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Abstract: Microphone wind noise can corrupt outdoor recordings
even when wind shields are used. When monitoring wind turbine noise,
microphone wind noise is almost inevitable because measurements
cannot be made in still conditions. The effect of microphone wind noise
on two amplitude modulation (AM) metrics is quantified in a simulation,
showing that even at low wind speeds of 2.5 m/s errors of over 4 dBA can
result. As microphone wind noise is intermittent, a wind noise detection
algorithm is used to automatically find uncorrupted sections of the
recording, and so recover the true AM metrics to within 62/60.5 dBA.
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1. Introduction

Microphone wind noise is known to corrupt many outdoor measurements. In particu-
lar, measurements of amplitude modulation (AM) from wind turbines are biased by
microphone wind noise. Mitigation usually takes the form of applying wind shields.
But when the signal level is low and wind speed near the ground is high, even very effi-
cient wind shields may not be sufficient.

The IoA Good Practice guide to the application of ETSU-R-97 (IoA, 2013)
suggests that noise levels from wind turbines external to a dwelling should be limited
to 43 dBA (LA90) when background noise levels are low. This upper limit is in line
with international regulations (von H€unerbein et al., 2013b). Lower limits of typically
35 dBA (LAeq) at nighttime are also common. When background noise is high the
recommended limit is 5 dBA above the background level. The level of noise induced
by the wind at a microphone varies with conditions and wind shield but van den Berg
(2006) suggests that a microphone with a 10 cm shield in 5 ms�1 wind induces approxi-
mately 40 dBA wind noise. Therefore even at moderate wind speeds, the magnitudes
of wind turbine and microphone wind noise are of a similar order and as turbines only
produce noise when wind is present, it is of particular importance to quantify this bias
error. For most modern large scale wind turbines the dominant AM occurs between
0.5 and 2 Hz (von H€unerbein et al., 2013a). When the wind is relatively constant, the
microphone wind noise will act to reduce the amplitude of modulations, but when
gusting is present additional modulation energy in the 0.5–2 Hz region will be
introduced.

Three AM metrics have recently been proposed by the Institute of Acoustics
and so far mainly evaluated from wind turbine recordings which were manually filtered
for sound quality (Bass et al., 2015). In this work a simulation is carried out combining
turbine noise with microphone wind noise at various wind speeds, two AM metrics are
calculated, and the resulting bias error quantified. Subsequently, a wind noise detection
algorithm operating on just the audio signal is used to indicate regions of audio
containing wind noise. These sections are removed from the calculation of the AM
metric and the improvement in accuracy evaluated.

2. AM metrics

Of the three proposed AM metrics one is based on a time series analysis, one on a
frequency analysis, and a third that combines the two.

In accordance with Fukushima et al. (2013), evaluating Metric 1 begins by
calculating the time varying difference (DL) between the A-weighted sound pressure
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level measured using the standard fast and slow integration periods found on sound
level meters. The metric is then the difference between the 5th and 95th percentile val-
ues of DL. This aims to de-trend the sound pressure level time series or in other words
to remove any drift in the data (Bass et al., 2015).

Metric 2 relies on a frequency domain analysis. First, the measured sound
pressure is A-weighted and bandpass filtered to a frequency range relevant to the mod-
ulation. In the current paper 150–400 Hz is used. Frequency domain analysis (fast
Fourier transform) is performed on the resulting envelope with a high temporal resolu-
tion such as 100 ms (Bass et al., 2015). Peaks in the low frequency envelope spectrum
are used to quantify the AM.

3. Simulating errors caused by microphone wind noise in AM metrics

To understand the magnitude of the errors in AM metrics caused by microphone wind
noise a simulation is carried out. Synthesized examples of wind turbine noise with
varying levels of AM from von H€unerbein et al. (2013a) are used to systematically
investigate the influence of microphone wind noise at known modulation levels.
Originally used for a subjective response study, 5 sound samples of 20 s duration with
nominal modulation depths of 0, 3, 6, 9, and 12 dBA are selected for the simulation.
These samples were originally produced in MATLAB and auralized using an ambisonic
sound system in a Listening Room. The sounds used here are recordings of the aural-
ized samples captured from a single low-noise microphone. Using synthesized wind
turbine samples guarantees that microphone wind noise is not present, the captured
auralized audio was recorded as there was no access to the fully synthesized mono
stimuli, and these recordings are known in the community (Bass et al., 2015).

In a second step, synthesized microphone wind noise was added to the AM
samples. The microphone wind noise was generated using a simulator implemented
by Jackson et al. (2014). The simulation uses measured sonic anemometer wind time
histories available from the CASES-99 database (Fritts et al., 2001) to generate audio
based on the model by van den Berg (2006). van den Berg showed that the sound pres-
sure level Lp for the one-third octave centered at frequency f, for a shielded micro-
phone, can be approximated by

Lpðf Þ ¼ 40 log10ðVÞ � 6:67 log10ðfD=VÞ � 10 log10ð1þ ð3fD=VÞ2Þ þ 42; (1)

where V is wind speed and D is wind screen diameter. A 10 cm wind shield is chosen.
The one-third octave sound pressure level is converted to an amplitude spectrum with
a linear frequency scale by linear interpolation. Subsequently, a time history of pres-
sure values is generated by assigning a random phase to each bin in the resulting am-
plitude spectrum and applying an inverse Fourier transform. Time varying microphone
wind noise is generated by utilizing wind velocity time histories taken from anemome-
ter data. The sonic anemometer data with a time resolution of 100 ms are linearly
interpolated to increase the resolution to 50 ms, and for each resulting wind velocity
data point, a 100 ms window of noise generated. A Hanning window is applied to each
of the noise windows, and then a 50% overlap and add scheme used to create a 20 s
audio sample of time varying microphone wind noise. This enables wind noise samples
to be generated with arbitrary wind speed time histories representing a wide range of
wind conditions recorded over 8 days from 8 sonic anemometers on 5 towers, 3 at a
height of 5 m and 5 at a height of 2 m. Further details on the simulation methodology
are available in Jackson et al. (2014).

Wind turbine test signals corrupted with microphone wind noise were gener-
ated using 35 target mean wind speeds from 1.5 to 10 m/s in 0.25 m/s steps. For each
target wind speed five examples were generated by repeated random selection from the
available data. The playback level of the test file in the RenewableUK study (von
H€unerbein et al., 2013a) was 40 dBA. The microphone wind noise simulator produces
a pressure time history in Pascals, and therefore it is straightforward to combine the
wind turbine and microphone wind noise so that the relative levels are representative
of real conditions.

The two AM metrics are computed for all examples, and the error in the met-
ric as a function of wind speed is calculated. The error is quantified as the difference
between the metrics with and without microphone wind noise. For each metric and
target wind speed, the mean and standard error was computed from the five instances
of that wind speed.

Figure 1 shows that for the time series metric, as the wind speed increases the
error in the modulation depth also increases. When there is little AM in the wind tur-
bine signal, microphone wind noise will tend to increase the modulation depth. But
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when there are high modulation depths in still conditions, the addition of wind noise
reduces the metric. This is because the wind noise can often contain gusts which will
act to increase the modulation depth when the background level is stationary, but
when very strong modulations already exist, the modulations will be masked by the
wind noise. The simulations show that errors can occur even at very low wind speeds.
Errors exceed 2 dBA from 2 m/s.

Figure 2 shows the same data but using the frequency domain metric. This
shows that the metric is more robust at low wind speeds below around 3.5 ms�1

although above this both methods exhibit strong bias errors. This increase in robust-
ness when compared to the time domain metric, is due to the band limiting to
150–400 Hz, as microphone wind noise is dominated by low frequencies.

4. Automatic detection of wind noise to reduce metric errors

A microphone wind noise detection algorithm was developed by Jackson et al. (2014).
The algorithm is a machine learning algorithm where an ensemble of decision trees has
been trained to classify short, 23 ms frames of audio according to the level of wind
noise present. The training database was generated from both real and simulated
examples of microphone wind noise combined with many examples of foreground and
background sounds. The wind noise level of every audio frame is identified according
to the following bands:

(a) ClassL ¼ 0 : LAeq < 30 dBA,
(b) ClassL ¼ 1 : 30 < LAeq <¼ 50 dBA;
(c) ClassL ¼ 2 : 50 < LAeq <¼ 70 dBA;
(d) ClassL ¼ 3 : LAeq > 70 dBA:

Fig. 1. Metric 1 average rating as a function of wind speed: (a) absolute AM rating and (b) error due to micro-
phone wind noise. The AMs were designed to be 0 dBA (dashed line), 6 dBA (black line), and 12 dBA (gray
line). Error bars represent 95% confidence limits.

Fig. 2. Metric 2 average rating as a function of wind speed: (a) absolute AM rating and (b) error due to micro-
phone wind noise. The AMs were designed to be 0 dBA (dashed line), 6 dBA (black line), and 12 dBA (gray
line). Error bars represent 95% confidence limits.
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ClassL is then averaged over 1 s, forming one of two main outputs of the
wind noise detection algorithm the resulting class average linearly correlates with the
LAeq between 30 and 70 dBA. To identify microphone wind noise a simple threshold
is applied on the average wind noise level class of 0.5. An average class of 0.5 indicates
50% of time the level is less than 30 dBA and 50% of time it is between 30 and 50
dBA. While there is not a one to one functional mapping between average class and
level, this was found to correspond to an A-weighted level of around 30 dBA. This is
10 dBA below the level of the wind turbine noise and chosen as an appropriate thresh-
old to classify regions as wind noise free. Jackson et al. (2014) reported that the
Mathews Correlation Coefficient, which is a balanced measure of binary classification
performance, was around 0.6 when wind noise was combined with other sounds. The
wind noise detection algorithm is applied to all examples from Sec. 3. For each of the
five modulation depths, the average AM metrics are computed (1) over the whole data
set including segments corrupted with wind noise examples, and (2) only using time
segments where the estimated average wind noise level class is below 0.5. Figure 3
compares the error in the AM metrics with and without data rejection based on the
wind noise detection. For both metrics the accuracy is significantly improved by reject-
ing data with microphone wind noise.

5. Discussion

The IoA discussion document (Bass et al., 2015) indicates that there is an expectation
of a low influence from wind noise on the AM rating where band limited frequency
domain rating methods are used. This is in stark contrast to the results presented in
Fig. 2, where even at relatively low wind speeds there remains acoustic energy from
the wind noise in the frequency band of interest. Very similar results have been pro-
duced for both the band limit 100–400 Hz proposed by Bass et al. (2015) and for the
presented 150–400 Hz.

It should be noted that the study used the windshield which is recommended
by the IoA Good Practice guide (IoA, 2013), as the minimum acceptable shield specifi-
cation. The accuracy of the AM metrics is therefore expected to be better where
enhanced-performance windshields are used. Figure 3 shows that rejection of samples
which have been identified to contain wind noise, reduces the error in the AM metric
to less than 2 and 0.5 dBA for Metrics 1 and 2, respectively. The performance needs
to be tested with real recordings containing other ambient noises such as bird song and
traffic noise, as these will be likely to affect the ratings. Restriction of data availability
in high wind noise conditions needs also to be assessed as excessive filtering of data in
high wind conditions can lead to a data availability bias, e.g., high AMs might occur
at high wind speeds but they are not included because considerable periods might be
rejected. In practice, this might not be a significant limitation of the method as it has
been reported that AM from wind turbines is particularly disruptive in wind shear con-
ditions (van den Berg, 2004). In those situations the wind speeds at microphone level
near the ground are lower than at wind turbine hub height and excessive wind noise
on the microphone is not expected. Following this it would also be useful to measure
high resolution such as 10 s wind speeds at the microphone locations to improve AM
rating quality assessment.

Fig. 3. AM metric accuracy with and without wind noise rejection: (a) Metric 1 and (b) Metric 2.
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6. Conclusions

The study evaluates the robustness of the proposed IoA metrics (Bass et al., 2015) in
the frequency domain and the time domain (Metrics 1 and 2) under the influence of
simulated microphone wind noise using a 10 cm diameter wind shield. Crucially, both
metrics show large errors in the AM metric from wind speeds as small as 3 m/s. This
suggests that using these metrics where considerable microphone wind noise is present
will underestimate large turbine noise modulation depths and overestimate small tur-
bine noise modulation depths.

Automated microphone wind noise detection has been shown to considerably
improve the ratings. This is because, provided that the microphone wind noise level
fluctuates more quickly than the AM metrics, there are periods where the metrics will
be reliable. Simulations indicate that detection of these periods has been successful, but
further experiments are needed to confirm this in realistic scenarios. In the meantime
the use of an automatic weather station with a sufficiently high time resolution might
be the only way to inspire some confidence in the proposed AM ratings. The wind
noise detector is available as an open source Cþþ program (Kendrick et al., 2014).
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