5 Force Integral Representation in Oscillatory Stokes Flow . . . . .. ... 73
4.6 Force Generated by the Oscillatory Stokeslet. . . . . . . .. .. ... .. 77
477 ConcClusion . . . . . . . .. e e 33
Steady Oseen Flow 84
5.1 Governing Equations . . . . . .. ... .. ... .. o 85
5.2 The Green’s surface Integral Representation . . . . . . ... ... .. .. 86
53 SteadyOseenlets . . . .. .. ... ... .. ... .. 0. 88
5.4 Steady Oseenletaround thepointz=0 . .. ... ... ... ...... 94
5.5 Green’s Integral Representation of Oseen velocity . . . . . . . . .. . .. 96
5.6 Integral representationoftheforce . . . . . .. ... ... ... ... .. 104
5.7 Force Generated by the Steady Oseenlet . . . . . ... ... .. .. ... 106
5.8 Conclusion . . . . . . . . . . e e 109

v



6 Oscillatory Oseen Flow 110

6.1 Introduction . . . . . .. ... .. .. ... 110
6.2 Governing Equations . . . . . . . . . ... ... o 111
6.3 Integral Representation of the Oseen Equations . . . . . .. .. ... .. 114
6.4 OscillatoryOseenlets . . . . . ... ... ... .. ... ... ...... 116
6.4.1 Oscillatory Oseenlets and known solutions . . . . . . ... ... 122

6.4.2 Oscillatory Oseenlets in Pozrikidis’ form . . . . ... ... . .. 125

6.5 Integral Representation of oscillatory Oseen Velocity . . . . . . . .. .. 127
6.5.1 Green’s Integral of Oscillatory Oseenlet around point 2 =0 . . . 128

6.5.2  Green’s Integral Representation of the velocity . . . . . .. . .. 130

6.6 Integral representationof theforce . . . . . .. ... .. ... ... ... 134
6.7 Force generated by Oscillatoryoseenlet . . . . . . ... ... ...... 140
6.8 Chapter Conclusion . . . . . . .. . ... ... 143
7 Conclusion and Future Work 144
7.1 Applications Discussion: . . . . . . .. ... oL 144
7.1.1 Modelling a miniaturized swimming robot . . . . . . ... . . . 144



7.1.2 Biological fluid dynamics: . . . . . ... 145

7.1.3 Micro-Electro-Mechanical System (MEMS) . . . . . . ... ... 147
714 AcousticDevices . . . . . . . e e 147
72 Conclusionand Future Work . . . . . . . . . . . oo e 148

\'



Acknowledgments

This thesis would not have been possible without the support of many people. First and
foremost, I would like to express my special gratitude and thank to my supervisor, Dr
Edmund Chadwick for his valuable support and advice. My heartfelt thanks to my beloved
mother for her encouragement and believe in me. I also would like to express my deep
gratitude to my sisters Sakina and Fozia and to my brother Ali for their support when
I needed it most. I am forever indebted to my husband, Khairi for his understanding,
endless patience and encouragement when it was most requires. I would like to present

this work to the spirit of my brother Elsedeg.

Vil



Abstract

Consider uniform flow past an oscillating body. Assume that the resulting far-field flow
consists of both steady and time periodic components. The time periodic component can
be decomposed into a Fourier expansion series of time harmonic terms. The form of the
steady terms given by the steady oseenlets are well-known. However, the time-harmonic
terms given by the oscillatory oseenlets are not. In particular, the Green’s functions asso-

ciated with these terms are presented.

In this thesis, the oscillatory oseenlet solution is presented for the velocity and pressure,
and the forces generated by them are calculated. A physical interpretation is given so that

the consequences for moving oscillating bodies can be determined.

As the frequency of the oscillations tend to zero, it is shown that the steady oseenlet solu-
tion is recovered. Also, as the Reynolds number of the flow tends to zero, it is shown that
the oscillatory stokeslet solution is recovered. In this latter case, the oscillatory oseenlets
solution is an outer matching to the inner oscillatory stokeslet solution. An application of

this new representation is discussed for future work.
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Chapter 1

Introduction

The problem of uniform flow past an oscillating body is a general one, examples being the
flapping flight of birds and insects, the swimming of mammals, fish and micro-organisms,
the oscillating of Micro-ElectroMechanical Systems (MEMS), and acoustic devices under
water. What differentiates this diverse set is the Reynolds numbers for stream velocity and
velocity of oscillation, and the dimensionalised frequency of oscillation. What is common
in most of this diverse set is the aim to achieve a steady forward propulsion, this lends

itself to the Oseen linearisation in the far-field.

The current literature on time dependent Oseen and associated Stokes flows subdivides
into transient analysis and oscillatory analysis, with the majority of work on transient

rather than oscillatory analysis.

Price [1] use transient oseenlets in order to model ship motions. Also, Chan and Chwang
in [2], and Lu and Chwang in [3] describe the unsteady (transient) stokeslet and oseenlet

and give applications related to acceleration and free surface waves. Childress [4] uses



transient oseenlets to model the effect of flapping of a swimming mollusc. A numerical
solution of the transient oseenlet analysis is employed. However, for a steady oscillatory

motion of the swimming mollusc, an oscillatory oseenlet would be beneficial.

Riley’s work [5] [6] and Amin’s work [7] do employ an oscillating rather than transient
analysis to model the flow generated by fixed oscillating bodies. Here the focus is on
matching the inner Stokes- type flow to an outer flow. However, there is no uniform
stream for these problems and the outer flow is not an Oseen flow and very different from
it. Clarke et. al [8] consider the problem of a MEMS device vibrating in a fluid at rest. The
device is treated as a slender body and the Stokes approximation is used. The oscillatory
stokeslet given by Pozrikidis [9] is used. A further development on Clarke’s work would
be to consider the effect of a uniform rather than stationary flow field, which would for
example replicate blood flow. Within such a development, the oscillatory stokeslet is an
inner near-field description to be matched to an outer far-field oscillatory oseenlet. In
order to enable this, there is a requirement for the oscillatory oseenlet solution. Iima [10]
considers a butterfly flapping and whether it can sustain hovering motion. He formulates
a far-field periodic Oseen representation for a small steady uniform flow motion and then
lets that motion tend to zero. This representation is not expressed in terms of oseenlets,
and instead uses an approach based upon that of Imai [11]. Yet the representation by
singular (stokeslet, oseenlet) solutions has many advantages, one being that a body can
be represented in a straightforward way by a distributed superposition of them [12], and
another being the additional insight into the physical understanding of the flow such a
model provides.

The omission of the oscillatory oseenlet representation within the literature is noticeable,
and restricting the armoury of techniques to be used on these important problems. In the

present work, we therefore give the oscillatory oseenlet solution and indicate how it can



be applied to good effect on these problems.

In this thesis, we shall give the time-harmonic oscillatory oseenlet representation and
the force it generates. Furthermore, we shall show that it reduces to the steady oseenlet
and oscillatory stokeslet solutions in appropriate limiting cases. It is noted that a steady
streaming velocity perturbation is also expected in practice, but this shall not be detailed
as this steady Oseen solution is well known,see [13]. Also, it is noted that the flow may
not be time-harmonic but time-periodic, for example in the formulation given by Lighthill
in [14]. However, the time-periodic solution can be expressed as fourier series of time-
harmonic terms, see for example lima [10], for those problems which require a time-

periodic rather than time-harmonic solution.

1.1 Basic concepts

We give here definitions of some concepts that are used in this thesis.

1.1.1 Viscous flow

Fluids are divided into viscous and inviscid fluids depending on their resistance to stress.
Fluids which resist a stress are called viscous fluid and the viscosity measures the fluid
resistance to a shear force or to flow. Hence, water has low viscosity relative to honey
which has a high viscosity. Fluids which have no resistance to stress are known as inviscid

fluids.

Fluid with high viscosity 1s called slow viscous flow, and the viscous effects are dominant

the flow over the inertial effects. A dimensionless number which parameterise the flow, is



used to measure the relative importance of the inertial effects to the viscous effects, that

is Reynolds number

Reynolds number

The Reynolds number is a dimensionless number which determines the relative impor-

tance of inertial and viscous effects, defined as:

fluid density x speed x length
viscosity '

(1.1)

Reynolds number =

The Reynolds number can be written as a ratio of the convective acceleration ( convective
acceleration unit volume has dimension Bg—z) to the viscous forces ( viscous force unit
volume has dimension %g—), where p is the fluid density, U is a velocity scale which could
be the body velocity, L is a length scale, which could be a body length and u is the fluid

viscosity:
oU? uU _pUL _ UL

Re=—T-/m=—""=7

(1.2)

The Reynolds number may be small (Re < 1) in the sense of slow velocity U, high
viscosity v, small size length L, or for the fluid density p is much lower than fluid viscosity
p even for the case where the viscosity is very low. The cases of small Reynolds number
flow are called slow viscous flows, in which the inertial forces associated with acceleration
of fluid particles are small compared to the viscous forces arising from shearing motions

of the fluid, see [15], [16], and [17].



1.1.2 Incompressible and Newtonian fluid

In this thesis we deal with a Newtonian, incompressible fluid. In particular, an incom-
pressible fluid with constant density is considered. That means, it is fluid in which the

volume of any material region is unchanged with time, see [18].

The implication of incompressibility Consider a fixed closed surface .S in the fluid,
with outward unit normal n. At some points on the surface S, the fluid is entering the
region V' which is bounded by S, and at some other points on the surface .S, the fluid is
leaving. The velocity along the normal n is u.n, where u is the fluid velocity and taking
a small surface element d.S of the surface S, then the volume of the fluid leaving through

dS is u.n dS. Thus, the net volume rate at which fluid is leaving V' is [ [, u.n dS.

fluid entering point

fluid leaving point

S

u.n

Figure 1.1: region V

Because of the incompressibility [ [ u.n dS = 0 which is called no outflow condition.
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using the divergence theorem gives

//u.ndSz///V.udeO (1.3)
s 1%

0 0 0
Ox1? Ox2’ Jz3

for any region V' within the fluid, where V = ( ) denotes the gradient operator
[19]. It can be shown that V. u = 0 must be true for all fluid points, as follows. Suppose
that V. u # 0 then either V. u > 0 or V. u < 0 at some points. If V. u > 0 for some

point z, in the fluid and assuming that V. u is continuous, then V. u > 0 in some small

sphere S, around the point z,. Taking V = S, leads to

0</// Va dV # 0, (1.4)
V(:Smo)

and if V.u < 0 for some point z,, in the fluid then in a similar way to above, we have

0>/// V. dV # 0. (1.5)
V(ZSzo)

There is a contradiction between both cases and (1.3). Hence, V. u = 0 for any point

within the incompressible fluid, see [20].

The fluid is called Newtonian if the shear stress and the velocity gradient are related
linearly, and the constant of proportionality is known as the viscosity. The Newtonian

fluid agrees with Newton’s law of viscosity, which is described by the equation

viscosity
Oij = U ) (1.6)
shear stress exerted by fluid N~~~

velocity gradient

where: 0;; denotes the shear stress; u; is the velocity component in the ¢ direction of a

Cartesian coordinate system z; and ¢,7 = 1, 2, 3.



1.1.3 Velocity potential of incompressible fluid

In certain cases, the fluid velocity may be expressed in terms of a single valued function
¢, and such a function is called the velocity potential. (If a velocity potential exists, then
it can be chosen such that the density of the fluid is either a function of the pressure only

or a constant, [21], Art. 17). The velocity is described by

u= Vo.

For incompressible fluid the velocity potential exists and is harmonic, resulting from ap-

plying the divergence which gives

V=V -u=0,

where V is gradient operator, V2 = V - V is the Laplace operator and the dot denotes
the inner product. The existence of the velocity potential for incompressible fluid is sat-
isfied by the fundamental theorem of vector calculus, which states that any sufficiently
smooth, rapidly decaying vector field in three dimensions can be resolved into the sum
of an irrotational (zero curl) vector field and a solenoidal (zero divergence) vector field;
This implies that any such vector field F can be considered to be generated by a pair of

potentials: a scalar potential ¢ and a vector potential A.

1.1.4 Steady and unsteady flow

Flows can be classified as steady flow and unsteady flow.
Steady flow: when all conditions of a flow remain unchanged over time, the flow is said to

be steady. The conditions may vary from one point to another within the flow but remain



unchanged at the same point.

Unsteady flow: when the flow conditions change with time at any point, the flow is said to
be unsteady. Unsteady flow may be classified itself into transient flow (time-non periodic)

and oscillatory flow (time-periodic).

1.1.5 Uniform flow

Flow is said to be uniform if the velocity remains unchanged at every point within the
fluid, in other words, it is a flow during which the instantaneous velocity is always con-
stant. Hence acceleration is zero, and a constant velocity implies that the direction of
the flow is along a straight line and average velocity and instantaneous velocity have the
same magnitude. An example of uniform flow is the flow with constant velocity U in the

x;-direction of coordinate system x = (x, s, 23) = (2, ¥, 2);

u; = xUZ,u; =0,7 # 1,

where the unit vector ; is perpendicular to the plane x;zy, j, k # 4. For ¢ = 1, the uniform

flow u; = Uz, is in positive direction of z.

1.2 Thesis Overview

In the second chapter, the derivation of the equations of motion has been considered both
in dimensional and dimensionless form to give the background to the thesis. In chapter
three, we introduce the steady Stokes flow, and give the Green integral representation of

the steady Stokes flow and the construction of the steady stokeslets is given in terms of



potentials using the approach used by Lamb [21] for the Oseen flow. Also, the Green’s
Integral Representation of the Steady Stokes Velocity is given and the integral repre-
sentation of the force. Finally, we compute the force generated by the steady stokeslet.
The new result in chapter three is constructing the steady stokeslets using a different ap-
proach,involving the Oseen potentials, to the approach that has been used in literature to

obtain the stokeslets.

In chapter four, we consider the oscillatory Stokes flow. The Oscillatory stokeslets are first
given using the singularity method by Pozrikidis [9], we obtain the oscillatory stokeslet
in terms of potentials, using a similar approach which we used in chapter three for the
steady stokeslets. The potentials representation will enable us later to show that the oscil-
latory stokeslets can be recovered from the oscillatory oseenlet at a particular limit. The
Green’s surface integral representation of the flow is given and we establish the behaviour
of the flow in the far field and at high frequencies. The representation of the flow velocity
in terms of the oscillatory Stokes solutions which requires to know the behaviour of the
stokeslets close to the point force, is given. Also, we present the force integral representa-
tion and the force generated by the oscillatory stokeslets.This is the first time in literature
to represent the stokeslets in terms of potentials and results which are given in this chapter

are identical to the existing results using the singular method.

In chapter five, the steady Oseen flow is considered and well known results are given in
some details. These include obtaining the steady Oseenlet, flow Green’s surface integral

representation, and the force generated by a steady oseenlet.

In chapter six, we consider a uniform flow past an oscillatory body in an unbounded fluid
region. The Green’s integral representation for oscillatory Oseen flow is given. Lamb and
Goldstein used potential decomposition of fluid velocity to obtain the steady oseenlet,

we use a similar decomposition for Green functions rather than fluid velocity to obtain



the oscillatory oseenlet. At particular limits we demonstrate that the oscillatory oseenlets
reduce to known cases. The asymptotic series of the oseenlet around zero are presented,

which are then used to obtain the Green’s integral representation of the Oseen velocity.

We show that the oscillatory oseenlets reduce to the steady oseenlets when the frequency
tends to zero. The problem of uniform flow past a steady body in an unbounded region
and Oseen’s approximation are given as well as the Green’s integral representation of
Oseen flow. Following the Lamb and Goldstein decomposition, the steady oseenlets and
the asymptotic series of the oseenlet around zero are presented, which are then used to
obtain the Green’s integral representation of Oseen velocity. Finally, the force is given as

a far field integral in more detail.

For the first time in the literature, the time-harmonic oscillatory Oseenlets for velocity
and pressure are represented in chapter six. The oscillatory oseenlets are constructed
in terms of potentials and the reduction to the steady oseenlets and to the oscillatory
stokeslets in appropriate limits are given. We give the Green’s integral representation of
the oscillatory Oseen equation and we demonstrate that the oscillatory oseenlets can be
written in Pozrikidis’s form of the oscillatory stokeslets. The integral representation of the
oscillatory Oseen velocity and the expansion of the oseenlets around zero are represented.
The force generated by the oscillatory oseenlets 1s given in terms of the velocity, pressure
and the frequency. In the last chapter, applications discussion of our results and future

work are presented.

10



Chapter 2

Equations of Motion

Fluids display such properties as not resisting deformation, or resisting it only slightly,
and the ability to flow which can be described as the ability to take on the shape of a
container. Ideal fluids (inviscid and incompressible) can only be subjected to normal,
compressive stress which is called pressure and real fluids are capable of being subjected
to shear stress.

In fluids, shear stress is a function of the rate of strain, and depending on the form of
this relation between shear stress and the rate of strain and its derivatives, fluids can be
characterised as non-Newtonian fluids (where stress is proportional to rate of strain, its
higher powers and derivatives) and Newtonian fluids (where stress is directly proportional

to rate of strain).

In this thesis, we will deal only with Newtonian Fluid which is named after Sir Isaac
Newton, and the constant of proportionality is known as the viscosity. The behaviour of
fluids can be described by the Navier-Stokes equations which are a set of partial differen-

tial equations based on:

11



e Continuity (conservation of mass)

e Conservation of linear momentum (Newton’s second law of motion)

The study of fluids in motion (fluid flow) is fluid dynamics which is a sub-discipline of
fluid mechanics. It has several sub-disciplines itself, including aerodynamics (the study

of gases in motion) and hydrodynamics (the study of liquids in motion).

2.1 Continuity Equation

The continuity equation is a differential equation that describes conservation of mass. In
fluid dynamics, it is a mathematical statement that the rate at which mass enters a system

is equal to the rate at which mass leaves the system.

The continuity equation is governed by the physical laws of the moving fluid in a fixed
control volume V/, taking into account the flow through the surface S enclosing V' and the

forces which act on the fluid.

Ensuring that mass is conserved in V' gives the rate of increase of mass in V' equal to
the rate at which the fluid is flowing into V' through the surface S.

This is can be written as

%(///Vpd‘/)=—//gpujnjd8

where the minus sign is necessary because n 1s the outward unit normal.

dp
///VadVJr//Spujnjds—O.
12
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Applying the divergence theorem [ [cunds= [ [ [, V.udV, where V = (321, 322, 323)

for a continuously differentiable vector field u, gives

///V{% * a%.(Puj)}dV ~0.

Since V is an arbitrary volume, then

op 8

5 T 5@(0%’) = 0.

This is the continuity equation, which is the local form of the conservation of mass law.

In the case of an incompressible fluid, for which the density p is a constant, the conti-
nuity equation simplifies to
0uj

—2L =0o0r V.u=0, (2.1)
al'j

which means that the divergence of the velocity field is zero everywhere, see [16] or [22].

2.2 Stress

When external force is applied on a body, internal forces are produced within the body as

reaction. The measurement of these forces is called stress. Types of external forces are:

e Body forces, such as gravity and electronic magnetic forces, which are force per
unit of mass acting on all volume elements AV. We let body forces be denoted by

b.

e Surface forces, such as pressure, act across an internal or external surface element

AS in a material body. Let surface forces be denoted by f.

13



e Point forces, when a force is applied on very small area which can be consider as a

point, then the force is called a point force.

In general, the stress is not uniformly distributed across a section of the material body.
Therefore, it is necessary to define the stress at a specific point P in the body, which i1s

assumed to be a continuum.

2.2.1 Cauchy’s stress principle

Consider a continuum body subjected to a surface force f and body force b. Let V' be an
arbitrary volume enclosed by the surface .S and n be the outward normal at point P € AS.
The resultant forces are given by A f; exerted across AS upon the material within V' by

the material of outside V.

A

A

v/

=X,
ps\ T
[ ] <
/<
Y) |
sz

X1

Figure 2.1: ASj is the projection of AS on the z;z,.plane

14



The distribution of force on the area AS is not always uniform, as there may be a moment
AM at P due to the force Af.
Cauchy’s stress principle states that as AS tends to zero, in the 11m1t becomes df ’

and AM vanishes. The resulting vector df . is defined as the stress vector t(") at the point

P,
Af Af;
() — — ot = : 2.2
R NI R NS (22)
Considering the projection onto the plane normal to ng, gives
Az, A
AS = 2H12%2 (2.3)
COS 7y

where v is the angle between the plane AS and the plane Ax; Ax,, see figure (2.1). Asn

is perpendicular to AS, then

n.es

cosy = = n.e; = ngs, 2.4)

[n|es]

where n is the outward pointing normal to the surface and e; = Z; is the unit vector in the
ith coordinate direction. So
JAV ZWAY
AS = ——=, (2.5)

ng

gives Az;Azy = ASnz = ASs3, where ASj is the projection of AS on the plane perpen-

dicular to x5 axis. A similar argument holds for AS; and AS,, giving

AS]' = AS’I’L]

15



Taking the limit when AS — 0 yields

o AS, S,
As5—0 AS ~ dS

=nj.

From (2.2) we have

(2.6)

() _ dfi _ dfi dS; _ df; .
B T T T

where the repeated suffix implies a summation over j. This gives the stress vector at the
point P across a surface S. The stress depends on both the location in the body and also
the plane across which it is acting. From Newton’s third law (law of action and reaction),
the stress vector acting on opposite sides of the same surface are equal in magnitude and

opposite in direction,

M) — (=)

2.2.2 Stress Tensor

The stress at a point P in the body is defined by all the stress vectors ¢™ and normal
vectors n associated with all planes that pass through that point. Fortunately, according
to Cauchy’s fundamental theorem, we need to know the stress on three mutually perpen-
dicular planes, then the stress vector on any other plane passing through that point can be

found through coordinate transformation.

Since the unit vector Z; is perpendicular to the plane x;xy, 7, k # 4, we can write

(n) -
i Llri.

t® = g 4 185, + tVE = ¢

16



For the three coordinate planes, the stress vector can be written by taking n = X,

t0) = g+ 65V, + 1§V,
(£2) 4

t(i'2) — t§§72)j1+tgj2)j:2+t3 T3

R B R R T Y 2.7)

In index notation
t@) = 1)) 483, + 182, = 156,
In (2.6) replacing n by X, gives

o) _ Ui
T s,

Figure 2.2: Components of stress in three dimensions

Denote 7;; by tz@"), the nine stress vector components. Therefore

17



TAL) N

(m) (n) (n) — daf df df:
t ) t ) t3 ) ( d_sl'a —d%7 d_g' )
df df df
ds1 nj, dS2 nj, dS3 n; )

_,Ln +df1n +df1n3, dfzn +df2 +df2n3, dfsn +df3n +df3 )

T
T11 T2 713

( T11M1 + To1No + T31Mg, TioMy + TooMy + T32M3, Ti3M + To3Me + T33M3 )
( ny ng Mg ) Tol Too To3 = Tijh;. (2.8)

731 T32 733

This gives the relation between the stress vector ¢t and the stress tensor Tij-

2.2.3 Normal and Shear stresses

Normal stresses are the stress vector components which are perpendicular to the planes
(711, Ta2, T33), While the shear stresses are the stress vector components which are tangents

to the plane (712, 713, T21, T23, 731, T32).

2.2.4 The shear stress and the strain rate tensor

du,

The shear stress o is related to the velocity gradlent P which can be decomposed

into symmetric part which is the strain rate tensor e;; and antisymmetric part that is the

18



vorticity tensor §2;;,

Ou; 1,0u; Ou, 1,0u; Ou;

) (2.9)

N o
where e;; = %(g—;j a“’) and {);; = 5(% — 32) The antisymmetric tensor §2;; rep-

resents fluid rotation without deformation , and cannot by itself generate stress. While

the strain tensor e;; generates the stresses alone [19] For Newtonian fluid, the relation

auz

between the stress o;; and the velocity gradient 32+, is linear. The most general linear

relation is

= A 2 g o (2.10)

igmp (9

where

Aijmp = A0ijOmp + 2M5z’m5jp

which is an isotropic tensor (that is defined as the tensor whose components do not change
under a rotation of the coordinate system, see [19]). Taking into account that there is
no stress generated by the vorticity, A and p are scalar constants, and A,j,,, must be

symmetric in ¢ and 7 because o0;; is also symmetric.

2.2.5 The Constitutive Relation for Newtonian Fluid

At rest, fluid has no tangential stress acting on its surface, only the normal component of
stress on the surface appears, which is internal stress due to the pressure p. The stress
tensor is isotropic, and any isotropic second order tensor is proportional to the Kronecker

delta, therefore
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For fluid in motion, due to viscosity additional components of stress appear and the shear

stress develops. Now we can decompose the stress 7;; into two parts,
Tij = ——péij + Oij- (211)
Substituting (2.10) into (2.11) and using the symmetric property of e;;, gives

i = —DOij + Aijmp€mp = —POij + (AijOmp + 210im0p)€mp
= —pdij + AijOmpemp + 2140im0jpEmp
= —pbi; 4+ A6ijOmpCpm + 2118imBipepm
= —pbij + Aoijemm + 20im€jm

= —p(Si]‘ + Aéijemm + 2#61‘]’. (212)

Since e,,, = V - u = 0 for an incompressible fluid, then

(9u1- n 8uj
63:]- a.Ll

Ty = —Pdij + 2pes; = —pdij + 2p( ). (2.13)

This relation is called the constitutive relation.

2.3 The Navier-Stokes Equation

The Navier-Stokes equation describes the motion of a Newtonian fluid. It is a non-linear
differential equation which does not explicitly establish a relation among the variables
of interest ( velocity and pressure). Rather they establish a relation between the rates of
change of the variables. The non-linearity is due to the convective acceleration, which is

an acceleration associated with the change in velocity over position.
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Usually, the Navier-Stokes equation is too complicated to be solved in a closed form.
However, in some cases, such as Stokes and Oseen flows, the equation can be simplified

to a linear equation.

2.3.1 Derivation

Newton’s second law implies that the rate of increase of momentum in a control volume
V must equal the sum of the rate at which momentum is flowing in through the boundary
S and the total forces acting on the contents of V. We can write this in mathematical form

as

///V%(pubdv:_//S(Pu}"j)uIdSJr///VpﬂdV+//Snjnjds

where: p is density; u;r is Navier-Stokes velocity; F is body force per unit mass acting on
the fluid and 7;; is the stress tensor.

Applying the divergence theorem gives

2 f i 1 aTij _
///v[at (o) + Bz (puguj) - 5., ~ PRV =0.

J

Since V is an arbitrary volume, we can write

O, v, 0 4 j
&(Puz) + oz, (pu;u;) oz, pFi = 0.
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Under the incompressible assumptions, the density p is a constant, and it follows that the

second term will simplify to

0 (i 1 0u
a—xj(loujui) = Puja—xj,

oul

because -~ = 0 from the continuity equation. So we get the following
J

ou! + ol ou! _ Omy
ot TP 19z, Oz,

+ pF;.

t o oul o
From (2.13), 7;; = —p'é;; + ,u(g-Z—; + Z_xi)’ which yields

a7, opt o2l 82!
= o (o),
0zx; ox; Ozr;0r;  Ox;0z;

where p' is the fluid pressure. Using the continuity equation (2.1), gives

87'2-]- 8pT 82’11,;[
aij 8:1:, axj (9:63-

By substituting (2.17) into (2.15), we get

(Guz N T@u! ) op! N 02ul
- U,—) = —
ot 10z; 0x; 'uaxj(?xj

+ pF;.

The force F can be absorbed in the pressure for a conservative force field F;, =

(2.14)

(2.15)

(2.16)

2.17)

(2.18)

o¢p -
9z, m

which case the last term in (2.18) will be absent. The resulting equation (2.18) is the

Navier-Stokes equation, which can be written in terms of the material derivative
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g t 9
o +u as

j sz
Du! f &2l
pRu _ opt O (2.19)
Dt 81), aij &cj
with continuity equation 24 = 0
Y €q dz; ~ 7
In operator form this is
Du'
Dr = —Vp' + ,LLV2UT, V' =0. (2.20)
It is worth observing the meaning of each term in the Navier-Stokes equation:
unsteady acceleration
~ convective acceleration Divergence of stress
Sut —— - ~ —
p( B + ul . Vu' ) = _va + uV ul .
o t Y, SN—— N——
inerti;Y force pressure and other body forces  viscous term
(2.21)

Only the convective term is non-linear and it is an acceleration caused by a change in
velocity u' over position. The pressure term includes any other conservatives, such as

gravity.

2.3.2 Stokes and Oseen Approximation

In the Navier-Stokes equation (2.21), we have three terms: the inertial term of two com-
ponents (which are unsteady acceleration and convective acceleration), the pressure term
and the viscous term. In the low viscous flow limit, we estimate the inertial term to be
small, more specifically the convective acceleration is assumed small. It is negligible only
if the remaining terms are not small by comparison.

Neglecting the convective acceleration term is called Stokes’s approximation, while Os-

een’s approximation represents the convective acceleration by a linear term which is the
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combination of a uniform flow velocity and a velocity due to a body which is passing by

the uniform flow.

2.3.3 Why Oseen’s approximation is needed

For uniform flow past a solid body, the pressure and the viscous terms near the body
are certainly not small, but far from the body both terms are expected to decay toward
zero, see figure (2.3). So the Stokes’ approximation may fail in the far field, where a

better approximation may be to neglect the viscous term and let the pressure and inertial

: i Dul oul oul .
terms balance each other. Thus, Oseen replaces the inertial term 5+ = 52 'u,;’ =~ in
7

the Navier-Stokes equation by %‘Z’l +U 37“1" where U is uniform velocity. In the far field
region, the fluid velocity tends to the uniform flow velocity U. Therefore the Oseen’s
approximation is valid far from the body, but the condition u’.n = 0 must be satisfied on
the body surface. This approximation fails near the body where the inertial term is small

compared to pressure and viscous terms, but it becomes more appropriate far from the

body, in the far field, see [21] and [17].

Near field Far field

_—_—_>
Uniform flowU pressure —a ()
_—_—_>
, viscous term — ()
pressure and viscous term
___—_—>
are not small u—» U
B

Figure 2.3: Near and Far Fields
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2.4 The Stokes Equation

The Stokes equation describes slow viscous or low Reynolds number flows, in which the
convective acceleration term on the left-hand side of the Navier-Stokes equation (2.19),
is small compared to the rest of the terms and may be neglected. Thus the non-linear
term pu.Vu is negligible and then the inertial term can be approximated by the unsteady

acceleration pg—‘t'.

2.4.1 Derivation of the Stokes Equation

Starting with the Navier-Stokes equation

dul T@uT Op 0%u]
i 1) = L 222
P a Y (9:1:j) 0x; * u(?xjazzsj’ (222)
the non-linear term can be neglected, which approximates (2.22) to
ou; Op ?u;
= - (2.23)

P ot 6$i + uaSE]aIJ

The resulting equation is the unsteady Stokes equation. For steady flow the term % will

be zero, so the steady Stokes equation will be

0=—Vp+uVu, (2.24)
where V? = 336?;:1 + 3;3;62 + axfzu = axi-);a:j is the Laplacian operator. Taking the
divergence gives

Vip=0. (2.25)
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2.5 The Oseen Equation

The Oseen equation describes the flow of a viscous and incompressible fluid in a uniform
flow field, as formulated by Carl Wilhelm Oseen in 1910 [23], [17]. In 1911 Horace Lamb
was able to use the Oseen equation to derive improved expressions for the viscous flow
around a sphere, improving on Stokes flow, and deriving a solution for the viscous flow

around a circular cylinder, see [24], [17].

Consider a uniform flow with velocity U past a body. Far from the body the flow may be
decomposed into the incident flow and a disturbance flow with velocity u due to the body.

A similar decomposition can be introduced for the pressure.

2.5.1 Derivation of the Oseen equation

We have seen that the incompressible, Newtonian fluid flow is governed by the Navier-

Stokes equations and continuity equation
+uVil, Val =0. (2.26)

Let U be a uniform flow which is parallel to the z;-axis. A body with an arbitrary shape

is fixed in the stream. Oseen decomposes both the velocity and pressure as
ul = Uiy +ui + O(e?), pl=po+p+0(). (2.27)

The notation ‘O *means ‘of order of °, d;; is the Kronecker delta, and e < 1, ¢ = O(|&)).
The perturbation velocity and pressure are u and p, respectively, which depend on the

position and time in the unsteady case and on position only in the steady case.
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By Oseen’s approximation the velocity u is approximately equal to the uniform flow ve-

locity U thus the Oseen approximation depends on the condition that | ;| < 1.

Applying Oseen’s approximation to the non-linear term pu;r- % of the Navier-Stokes equa-
J

tions, gives
0 0 u; 0
| 7
pujail?j 'DU(&El i U 6:1:J)

After neglecting quadratic terms in u, the resulting equations are the Oseen equations,

which are
Ou; . Ou Op 0%
U = — , Vau=0. 2.28
p( ot + (91:1) 0x; +'u(9xj6$j " (2.28)
Taking the divergence of the above equation yields
(Q(V u)+U—?—(V u)) = —V?p+ uVi(V.u)
ot oz, P e
Therefore
Vip =0. (2.29)

Away from the body, the velocity u tends to zero. That means the fluid flow perturbation
to the uniform flow U in the far field is small. Now taking the Oseen equation to the far
field and applying the condition that u — 0, yields Vp — 0, thus we may choose p — 0

in the far field.

2.6 Force Integral Equation

As shown in section (2.2), the force on a body can be divided into body forces and surface

forces. The surface forces can further be resolved into normal and tangential components.
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Let us consider dA as an area element of a surface A and dF' as the force on the element

d A, then the stress on the element dA is

dF
TA = 5>

dA

which implies

dFZTAdAiFZ//TAdA.
A

The total force acting on the surface is

//Tijnj dA.

6uZ ou ;
// pdz] -+ /.L 61‘] ))’I’LJ dA

For any volume V" that enclosed the surface A and for an incompressible fluid Oy - 0,

ailiia.’z,‘j
then from the divergence theorem, see [16], the last integral is zero
0 0 0
/ “J dA = u/// )y =0 (2.30)
8:1:J (9:1:z
This gives
Ou;
= //(‘P%‘ +M—u—) n; dA (2.31)
A &cj

which gives the integral equation of the force per unit area acting on the body.

2.7 Navier-Stokes Equations in Dimensionless form

In this section we derive the dimensionless Navier-Stokes equation, which gives better

understanding of physical meaning and implications. Partial or full removal of units from
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an equation is known as dimensionalisation, which is used to write an equation in terms

of dimensionless variables. This transformation gives the following advantages;

1. Gives minimum set of parameters on which the field depends
2. Simplifying the notation
3. Easier assessment to the relative impact of the terms

4. In dynamic similarity problems, dimensionless form allows the system to be adapted

to a similar one.

2.7.1 How to obtain the dimensionless form

The dimensionless equation is obtained by following the next procedure;

1. Writing the differential equation, initial and boundary conditions which describes

the problem.

2. Identify a parameter for each dependent or independent variable that needs to be
parameterised. Parameters are dimensional constants with the same dimensions as
the variable they parameterise and they depend on the nature of the problem. These
parameters should be kept to small set. For example, if a problem involving position
z, velocity v and time ¢, these three variables involve only two dimensions, length
L and velocity U, so two parameters should be chosen. Time parameter is either
defined as the ratio of the velocity and the distance (t = 5) or identified with the

frequency of oscillation for oscillatory flow, see [25].

3. Substitute the parameters in the equation to give dimensionless form of the equa-

tion.
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We use dimensional analysis throughout this thesis and we only use the dimensionless
form to show the physical implications and in the applications discussion. In the introduc-
tion, we define the Reynolds number which is dimensionless number, here we introduce
another dimensionless number, Womersley number. Reynolds number and Womersley
number are necessary to solve an incompressible fluid flow problem. Since the magni-
tude of the dimensionless variables and their derivatives is of order unity, the importance
of the terms is determined by the magnitude of their multiplication to the Reynolds num-

ber and/or Womersley number [25].

2.7.2 Womersley Number

The Womersley number, named after John R Womersley (1907-1958), is dimensionless
number which is defined as the ratio of the unsteady (transient or oscillatory) accelera-
tion to the viscous term in Navier-Stokes equations. This number arises in solving the
Navier-Stokes equations for oscillatory flow and it expressing the ratio between the flow

frequency and the viscous forces. We denote it by £, and it can be written as

R,=1L %. (2.32)

The Womersley number is also called transient (or oscillatory) Reynolds number. In case
that the viscous forces are dominant in the flow, the Womersley number is low and in the

case the flow is dominated by oscillatory inertial forces, the Womersley number is large.
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2.7.3 Derivation of the dimensionless Equations

We consider a flow of an compressible viscous fluid past a body of a finite size, recalling

the Navier-Stokes equations

Duf
7‘; = —Vvp! + uV%ul, YVl =0. (2.33)

We use a parameter velocity U and a parameter length L, and define the dimensionless

variables by

1.

iy i=wt
- U= -7, = Wi,
L U

T =

where w is the period of oscillation, and tildes denote dimensionless quantities. This

implies V = 1V, V2 = 1,V2 where V is the gradient with respect to the dimensionless

0

15 = o — Lo
position vector Z and 5 = wg.

By using this scale the terms of the Navier-Stokes
equation will have the following orders
ou; _ Oty

pU2 62’&,1'

Y
L )’”a:zla:z»l -

)

O(

The choice of a correct scale for the pressure depends on the flow under consideration,
if we consider Stokes flow, then for steady case both terms on the left-hand side tend to

zero and the pressure term will balance with the viscous term. Hence, the pressure term

gfi = O(45) so that p = O(£5). Therefore, p = u%p. Substituting the dimensionless

variables into the Navier-Stokes equation becomes

of L 7ox;  L?0%; L2 07,03,

pwlU (2.34)
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Focusing on the nonlinear term we multiply the equation by the factor p—{j—z

wlou; 0% _ 2.35

The factor L—(;" can be written as

Lo _ ol by o B
U  u "pUL’  Re

2. . . .
where R? = “‘L’i is the dimensionless Womersley number, and Re is the Reynolds num-

ber (1.2).
So
R2 01, Ot 1 0p 1 0%
——— 4 U= = — : 2.36
Re ot T s 855] Re &i‘, i Re 85&[8,%1 ( )
The dimensionless Navier-Stokes equations are
ou; ot Op 01,
R:——= + Relij— = — - 2.37
wof T ez, T "oz, | 070 (237)

One can see that for very small values the dimensionless numbers, Re < 1 and R, <
1, terms on the left-hand side of equation (3.7) may be neglected and then the Stokes

equation governs the flow
0p 01,
S S
6:ci axlaxl

0. (2.38)

From this equation we can see that the Stokes flow has only dependence on time through
time-dependent boundary conditions, and the flow can be found without the knowledge of
the flow at any other time. Also the Stokes equation is linear which allows superposition

of solutions.

When flow has small Reynold number Re < 1 and R, approximately equals to unity
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(R, = 1), the second term on the left-hand side, that is the inertial convective term, is
small compared to the other terms and may be neglected, then the unsteady Stokes equa-

tion reveal;
ol B op 0%,

_ | 2.39
57 = 0w | 9303, (2:39)

As the acceleration term is present in (2.39), then the flow depends on the history of the
motion. Also, the unsteady Stokes equation is linear, which gives ability to use variety of

solution methods, such as Laplace and Fourier transform, and superposition of solutions.

Stokes flow has variety of applications in biology hydrodynamics, engineering and physics,
such as flow due to movement of micro-organism (when Re is small due to the very small
size), flow due to the motion of an air bubble in honey (Re is small due to honey high

viscosity), and flow past a red cell blood (which has small diameter).

For Oseen’s flow, we need to introduce another dimensionless variable for pressure, scal-
ing the terms using a velocity parameter U, length L, and frequency w and define dimen-

sionless variables as

oz oy

:C—'Z)u—ﬁa =w ap—ﬁ
where tildes denote dimensionless quantities. This implies V = 1V, V2 = 1V?2 where
V is the gradient with respect to the dimensionless position vector # and gf = Wg

Substituting the dimensionless variables into the equations leads to

O
ot

pU ;O _ (U Op | WU, 8%
L 70z, L "9z; ' L*’0%,0%

pwlU + (

To focus on the nonlinear term we multiply the equation by factor pﬁ (from the convec-
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tive acceleration term),

(%)%+a,%__@5_+( p 82?11-
Uu’oet  ’ox; 0z pUL’ 01,07

— pUL

since Re o then we can write

wLoG; . 0 9p 1 8%

U ot Yoz, 0% | Redmndi

Now, since the factor % can be written in terms of both the Reynolds and Womersley

numbers
R2_L2pw_wL UpL wlL

o p g ) = e

Then the dimensionless form of the Navier-Stokes equations is

R 9a ou o 1 0%
w OU __ 2.4
Re i 9%, 9%, | Reondm (2:40)

and

V.i = 0.
In the case of R, tends to zero the steady Oseen equation is recovered

. i
5%, 0 | Reonom (2.41)

The equation (2.40) can be apply when the Reynolds number is small or high. For
Re < 1, the equation represent the far field . When Re =~ 1 both Stokes and Oseen
equations give good representation of the near field with equal accuracy. The unsteady

Oseen equation will recove when R, ~ 1. Applications will be discussed in chapter 7.
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Chapter 3

Steady Stokes Flow

3.1 Introduction

Steady (or time-independent) flow is when the change of fluid velocity with time is zero,
the equation of motion for steady flow is obtained by omitting the time- dependent terms
of the Navier-Stokes equations. Stokes steady flow has been in the literature for many
years, it is named after George Gabriel Stokes also it is called creeping flow(for which
Re — 0). In this chapter, we introduce the steady Stokes flow in section one, and in
section two we give the Green integral representation of the steady Stokes flow. In section
three, the construction of the steady stokeslets is given in terms of potentials using similar
approach to the approach used by Lamb [21] for the Oseen flow. The Green’s Integral
Representation of the Steady Stokes Velocity is given and also the integral representation
of the force. Finally, we compute the force generated by the steady stokeslet. Throughout

this thesis, the superscripts s denotes the Stokes solutions.
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3.2 Statement of the problem

Consider uniform steady incompressible fluid flow in an unbounded domain past a sta-
tionary body. At low Reynolds number flow, the Stokes approximation is valid in the
near field and linearises the Navier-Stokes equations. Recalling (2.19) the Navier-Stokes

equation for an incompressible fluid is

Dul  opt 9%
P, = - tH :
Dt (9:13]- 83:,0:51

(3.1

where 7,] = 1, 2, 3. Dropping the inertial force p%“: which encloses the time-dependent
term paa—'f and the convective acceleration term pu'. Vu', the viscous force is balanced by
the pressure and the body force which can be absorbed into the pressure. This gives the

steady Stokes equations

p(x) | Ous
B p(X)ﬂL ui(x)
8xj 8:18,6:1:1

(3.2)

with the continuity equation

V-ut=0. (3.3)

Taking the divergence of (3.2) and using the continuity equation, we find that the associ-

ated pressure satisfies the Laplace equation

Vip® = 0. (3.4)

36



The equations

Vip® = 0, (3.5)

represent the Steady Stokes flow. One can note that the Stokes’ approximation reduces
the degree of the Navier-Stokes equations (2.19) from two to one. Recalling the dimen-
sionless Navier-Stokes equations

R:ou Ou 0D 1 0%

Redi 9%, = oz, " Redzon, (3.6)

And
V.u=0.

We can see that when both Reynolds and Womersley numbers are small, Re < 1 and
R, < 1, the left-hand side terms are small compare to the right hand-side terms, and may
be neglected. In this case, the pressure term balance with the viscous forces term which
means that the Stokes equation recovers

_Op N 0%u
0%, 01,08,

0 (3.7)

3.3 Green’s Surface Integral Representation

We introduce the Green’s functions (us(m), ps(m)), m = 1, 2, 3, for the velocity and
pressure field, which with the general velocity u® and pressure p®, satisfy the surface

integral representation of steady Stokes equation which we shall construct. Consider
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distinct Cartesian coordinates y; and z; = z; — y;, the coordinate y parameterise a point
on or within a fixed closed surface and the coordinate x shall refer to a general fluid point.
The four solutions u®, p*, u*™ and p*(™) then satisfy the equations

_opy) P

=0 (3.8
Oy; O0y.0y, )

and the Green equations are

_8p3(m)(z) N Na%j‘m)(z) _

3.
6zj 82182'1 ( 9)

Since z = x — y, then the adjoint equation in y is satisfied as % = —8%_, which is
J J

Op(m) (z) 02 ujf(m) (z)
—_— - py——= = (. 3.10
Oy; H Oy 0y (3-10)

Next, following Oseen [13], we dot product (3.8) with uj(m)(z) and take it from the dot

product of (3.10) with u3(y), to obtain the following equation

™ (@) . Y s 0*uS™(z) O*US(Y) ym)
—6:;]'—_uj(Y)+ 3, u; 7 (z) + S0 U y)——umuj (z) = 0. (3.11)

Applying the continuity equation V - u’ = 0 gives

9 ) ous™ (z)
s(m) s s s(m) s J
5, (P @UW + PO @) + g (05
Ou;(y)
I CONON St ACEA WY}
u; () o )=0 (3.12)
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Consider a volume V of fluid bounded by the surface S enclosing the body. The diver-

gence theorem applied to (3.12) enables us to write

sim S s s(m s(m 6IUIS(),)
[ [ @pim, + 3w @, — @ =2 B
S Y
L, 0™ (z)
+,uuj(y)—78yl——nl]ds =0, (3.13)

the equation (3.13) represents the Green’s surface integral of the steady Stokes equations.

3.4 Steady Stokeslets

The Green’s functions (the fundamental singular solutions) for a point force are called
stokeslets, the steady stokeslets due to a point force in unbounded fluid are well known and

have been in the literature such as [25] and [26]. Consider solutions of the steady Stokes

lbs(m)

equations (3.2) and the continuity equation (3.3), u*(™ = ( y

), jym =1, 2, 3, where
m corresponds to a stokeslet pointing in z,, direction and ;7 corresponds to the components
of velocity in the z; direction. In this section, we obtain the steady stokeslets in terms of
the potentials ¢ and  similar to the approach used by Lamb [21] for Oseen flow, but
which is also applicable for the steady Stokes flow. Then, we employ the stokeslets to

represent the steady Stokes velocity. The Green equations (3.9) are satisfied by the steady

stokeslets, which gives
—Vp™ + uVi™ =0, V- wt™ =0, (3.14)

The Lamb-Goldstein velocity decomposition suggests the form of the Green’s functions

is
a¢s(m)
6:j

+ X 0jm (3.15)

39



where the velocity potential ¢*(™)(z) is associated with flow outside the wake and the ve-
locity x° is associated with the wake velocity. As we are dealing with an incompressible
fluid the potential ¢*(™) is a harmonic function satisfying V2¢*(™ = 0. Taking the diver-
gence of the decomposition (3.15) and applying the continuity equation, we find that the
potential x*® satisfies the continuity equation; Vx* = 0.

Substituting the decomposition (3.15) into the Green’s steady Stokes equation (3.14),

gives

0° 9¢°™(z) Op*™ (z)
(2)8;,) = —
“azlazl( 0z; X (2)0m) 0z;
o 02 s(m) 7z 9%vS(z O s(m) 7
MRl O e SO PR a0
Zj 2102 zlazl 82]'
(3.16)
using V2¢*(™ = 0 gives
0°x°(2) Op*™ (z)
The pressure solution is given by Oseen [13] as
1 0 1
s(M)(y) = — 2 (_
) = o (F) (3.18)

where R = |z| = /z} + z2 + z? Substituting (3.18) into (3.17) and using %l—éjm =

82,,8128%- give
Pxiz) 1 & 1
g Ozm0zj Eazmazj(ﬁ)' (3.19)
Let
s 1 1
()= (R) (3.20)

Next, we turn our attention to compute the potential ¢*(™) which disappears from the

flow equation (3.17). However, ¢ can be obtained as a harmonic function, a particular
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solution choice is

1 OR 1 =z
sMy(g) == - 2 - “m 3.21
o) 8Tl Oz, 8ru R 2D

The complete steady stokeslets solutions are

s(m
s(m) . ¢ ( )
2 .
- -1 orR 1 5]’". (3.22)

8mp 020z,  4mp R

62R ‘Sjm

Since Fidem = R T R@ ~, the stokeslets can be written as
s(m) _ 1 —5jm Zjem 26]_m_
u @) = oo m t YR
1 6jm ZjZm
— 3.23
87r,u{ R + R3 b (3.23)

which decay to zero at infinity and are the steady stokeslet solutions given by Oseen [13].

3.4.1 Green’s Integral Representation of the Steady Stokes Velocity

The Green’s surface integral representation of the steady Stokes flow has been given in

(3.13) as

[ [ @p s+ ™ @,

ous™ (z)

———J jr—
5 n}dS = 0. (3.24)

s(m) y>
—puy () 8Jyl ny + pu;(y)

We consider the surface S consisting of a surface Sg, a sphere radius § — 0 around the
point z = 0, a surface Sp enclosing the body, and a large spherical surface S of radius R

extending to infinity, enclosing the body and centred at the point z = 0, see figure (3.1).
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Figure 3.1: The surface S and the relation of the points x and y

We re-write the integral over the surface S as a sum of the integrals over the surfaces S;,

/[9:/[95+//SB+//9R:0’ (3.25)

Next, we calculate the contributions over the surface S5 as 6 — 0, and over Sg as R — oo,

Sg, and Sg,

to give integral representation for the steady Stokes velocity u? (x).

The Contribution over the Surface 55 as 6 — 0.

The integral over the surface Ss is denoted by s, which is

e %w+// s

55 Ss

_ m) d )

u//so 8yz n S'I‘M//S(S u;(y) —=——=n,dS. (3.26)
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Let us split Ig; into parts, [y, I, I3 and I, thus Is, = I; + Iy + I3 + I, and these are

considered separately. This is done in order to simplify the work, where

I = / / (™) () p° (y) S,
Ss
I, = // s(m) (z)n;dS,
Ss
(¥)
L = - / / ™) (g mdS,
3 H (9yl

s(m )
I, = / / — n;dS.
! Ss (9?;/1 l

(3.27)

Sincez = x —y, theny = x — zand n; = 3 (R = §) points outward the control volume

V, see figure (3.1).

Obtaining [,

We can show that this integral vanishes as § — 0,

I, = // ) (2)p* (y)n;dS = // stm) p°(x — z)n;dS. (3.28)
55 Ss

From the Taylor series
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and using the steady stokeslets (3.23) the integral /; becomes

-1 5Jm L %% op®(x) 2\\ %3
$(x) + + O(R?%))—=dS
//56 87m R R3 H*(x) 0z “* ( ))

8 L jm ZjZm idS // J
p(x)(87r,u/ 55{ R * R3 }R )+ 8zk 87T,u s

ZjZm

R3

}==2dS) + O(R?) = O(R) — 0

where z,, = O(R) and dS = O(R?).

Obtaining /,

I, = //55 uj(y)ps(m)(z)nj dS = //Sd ui(x — z)p*™ (z)n; dS

Similarly to above

on
I
\
;o\
Qi
2
N\—/
+
B
X
=
eI
X
Q.
N

/ / “m% dS + O(R)
471' S

_ _Zj}r ﬁ//s = zm dS + O(R)
)
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(3.29)

(3.30)

(3.31)



Using z; = Rn; and the divergence theorem we compute

// %5 2mdS R// zmnde=R///%dV
Ss S aZJ
= Rijm / / / dV:ilféij‘l. (3.32)
v 3

Combining (3.31) and (3.32) when R (= §) — 0 we find

—w(x) 1 4n —u(x)
I, = J e 4 J .
2= — g dmR = — (3.33)
Obtaining /5
I, = —u// S(m) (4 )nl ds
Ss ayz
_ im zjzm 8uj(x—z)
- “//s " R ey M
. jm ijm auj(x) 8221,;()() 2 ﬂ
_ SW/ R IR T G T OB 3S
= O(R) — 0, (3.34)

as § — 0. The Taylor series for 82’; (ly) around z = 0 and the approximation (4.59) has

been used.
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Obtaining /,

In similar way to /5, we can take u;(y) outside the integral to give

s(m) )
n; dS
/ /5(s ayz l
aus_(m)
= pui(x ——J————— n; dS.
H ( )/ /55 Oy l

(3.35)

s(m)( )

From (3.23) the steady Stokes solutions uj(m) (z), we can obtain the derivatives 2 TR

as follows since

s(m -1 5’m Zj<m
(2) = o {T+ )

43 8t R | RS

Differentiating both sides with respect to y;, gives

6u;(m)(z) _ —-1 0 {5jm N z]-:m}
6yl 87r,uayl R R3 .
Using a%, = -—8—%, gives
Bu;(m)(z) 1 90 {5jm ijm}
oy, ~ 8mudz R RS
1 0o .1 0 <jem
= 87r,u{5jmaz (E)Jra_q( Rl

-~

~1

— Gl ) + (i + 55,
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(3.37)
—3 Sjiim<l )}
R® .
(3.38)



So

= 87w //{% + (Fsm + by — 375} 5 dS
- 87(ru)/ tOm(= TZ{Z) D+ 22, 35 g
- 87w/ 55{_ ng_ ijm)}ds
= 87ru/ Sa{‘ 25— 2t ds (3.39)

this by the use of n; = % and 2z, = 20m. Since [ [, dS = 47 R* and ff56 2jZmdS =

26;m R, the integral becomes

u3(x) 4 1 4n
I, = j im g2 4
! grp (g TRt g 0m )
Uj-(X)d 47 Qum(x)
- - ) 4 ) = — ) .
gy OmUAT+ ) 3 (3.40)
as 0 — 0. From (3.29), (3.33), (3.34) and (3.40) we find that
S 2 S
Iy = h+h+Is+1=0- “mg(x) +0 - —“T§<x)
= —up(x) (3.41)
The Contribution over the Surface Sp as R — oo
Now, we determine the far field integral
// u‘;(m) (y)n;dS + // )p* ™ (z z)n;dS
Sr SR
s(m s(m )
—,u// nldS + u// —L__~ "n,dS,
Sr Sr
(3.42)
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where the surface Sr is a sphere with large radius R as shown in figure (3.1). From the
definition of the steady stokeslets and their associated pressure we can see that both decay

to zero at infinity,

s(m) () = —L (O Ffmy 3.43
U, (z) 87T,LL{ B + e } = O(R), (3.43)
and
) (z) = L(—Zmy — O(R* 3.44
() = (- 25) = O(R™) (3.44)
Also
aus.(m)(z) 1 p r s
J l 54m 1 -9
- m —)} = 3.45
ayl 87T/.L{5‘7m( R3) (R3 6lm R36 -3 &5 )} O(R ), ( )

substituting the stokeslets, the pressure and (3.45) into the integral over Sg and letting R
tends to infinity, lead to

Is, = O(R). (3.46)

Thus the far field integral is non-zero, meaning that it is necessary to match Stokes flow
to a far field Oseen flow to resolve this integral. In particular, the moment calculated in
far-field Stokes flow is unbounded (Filon’s paradox) [27] and is resolved by matching to
a far field Oseen flow, see Imai [11]. With this matching in mind and using (3.41) and

(3.46), we find

/ / {uS™ (@)p (y)n; + wS(y)p*™ (2)n,

Ou;(y) ous™ (z)

— ™ J J
NU (2)—— M ng + puj(y) o

ng ydsS (3.47)

which is the representation of the flow velocity in terms of the steady Stokes solutions.
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3.5 Force Integral Representation in Steady Stokes Flow

The surface force on the body due to the fluid action, is given in equation (??) as

2// le [£3] dS, (348)
SB

where Sp is the body surface, n is the outward normal of Sg and 7 is the stress tensor of
steady Stokes flow, which is

ou;  Ouf

_péﬂ + ,U( 8:1:3 + -(9—:5)

Applying the divergence theorem to (3.48) for the volume V which is bounded by the

surfaces Sp and the far field spherical surface Sy of radius R, gives

6@,
//SRTJlnl ds — /// 8xl (349)

where n is the unit normal vector pointing outside the volume V. From the steady Stokes

equations (3.2) and the continuity equation (3.3) we find that

oty 0 8uj ou;
EE - (92:1[ p ]l+/‘b(a I ax])]
on° 82 S 2,,8
_ _9p T L 0°u; )
0z Oxlaa:l 0z,0x;
_ o "y Oui _,
= a5 T Ponon = (3.50)

Therefore, there is no contribution of the volume integral and the force can be written as

the far field integral

49



Fs = / / ramdS, (3.51)
Sr

which is the same as the result given by Blake ( [28], page 309) and Pozrikidis ([26], page
3).

3.5.1 Force Generated by steady Stokeslet

In this section we compute the forces generated by the steady stokeslet, using the force

far field integral representation in terms of the stokeslets, as follows.

Recall the force representation (3.51), which is

F}S = // T Ty ds. (352)
SR

(

Substituting the steady stokeslets uj ™ gives

Fm = / / 75y dS, (3.53)
Sr

Fj‘”(m) denotes the force generated by the steady stokeslets, where

s(m)  _ _ps(m)s J l
le p ]l+/~b( aZ[ + azj )1
-1 4. 2.2
s(m) _ jm j<m
4 87T,u{ R " R3 h
-1z
s(m) _(Zm
p (7). (3.54)
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To work out the force we expand the derivatives,

M N e I L )
aglsz(;n) = g%{djm(%) + 5jl%1§ + djm ;3 — 3:J;§~l b
SO o)
A L !

The stress tensor in terms of stokeslets is

o™ pui™

stm)  _ ___s(m)g. J
le p 5]l+:u( 83[ + a:] )7
1 2 1 z i Zm 2l
= —5q,(22 —— {96, _ gl
=0 R 87w{ I'Rs B
_ i(zjzmzl)
A7 RS 7

Therefore, the forces are

F.?(m) _ // 4jzm~l l // ~JZle
7 Sr 47T Sgr
= Zm dS.
47rR4//5R “*

From (3.32)

Fs(m) . 3 4

4 _
5 = gpgr 3 O = om

So the m-stokeslet gives a unit force in the m-direction.
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(3.56)

(3.57)

(3.58)

(3.59)



3.6 Conclusion

The steady stokeslets are obtained using potentials, which are similar to known solutions
for the steady Stokes flow. This is the first time in literature to represent the stokeslets in
terms of potentials and results which are given in this chapter are similar to the existing
results using the singular method. The Green integral representation of the flow is given
and we show that the steady stokeslet generate a unit force in the direction of the point
force. In chapter six we will show that at a particular limit the oscillatory oseenlet reduces

to the steady stokeslet.
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Chapter 4

Oscillatory Stokes Flow

In this chapter we consider the oscillatory Stokes flow. The Oscillatory stokeslets are first
given using the singularity method by Pozrikidis [9], we obtain the oscillatory stokeslet
in terms of potentials, using a similar approach which we used in chapter 2 for the steady
stokeslets. The potentials representation will enable us later to show that the oscilla-
tory stokeslets can be recovered from the oscillatory oseenlet at a particular limit. After
introducing the oscillatory flow in section one, we give the Green'’s surface integral rep-
resentation of the flow in the section two. In section three, we construct the oscillatory
stokeslets using potentials representation, and then we show that they are similar to the os-
cillatory stokeslets given by Pozrikidis. Also, in section three we establish the behaviour
of the flow in the far field and at high frequencies. The representation of the flow velocity
in terms of the oscillatory Stokes solutions which requires to know the behaviour of the
stokeslets close to the point force, is given in section four. In section five, we present the

force integral representation and the force generated by the oscillatory stokeslets.
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4.1 The Governing Equations

The time-dependent incompressible Navier Stokes equations are given by

Aul(x) oul(x)  opf(x)  O%ul(x)
j i g\* _ 9P j
p ot +pw(x) ox; 0z; Th 0z, 0x;

4.1)

where: u;

is the velocity component in the j direction of a Cartesian coordinate system
z;and 7, | =1,2,3; pT is the fluid pressure; ¢ denotes time; p is the fluid density; and p
is the fluid viscosity.

In the near-field the Stokes approximation is valid, the inertial convective term on the left-

hand side of (4.1) is small compared with the rest of the terms and thus may be neglected.

The flow is governed by linearised Navier-Stokes equations

auj-(x) B _8pT(x) N 82u;'-(x)

ot T Ox; s ox;0x; (42)

We consider linearised oscillatory flow. Thus we seek time-periodic solutions of the form

ul(x) = Z us™(x)e !
pi(x) = ) pr(x)ent (4.3)

2nm

where i is the imaginary number v/—1, w, = <% and T is the time period of the motion.

") and p" =

Since the left hand side of (4.3) represents real variables, then ust = oy

ps(‘”) where the bar denotes the complex conjugate and the superscripts s denotes the
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Stokes solutions. Substituting (4.3) into (4.2) gives for each n

O™ 02y sn
p*"(x) 0 (x)
8:1:]- 8xl6:1:l

(4.4)

ipwnul"(X) = —

For simplicity we omit n from equation 4.5 and subsequent equations, and becomes

op(x) Fuix)

— 4.5
0z p 0z,0x; (4.5)

ipwui(x) = —
This equation represent the oscillatory Stokes flow. Also one can show from the time-
periodic representation (4.3) that the Stokes velocity satisfies the continuity equation

V -u® = (. Taking the divergence of the oscillatory Stokes equation (4.2) gives the Stokes

pressure to satisfy the Laplace equation

Vip® = 0. (4.6)

4.2 Green’s Surface Integral Representation

In this section we give the Green’s surface integral representation of the oscillatory Stokes
equations, following the Green’s integral formulation as given by Oseen [13], except ap-
ply it to the oscillatory rather than the steady or transient case. Consider four solutions
for the velocity and pressure field given by uj(y), p°(y) and uj(m)(z), ps(m)(z) where
1 < m < 3. The first solution refers to a general velocity and pressure field, and the sub-
sequent three solutions refer to the specific Green’s functions satisfying a Green’s integral
which we shall construct.

We consider distinct Cartesian coordinates y; and Zj =z — yj, the coordinate y param-
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eterises a point on or within a fixed closed surface and the coordinate x shall refer to a

general fluid point. The four fluid solutions then satisfy the equations

_orly) 0*ui(y)

ipwul(y) = , 4.7)
pwus(y) ;T oo
and
s(m) 82us™ (z)
. s(m) ap (Z) J
- N(Z) = ———— — 4.8
by (2) R (4.8)
Since z = x — Y, then the adjoint equation in y is satisfied as aizj = —5‘3—1_, which gives
. s(m Op*(™ (z 825" (z

dy; Oy10y

Following the method of Oseen [13] to get Oseen’s Greens function representation, we

dot product (4.7) with u;(m) and take it from the dot product of (4.9) with u.

s(m) aps(z) s aps(m)(z) s(m) 62”;(3’)
— u; )7 Fu\y) | Fp|u; (2)
! () 9y, J(y) Oy, | ,u[ ? (z) Oy 0y,
0%uS™ (z)
—u(y)—5—5—| =0 4.10
’ y) Oy, 0y, ] ( )
Applying the continuity equation % = ( then gives
0 1 sm) s s s(m)
= 5, [ @) + @)
9 ¢ smy 0050 - 0u™(2)
tpa—|u; (2 —ul(y)——2] = 0. .
Mayl[ O ] 4.11)

This holds within a volume V' of fluid bounded by the surface S where the Stokes ap-
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proximation is valid, and parameterised by the coordinate system y. Then, applying the

divergence theorem gives

/ /S (W™ (@) () + ()™ (2)n;

Ous(y) ous"™ (z)

s(m) J s J
— U (Z) o nl+,uuj(y)8—yl

n}dS = 0, (4.12)

where n 1s the unit vector normal to the surface S pointing outwards from the control
volume V. In this way, we have obtained the Green’s surface integral representation of
the time-harmonic Stokes equation, which is identical to the Green’s representation for
the steady Stokes flow (3.13), as the oscillatory part has canceled from the governing
differential equation and we note that this can be obtained from the Green’s surface rep-
resentation of time-harmonic Oseen equations (which is identical to the steady Oseen

representation), by letting the forward uniform flow U be zero.

4.3 Oscillatory Stokeslets

The form of the oscillatory stokeslets are given by Pozrikidis [9], but we need them here
in terms of the potentials ¢ and x which are the potentials introduced by Lamb [21] to
represent the Oseen equations. This representation then enables us to infer the form of
the oscillatory stokeslests from the oscillatory oseenlets. The oscillatory stokeslets must

satisfy (4.8) for the oscillatory Stokes equation, which is
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@) | Pu™()

wut™ (z) = 4.13
prwu; " (2) 57, + 92107, (4.13)
The velocity decomposition
s(m)
s(m) . a(b (Z) s(m)
u; 7 (z) = 55, +w; " (2) (4.14)

1s assumed for the stokeslets, which is the Lamb-Goldstein velocity decomposition used
in Oseen flow [21], [29]. Where the velocity potential ¢s(m)(z) 1s associated with flow
outside the wake and the velocity 'wj(m)(z) is associated with the wake velocity. But we
shall use the Lamb-Goldstein velocity decomposition here as it is equally applicable for
Stokes flow. The potential $*(™ has to satisfy Laplace equation as we consider viscous

incompressible flow, so

V3¢ M = @ (4.15)

s(m)

J
s(m)

Ou; " (2) _
BZ]'

and this potential is associated with flow outside the wake. In contrast, the velocity w

is associated with the wake velocity. Taking the divergence of (4.14) and using

s(m) . . . . .
0 and —azg’—;aﬁ = 0, shows that the wake velocity satisfies the continuity equation
et}

ow™(z
ﬁ—(‘) _o (4.16)
%

Substituting the decomposition (4.14) into (4.13) gives
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s(m)
0™ () op*™ (z) 0 0p*™(z), 0w (z)
P 0z; Pl (2) 0z, +'u8:lc'931( 0z; TH 02,0z
(4.17)
82¢s(7n)(z .
From (4.15), —ala—,‘) = 0, then
s(m)
a¢s(m) (z) s(m) 82wj (2) aPS(m) (2)
‘ i B A R A 4.18
piv—g—— F P ) — kg 3=, (4-18)

In section 4.1 we have shown that the oscillatory Stokes pressure satisfies the Laplace
equation (4.6). Furthermore, in the steady case limit w — 0, then the solution for the
oscillatory stokeslet must tend to the solution for the steady stokeslet. The steady Stokes
pressure also satisfies the Laplace equation. So, the solution for the pressure for both
steady and the amplitude oscillatory stokeslets must be the same. The steady stokeslet
solution for pressure is given by Oseen [13], consequently, this is also the oscillatory

stokeslet solution for pressure given by

pmgy = L 9 (L (4.19)
47 0z \ R '

where the radial distance from the stokeslet singularity is given by R = |z|.

Now, since both the pressure p*(™(z) and the potential ¢*(™(z) are harmonic functions,
the pressure term can be removed from the oscillatory Stokes equation (4.18) for the

stokeslet by the particular choice

W = (4.20)
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or

ipw*™(z) = —p*™(z) (4.21)

which gives
sm) () = psmygy - b 9 (1 422
»"(2) pwp (z) 47 pw Oz, (R ' (4.22)

Substituting (4.20) into (4.18) implies that

82w ™ (z)
I R ™(z) =0 4.23
02,0z w; (@) (423)
where h = “’7“’. The equation (4.23) can be re-written in operator form as
(V2 - B)wl™(z) = 0. (4.24)

Following Lamb’s approach for decomposing the Oseen equation, we introduce the po-

tentials x*™ and x** such that

O™ (z)

5 + X (2)jm. (4.25)

In order to obtain the steady results, we must choose x°(™ such that in the steady limit
w — 0 the oscillatory dependence disappears hence this term cancels with the potential

term ¢*(™), Therefore we must have
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. —-hR
sm(zy = b 9 (€ 4.26
X(z) 4 pw Oz ( R > ’ (4.26)

and consequently

th? [e hE
*(z) = . 4.27
X" (2) 47rpw( R ) 42D

Therefore, the oscillatory stokeslet solutions are

s(m)eoy i 92 (1) _ i 92 e~hR
uj (Z) T Ampw 020zm (R) 4mpw 0z;02m ( R )
—hR .

G (4.28)

47 pw

4.3.1 Pozrikidis’ form of Oscillatory stokeslets

In this section we show that the oscillatory stokeslets (4.28) are similar to the oscilla-
tory stokeslets given by Pozrikidis in [9]. Expanding the partial derivatives in (4.28)
and collecting like terms produces Pozrikidis’ form, as follows. First expand the partial

derivatives, such that

82 1 5jm Zmij
— ] = - 3277
0z;0zm <R) R3 * RS

5jm -1 +ijm 3
R \ R? R \ R?

61

(4.29)



and

02 e hit 5jm —hR 2 Zm<j Zj%m —hR
azjazm< R ) = Thge "t t2hepre
Ojm _hR “m~j _hR <m<j _hR
R3e h————R4 + 3 7
djm h 1 _wr . %iZm [,o 3R 3 _hR
—_ _Je o S h _ _
R(R R2> TR \"TRrRTR)C
(4.30)
The coefficient 47:;% can be written as
1 =2
—_— (4.31)
8wy h?

where h? = 3’;’7“’ Working out the terms in the oscillatory stokeslets (4.28), gives the first

term

7 > i) 1 —2{5jm -1 +:;j:m 3 \
dmpw 02,0z, \R) ~— 8mu h2' R \ R2 R3 \ R?

. 1 5]' 2 <j<m —6
= 3 UR (h2R2>+ R3 <h2R2>}’ (432)

the second term

—1 82 (6_hR> 5jm h 1 —hR
Zm (LY,
drpw 0z;0zm \ R 8mp h2- R R R?

I

_ Lm0 2 2\
8Tt R hR  h2R?

2jZm, 0 6
2 —hR
+F3 ( +hR+h2R2>e ],

(4.33)
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and the third term

72 ~hR 2 _ —hR .
in? fe >5j N i W R
drpw \ R 8w h? R 8 R

Substituting (4.32), (4.33), and (4.34) into the oscillatory stokeslets 4.28, gives

smyoy L Gim [ =2 _hR 1 1)
@ = g g LﬂR2+2€ (l+7d2+lﬂR2
Sizm [ 6 R 3 3
— -2 4.35
R3LM# ¢ Q+h3+mm)b (435)
which can be written as
S(m)(z) — —_I{CSJ_m (T‘) + ZjZm B(’I‘)} (4.36)
4 - 8mu' R R3 '

which is the form given by Pozrikidis [9], where r = h R and the functions A(r) and B(r)

are defined as

1 1) 2
= -r 1 - ~ -
A(r) = 2e (-+T+ﬂ> . (4.37)
3. 3\ 6
=2 (1+°+ =)+
B(r) = —2e (-+T+r2)+r2 (4.38)

However, the form we presented here is more beneficial for us, as we seek later to use

oscillatory stokeslets in order to infer the form of the oscillatory oseenlets in terms of the
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potentials ¢*(™), x5(™) and y5*.

It is also noted that letting h — 0 or R — 0 in (4.36), the steady stokeslet solution is

recovered, as A(0) = B(0) = 1.

4.3.2 Stokeslets in far field and at high frequencies

To establish the behaviour of the flow in the far field and at high frequencies, we expand

(m)

the oscillatory stokeslet uj in an asymptotic series for large R and for large w, obtain-

ing the result given in [9],[25]. In order to obtain the asymptotic series we expand the
oscillatory stokeslet in a Taylor series for small % in the far field and for small % at high

frequencies.

For simplicity, we start with the equation (4.35)

1 d; -2 1 1
u; - (2) i R [h2R2+ e ( +hR+h2R2>]
ZjZm 6 —hR 3 3
- -2 1 .
R3 [thz € ( +hR+h2R2)]} (4.39)
where R is a radius of a large sphere encloses the oscillating body and h = inp.
The asymptotic series for large 12
Expanding the oscillatory stokeslets in a Taylor series for small R* = }—1%, gives
Ous™ 924%™
s(m) — s(m) . J R* j +2
u; " (2) =y R0t e B ae e R (4.40)
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where

s(m) |, s B 1 R*B R . R*Q R*3
uy (R = _%[5]'771{—2 o T2 (R + —+ )
> 6R*5 2¢ ME(R* +3 *4+3R*5)}] (4.41)
+Zm~j{ 12 — Ze ( + 3 12 . .
The derivatives of the oscillatory stokeslet are
aus(m) 1 R*Q h R* R*2
I = ——[6;m{-6 2e~ /R (2 3 3
R g (D {07 #2670 (2 o 35 5]
x4 . *3 R*4
+22m {305 = 2¢ MF (RR* + 6R™ + 15 —+ 15— )}
(4.42)
then the second term becomes
(9’U/S(m) 1 R*B i R*2 R*3
L _R* = ——[6m{-6 2¢ " (2R* + h+3 3
oR gy S { =67 + 267 (2R b 35 4 355))
R*S _h/R*2 . .3 R*4 R*5
+22m{30=5 — 2¢ /B2 (hR* + 6R™ + 15 — + 15— )}
(4.43)

and the second derivatives 1s

5™ 1 R* e, k6 3 R2 R
i =[G {125 26 (o S e 46
OR*OR* 87r,u[3 { h2+ € (R*2+h+R*+R*3 +6h2)}
19057 _ 9o mm (12 4 ghRr 4 39R* 4 15T 1 75T
+2j2m {120—5- — 2e77 (A" + 8AR" + + T5—— + 1575}

(4.44)
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then the third term becomes

62us(m) 1 R* *3 R*2 h2 R*3
J R = — —h/R* h * e
OR"OR" i R (ht 6=+ 3R + o+ 655}
R*s /R ) R*S R*G
_ —h/R* (2 p¥2 *3 x4
+2; Ty 2e (h*R* + 8hR™ + 32R™ 4+ 75 ; + 75 i3 )}]
(4.45)
Therefore the Taylor series around R* = 0 is
s(m) 1 .2 %3 %5
up ™ = 87T,LL[h2( SimR™ + 32jz2mR™) + ... ] (4.46)

writing R* in terms of R we obtain the asymptotic series of the oscillatory stokeslets in

the far field as

sm) _ _ L r 2 Om \ 3%%m 4.47
u 87w[h2( i 3 ) ] (4.47)

which is the same as the series given by Pozrikidis in [9] and [25].
The asymptotic series for large frequencies
Similarly, we expand the oscillatory stokeslets in the Taylor series for small h* = % ,

when h is large

aus(m) 62 ufj(m)

ui(2) = 5" oo + b Sk (4.48)
where uj(m) can be written in terms of hA* as
1 h* *2 . h* h*2
s(m)  _ 2°_ 1 9 R/ —
43 87w[R{ R2 € (1+R+R2)}
ZJ Zm h*2 —R/h* h* h*2
+g 10 — 27 (L4 3 +3 50} (4.49)
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Obtaining the derivatives and the series terms

ous™ 1 (Sjm, B R 1 2 _n
J - _ jm —R/h* _ 2
oh” S R { e GEtptrtim)
zjzm R 3 6 h*

— e B/ 4 = — 4.50
{12 267 (5 H 5 T (4.50)

the first term becomes

Gusi(m) 1 iy h*2 R h* *2
I pr o= — My _4 2N (= +1+2— +2
ah " iy Gy iRy ey )
h*2 R h* h*2
“J”’” — 2R/ — 451
{12 2e (h*+3+6R+6R2)}], (4.51)

the second derivative

0%u;™ 1 bm, 4 RR R 1 2 2
J _ - [%mg_ % 9,-R/ _
Oh*Oh* 87.‘-#[ R R2 + Ze (h*4 7,%3 + 1%2 + Rh* + R2)}
;{3 {R2 2e” w (h*4+h*3+h*2+Rh*+R2)}]’
(4.52)
and the second term is
5™ 1 (bim B . R2 R A
__2_ *2 — 4 2 -—R/h - 1 2_ 2
Gh*ah*h 87r,u[ R ;- R? * (h*2 h* + R T R? )}
Zy%m h*? _ R R h*  h*?
J 5 {1257 — 2 R/h (h*2+§+3+6§+6R2)}].
(4.53)
Then the Taylor series around h* = 0 is
RN d: 2:2
s(m) . ¥2/  ~Jm 74m
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letting h* = 1/h gives the asymptotic series

s(m 1 -2, §; ZiZm
u™ = [ (5 + 35 + ] (4.55)

__8_75

From the series (4.47) and (4.55) we can see that the flow behaves in the same way both
at high frequencies and away from the point force. The first term on the right side of the
series (4.55) is known as the steady potential dipole, which means that at both the high

frequency or large distance, the oscillatory stokeslets produce irrotational flow, see [9],

[25].

4.4 The Integral Representation of the Oscillatory Stokes

Velocity

In order to obtaining the integral representation of the time-harmonic Stokes velocity, we
first approximate the oscillatory stokeslets around the point z = 0, to enable us to obtain

the representation.

4.4.1 The Approximate formula of Oscillatory Stokeslets near R = 0

Recall the oscillatory stokeslets (4.28)

(m) i 0° (1 i 0 [ehE
u; (2) = y R/ -
drpw Ozjzm \ R 4mpw 0%z, R

ih2 e—hR
—— 6'mc
+47r,0cu R

(4.56)
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Considering Ss as a sphere radius § around the point = = 0. We approximate u;(m) around

the point z = 0as § — 0 (R — 0), so R" < 1, n > 2. From the Taylor series

h2R2 h3R3
-hR _ 1 _ _
T 3!
2 D2
= 1-hR+ WA + O(K°R%). (4.57)
Substituting (4.57) into (4.28), gives
. 2 p2 h2R2
sm) oy o, L 0 1. & 1—-hR+ 2L h21—hR+ s
l 0° 1 0 1 K2R 1 h’R
~y V- ——— (= —h+—V+Rh(= - h+ —)im
47T,0w{(9:j8zm(R) 6zjazm(R + 2 )+ (R + 2 )J }
i 0> h’R 1 h2R
~ - P (= —h+—)bjm
47rpw{ &zjazm( 2 )+ (R + 5 )8jm }
(4.58)
N — — 11— h2(= — ALY
8wy h? c’?zjazm( 2 )+ (R h+ 5 )8jm}
-1 ok 1 hZR
~ - R)+2(=—h+—7)din
87T,LL{ 8zj6zm( )+ (R + 2 )J }
.1 {_5j I +25jm — OR6;m + 2R, )
~ 871 R R3 R jm jm
R 2h6;m,
srn R T R 2Momi
—1 5jm Zj4<m
~ O(1 _
sl r t R TOW (4.59)

69



which are the steady stokeslet solutions associated with the pressure

_..zm

p*™(2) =

= . 4.60
4 R3 ( )

4.4.2 Green’s Integral Representation of the Oscillatory Velocity

The Green’s surface integral representation of the oscillatory Stokes flow has been given

in (4.12) as

i

S (@)p*(y)ny + w(y)p* ™ (2)n,
0us () u; ™ (2)
s(m) s _

Volume V enclosed by S

Figure 4.1: The surface S and the relation of the points x and y

We consider the surface S consisting of a surface S;, a sphere radius § — 0 around the
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point = = 0, a surface S enclosing the oscillating body, and a large spherical surface Sg

extending to infinity, enclosing the body and centred at the point z = 0. See figure (4.1).

We re-write the integral over the surface S as a sum of the integrals over the surfaces S,

SB,and SR,
[[SLAS L e
S 55 SB SR

Next, we calculate the contributions over the surface S; as 6 — 0, and over Sg as R — o0,

to give integral representation for the oscillatory Stokes velocity u?(x).

The Contribution over the Surface S5 as § — 0.

The integral over the surface S5 is denoted by Ig,, which is

// $m) (4 njds+// z)n;dS

55 55

—,u// s(m nldS—i—,u// )nldS (463)
Ss ayl Ss

Since the Green’s surface integral representation of time-harmonic Stokes equation (4.12)

is identical to the Green’s representation of steady Stokes equation (3.13), then the above
integral (4.63) is identical to Ig; (3.26) for the steady Stokes flow. Also as the oscillatory
stokeslet tends to the steady stokeslet around zero, then the integral over the surface S;
for oscillatory flow tends to the the integral over the surface S5 for steady Stokes flow,

which gives the contribution —u;, (x). Hence

Ig, = —u, (). (4.64)
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The Contribution over the Surface Sp as R — oo

Now we determine

// s(m) n]dS—f—// S(m) z)n,;dS
SR SR
s(m) )
—u// s(m nldSer,// ———"ndS,
Sk Sk Byl

(4.65)

where the surface Sg is a sphere with large radius as shown in figure (4.1). We use here

the asymptotic series of oscillatory stokeslets uj-(m) for large R which has been given in

(4.47), as
s(m -1 2 5'm Zi<m
uj( )(z) = 8—’”—#— —h—2—(—— ;23 + 3 ;%5 )+}
= O(R™) (4.66)

and its associated pressure

z ~IM

47rwp(—R3)

p*"™(z) = = O(R™).

Substituting the asymptotic series and the pressure into the integral over Sg and letting R
tends to infinity, lead to

Is, — 0, (4.67)
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as both the oscillatory stokeslets and its associated pressure vanish in infinity [9]. Since

Isy + Is, + Is, = 0, and from (4.64) and (4.67), we obtain

Up(x) = / / (™ @)p* (y)n; + us(y)p*™ (z)n;

ous(y) Bus™ (z)
s(m) S

which is the representation of the flow velocity in terms of the oscillatory Stokes solutions.

4.5 Force Integral Representation in Oscillatory Stokes

Flow

Denote the surface of the oscillating body by S;(x, t) relative to fixed coordinate system

on the body. The force on the body due to the action of the fluid is then

Ff = / /S th dS (4.69)

where for an incompressible fluid

is the symmetric Navier-Stokes stress tensor. The Fourier series for time periodic motion
is

ul = ) et (4.70)

n=—oo
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Figure 4.2: Volume V/

where w,, = 3;—”, and T is the time period Then the Stokes force becomes

F; = / / Y rrentn dS (4.71)

St p=—00

8
Buj

" ousn ; . .
where 75" = —p*™; + (o + z5), uf = > 7 use™rt and p* is the associated

1 3:13]' .7 n=-—oo 7

pressure. By changing the order of the summation and the integral in (4.71) the force F?

becomes

= Z [//S ey dS) 4.72)

n=—oo

Considering a volume V;, which is bounded by the body surface .S; and by a large spherical
surface S of radius R enclosing the body, figure (4.2), and using the divergence theorem,

the force on the body becomes

74



5 E|f oo || ]

n=—oo

However,

0 sn 0 sn au;m auim
55 ) = g Pt p + 7] )
_ 8p3”5 (5‘2 w0
B *_6231_ 8:1:18:1:1 8$la£L‘]

2,,8n

Using the continuity equation aa lgmj = 0 we can write

0 smy_ 0P O ui”
8_:1:1(le ) 8] O+ u@xlaxl‘

6_1'[ (T]Sln ) prn

Therefore

s __ sn . - sn wnt
Fj—:z_:[//sRlenl dsS ///VtzpwnujdV}e :

Also, since

8( n) = N ou™
us = uf",
AR

by using the continuity equation, the volume integral can be re-written as
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(4.73)

(4.74)

(4.75)

(4.76)

4.77)



0
nJV = — (yuy”
] [ar = [ ] amirar
- / / yj“in"kd‘g-/ / yug nedS. (4.78)
Sn St

So
F = Z [// Ty dS—// z'pwnyju,i"nde—l—// z'pwnyjuznnde} 't
n=—00 SR Sr St
(4.79)
However
Z [// ipwnyjuznnde} et = // Z py; (twnuite™ny, dS
n=—00 St St p=—00
sn zw t
. sn zwlt
_ //Stpyjat Zu Ve dS
OuP
= — ds. :
Then

F o= Z {/ {m/'m dS —ipwpysuy” nk}dS} nt 4. //S' PYj— nde

- 4.81)
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So we can write the total force as

Fi= ) fre“ "+ fp. (4.82)
where
it = / {T,nl ipwny;uy s +dS (4.83)
SR
and
d 4.84
//Stpygath (4.84)

4.6 Force Generated by the Oscillatory Stokeslet

Recall the force integral representation (4.79), which is

[// ﬂ "N dS—// z'pwnyjuznndeJr// 1PWr YUy nde] wwnt
SR SR St

where S is a large spherical surface enclosed the oscillatory body and S; is the body

surface, figure (4.2).
Substituting the oscillatory stokeslets uj(m)

ated by uj(m),

into the force Fj gives Ff(m) the force gener-

= // ns(m ny dS—// ipwyz ™ ™ndS
J z { 5 75Uy k

n=—oo

+ // ipwn Mg dS} et (4.85)
St
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Using the asymptotic series of oscillatory stokeslets u;(m) for large R which has been

given in (4.47), as

s(m) - -1 2 5jm ZjZm
U (2) = 87T,LL h2( R3 3 R> )+
(4.86)
and its associated pressure
s(m) _ 1 _ Zm

The contribution of the first integral

/ / "™ n, dS, (4.87)

8uS(’ﬂL) a S(m)

where T"S(m) = —p™(M§, + u( 4z + —4.—). From the asymptotic series (4.47)
O™ ~1,.2,0 -6 0 =z
i o g2 T Zhmy g g (Zitmyy
0z 8 h2(8zl( R3 * 821( R5 ) I
-1 2 0 0 z:z
- 2 s 2 (R imy L
8w h? | J 821(R )+ (9:1( R5 )+ ]}
-1 27 21%i%m
N _ 5 38, 2L — 1524 J ,
S e 3% RS+BJ‘R5+ ‘RS mT Tl
(4.88)
and
0u;™ = _1{ [3dlm + 38,52 35-m;—15:l:j:m+...]}.
Oz 8mu - h? R> T RS I™ RS R’
(4.89)
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So

Aus™  ous™ ~1 z 212
J J _ ! 1252m
Mg+ ~5m) = 1 | Bim s + 60 7% + B8 — 3072 4.
and
ns(m) . 1 Zm 5 1 s 5 s Zl RIRj2m
(4.90)
Then

ns(m) . -1 —Zm 1
//SR le n dS = —{// RS ny dS-l- -];-2-(651m/ 5 }—%gnl dS
+ 65]1// —nl dS+65]m// —nl dsS
- 30// “‘”JZmn s + .)}.
SR

(4.91)

Since n; = % and z; = 0y;2;.

ns(m) _ Zmzj Z]Zm
[ e = 5 7wt esme ] |
+ // 48 + 65 // ~lds
Sr
Z]~m
~ 30 ds +..)}.
Sr
1 12
= Z; __// z]zmd5+h2 R6// ~]ZmdS
66]m
dS—— L Hm S+l (492)
Sr
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since [ [ zjzm dS = 45, R* and [ [s, dS = % R® we have

// ns(m),, _ 2_7: _%%@5ij4+%(%%5ij4
O T = 2 R .}
— ﬁ_ —%ﬂ@m + STZZJT”(E - %) -}
Sim
- (4.93)

when R — oc.

The contribution of the second integral (— [ [, ipwnz;ur ™ dS)

1 1 O 22
_ . _, ns(m) _ P g _am 3 J~m as

2
= 5m+3]7n)+... ’I”Lde
//SJ S
2

- .g(sjm (4.94)

Therefore from (4.93) and (4.94), the total force (4.85) becomes

00 5m
Fjs(m) = Z 33 + (5Jm+// zpwnﬁuk nde} twnt
n=—00 St
— Z 5]m+// Lpwn = Uy up ™" )ndeJ wnt, (4.95)
— St

At the limit w — 0, Fjs(m) tends to the force generated by steady Stokes flow. Considering
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a stokeslet inside the body gives the same result as follows

Recall the integral representation of the force (4.79) in terms the surface Ss, which is

small sphere central at the stokeslet point inside the body and the body surface Sy, as in

figure (4.3), and that is

SR S

<

n

Figure 4.3: stokeslet inside the body, R = ¢

F? = Z {// TS dS—// ipwnyjuznnde—i—// ipwnyjuz"ndeJ ent,
N—=—00 Ss Ss St

Substituting the oscillatory stokeslets into the force, gives

oo
Fjs(m) — Z {// Tﬁs(m)nl dS—ipwn// zjuzs(m)nde
n=-00 Ss Ss

+ ipwn// zjuzs(m)nde}ei“’"t. (4.96)
St

When 6 — 0 the oscillatory stokeslets tend to steady stokeslets, so that the oscillatory

stress tensor T]T;S(m) tends to the steady stokes stress tensor. Therefore from (3.59) the first
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integral gives

/ / T, dS = i, (4.97)

And the second integral of (4.96) can be computed using the asymptotic series (4.59) of

the oscillatory stokeslet around zero, as follows

. ns(m) . ipwn / / ]m ~j Zm
—ipWn 2y ngdS = z +O(1)} ng dS
P /\/Sé J Yk k 87.‘.# 5 J{
1PWn Zm zk - Zm 2k -1
= O(R dS
o | [ g T o)

’ipwn ~7nzk: ~m~k —1
— + O(R dsS
8M/S(S{RQ =+ O(R™)}

ipwn ~m~A
= 9 O(R™Y)} dS
8M//{ +O(R)}
_ Pn _2// 2mze dS + O(R?)}
Ss

8mu
1wy o 2 41 _, 5
= —R*0p + O(R
8mu "R? 3 x+O(R)}
= O(R) —0 (4.98)

as & — 0. By (4.97) and (4.98), the force generated by the oscillatory stokeslet is

Fjs(m) = Z {5jm+7jpwn// 25U ns(m)n xdS}ent (4.99)

which is identical to (4.95).
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4.7 Conclusion

In this chapter we represent the oscillatory Stokes flow and obtain the stokeslet using a
different approach to the singular method which is used by Pozrikidis. The new result
is that the stokeslet can be obtained using potentials approach and we show that this
approach gives identical result to known one, using the singular method, see [9], [?].
The benefit of using potentials approach is to enable us to use the oscillatory stokeslets
to infer the form of the oscillatory oseenlets. The behaviour of the flow far from the
point force and at high frequencies is presented by the asymptotic series for large R and
large w. We show that close to the point force the oscillatory stokeslets reduce to the
steady stokeslets and then the integral representation is given for the oscillatory velocity.
Forces are calculated and we show that our results are identical to known results and
that considering the point force inside or outside the body gives the similar results which

reduce to the force generated by the steady stokeslet when the frequency is zero.
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Chapter 5

Steady Oseen Flow

The steady Oseen flow has been studied exclusively, started from the improvement of
stokes flow that has been made by Oseen to resolve the failure of Stokes approximation
in the far field, see [23] [13]. Lamb and Goldstein, in [21] and [29], used the potentials
decomposition for antisysmetric flow to obtain the steady oseenlets, and Chadwick in [30]
presents the behaviour of the flow close to oseenlet (point force) for general steady flow.
Fishwick and Chadwick give the Green’s integral representation of Oseen velocity and it
is shown that there is no contribution over the far field surface. In this chapter we repeat
the known results in some details, and later in chapter 6 we show that the oscillatory
oseenlets reduces to the steady oseenlet when the frequency tends to zero. The problem
of uniform flow past a steady body in unbound region and Oseen’s approximation are
given in section 1. In section 2 the Green’s integral representation of Oseen flow is given,
and following Lamb and Goldstein decomposition the steady oseenlets are presented in
section 3. We show how to obtain the asymptotic series of the oseenlet around zero in
section 4, which then used to obtain the Green’s integral representation of Oseen velocity.

Finally, the force is given as a far field integral in more detail.
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5.1 Governing Equations

Steady Oseen equations are obtained by applying Oseen ’s approximation to (2.20) the

steady Navier-Stokes equations [21], which are
pu’ - Vu' = —Vp! + V2l (5.1)
and the continuity equation
V-u =0 (5.2)

where u' and p' are the Navier-Stokes velocity and pressure,respectively. p is the fluid

o) d o
Ox1? Oxy ' Oxy

density, y is the fluid viscosity and V = ( ) is the gradient operator.
We consider a uniform stream U in the x; —direction past a closed body in an unbounded
domain. The Oseen approximation |77 |, [£[ = O(e) and ¢ < 1 holds , where the notation

“O ”means ‘of order of ’. Hence, we consider Oseen’s linearisation
ul =UZ+u+0(?), pl =p+0(?), (5.3)

where 7 is the unit vector in z; direction in the Cartesian coordinates system (z1, o, Z3).

Substituting (5.3) into (5.1) gives

0 0
p(Udj1 + u; +O(52))%(U‘Sjl +u; +0(e)) = —a—%(p+0(€2))
0? 5
+’u’8xl8:1:l (U(S]l + u; + O(E ))

ou; JOp 0%u;

. L0 = — J
p(U(SJl * 4 i (E )) 63:1 8xj T uaa:l(?xl’ (54)
where §;; is the Kronecker delta (0;; = 1 when j = [ and zero otherwise), and u; is

the Oseen velocity component 1n the j direction of a Cartesian coordinate system r; and
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J, 1 =1, 2, 3. By considering only the terms of order ¢ we find

pUauj(X) _ Op(x) N 0%u;(x)

oxr, 0x; H Ox;0x; (5-3)

and
Ou;

9z, =0 (5.6)

which is the steady Oseen equation, and the velocity satisfies the condition u — 0 as

R — oo. taking the divergence of the equation (5.5) and applying the continuity equation

(2.1), gives
Vip =0, (5.7)
which means that the Oseen pressure is harmonic function, where V2 = 33;2 + 8852 + aajg
1 2 3

is the Laplacian operator [17]. Applying the infinity condition u — 0 as R — oo to the
Oseen equation (5.5) yields

Vp =0, (5.8)

as R — oo, hence we may choose the solution p = 0 in the far field. Also, the condition

of no fluid outflow from any surface enclosing the body,

//u-ndS=O, (5.9)
S

is satisfied, where S is a surface enclosing the body.

5.2 The Green’s surface Integral Representation

In this section, we give the Green’s surface integral representation of the steady Oseen

equation, see [30]. Considering four solutions given by u,p,u™ and p™;m =1, 2, 3
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where u and p are the Oseen velocity and Oseen pressure, respectively; u™ and p(™ are
the fundamental solutions of steady Oseen equations acting at the origin and each yields
a unit force in the m-direction which is the direction of the force point. see [30].

From (5.5), we find that

Ou;(y)  Op(y) N 0u;(y)

U = — : (5.10)
£ Y1 dy; : Oy 0y,
which is the Oseen equations in variable y, and
au(‘m) (Z) 6p(m) (z) 62u(m) (z)
U—L — = - ? 5.11
P 621 82]' * H 821631 ’ ( )
where z = X — y, X = (21, 2o, 23) and y = (v1, Y2, y3). By using the fact 8% = _aiy,-’ we
get the adjoint equation in y;, which is
'™ (z)  gpm 82ul™ (z
o @ _ e Ty () (5.12)

Oy ayj H Y10y,

Following the method of Oseen [13] to obtain the Green’s functions representation, we

dot product (5.10) with ug.m) (z) and take it from the dot product of (5.12) with u;(y), and

find
oui™ (z) Ou;(y) op™ (z) dp(z)
j (m) Y _ p (m) p
pUu;(y) o pUu; " (2) By, u;(y) 3y, i (2) By;
82u(»m)(z) 82u,(y)
n » J _ .,(m i\Y
s (y) Oy 0y, 3 Oy 0y,
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Using the continuity equation (5.6) enables us to write

U s (9 @) = 5o 508 (1) + o o)
+ uail[ <y>5“§: l(z) ™ >5”‘g;ly>1, (5.14)
then
pU %[ug(y)ugm)(lﬂ = _%[uj(Y)p‘m)(Z) +u{™ (2)p(y)]
+ Ma%[ugmnz)a"g;l” _u, y)aué”;(z)]. (5.15)

This holds within a volume V' of the fluid bounded by the surface S where the Oseen
approximation is valid, and parameterised by the coordinate y. Applying the divergence

theorem leads to

" (z
A ACEIVHNT uuj(y);ayl—nl}dS =0 (5.16)

where n is the unit vector normal to the surface S pointing outwards from the control
volume V. This gives the Green’s surface integral representation of the steady Oseen

equations, see [30].

5.3 Steady Oseenlets

Lamb and Goldstein used the velocity decomposition to obtain the steady oseenlets in

[21] and [29] which decompose the fluid velocity into a potential ¢(z) and a wake velocity
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w(z), such that

m O™ m
ui™(z) = % +wi™(2). (5.17)

As we consider incompressible flow, the velocity potential ¢ has to satisfy the Laplace

equation

Vip™(z) = 0. (5.18)

Taking the divergence vector of the decomposition (5.17), using the continuity equation

and then V2¢(™(z) = 0, shows that the wake velocity satisfies the continuity equation
V-wim = 0. (5.19)

Now to obtain ¢(™ and w(™ we substitute (5.17) into (5.11),

Mz_) 8w§m)(z) __(9p(m)(z) o a2¢(m)(z) . a2w§m)(z)

U U = —— (5.20
Y emnes, P e, 5 Pas Tanen ) T e 020
and using the continuity equation % = 0, gives
526(m) (7 ow'™(z 2wi™(z o™ (z
pU—(b—Q—i—pU ] ()—,u ] ():_p () (5.21)
82182_7' 821 azlazl BZJ'

Since both p™ and ¢(™ are harmonic functions, a particular solution is found if we

choose
a2¢(m) (Z) ap(m) (Z)
,OU 821629' - 6zj : (5.22)
Integrating for z; gives
O™ (z
p"™(z) = —pU ——qﬁ& z) (5.23)
<1
The pressure is given by Lamb [21] as
1 0 ,1
(Mm)(z) = — —
p(e) 41 Oz, (R)’ (5.24)
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from (5.23)

0™ (z) 1 94
0z  47pU Oz, R)
1 0 -1 1 0*

= U (9zm( 7 ) = iU 9500 (In(R — z1)) (5.25)

this by the use of 5-(In(R —21)) = =1 So

1 0
(m) .

¢ (z) = U o —(In(R — z)). (5.26)

as stated by Goldstein in [29]. Now we consider the wake velocity w(™), since the pressure

balances with the potential ™ in (5.21), we find

ow™(z) P\ (z)
—p— = 5.27
Ve 021 a 02107 0 G:27)

which we re-write as :
O*w™ (z)  pU Ow™ (z)
azl(?zl M 821

= 0. (5.28)

In operator form

(V2 - Qk%) ™(z) =0, (5.29)

where the constant k = ”U . Since the velocity u must be finite and continuous in the fluid

(m

and satisfies the condition uj — 0 at infinity , Goldstein divided 'w. ) into two parts,

the first part cancels out the discontinuities in 8¢8 J( and the second part is continuous

and tends to zero at infinity and both parts satisfy the equations (5.19) and (5.29), see[29]

page 202. Following Goldstein we write

m Ox™ (z )
w™ (z) = —XT() +X*(2)0;m. (5.30)
~J
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since x* is a continuous solution of (5.29), which is

(V? — Qki)x*(z) = 0.

-~

~1

we can write

(vQ _ k,Z)ekle*(z) — 0’

which is the Heat equation, see [31], and its solution given in [21] as

- 2k et
X" (2) = 47er?

therefore
* o KR
Z) =
X' @)= 0 R
Now we consider x{™), since
(V2 = 2k 3™ () = 0
621 ,
then
Ay (M)
V™ (2) = 2k 25— )
21
(™)
and from the continuity equation a;j , we have
ox™ _ _@_C(g. __ox

~ L am T gl
c’?zj&j a~j 8~m

So, from (5.36)

(m) *
K IX™() __ Ox
821 c’?zm

91

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)



then

0x'™ (2) —19x*
821 2k (9Zm
-19 / 2k e—k<R—21>}
2k 9z, 47 pU R
]. a —k(R— ) a
= —— 2 — ] -z
A7 pU Oz, {e 0z u(f =)}
_ L 0 kra O A
 AnpU 0z Ozm (R =)}
hence
1 0
(MY(p\ — = [o—k(R—2z1) _~ _ .
x'™(z) 47TpU{e - In(R — z1)}.
Above we used the fact that
0 —k(R=21) 0 — 0 —k(R—z1) 0 ~
52{6 6—21 IH(R - Zl)} = 831 € a—:m- lll(R — ~1)}
which i1s shown next, we have
0 —k(R-21) 0 _ — i —k(R—2z1) i _
gz—;(e 7 In(R—2)| = 8zm(e ) - In(R — z)
+e"’°<R—Zl>a—2 In(R — 2)
azmazl
Zm bRz O
= —k(f — 5m1)e k(R 1)6_21111(R— 21)
0 1
—-k(R-21) _~ (=~
e 8zm( R)
: Zm — Om1 B 1 z
— —-k(R—Zl) _k m ml _1
e {—k( 7 )Ro Zl( I
0 1
+8—zn:(_ﬁ)}
. 2 =0, 1R 0 1
_ —k(R—z1) L m ml _
€ { ( R2 )+ a:nl( R
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(5.39)

(5.40)

-1

)

)}
(5.41)



and

O [ _iRry O 0 0
9 (R—21) _9 _ _ 9 —kRB-a)_ Y .
97 (e 9 In(R zl)> = 5 (e )(931 In(R — 1)

+ e"k(R_zl)—?Q—— In(R — =)

0:10zm,
z 0
— —k _1 —1 —k(R—z1) _~ -~
(& Je 97 In(R — =1)
0 1
—k(R-z1) _~ (_
toe azm( R)
(5.42)
0 & 0 »n—R, 1 ,z
—k(R-2)_9_ 1. (R _ _ k(Rz) (2 I _
0, (6 o, R zl)) ‘ g g (g ~ %)
0 1
B2
—  —k(R-z) k(zm—émlR) 0 -1
¢ N AL NS
(5.43)

Therefore, from (5.41) and (5.43)

0 —k(R—21) Y _ . > _2_ —k(R—21) 0
02 (e 0zZm In(R—2) | = € —In(R—2z) . (5.44)

The complete oseenlet solutions are

_ 09 | ()
B 823' aZj

W™ (z)

j + X*(2)0jm (5.45)
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where

1 0
(m) — — -
o) AmpU Oz, In(R = 1)
-1 0
(m) . —k(R—2z1) .
@) = e (R = )
2k e k(R-21)
* = 5.46
X" (z) U R (5.46)

as given by Chadwick in [30], which can be written as

" 10 ey O
u(D) = g (- e ) (R - )
Z; N
1 e—k(R—zl)
g (5.47)

5.4 Steady Oseenlet around the point z = 0

Chadwick [30] gives the asymptotic series of the oseenlet for general steady flow. Here,
we show how to obtain the series in more details, which we will use in next section for

integral representation of the velocity. The series is obtained by substituting the Taylor

—k(R—z1)

series expansion of the exponential e into the oseenlets, and neglect terms of order

O(R?).

(k(R — 2 2
- )"
=1-k(R-z)+ O(R?. (5.48)

e_k(R_Zl) = 11— k(R - 21) +
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Substitute this into (5.47) gives

M = L 9 kR 2) 9 (R — -
u; (z) = TrpU 02, (1-—(1-k(R—2)+O(R ))3Zm n(R — z)}
1 1—-k(R-2z)+O(R?
L
1 0 0
~ —A{k(R — z)— —
47TpU(92j{ (R 1)(9Zm ln(R Zl)}
1 1—-k(R-2z)
47r,u( R )Ojm
1 0 1 z
~ —A{k(R -z b
4rpU 9z ( 1)(R—z1)(R )
2k 1 —k(R— 2
- ( ( 1))5]'77)1
ApU R
(5.49)
wherek::";—U
n
(m) N 1 _a_k@_d 2 1 - k(R - 2z) 5
“; () 47erazj{ (R m) ) 47er( R )Ojm
k 8 Zm 1 k(R—Zl)
~ — — )~ 2(= — ———2
47er{8zj( R 2 (R R )}
k Réjm - Zij/R 5j R—- 21
~ — 2 2k(————)0im - .50
U R’ T2 m) (5.50)
As limg_,g Rizl = 1, we can write
m 1/20 0jm  2m=z; Oim
W)~ LEHER - I om0
N 1 {(sjm_'_Zij_*_O(l)} 551
~ 8tu' R R3 ’ (5:51)

which means that the steady oseenlet tends to the steady stokeslets close to zero. And

pressure is

1

(M)(,\ — = (_~m
P"(2) = - (=F). (5.52)

These are the steady stokeslet solutions [13].
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5.5 Green’s Integral Representation of Oseen velocity

To obtain the Green’s integral representation for the Oseen velocity. we use the approx-
imation formula of the oseenlets (5.51) with the Green surface integral representation
(5.16), then calculate the contributions over the surfaces. This representation has been
given by Fishwick and Chadwick in [32], where it is shown that the contribution over far

field surface Sg is zero.

First recall the Green’s surface integral representation (5.16), which is

//S{Pqu(Y)ug,m)(z)m +ul™ (2)p(y)n; + u;(y)p™ (z)n;

(m)
™ () 2% Y) PN _
puy () 0, n + pu;(y) o n ydS =0, (5.53)

where the surface S consisting of a surface Ss, a sphere radius 6 — 0 around the point
z = 0, a surface Sp enclosing the body and a large spherical surface S extending to
infinity, enclosing the body and centred at the point z = 0, see figure (5.1). The integral

over the surface S can be rewritten as a sum of integrals over the surface S5, Sg and Sk,

/L://5~5+//SB+//SR- (5.54)

Next, we calculate the contributions over the surface S5 as  — 0 and then over the surface

as

Spras R — oc.
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Volume V enclosed by S

Figure 5.1: The surface S

The Contribution over the Surface Ss as § — 0.

Here, we work out the contribution from the integral over the surface S5, which will be

denoted by Is,,

// pUu;(y)ul" ndS+// ™) ( anS—I—// )p™ (z)n;dS
Ss Ss Ss

auj (m)
_ n dS + // U; n ds. 5.55
g / /5'5 7l g Ss 2 ayl l ( )

For simplicity , we write

155211+12+I3+I4+I5
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where

I, = // pUu;(y)u; )n ds,
Ss

// ") (2)p(y)n,dS,

Ss

L= [ [ s @nds
Ss

o= —uf [ 2250) s

S ayz

U n .
5 5 J\y 91 l

o
I

(5.56)

Since z = x — y, theny = x — z and n; = % (R = ¢) points outward the control volume

V.

Obtaining [,

we can show that this integral vanishes as 6 — 0,

I1=// png-m)(z)uj(y)mdS=pqu(X)// ugm)(z)nldS, (5.57)
Ss Ss

this 1s because
du(x)
azk

u(y) =u(x —z) =u(x) + 2z, + O(R?) (5.58)
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z — 0as R — 0, then u(y) — u(x). And using the asymptotic series of ug-m) which given

in (5.51), we can write

I = pUu;(x // z)n,dS

15 2:Z
U L ]m d
pUu; (x //5587ru R TR Im®

pUUJ / ]m ~]Zm <1
—_— — ds
R I

pUu] //{ ~]zmz1}ds

&

Q

Q

since n; = Z. Also, we have 2 dS = O(R) and *35= dS = O(R), thus

pUu;(x / / (z)m1dS ~ O(R).

Consequently, as R — 0 this integral vanishes.

Obtaining /-

I, = / / W™ (z)p(y)n;dS = / / )p(x — Z)n;dS.
Ss

From the Taylor series

Op(x)

p(x —z) = p(x) + 2, + O(R?),
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and from the approximation (5.51) the integral I, becomes

/ / (O zjzf”+0<1>}><p<x>+51’("%”0(32))%5

87r,u, R R3 8zk
Ojm “sz Zj Ojm
87r,u/ s; R } RO 82k 8”#/ SJ{
“JZ’" }’“—Zde) +O(R?) = O(R) -0, (5.62)

where z,, = O(R) and dS = O(R?).

Obtaining I3

// y)p™ (2)n; dS = // uj(x —z)p™(z)n; dS.  (5.63)
Ss S;

Similarly to above and using z; = R n; and the divergence theorem we find

(x) 2\\( “m \ ~j
I; = (u; 2+ O(R dS
s // i)+ 22 o) (2

// ™5 4S + O(R)
Ss
~w(x) 1 2 2m dS + O
= T B Jg, A5 TOW)
_ (X
= — R4//35 zmBRn; dS + O(R)

. —UJ a"m
Y R3/// 0z; 4V +O(R)

u]( x) 1
—0im R
ir  R3 +O(R)

Um (X)

I
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as d — 0.

Obtaining /,

I = —u// alg n, dS
Ss Ui

S _ L yom ZEm Ouj(x — z)
u//S5< )+ 2o 0(1) =y ds

Ojm ZJ Zm Ou;(x) | 0%u;(x) 2\) 2!
— 1 )
/ 55{ 028t | B0, 4 o Has

— (5.65)

The Taylor series for 8Jy %0) around = = 0 and the approximation (5.51) has been used.

Obtaining /;

In similar way to I3, we can take u;(y) outside the integral to give

(m)
15 e / / ’U;] nl dS
Ss

ou'
= ,uuj(x)// u] nl dS. (5.66)
Ss 391

oul™ zZ)

The approximation formula of can be obtained from (5.51) the approximation

formula of u( )( ), as following
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M)y = L (Oim | ZiZm 1 5.67
u (Z)_st{R+R3 +0(1)}. (5.67)

Differentiating both sides with respect to y;, gives

(m)
auj (Z) _ -1 0 (Sjm ZjZm

— 1)}. 5.68
oy, 8rudy, R R3 +o)} (5:65)
Using 'a'% = —5%, gives
(9u('m)(Z) 1 9 .9, 2z
J — jm 7<m 1
oy 87r,u(921{ R i R3 + o)}
1 6 1 8 ZjZm
= %{5jm_a?(ﬁ) + 5( =)}
~ Z m Z'Zmzl
= {5Jm( R3)+(}{35,m R35U—3 JRS )}.
(5.69)
So
ui(x) 2 Zj Zm 2553\ 2
Is = ]87r / 55{5jm(—§5) i (RJ35lm R351j -9 JR5 )}_ ds
: 22 252 Zm = Z; zm~
_ “J(x)/ {5jm(—R—l4)+ Ll + 225y + 322y 4
_ "’jzm . “’]ZT'IL }dS
. _ 4’_]“’771 d
= 55{ R2 7 }dS (5.70)
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this by the use of n; = 4 and zp, = 2,0

I === Y A
5 87r //55 dsS + // 2i2m dS'}

— _u](x) 5_]771 ) 1 3
= o {R2 AT R® + Rd Oim R }
u;(X) 47
= - 5
gr ™ m(4m + 3 =)
2Um (X)
- ) (5.71)
3
as R — 0. From (5.60), (5.62), (5.64), (5.65) and (5.71) we find that
m Ny,
IS& = Il+]2+]3+]4+_[5:0—|—0_u?)(X)_|_0_ u3<x)
= ~Um(x). (5.72)

The Contribution over the Surface Sp as R — oc.

Now we consider the far field integral, which is

// pqu(y) - ndS+// anS+// u;(y)p'™ (z)n,;dS
S5 Sr Sn

5 a (m)
[ e 20 s+ [ / % )nlds, (5.73)
Sn Y, Sk

where the surface Sg is a sphere with large radius R, as shown in the figure (5.1). Chad-

wick shows in [30] that the far field integral g, is zero since the velocity u and the
pressure p tend to zero for large R. More calculations are given by Fishwick in [32], [33]

to demonstrate that there is no contribution from the integral Ig,. Therefore

Is, = 0. (5.74)
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Hence, the integral representation of the velocity is

W) ) 2 s (5.75)
n ui(y) —=—=n , .

as given in [30].

5.6 Integral representation of the force

Here, we give the force on the body as a far field integral, which given by Chadwick in
[30]. Letting Sp be the surface of the body and n be the normal vector pointing outward

the surface. Then, the force on the body due to the action of the fluid is

:// T}l ny dS, (5.76)
Sp

where for an incompressible fluid

(9U ou
| !
it Pt i <(9 T 8xj>

is the symmetric Navier-Stokes stress tensor, u' and p' are the Navier-Stokes velocity and

pressure, respectively. So

// { p*5ﬂ+u< j g—)}nl ds (5.77)

104



The last term can be shown is zero as following

//au,n _///aaul
Ss ’ 9z, axj
0 8ul

- - 7

/ / / o ax, ) dV =0, (5.78)

y
this by applying the divergence theorem, then using the continuity equation g Lt = 0.

Hence
oul
= // {—pT(Sjl —f-,LL—J}TLl ds. (579)
Sg oz

Since on the body the fluid velocity u' is equal to the body velocity u?, which is zero

(u’ = uB = 0). Therefore, we can add the term pu}u},

t ‘9“; t t
F;, = / {—p"6; + ua— — puyu; pydS
SB

Ou ’r
{ 6 4+ p==2 — pulu T}nl as
dz)

///a—;{—pmwua — pujul} v,

(5.80)

where Sy is a surface in far field region, encloses the body. And the divergence theorem

used. Since
0 (i pS gty = L P Pul a0
_ . —_ . = — U, —=
Ba:l{ p Jl+'u8xl Pty 83:] “ax,ax, paxl P L ox
Op' O%u t ou!

10U;
“on, FPomon s =0 8D

from the Navier-Stokes equations (5.1) and the force becomes

// {— pTcSH-u pul T}nl ds. (5.82)
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Substitute the Oseen linearisation (5.3) into (5.82) and consider only the terms that con-

tribute to the force and neglecting terms of order &2,

F = //SR{—paﬂJFO(s)wa%(Uaﬂ+uj+0(z-:))—p(UcSu+uz+0(e))

(U5j1 + Uj + O(E))}nldS

ou;
/ s {—pdji + “a_xj — pUu;on} ny dS (5.83)
R

this by the use of [ [ s, WwudS = 0 which is the no outflow condition (5.9). The force

(5.83) 1s the same result as the result given in [30]

5.7 Force Generated by the Steady Oseenlet

Considering a single oseenlet inside the body and Ss is a sphere that central at the force

point (the oseenlet) and whose radius 6 — 0, see figure (5.2). Recalling the force integral

representation,
ou; 6ul
- —pd. —J 4 2y ,
F- [ (ot G2 + 50 = ot d
_ / / {751 — pUuyby ) dS, (5.84)
Sp

where u; and p are the steady Oseen velocity and pressure, 7j; is steady Oseen stress
tensor and Sp is the body surface. Applying the divergence theorem for the volume V

which is bounded by the surface Ss and body surface Sg, gives
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Figure 5.2: Oseenlet inside the body and R = ¢

0
F; = //{le—pUUj511}nl dS—i—///a—{le—PUU]’dm}dV-
Ss v ol

(5.85)
Since
%{le — pUuidp} = %,l - pUg—:;stu
- '585{59’ TH a?:g; tH aij;alsj 7 Ug_l:g‘s“
_ pU%uj - pU% —0, (5.86)

this from the continuity equation and the steady Oseen equation

81,1,]' . c'?p 82’&]'
pUa_xl O +'u8xl(9:vl'

107



Therefore, the volume integral vanishes and the total force becomes

F = / {le — PUUj5z1} n; dsS. (5.87)
Ss

Substituting the steady oseenlets ugm) and p{™ into (5.87) gives the force

F™ = / / {7 = pUdd™ 61} my dS, (5.88)
Ss
where
™  gu™
(m) - _ (m)(s, ] l
le p ]l_l_,UJ( axl + 61,] )

(m)

Using the approximation series of u; * around zero, which is

(m) 1 5]m Zjcm
1 5.89
gives
(m)_ s(m) ]m ZJZm d
F _//56le SW/ s +0()}ny dS.  (5.90)

Since oseenlet tends to the steady stokeslet around zero. Hence, at the limit § — 0, Oseen

( N

stress tensor tends to steady Stokes stress tensor 7 Sl(m). The last integral in (5.90)

is of order O(d), which gives zero contribution when 0 — 0. And in section 3.5.1, we

// ™) 0y dS = 6.
Ss

F™ = 6. (5.91)

demonstrate that

Therefore
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5.8 Conclusion

The results in this chapter are well-known and we give them in more details. We seek to
use this chapter to infer a form of the oscillatory oseenlets in next chapter. Force generated
by the steady oseenlets is shown to give unit force in the direction of the point force as

accepted.
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Chapter 6

Oscillatory Oseen Flow

6.1 Introduction

The steady and transient oseenlets are currently available in the literature [30], [16]. The
omission of the oscillatory oseenlets representation within the literature is significant.
In this chapter, the oscillatory oseenlet solution for velocity and pressure are presented.
Furthermore, the force generated by them is presented and the reduction to the steady
oseenlets and oscillatory stokeslets in appropriate limits are given. We consider a uniform

flow U past an oscillating body with velocity u, see figure (6.1).

The far-field is assumed to consist of both steady and time periodic components u =
u,(x) + u;(x, t). The time periodic component u,(x, t) can be decomposed into a Fourier
expansion series of time-harmonic components. The steady component in terms of the
steady oseenlets is well-known [13]. However, the time-harmonic components in terms

of the oscillatory oseenlets do not yet appear to be in the literature.
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This chapter is structured as follows. In the following section two the statement of the
problem and the governing equations of oscillatory Oseen flow are given. The Green’s
surface integral representation of the oscillatory Oseen equation is placed in the third

section.

In section four, the Lamb-Goldstein decomposition of the velocity in terms of the poten-
tials ¢ and x , which is introduced by Lamb [21], is used to obtain the oscillatory oseenlets
for the velocity and pressure. Then, we demonstrate that the new oscillatory oseenlets re-
duce to the steady oseenlets, which are given in [30], and the oscillatory stokeslets, which

are given in [9]. Furthermore, the Pozrikidis’ form of the oscillatory oseenlets is given.

In section five, we present the integral representation of the oscillatory Oseen velocity and
we expand the oscillatory oseenlets around zero. In section six, the force generated by the

oscillatory oseenlets is given in terms of the velocity, pressure and the frequency.

6.2 Governing Equations

The time-harmonic Oseen equations are obtained by applying Oseen’s approximation to

the time-dependent Navier-Stokes equations, which are

ou! oul  opt o2ul
] e R J
Pt T PG T "oz, M oman

6.1)

where u;r is the velocity component in the j direction of a Cartesian coordinate system z;,

g, 0l=1, 2,3 p' is the fluid pressure; ¢ denotes time; p is the fluid density; and p is the

fluid viscosity.

Assuming that in the far-field the flow tends toward a uniform stream U in the z; direction,
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and that the fluid velocity and pressure can be represented by a steady component together
with a time-periodic component, then applying a Fourier expansion suppose the velocity

and pressure have the form

W= Ust S wres

n=—oo

pho= pot ) pler, (6.2)

where i 1s the imaginary number y/—1, the frequency w,, = 2’” , T' 1s the time period of
the motion and ¢;; is the Kronecker delta (§;, = 1 when j = [ and zero otherwise). Since

(6.1) represents real variables, then u;‘ = ﬂg—")

and p" = p{~™ where the bar denotes
the complex conjugate. Linearising the Navier-Stokes equation to a uniform stream U by
using the form (6.2) and assuming that the Oseen approximation ||, |2 = O(¢) and

¢ < 1 holds, where the notation “O 'means ‘of order of ’, yield the time-harmonic Oseen

equations which are

Ouj  Op 0*u;
ox; 0x; th 83316:131 6.3)

iwpu; + pUdj ——

where u and p are the Oseen velocity and pressure, respectively. Since the Navier-Stokes
velocity u! satisfies the continuity equation V-u' = 0, then the oscillatory Oseen velocity

u does as well. Also, the pressure is a harmonic function which is seen by taking the

divergence of the oscillatory Oseen’s equation (6.3), given

ou, o8y 8 9 O
WT”U&UJ o, Oz, 0z, "oz, om0z
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Re-writing in operator form, gives

iwpV - u + pUa%V M= —V2p+ uVAV -u 6.4)
1

However V - u = 0 and so

Vip =0, (6.5)

where V2 is the Laplacian operator, therefore the pressure is harmonic and satisfies the
Laplace equation. As we move further away from the disturbance created by the oscillat-
ing body we assume that u tends to zero, taking the oscillatory Oseen’s equation (6.3) to

infinity and applying the assumption u — 0 at infinity, yields
Vp=0. (6.6)

Thus, we may choose p — 0 at infinity.
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6.3 Integral Representation of the Oseen Equations

Following the Green’s integral formulation as given by Oseen in [13], except applying it to
the oscillatory rather than steady or transient case and in the similar way to the Green’s in-
tegral representation of the oscillatory Stokes equation in chapter 4, we obtain the integral
representation for the oscillatory Oseen equations. We consider four solutions for the ve-
locity and pressure field given by (u(x), p(x)) and (u™(z), p™(z)), where m = 1, 2, 3.
The first solution refers to a general velocity and pressure field, and the subsequent so-
lutions refer to the specific Green’s functions that satisfy a Green’s integral which we
shall construct. As in the previous chapter, consider distinct Cartesian coordinates y; and
z; = 2 — y;. The coordinate y parameterises a point on or within a fixed closed surface
and the coordinate x refers to a general fluid point.

The four solutions then satisfy the oscillatory Oseen equation

Ou;(y) 8p(y)+ 0%u;(y)

iwpu;(y) + pUdn o oy, MW, (6.7)
which is the Oseen equation in variable y, and
iwpu§m)(1) + pU 5”%{) = —api;l(z) + uazalf;);z) (6.8)
Since z = X — Y, then the adjoint equation in y gives
. (m) 0ug-m)(2) B op™ (z) 82u§-m)(z)
iwpu;  (z) — pUdn o oy + “W’ (6.9)
since 5% = —a—%. Following the method of Oseen [13] to obtain the Green’s functions

representation, we dot product (6.7) with ugm) (z) and take it from the dot product of (6.9)

with u;(y), and find

114



8u(-m)(z) Au;(y) Ap(™ (z) (y)
ol J o Uu™0uy) 0P (), OP(y
P UJ(Y) 8y1 pUU’] (Z) ayl uJ(y) ayj +u] (Z) ayj
82u(_m)(z) 32U-( )
. J (m) i\Y
—HL[UJ( Y10y, E ) Y10y, ]
(6.10)
Using the continuity equation enables us to write
U - (@) = s ()™ ) + ™ ()
oy’ ’ 0y ’ ’
0 OuM @) Buly)
. — ol = 0.
g () =5 = — " (0 =2
(6.11)
So
0 mpy O (m) (m)
U g W) =~ 5l (P @) + ™ ()p(y)
(m)
0 o my,,Ou(y) Ou; ™ (z)
— — = 0.
+/‘Layl[ ] ( ) ayl J(y) ayl ]
(6.12)

This holds within a volume V' of fluid bounded by the surface S where the Oseen approx-
imation is vaild, and parameterised by the coordinate y. Applying the divergence theorem

leads to
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uy (Z

— Ly + pu(y) ——n; 1S = 0. (6.13)
ayl H J (y) 391 l}

This is the Green’s surface integral representation of the time-harmonic Oseen equations.

We can see that the integral representation of the oscillatory Stokes equations (4.12) can
be obtained by letting U — 0 in (6.13), also we note that the representation of the steady
Oseen equation (5.16) is identical to (6.13), since the oscillatory part of the governing

differential equation which includes the frequency has cancelled.

6.4 Oscillatory Oseenlets

In this section, we obtain the Green’s functions ug-m) (z) and p(™(z) for the oscillatory
Oseen equations by using the Lamb-Goldstein velocity decomposition [21], which de-

compose the fluid velocity into a potential ¢(z) and a wake velocity w(z), such that

ug )(z) = C%—ZJ(Z) + w](- )(z). (6.14)

As we consider incompressible flow, the velocity potential ¢ has to satisfy the Laplace

equation

Vi¢(z) = 0. (6.15)
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Applying the divergence vector to the decomposition (6.14) and using V - u™ (z) = 0

and V?¢(z) = 0 shows the wake velocity satisfies the continuity equation

V- w™(z) = 0. (6.16)

Substituting (6.14) into (6.8) gives

0™ (z)  0°¢™(z)  0*¢"™(z)

) NS Ty \= Y \" . (m)
(ipw 0z; TP 0z10z; uc’?zlazl@zj)—i—(www (z)

J

— e = ) = - . 6.17
M il v 8z, (©17)
From (6.15) 823";(;;21) = 0, then
(m)
0™ (@)  PI@, ouwi™ (2)
' - 7 . U7
(ipw 5, + pU 9702 ) + (ipww;™ (z) 4 p 7
2qp(™) (m)
_wgﬂgﬁzz_® (z) (6.18)
ﬁzlazl 6zj
Since Vzp(m) (z) = 0, a particular solution is obtained if we choose
0¢™ (2) 0%¢™ (2) Op™ (z)
' U—amo "=~ . 6.1
1pw 5=, +p 92,07 92, (6.19)

Integrating gives the pressure to be
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d¢\™ (z)

p™(2) = —(ipwe™ (z) + pU—5—

). (6.20)
This choice enables us to remove the pressure term from the equation (6.18), which be-

comes

Hw'™ (z) 82w™ (z)
(m) J _ J _
i (z) +pU o I 920, 0. (6.21)

1pWww

From (6.20), the potential ¢(™)(z) satisfies the equation

0 . ,
pU e (™ (z)e=/V) = —pl™) (z)e/V. (6.22)

Since the pressure satisfies the Laplace equation, and in the low Reynold number limit the
pressure associated to the oscillatory oseenlets must tend to pressure associated with the
oscillatory stokeslets, then we infer they must be the same. Therefore, the pressure for

the oscillatory oseenlet is given by (4.19) which is

p(m)(z) — i_a_ 1 (6.23)
A7 0z \R )’ '
where the radial distance from the oseenlet singularity is given by R = |z|. Near the

point z = 0 the pressure p{™(z) is unbounded and integrating directly the equation (6.22)
produces an indeterminate integral. However, we may remove the term producing the

singularity within the integrand in order to represent (b(m) by a determinate integral. This
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—iwzl/U 21
(m) 7) — _e / iwzy /U 9 i /
$7(2) A pU _Ooe 0z! (R’)dz1

e—iwzl/U Z1 . a 1 a 1 a 1
= — w2l /U_Y oty v 1 ,
dmpU /_oo {e 0z! (R') 0z (R’) + o (R’)} dzl

e~ wz/U a0 o 1 20 1
- _ iwz) /U - 1) — (= ! Ay il /
47 pU {/_ (e )82’ (R’)dz1 + _. 0z (R’)dzl} ‘

6.24)
Since 2= In(R — z;) = 2,
—iwzl/U 21
m)(g) — _© wao _y 9 Ly 0 n
00 = T [ e -y 2 - o e ),
(6.25)

where 2; = , 23 = 23, 2] is the dummy integration variable, and R’ = |z/|. For brevity,

we represent this integral by

—iwz1 /U 2 O 1
(m) - _ € wzi /U_Y | /
o™ (z) U ]{oo e 52 (R’) dz, (6.26)

where the integral sign ¥ implies the removal of the singularity in the integration. The

wake velocity satisfies the equation (6.21), which can be re-written as

pU 0w;™ (2)
poo 0z

m) .
0210]( (Z) _ prw(m) (Z)
(9218:1 o J

= 0. (6.27)

Letting w](-m)(z) = w;(m)(z)e"'z1 where k = pU/(2u) gives
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0z 0z J
ow™ (@)  ow ™ (a)
J _ J kz1 "f(m) kz1
07 e et + kdlle (z)e
82wi™ (z) 82w ™ (z) Bw* ™ (z)
_J 7/ J kz J kz; 2 *(m) kz1
aZZBZl 82‘1821 (& —+ Qkéll__—_azl (& + /43 511’LU] (Z)e .
(6.28)
Substituting the derivatives into (6.27) yields
82w ™ (z)
it B A MG} 6.29
92107 *; (6.29)

Where k*2 = k2 + h2, and h is defined in section 4.3 as h = \/iz_w‘ Solutions to this
equation are given by [31]. We look for a solution that reduces to the oscillatory stokeslet

in the limit as U — 0, given by solutions of the type

_ x™(z)
- (9zj

wi™(z) — X*(2)6;m (6.30)

where x*(z)e ** satisfies the heat conduction equation (6.29). We pick a solution for x*

in [31] such that it reduces to the oscillatory stokeslet in the limit as z — 0. This is given

by

(6.31)
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(m)

From the continuity equation az; = 0, it follows that a?;;“;i(z) — ag;g) = 0, and from
(6.27),

' (m) 2,/(m) *

P (1) Ox'™(z)  0°x'™(z) _ Ox*(z)

U x(2) 02 0z;0z; Ozm (6:32)

then x(™ is given by integrating the equation
0 . wa v X (2)
Ve —— (m) w21 /UY _ zwzl/U—. 6.33
5 (x™(z)e )=e . (6.33)

However, in a similar way as for ¢(™)(z), integrating this equation directly produces an

indeterminate integral. Removing the singularity term gives the determinate integral

—iw , —k*R’ _kz! —k(R'=z!)
(m) _ e~wn/U 21wz /U 8 [eF Ry 8 fe 1 /
X (Z) T 4wpU f—-oo e 0z, R’ 92! R le

m

—ek(R=21) 2 |p(R — :1)} . (6.34)
For brevity, we represent this integral by
e—iwzl/U 21 i O e—k*R’ekzi
X(m)(z) = U ][ ewz1/U = ( o ) dz’l, (6.35)

where in a similar way to the representation for ¢(™, the integral sign X implies the

removal of the singularity in the integration.
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So the complete solution for the harmonic oscillatory oseenlets is given by

9™ (z) . Ox™(z)

u] (Z) 323 + 8Z] X (z)5jm )
—twzy /U z1 o 1

(m) — _€ w2y /U_Y [ & dz
e () 47 pU ][_oo ¢ oz (R’> o

- e—iwzl/U 21 . O e—k*R’ ekz’l
X( )(Z) = drpU ][—oo e/l -/ ( R ) dzy

. 2k e M Rekan
X*(z) = :
dmpU R

_ 14 (1

@) = (Tz) | (6.36)

where k = pU/(2u), and k* = +/k? + h2. Expanding the derivatives enables us to re-

write the oscillatory oseenlets in the following form

i) = (e e O (2
J 4mpU oo 0250z, \ R/

z1 0 2 e—k*R’+k:zi e~ k*R+kz
_ iwz d 2k | —— — 6'm . (6.37
foe 823%( ) dal 42 (S ) and 6

6.4.1 Oscillatory Oseenlets and known solutions

We can check the oscillatory oseenlets in the two limiting cases, as w — 0 which reduces

to the steady oseenlets, and as U — 0 which reduces to the oscillatory stokeslets.

Casew — 0

When w — 0, then k* — k, (™ reduces to

1 190 1

1 0
= 1 - 2
4mpU 0z, n(R - 2) (6.38)
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since 1/R = —(9/ 0z1) In(R — z;), which is the steady oseenlet solution for ™) which

given in (5.26).

Similarly, x{™ reduces to

= ][ O () a
w=0 ArpU J_,, 02! R !

m

1 21 a k / / a
- o —k(R'—21) _~ 1 /
iU ][_oo a2 (e 57 In(R zl)) dz;
— 1 * 0 —k(R' —21) 0 ’ ’ /
= 47‘(‘pU f-oo az,l (6 —8—% ln(R — Zl) d~1
_ Y kr-a) O )
= 47ere Ee In(R — z1), (6.39)

which is the steady oseenlet solution for x™), as in (5.40) and [13], and we used (5.44)

which 1s

O (rres) O 1o 3 = D ((mrea O g
o (e 9o In(R—2z) | = € o In(R—2) | . (6.40)

Finally, x* reduces to

. Qk e-—k(R—zl)
X'luo = 4mpU R

(6.41)

which is (5.34) the steady oseenlet solution for x*. Therefore, the oscillatory oseenlet

solution reduces to the steady oseenlet solution in the limit as w — 0.

CaseU — 0
When U — 0, then £ — 0 and k* — h, ™ reduces to
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—iwz1 /U 21 . 1
(m) - — . € ' iwzy /U /
#y = = —lim anpU ][_ e (ﬁ) i

o0

 emwn/U g 1\ ewa/U
= — lim — | =
v—0 4mpU 0z, \R) iw/U

lim 1 0 [1
— 1 —
U—047ipw 0z \ R

i 0 (L
drpw Ozm \ R

(6.42)

which is the oscillatory stokeslet solution for ¢*(™), given in (4.22). Similarly, x{™ re-

duces to

—iwz1 /U pz —hR'
x™ = = lim —— s 9 (€ dz
U—0 v—o 4mpU J_. 02! \ R !
e—iwzl/U O e~ hR eiwzl/U
= lim :
U—0 4mpU azm( R ) iw/U
¥ 1 9 [e B
= lim
Um0 Amipw Oz \\ R
B i 0 [e MR (6.43)
- dmpwOzm \ R '

which is the oscillatory stokeslet solution for Xs(m), given in (4.26). Finally, x* reduces

to

) _ 2k e hE
Xly—o = U0 AdrpU R
ih2 e—hR

= oo B (6.44)
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which is the oscillatory stokeslet solution for x**, given in (4.27). Therefore, the oscilla-

tory oseenlet solution reduces to the oscillatory stokeslet solution in the limitas U — 0.

6.4.2 Oscillatory Oseenlets in Pozrikidis’ form

In order to re-write the oscillatory oseenlets in similar form to that Pozirkidis has given

for the oscillatory stokeslets [9] [25], we first expand the derivatives,

0 (i)__z_m
9z, R’ RS

0? 1 Oim 1 ZmZi 3
50 R - R
5 e-k'Rtkn

_ g imo g Oml | Emy ok Rekn
5. (TR )=ty e
92 e~k Rtkan Oim , —k* 1 2mzi 3k 3 .
o R TR TRt (et
Zj <m 1 £\ .—k*Rtkz
+k((5m1-}$ +5j1§2—)(——é -k )}6 ,

(6.45)
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dm™ 1 o i 7 (5 )
_ _ Y (p—iwzy U w2y /U _Z dz
0z; 47er{8zj (e )][_oo ) 0z (RI 7
—iwz 0 “ iwz! 0
te 1/U8_ij—ooe 1/Ua (R’) le}
. _e-iwzl/U{le iwzi/U[( Zw)d, i i
drpU " J_o ‘ U Jlazin R
iw 0 ,1 o* 1
Vi —— d
+(U) ]laz;n(Rl) azjazm( )] zl}
e—iwzl/U 2 82
_ iwz] /U MNdz!
47er f—oo € OZjaZm(R)] A
e—iwzl/U 21 , —1 2 2 3
_ iwzy /U m-Jj dz!
4mpU ][_ooe { (RQ)Jr R" (R'Q)} v
(6.46)
and
. o —k*R'+kz2,
aX( ) _ 1 { 0 (e_iwzl/y)][ iz /U 0 (e + )dzi
0z; 4mpU " 0z; ~00 Oz, i
. 0 an 0 e_k*R’_chi
—iwz1 /U Y w2l /U d !
e az]f © o, ( R’ ) o}
B 1 i iona U 2 2! JU o e-—k*R/-ch’l 5
= 47er{( U)cS 1€ .7[_00 e o R 2y
| 2 o e~ k"R +kz o2 e~ k" Rtkz .
pemtont {7 (0 (S ) + g (et}
—wz1/U  r21 2 e~k ke
_ e 1 ezwzl/U Y ( )d;ll
drpU | o &:jazm R
o—iwz /U U —k* 1 o\ . 2mZ%j 3K* 3 9
. w2z k k*
“ U Sl Cp g~ )+ R+ k)
2 1 * —k*R+kz1 3./
+k(6ma 12 + 5]1R2)( R k™) te dzy.
(6.47)

Substituting the above derivatives into (6.37) gives
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i - 20 W)

0z; 0z; =X (2)0jm
— 1 5_]777, —k*R+kz1 —iwzl/U “ iwz! /U 1 —k:*R'+kzl
_—47er{2/<: Re +e —ooe [ (R/2+e
k* 1 5 Zz 3 kRl ka O 3 .
mrE PR T g )
—k*R +k2! Z N;n 1 * ’
—ke R Rk (5 R32 + 531R,2)(—§ — k*)]dz1 )}
(6.48)
The coefficient 47r1p ka as pU = 2uk.
(m) — —1 5]m —k R+kz —iwzy /U le iwzt JU 5 —1
3 = 22— 1 1 1
’U/] (Z) 87T/.L{ R +e - € [kRI (RIZ
k* 1 kRt ks zl 2 3 3k* 3 O\ —k* R4k
(R/ R/2 k‘2) k*R' +k 1)_|__kR,;(R,2_(RI +R,2+k 2)6 k*R +k 1)
"/ / 1 " —k*R'+k2!
(1o S 2~ — ke R}

(6.49)

Taking the limit U — 0, reduces it to the oscillatory stokeslets in Pozrikidis’ form (4.36).

6.5 Integral Representation of oscillatory Oseen Velocity

In order to obtain the integral representation of the time-harmonic Oseen velocity, we first

approximate the oscillatory oseenlets around the point = = 0.
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6.5.1 Green’s Integral of Oscillatory Oseenlet around point z = 0

The oscillatory oseenlets are

z 2
(.m) — —1 —iwz1 /U f ' wzy JU 0 _1_
4 (2) 4 pU fe oo ¢ [Gz;-(?z;n R

82 6—k:*R’+k:zi e—k*R+kz1
_82’.621 < R’ )]dzl + 2k‘ <——f{—> 6jm}- (650)
i m

The Taylor series of e~*"#+*21 around the point = = 0, is

* _'k* k: 2
e—k R+kz1 - 1= (—k*R + kzl) + ( R2‘l" 1)
k‘*2R2 .
= 1-kR+— + O(R?). (6.51)

By substituting this series into the oscillatory oseenlets we find

u(m) (Z) ~ —]- {e—iwzl/U le e’thll/U[ 82 }_)
J 4w pU o 0250z, \ R/

82 l _ k‘*R, + k*ZQR/Z 1 N k*R _{_ k*22R/2
9202 R ldz + 2k R Ojm}
Vi m

-1 {e—iwzl/U “ eiwz;/u[ 02 1
4 pU oo 0250z, \ R/

2 k2R 1 k*2R
0 (i_k:*+ )]dz1+2k (———k*+ )5jm}

~o/
™~

02,02, \ R 2 R 2
—1 . 2 82 k*QR/
—~ —iwz1 /U w2 /U~ L* _ d
~ dnpU te ][_oo € [(97,}(92,’“ ( 2 )] “
1 k*‘zR
— —k* Oim }.
+2k ( =~k + ) jm}

(6.52)

. -1 : —1
The coefficient 5 can be written as gz, then
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m -1 —iwz1 /U *2 o 82 , /
W)~ () f A (R

8 i k 2" /o 020z,
0. k*2R
+ 2 — K G+ 5 Gym)). (6.53)

Taking the limit R — 0 is equivalent to taking the two limits £ — 0 and w — 0, therefore

-1, ewn/U _p2 52 ewn/U
~ ﬂ}cﬁ%{ k ( 2 )67;}82;,1 () w/U
iy . k*2R
+ 2(Jé——lc 5jm+——2 Oim)}
—1 1 —k2 0 2k
~ — lim{- R
A >az;.az;n( ) 2
Oim 1 a k**R
+ 2(‘%‘ — k" 0jm + dem)}»
(6.54)
Where%"z’?’—z,mzi%“andk:%ﬂo
~-1 —k*? 5 8
(m) ~ —— i N 9™ _ 9L*s. *2 .
uj " (2) 8T 116136{ h? 0z;0z, (B R 2K 0jm + k" Rom; }
~1 0? §;
~ — R') + 22 — 2h6m; + h*> Répm;
87w{ Bzgaz;n( )+ R it it
(6.55)
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and taking the limit w — 0 gives

—1 o? 0,
" lim{— N o 9%im
8L wl—r%{ 0250z, (F)+2 R
—1 o? 0;

— ! o Jm
Sepozam, TR
—1 5]' Zjem 5]'

_ _ 9_Jm
s g TR ) TR
-1 5jm Zjem

87T,LL{ R R3 H

u{™ (z)

Q

— 2h6pm; + R Ropm; }

Q

&

Q

(6.56)

We obtain that the oscillatory oseenlets approximate to the steady stokeslets around the
point = = 0 ( R — 0). This is a similar result as given by Chadwick [30] for the steady

oseenlets and by Pozrikidis [9] for the oscillatory stokeslets.

6.5.2 Green’s Integral Representation of the velocity

The Green’s surface integral representation of the oscillatory Oseen flow has been given

in section (6.3) as

//S{PUUJ'(Y)ug,m) (z)ny + Ugm)(z)p(y)nj +u,(y)p™ (2)n;

(m)
&u(y) ou’ (Z)

(m) J . J
—HU; (2)- U, ny + pu;(y) E

n}dS = 0. (6.57)

We consider the surface S consisting of a surface S5 a sphere radius 6 — 0, around the
point z = 0, a surface Sp enclosing the oscillating body, and a large spherical surface Sy

extending to infinity, enclosing the body and centred at the point z = 0, see figure (6.2).
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Volume V enclosed by S

Figure 6.2: The surface S and the relation of the points x and y

We re-write the integral over the surface S as a sum of the integrals over the surfaces Sy,

//SZ/LJ+/LB+//SR=0- (6.58)

Then we calculate the contributions over the surface S5 as § — 0, and over Sg as R — oo,

Sg, and Sg,

to give integral representation for the Oscillatory Oseen velocity u;(x).

The Contribution over the Surface Ssas § — 0

Comparing the oscillatory oseen case with the steady oseen, we can see that the integral
representation (6.13) 1s identical to the integral representation of steady Oseen equations
(5.16). Aslo, the asymptotic series (6.56) of oscillatory oseenlets around zero is identical

to the steady oseen case (5.51), both solutions approximate to the steady stokeslets around
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the point = = 0. Therefore, the integral over the surface S for oscillatory Oseen case,

gives the same contribution given by the steady Oseen, which is

//S {pqu(Y)ug,m)(z)m + ug,m) (2)p(y)n; + u;(y)p™ (z)n;

¢ )(z)%jli)nl it ,uuj(y)uJTl(z)nl}dS = —Up(X). (6.59)

The Contribution over the Surface Sz as R — oo

The contribution over the surface Sg, for very large R, is

_ ™ () 4 \Y) 2
,LL'U,J (Z) ayl nl"‘lluy()') ayl nl} S (660)

which is identical to the steady Oseen case, since the oscillatory parts of the governing
differential equation which include the term piwu; have cancelled. The modulus of the far
field integral over Sg for the oscillatory oseenlets is bounded by the far field integral for
the steady oseenlets. This result, that the oscillatory oseenlets are bounded by the steady

oseenlets in the far field, is shown as follows

—iwzy /U o a 1
(m) < | — € w2y /U_Y [ & a
¢ @ < |- 77 f e v (R,> dz| (6.61)

— 00 ~m

Away from the body w — 0, then

1 a0 (-1
(m) < o
|¢ (Z)| — |47er ][—oo -1 (R/) d 1|' (662)

~m
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Since —% = a%l In(R — z1), then

1 0
ArpU Oz,

6™ (z)| < | In(R — 2|, (6.63)

the right hand-side is the steady oseenlet solution for #™ [13]. Similarly

—iwz1 /U z1 O e——k*R+k:z1
(m) 7 < € ][ iwz1 /U dz
lX ( )l - I 47_er € az/ R/ le

—00 m

1 21 8 e—k*R+k21
= f &z
dwpU [_o 0zl R

—1 90 , oy O
(m) < ~k(R'~2}) I /
@) < g 5 ( 5 In(R z») a2

(6.64)
since R — oo leads to w — 0 and k* = k. Now we have
@) < et LR ) (6.65)
— 4mpU 0Zm '
which is the steady oseenlet solution for x{™ [13]. Finally x* bounds by
2k e-k*R+Icz1
* < )
2k e"“(R“zl)é
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which is the steady oseenlet solution for x*. Therefore, the far field integral (6.60) is

bounded by the far field integral for steady oseenlets, which has been shown to be zero in

[32]. So

' . | = (. .67
D0, ny + 1 us(y) o n }dS (6.67)

From (6.58), (6.59) and (6.67) we find the Green’s integral represenation of the oscillatory

Oseen velocity to be

/ s {pUn;(y)ul™ (2)ns + ™ (@)p(y)n; + u;(y)pt™ (2)n;

), O Ouy™ (2)
—,uug (z) tg(ly)nl—i—uuj(y) o ——"n;}dS, (6.68)

which is identical to the integral representation of steady Oseen velocity (5.75).

6.6 Integral representation of the force

Denote the surface of the oscillating body by S;. The force on the body due to the action

_ / / rhdS (6.69)
St

of the fluid is then

where for an incompressible fluid

3UT Oul
t— _pts. _J 4 27
le =P 5Jl +u (6.’171 * 6:1:j

is the symmetric Navier-Stokes stress tensor.
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Denoting the velocity on the body surface to be u; = u? then the total force FJ is

B o= [ [ G- el + pupupinas
St

= /SR{ ~ pu; fulndS — /// 8xl — pu; tul)dV
+// pu uPndS
St

(6.70)
The Navier-Stokes equation can be re-written as
Ou; _ 9 (7 = puluf), (6.71)
ot 65131 l .
since the continuity equatlon = 0 holds. So

//{ — pu fulynydS
/// dV+// pu uPn,d (6.72)
Vi St

where Sg is an enclosing surface a sufficiently large distance away from the body, and V;

is the volume of fluid exterior to S;.

On Sk, assume that the surface is sufficiently far from the disturbance that the Oseen

approximation
u = Udj1 + Z uje Hwnt , | < U, (6.73)
holds, and .
_ Z pneiwnt, (674)
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Figure 6.3: the surfaces Sg and S;

where p" is the pressure associated with the velocity field u}. Then

=D e, (675)
where we define 77, = —p"0; + p ( o au‘ ) and

’U/Tu;r — {U5j1+ Z ug}eiwnt}{U(S“_*_ Z u;neiwmt}

J

= UsuUby + Uy Z uletnt + Uy Z uleiont 4 Z utetnt Z et
= UsUbu + Z (Usnu® + Ujiup + u? Z weimt gt
= UsuUbn + Z (Usnu? + Ubjyuf + Z uhetnt ) gont
= UdpUdn + i (Udnu} + Udjiup pe ! (6.76)
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because from Oseen approximation u?uf* = O(e?).

oul B,
J n zw
_— — 5 n
5t g; \Uon +n_z_oo“
= g zwu”e""“t

The force then becomes

(6.77)

// pU? 0;10;1muds + Z [//{ T — pUdjlu?nl—pUduu?nl}dS
SR

n=—oo

—///piwnu?dV} ei“’"t+// pufuf’nldS.
|4 St

Since [ [n; ds =0, the term — [ fSn U?6;16n1m ds = 0, so

F; = Z [/ {T]lnl pUd;1u)'ny — pU(Sllu n,}dS

n=—oo

///pzwnu"dV} tnt // pu uPnd

However,

[ Lo = ] oo
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(6.78)
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The volume integral term becomes

—///piwnu?’ dV = —z'pwn[// yjuands—// yjufc‘nkds]
1% Snr St
= ——// ipwnyjuznkdsnL// 1pWnY; Uk dS
SR S

(6.81)

Also, consider I such that

I = (// pzwnukyjnde) tnt
St

://Z%ww%ws
S
n iwnt
= pyi—(upe™ " )ng dS
//Stz Jat ;

n=—oo

= // PYi = ujkneiw"t)nk ds.
St o'

n=—od

(6.82)

Since u =Ubj1+ D omoo Uj ei“nt then > 00 upe™nt = U/c Ubpr = uP — Udyy on

n=—oo ]

the body surface, then

0
I = //py]a—(uf—Udkl) ng dsS.
St

= // pyj——n;c ds.
St

(6.83)
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Therefore

oo

R

n=—oo

_ B
—// z'pwnyju};nkds} e“""‘t+// pyj%nde—k// pu ufn; dsS.
Sr St at St

(6.84)

The continuity equation yields not fluid outflow, which means [ [ wmdS = 0. Thus,

the term

// Udjluml dS = 0.
SR

Let us therefore write
o0

Fj= Y fre='+ 47
where
fr=[ | = pUsn ~ pionyyiin} ds
Sr
and

B

Ouy;
:/ s {pufuanl—I—pyja—t’”nk} ds.

(6.85)

(6.86)

(6.87)

Let us consider the force associated with an oscillatory oseenlet of frequency w be f;

where

fi = // {rimu — pUdnu;n; — piwyjugng} dS
Sr
Oul GuJ

= 0. + (—-——I——)n—Uéu-n—iw-un ds.
/SR{ R )i — pUdpujng — piwyjugnyg}

Ou,

= / {(—pn; + ,ug——nl pUbnujn — piwy;ugng} dS.
SR
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becauseffs y T A4S = fffv oo = 0. Comparing with

// {pUu]nl +pn; — ug—nl} ds (6.89)
S

as it is defined in [30], we see that all the terms are the same except for an additional term
il fSn piwyjugng ng dS in f;. However, in the limitas w — 0, ffsn piwyugng ng dS =
0, and so for the steady case A; = f; as expected from [30]. Also at the limit U — 0 the

force generated by the oscillatory stokeslets (4.82) recovers from (6.88).

6.7 Force generated by Oscillatory oseenlet

In order to obtain the force generated by the oscillatory oseenlet we consider an oseenlet

«'™ in the body. A sphere S; of radius 4, is central at the force point ugm)

J and the volume

V; is bounded by the body surface S; and S5. Considering the body as a fluid we can
write the force in similar way to what we done 1n last section taking in consideration that

T J, =1 Js, — | Js, asthe normal n; points out of the volume V;. Hence

Fj = Z l:/ . {Tﬁ’nl - pU(Sll’UJ;lTL[}dS
n=-00 8
—// IPWnY;Up Tk ds} elnt 4 // oYi—- nde—I—// pu uPn; dS.
Ss s, ot

(6.90)
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y 1n

Figure 6.4: oseenlet inside the oscillatory body

Substituting an oscillatory oseenlet ug-m)

F™ = [ / / (™ — pUbyu; ™, }dS

n=—oo

ou
// zpwnzjuk n ds} ewnt 4 // pyj—'”nde—i—// pu uPn
Ss St Sy

(6.91)

into the force, gives

where Fj(m) is the force generated by the oscillatory oseenlet, T%(m)

(m) m)

Oseen stress tensor. When 6 — 0, 7;; 7 — le

is the oscillatory

the steady Stokes tress tensor, and we

have shown that [ [, Tjsl(m) ny dS = §;,. Hence

/ / "™y dS = 8. (6.92)

Also, around zero the oscillatory oseenlet can be approximated to the steady stokeslet;

—1 9, 2z
(m) jm j~m
U 87w{ 7t }, (6.93)
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so the second and third integrals in the force representation (6.91) can be approximated

using the approximation series of the oscillatory oseenlet, as follows. The second integral

18,

PU511// U?(m) n dS = —pU(S”/ {5jm ~]Zm}’nl dS
Ss 8T S

_pU(Sll/ { szl Z]~mzl}ds
Ss

&

8T 1
O(R) (6.94)

Q

as R(= ) — 0. And the third integral is

. n(m) _ipwn 5k] zk:~m

zpwn// 2l ne dS = // } ni dS
S5 Yk 87TILL S5 ]{

__z'pwn// {zkzJ ékzjzm}dS

8T

—zpwn// zJ 4S

amp S5

_;p“’” 5;mR% = O(R2) — 0 (6.95)
L4

Q

A

Q

: 4
when § — 0, usingz,, = 2¢0km, e = 3%, 27 = R*and [ | g ma = 30 & R3. Therefore,

from (6.92) , (6.94) and (6.95), the force generated by an oscillatory oseenlet is

8

n=—oo

As the limit w — 0, u7 = 0 hence Fj(m) = &, which is the force generated by a steady

oseenlet (5.91). Also, the equation (6.96) shows that the force is oscillatory.
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6.8 Chapter Conclusion

The main new result is presented, which is the description of the oscillatory oseenlet,
obtained using the approach of potential decomposition. The new solutions are checked
against known solutions; which are steady Stokes, oscillatory Stokes, and steady Oseen
flows. The oscillatory oseenlet tends to the steady stokeslet in the near-field limit, and
this is a similar result satisfied by existing oseenlet solutions in the literature. The force
generated by the oseenlet is calculated and we show that the forces are oscillating them-

selves.
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Chapter 7

Conclusion and Future Work

7.1 Applications Discussion:

7.1.1 Modelling a miniaturized swimming robot

In developing a model for a miniaturized swimming robot, the most important quantities
for assessing the manoeuvring characteristics are the force and moment calculations. The
near-field is governed by Stokes flow, but in the far-field the Oseen approximation is valid.
Similar to the steady case, this is important; In the steady case, for flow past a circular
cylinder Proudman and Pearson [34] match a near-field Stokes flow to a far-field Oseen
flow.In the representation presented here in section (6.4.1), we note that the near-field
limit of the oscillatory oseenlet is the oscillatory stokeslet, and this matching is provided
in this thesis. For this case of a swimming robot, a near-field stokeslet distribution has the
additional challenge that the oscillating stokeslets are themselves oscillating rather than

stationary. Also, the robot is designed to have a slender body tail with elastic response,
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see figure (7.1).
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Figure 7.1: A design for the swimming robot

A slender-body theory has been presented by Chadwick [35] but only for the steady case.
However, the work in this thesis provides the far-field representation for a formulation to

model a miniaturized swimming robot motion which is left for future work.

7.1.2 Biological fluid dynamics:

Micro-organisms are very small in size, so that the Reynolds number of their motion,
that based on a characteristic dimension of the body L and velocity of propulsion U,
is very small, Re = pUL/u. Hence in the near field (when between R = O(1) and

R =0( Re™1)) the dominant forces on micro-organisms are viscous forces and the inertia
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forces are negligible, [36], and the flow which is generated by the movement of micro-
organisms, is slow viscous flow (with as low as Re = O(10~°) in water) that can be
represented with same accuracy both by Stokes or Oseen approximation . Away from the
micro-organism (when R = O(Re™!)) the inertial forces are dominant and can not be

neglected, so Oseen flow is better to represent the flow.

Self-propulsion Micro-organisms

There are may different types of micro-organisms base on their swimming way, and more
predominant ones are flagella and cilia. Flagella are consist of a head and one or more
motile; such as bacteria, sperm cell and make wave-like motion to move. Cilia are hair-
like organelles and they cover the outer surface of micro-organism. The cilia move back
and forth to enable the micro-organism to swim, see [36] and [37]. The flow singularity
solutions which describe point forces (stokeslets) cannot be considered in the far field
as they represent exact solutions only at zero Reynolds number. In the literature, the
far field of a swimming micro-organism is represented by a symmetric force dipole or
stresslet, see [38]. However, the oscillatory oseenlets, that we introduce in chapter 6,
replace the stokeslets in the far field and give needed representation for low non-zero
Reynolds number.

Example: Swimming Flagella

Considering a flagellum swims with wave its centre-line is

y(z) = (—ut + z,acos(kx — wt))

where u is the velocity, k is the wavenumber, w is angular frequency, and a is amplitude of
the wave. The xy is an adopted coordinate system in which z moves along the position of

the flagellum, see [39]. Using slender body theory and zero net force on flagellum body,
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implies

1
U = §a2kw

which is not small, but the Reynolds number Re = Bﬁ—“ is because of the flagellum size.
To study the effect of the flagellum motion on the far field, the oscillatory oseenlets are

needed to give the most correct flow representation. Also, the slender theory is applicable

as the flagellum has slender body.

7.1.3 Micro-Electro-Mechanical System (MEMS)

Clarke et. al [8] consider the problem of a MEMS device vibrating in a fluid at rest. The
device is treated as a slender body and the Stokes approximation is used. The oscillatory
stokeslet given by Pozrikidis [9] is used. A further development on Clarke’s work would
be to consider the effect of a uniform rather than stationary flow field, which would for
example replicate blood flow. Within such a development, the oscillatory stokeslet is an
inner near-field description to be matched to an outer far-field oscillatory oseenlet. In

order to enable this, there is a requirement for the oscillatory oseenlet solution.

7.1.4 Acoustic Devices

Considering an acoustic device such as loud speaker under the water, the speaker surface
vibrates and generates oscillatory wave in the water. To measure the loudness of the sound
away from the speaker and to make improvement of quality of the sound away from the

speaker, the far field representation is needed and the oscillatory oseenlet give better far

field modeling.
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7.2 Conclusion and Future Work

Oscillatory stokeslets are given using potentials shown to be equivalent to Pozrikidis’
form [9]. The oscillatory oseenlet and corresponding Green’s integral representation have
been presented which enables time-periodic Oseen flow to be modelled. A far-field ve-
locity expansion is given. Low Reynolds number limit oscillatory oseenlets reduce to
oscillatory stokeslets. In the limit as w — 0 it is shown that the far-field steady Oseen
velocity expansion of Chadwick [30] is recovered. The force generated by the oscillatory
oseenlet is shown itself to be oscillatory, and so any net propulsive force is related to the
steady oseenlet only. This completes all the cases for oseenlets and stokeslets in steady,
transient and oscillatory flows, the oscillatory oseenlet being the final case not yet present

in the literature.

Its use for modelling a problem as a far-field formulation is discussed, that being the
swimming motion of small robotic devices at low Reynolds number where it would be
matched to a near-field Stokes flow. The matching of the far-field oseenlet to the near-
field stokeslet required for this application is that presented in this thesis. However, there
are further challenges left for future work, which are that the stokeslet distribution itself
may be moving relative to the reference frame and also that the tail exhibits an elastic

response from the action of the fluid.
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