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Summary  

We study the steady, laminar thermal convection flow in a participating, absorbing-

emitting fluid-saturated porous medium occupying a cylindrical annulus with significant 

thermal radiation effects as a simulation of a solar energy absorber system. The 

dimensionless incompressible, viscous conservation equations for mass, axial momentum, 

radial momentum, heat conservation and radiative transfer equation are presented with 

appropriate boundary conditions in an axisymmetric (X, R) coordinate system. The 

Traugott P1-Differential radiative transfer model is used which reduces the general 

integro-differential equation for radiation heat transfer to a partial differential equation. 

The Darcy-Forcheimmer isotropic porous medium drag force model is employed to 

simulate resistance effects of the solar porous medium with constant permeability in both 

the radial (R) and axial (X) direction. A numerical finite difference (FTCS) scheme is used 

to compute the velocity (U,V), temperature () and dimensionless zero moment of intensity 

(I0) distributions  for the effects of conduction-radiation parameter (N), Darcy parameter 

(Da), Forchheimer  parameter (Fs), Rayleigh buoyancy number (Ra), aspect ratio (A) and 

Prandtl number (Pr). The computations have shown that increasing aspect ratio increases 

both axial and radial velocities and elevates the radiative moment of intensity. Increasing 

Darcy number accelerates both axial and radial flow whereas increasing Forchheimer 

number decelerates the axial and radial flow. Higher values of optical thickness induce a 

weak deceleration in the radial flow whereas they increase both axial flow velocity and 

temperature. Increasing optical thickness also reduces radial radiative moment of intensity 

at intermediate axial coordinate values but enhances them at low and high axial coordinate 

values. Extensive validation is conducted with the network thermo-electric simulation 

program RAD-SPICE. The model finds important applications in solar energy porous 

wafer absorber systems, crystal growth technologies and also chemical engineering 

thermal technologies.  
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Nomenclature 

Roman 
a Darcy parameter in Darcy-Forchheimer drag force model (= /K) 

A aspect ratio 

b Forchheimer form drag (second order) parameter in Darcy-Forchheimer drag force model 

D annular gap radius  (= ro-ri ) 

Da Darcy number (dimensionless permeability parameter)  

Fs Forchheimer inertial number  

G  incident radiation 

H height of cylindrical annulus 
g  acceleration due to gravity 

Io dimensionless zero moment of intensity  

io zero moment of radiation intensity 

K permeability of saturated porous medium 

k thermal conductivity of saturated porous medium 

N conduction: radiation heat transfer parameter 

Nu local Nusselt number 

uN
~

 mean Nusselt number 
N+1 number of uniformly discretized axial points Xi (i=1,2,…N+1) in FTCS method 

p pressure 

p reference pressure 

P dimensionless pressure 

p  pressure gradient in Darcy-Forchheimer drag force model 

X

P




 axial pressure gradient 

R

P




 radial pressure gradient 

Pr  Prandtl number 

q
r  -direction radiative heat transfer flux 

q
r  -direction radiative heat transfer flux 

r dimensional radial coordinate 

ri inner cylinder radius  

ro   outer cylinder radius  

r* radius ratio 

R dimensionless radial coordinate 

Ra Rayleigh free convection (buoyancy) number 

Rk  number of radial points =(k-1) R (k=1,2,…) in FTCS difference method 

R radial grid spacing in FTCS difference method 
Th  constant Inner cylinder wall temperature  

Tc  constant outer cylinder wall temperature  

u dimensional axial velocity 

U dimensionless axial velocity 
i

kU   value of U at axial node Xi and at radial node Rk   

v dimensional radial velocity  

V dimensionless radial velocity 

x dimensional axial coordinate 

X  dimensionless axial coordinate 

X axial grid spacing (=1/(N+1)) in FTCS difference method 
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Greek 
  thermal diffusivity of the gray fluid 

 coefficient of thermal expansion 

 dynamic viscosity of the gray fluid in porous medium  

  density of the gray fluid 

 temperature function 

0  optical thickness of the saturated porous medium 

σ Stefan-Boltzmann constant, 

a  absorption coefficient 

  albedo 

 general velocity in Darcy-Forchheimer drag force model 

 dimensionless temperature function 

f dimensionless reference temperature ratio  

 modified viscosity parameter 

 modified thermal diffusivity parameter  

 kinematic viscosity of gray fluid 
 

 

 

1. INTRODUCTION 

Numerical modeling of heat transfer processes in energy systems and technologies has 

developed considerably in the last two decades. This approach provides a relatively 

inexpensive and powerful compliment to experimental and field-based testing of energy 

devices. Numerous techniques have been developed to provide faster and more accurate 

simulations of complex, multi-physical transport processes arising in solar power cells [1], 

hybrid batteries [2], magnetohydrodynamic (MHD) pumps [3], electrohydrodynamic 

(EHD) pumps [4] and other renewable energy systems [5]. Both academic and commercial 

industrial research in energy systems, which is fundamental to mechanical, chemical, 

biomedical and materials processing systems, has benefited immensely from the many 

different computational solvers which have been developed, refined and implemented. 

These include finite element methods [6], alternating direction implicit (ADI) finite 

difference techniques [7], spectral collocation solvers [8], smoothed particle 

hydrodynamics (SPH) which is an alternative mesh-free Lagrangian method  [9], neural 

network and genetic algorithms [10], CFD softwares e.g. FLUENT [11], network 
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simulation codes [12] and control volume computational solvers [13]. Solar energy 

engineering presents a particularly  rich forum for the implementation of advanced 

numerical analysis since the phenomena encapsulated in realistic solar energy simulations 

involve phase change, surface effects, gel systems, transient heat transfer, complex 

geometries, the fluid dynamics of enclosures and of course thermal radiation heat transfer. 

The urgency for green alternatives to current methods also provides a great stimulus for 

expanding research in solar power. Thermal radiation heat transfer is a particularly 

challenging component of solar energy systems modeling since owing to coupling with 

other heat transfer modes, the resulting interaction of conduction, convection and radiative 

heat transfer generates highly nonlinear partial differential equation systems. The principal 

difficulty posed by radiative transfer problems is the complexity of the general equation 

for radiation which is of the integro-differential type, as described by Hottell and Sarofim 

[14]. Even in one-dimensional radiative heat transfer with simple geometries this equation 

can be challenging to solve accurately. Approximation methods are therefore employed to 

simulate radiative effects, in particular where thermal radiation is coupled with thermal 

convection. Examples of these algebraic “flux” approximations include Rosseland’s 

diffusion approximation, Schuster-Schwartzchild two-flux approximation, Jeans P-N 

(spherical harmonics) approximation, the Milne-Eddington differential approximation and 

most complex of all, the Chandrasekhar discrete ordinates (S-N) approximation [14]. 

Several excellent studies have considered thermal radiation effects in solar energy heat 

transfer. Siebers and Viskanta [15] used a dual spectral band model to simulate the coupled 

conductive-convective-radiative heat transfer from the absorber of a flat plate solar 

collector analytically. They showed that a single selective surface on the absorber provides 

the best performance in terms of minimized radiation heat transfer losses. Bohn and Mehos 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Bohn,+M&fullauthor=Bohn,%20Mark%20S.&charset=UTF-8&db_key=PHY
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[16] employed  two-flux, discrete ordinate, and the Monte Carlo methods for radiative 

transport simulation of the radiative intensity field and absorbed solar flux effects in the 

behavior of solar-driven chemical reactors for the case of an axisymmetric cylinder with a 

specified intensity field at one end, diffuse reflection at boundaries, and containing a 

participating medium. Chow and Chan [17] studied solar radiation effects in solar-collector 

orientations for the coastal region of South China, showing that a solar collector facing the 

south-west direction could be most desirable for a wide range of tilt angles, and for 

maximizing the annual yield. Leutz and Annen [18] used a reverse ray-tracing method 

together with a solar radiation heat transfer model to  study the annual energy collection 

efficiency of stationary and quasi-stationary (seasonally tilted) solar concentrators. 

Augustus and Kumar [19] studied parametrically the effects of porosity, airflow rate, solar 

radiation, and solar absorptivity/thermal emissivity on collector efficiency, heat exchange 

effectiveness, air temperature rise and useful heat delivered in unglazed transpired solar 

collectors.  

In the above studies generally only pure fluid regimes were considered. However the 

presence of a porous medium has been shown to have a positive influence in the design of 

solar energy absorbers [20]. Generally for low velocity transport in porous systems the 

Darcian model [21] is implemented. Such a model is only valid when the Reynolds number 

based on the pore size is less than unity i.e. “creeping” flows. For higher velocity flows 

however, beyond a Reynolds number of 10, and in porous media of large pore radius, the 

Darcy model is no longer sufficient to accurately simulate porous media hydrodynamic 

effects since it neglects inertial drag forces and also boundary vorticity diffusion (Brinkman 

friction) effects which become significant at higher velocities and near enclosing 

boundaries, respectively. Kleinstreuer and Chiang [22] studied numerically the porous-
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medium flat-plate solar collector as an alternative to conventional fin-and-tube designs 

using  a non-Darcy flow equation and convection-conduction heat transfer equation, 

showing that the porous medium results in high-performance efficiency compared with 

advanced tubular-type collectors. Bég et al. [23] studied the dissipative thermal convection 

flow in Darcy-Brinkman porous media using a numerical difference scheme for a wide 

range of Eckert numbers. Rabadi and Mismar [24] designed two solar energy collectors 

employing curved channel technology and porous media (with a porosity of 0.1453) aimed 

at enhancing heat transfer performance and for extra energy storage capability. The porous 

medium was shown to strongly reduce the rate of decline in water temperature to 

approximately half its value for the non-porous medium case. Other studies of thermal 

convection in porous media with applications in solar energy absorber modeling and other 

topics have been discussed at length by Nield and Bejan [25]. Several studies have 

examined thermal radiation effects on convection in Darcy-Forchheimer porous media. 

Takhar et al [26] used the Keller-Box implicit difference solver to simulate combined 

radiation-convection flow in non-Darcy porous media with the Cogley-Vinceti-Giles 

differential radative equilibrium approximation and viscous dissipation effects. Nagaraju 

et al. [27] studied the composite radiative-convective heat transfer in a variable-porosity 

medium using the Schuster-Schwatrzchild two-flux radiation approximation. Bég and 

Takhar [28] obtained numerical solutions for heat transfer in second order viscoelastic fluid 

from a wedge embedded in Darcy-Forchheimer-Brinkman porous media with the 

Rosseland radiation model. Bég et al. [29] investigated the mixed radiation-convection 

flow of an optically dense viscous fluid in a non-Darcy porous medium using a diffusion 

approximation. Transient radiation-convection flow in porous media have also been 

studied for the Darcian case and non-Darcian case, respectively by Bég et al. [30, 31] 
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using Network Simulation Methodology (NSM). A more complex thermal radiation model, 

the P1 spherical harmonics model however has been shown by Bouallou and Sacadura [32] 

to more accurately predict radiative heat transfer in the optically-thick limit in enclosures, 

compared with the Schuster flux model or the Rosseland model. In the present article we 

therefore study theoretically and computationally the combined thermal convection and 

radiative heat transfer flow of an absorbing, emitting and non-scattering gray fluid in a 

cylindrical porous annulus system containing a Darcy-Forchheimer porous medium using 

a numerical method. The P-1 radiative approximation is employed and requires numerical 

solution of a supplementary radiative heat transfer partial differential equation, in addition 

to the energy conservation and momentum conservation equations. We study the influence 

of radiation-conduction parameter, Rayleigh number, optical thickness, Darcy number, 

Forcheimmer number and aspect ratio on the velocity, radiative moment of intensity and 

temperature field distributions in the annular regime. The study is relevant to hybrid porous 

media solar cell collectors. 

 

2. MATHEMATICAL THERMAL CONVECTION-RADIATION MODEL 

We study the hydrodynamics and heat transfer of an incompressible, absorbing, emitting 

and non-scattering, gray, Newtonian fluid in an anisotropic, non-Darcian, porous medium 

filling a vertical cylindrical annulus enclosure possessing “black” walls. The physical 

regime is depicted below in figure 1. The upper and lower surfaces of the enclosure are 

adiabatic. The P1-radiative transfer model is adopted from the Traugott analysis [33]. 

Bayazitoglu and Higenyi [34] have indicated that the P1 model provides accuracy of about 

90% for optical thicknesses up to unity. It is therefore a superior radiative model to, for 

example, the popular Rosseland diffusion flux model [35, 36]. The P1-model for two-
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dimensional systems with general coordinates (,) may be expressed as follows, 

following Weng and Chu [37]: 
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where qr is the -direction radiative heat transfer flux, qr is the -direction radiative heat 

transfer flux, G denotes the incident radiation, 0 is the optical thickness of the medium,  

is the albedo and  is a temperature function. The gradients of the functions in (2) and (3) 

are therefore introduced into the energy conservation equation in the present problem. For 

two-dimensional axisymmetric porous isotropic flow, in an (X,R) i.e. axial-radial 

coordinate system, we shall utilize a single permeability (K) in the axial and radial 

directions to simulate porous media hydraulic conductivity. We implement the Darcy–

Forchheimer model which is a second order relationship defining the pressure gradient as: 

2 bap       (4) 

where  denotes a general velocity, p is pressure gradient, a and b are constants defined 

by a= /K and b is a function of the geometry of porous medium  i.e. b is the Forcheimmer 

form-drag parameter for quadratic effects and  is the dynamic viscosity of the gray fluid. 

The flow regime is illustrated in figure 1 below. The inner cylinder has a radius ri and is 

maintained at isothermal conditions (temperature Th); the outer cylinder has radius ro  and 



 9 

is also at constant temperature, Tc. The X-coordinate is directed along the vertical axis 

parallel to the height dimension of the system and the radial coordinate is normal to this. 

The regime is one of buoyancy and simulated via the Boussinesq approximation.  When 

the radiative flux equations (2) and (3) are included in the generalized Navier-Stokes 

equations in an axisymmetric coordinate system, neglecting tangential momentum 

contributions, the dimensionless conservation equations can be shown to take the form: 
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Radial (R-direction) Momentum Conservation 
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Energy (Heat) Conservation 

])1[()]()([
1

]
)()(

[
1

0

4

2

0
I

NR
R

RX
R

XRR

RV

X

RU

R f

f
































 
 (8) 

Radiative Transfer Equation 
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where X = 
D

x
and 

D

r
R   are dimensionless axial and radial coordinates, 



uD
U   and 



vD
V   are dimensionless axial and radial velocity components in the X and R directions, 

2)/( D

pp
P




  is dimensionless pressure,  is thermal diffusivity of the gray fluid,  is 

density of the gray fluid,
ch

c

TT

TT




  is dimensionless temperature function, 

ch

c

f
TT

T


 is dimensionless reference temperature ratio, 

3
4 c

a

T

k
N




  is the conduction: 

radiation heat transfer parameter, 
4

4 c

o
o

T

i
I


  is the dimensionless zero moment of 

intensity in which io is zero moment of radiation intensity, σ is the Stefan-Boltzmann 

constant, Da 0  is optical thickness where a is the absorption coefficient, 
D

H
A   is 

the aspect ratio, 
o

i

r

r
r *  is the radius ratio, D = ro-ri is annular gap radius,  




Pr  is the  

Prandtl number, 


 3)( DTTg
Ra ch   is the Rayleigh free convection (buoyancy) number, 

2D

K
Da  is the Darcy number (dimensionless permeability parameter) for both radial and 

axial directions, 
L

b
Fs   is the Forchheimer inertial number for both radial and axial 

directions,  is a modified viscosity parameter,  is a modified thermal diffusivity  

parameter,  is density of gray fluid,  is coefficient of thermal expansion,  is kinematic 

viscosity of gray fluid,  is the Stefan-Boltzmann constant,  k is thermal conductivity, g is 
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acceleration due to gravity. In equation (6)  PrRa  is the buoyancy (free convection) 

term, coupling the axial momentum equation (6) to the energy equation (8). Also in Eqn. 

(6) the penultimate term on the right hand side is the axial Darcian drag force and the last 

term is the axial Forchheimer drag force. Similarly in equation (7) the penultimate term is 

the radial Darcian impedance and the final term on the right hand side is the radial 

Forchheimer impedance. The corresponding boundary conditions are as follows: 

At  R= 1/(r*-1):  U = V = 0,  =1,  
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In practical solar engineering design, the boundary heat transfer rates for the annulus are 

important. We may therefore define the local Nusselt number on the inner vertical cylinder 

and the outer vertical cylinder, which take the form: 
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where the appropriate value for the radius is used for the two cases. Additionally a mean 

Nusselt number may be computed by integrating the local Nusselt number along the 

cylindrical wall surface, viz: 

 dXNu
A

uN

A


0

1~
     (15) 

 

A number of special cases can be derived from the transformed momentum, energy and 

radiative transfer equation (5) to (9). As Fs   0, inertial porous hydromechanical drag 

effects vanish and the regime becomes a purely Darcian (isotropic) porous medium. With 

Da   and Fs   0, all porous hydrodynamical body forces vanish. This implies that the 

porous matrix permeability becomes infinite so that the regime is purely fluid in the 

annulus. Equations (6) and (7) are therefore reduced to the model solved by Weng and Chu 

[37] with the same boundary conditions, although their study infact ignores variation of 

Prandtl number.  As Ra   0, buoyancy forces vanish and only the X-direction (axial) 

momentum equation (6) is affected. With N   , radiative heat transfer effects are negated 

and this affects the energy conservation equation (8); the radiative transfer equation (9) 

also vanishes.  

 

3. FTCS NUMERICAL SIMULATION  

Numerical solutions to the governing transformed partial differential equations (5) to (11) 

under boundary conditions (12) to (15) are to be obtained using a robust finite difference 

numerical method. We utilize a well-tested, versatile, explicit numerical scheme which is 

forward in time and central in space [38]. This scheme has been successfully applied to a 

variety of complex geometric and material non-linear fluid dynamics problems [39-41]. 
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According to this scheme the various axial and radial partial derivatives of U, V, , OI  

appearing in (5)-(9) are approximated as, for example: 
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where for instance, i

kU  denotes the value of U at axial node Xi and at radial node Rk.  

Similar expressions for other partial derivatives may then be derived. With the aid of Eqns. 

(5)-(9), the numerical solution can be generated for (N+1) uniformly discretized points Xi 

(i=1,2,…N+1), with an axial grid spacing of X=1/(N+1), and at radial points Rk =(k-1) 

R (k=1,2,…), with a radial grid spacing of R. Test computations are performed  for the 

present case. A stable solution with an accuracy of 710  is achievable.  
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4. VALIDATION WITH NETWORK SIMULATION METHOD (NSM) 

To verify the accuracy of the FTCS computations, we have also solved the nonlinear 

boundary value problem with a modified version of the electro-thermal solver, PSPICE 

[42], namely RAD-PSPICE. The transformed partial differential equations (8) to (10) 

subject to the temporal and spatial boundary conditions (11) have been solved with the 

RAD-PSPICE Network Simulation Method software (NSM) approach in a MATLAB 

environment. This technique is founded on the thermo-electrical analogy and has been 

implemented in many diverse areas of applied mechanics, thermal sciences and fluid 

dynamics, being equally adept at solving linear and non-linear, steady or transient, 

hydrodynamic or coupled transport problems. Network  simulation methodology uses  the  

network theory of  thermodynamics,  in  which  flux-force  relationships  in  dynamical  

systems  are  modelled  using  electric  networks.  NSM effectively exploits the  formal  

similarities  between  the  mathematical  structure  underlying  different  phenomena  with  

the  same  balance  and  constitutive  equations and intrinsic to this approach is the design 

of an “analogous electric  circuit”  which  possesses  the  same  balance  and  constitutive  

equations  as  the  physical  problem  of  interest.  NSM was introduced by Nagel [42] 

originally for semi-conductor and transient electrical circuit problems. It has also been 

implemented in magnetic tribology (squeeze films for spacecraft landing gear) [43], 

magnetic biopolymer materials processing [44], magneto/electro-rheological (M/ER) 

smart lubrication systems for earthquake shock protection (seismic bearings) [45], electro-

kinetic stabilization of geotechnical materials [46], stratified materials processing flows 

[47] and rotating Couette flows [48]. Discretization of the differential equations is founded 

on the finite-difference methodology, where only a discretization of the spatial co-ordinates 

is necessary. Numerical differentiation is implicit in such methods and some expertise is 
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required in avoiding numerical diffusion, instability and convergence problems. NSM 

simulates the electrical variable of voltage as being equivalent to the velocities (U,V), 

temperature ()  and dimensionless zero moment of radiation intensity (Io), while the 

electrical current is equivalent to the velocity flux e.g. (∂U/∂X, ∂V/∂R), temperature flux 

e.g. (∂/∂X, ∂/∂R) and radiation intensity flux e.g. (∂Io/∂X, ∂ Io/∂R)). A network electrical 

model for each volume element is designed so that its electrical equations are formally 

equivalent to the spatial discretized equation. The whole network model, including the 

devices associated with the boundary conditions, is solved by the modified numerical 

computer code Pspice [49]. Fourier’s  law  is  utilized  in  the  spatial  discretization  of  

the  dimensionless  transport  equations.  The  electrical  analogy  is  applied  to  the  

discretized  equations  together  with  Kirchhoff´s  law  for  electrical  currents. To 

implement the boundary conditions,   constant   voltage   sources   are   employed   for    

velocity, temperature and concentration.  Time remains as a real continuous variable.  

Researchers need not manipulate the finite difference differential equations to be solved 

nor expend effort in convergence exercises.  The   principal  advantage of NSM is that it 

negates the requirement in standard numerical finite  difference  schemes of  manipulation  

of  difference  equations  and  the  constraints  of  specified  yardsticks  around  the  

convergence  of  numerical  solutions. Details of the discretization and electronic network 

diagram construction have been provided in many previous studies and the reader is 

referred to Bég et al. [49]. The MAG-PSPICE code is designated the “electric circuit 

simulator”. Nagel [42] has elucidated in detail the local truncation errors present in the 

original SPICE algorithm. A necessary criterion for using RAD-SPICE effectively is a 

familiarity with electrical circuit theory. Momentum, temperature and concentration 

balance “currents” are defined systematically  for  each  of  the  discretized  equations  and  
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errors  can  be  quantified  in  terms  of the quantity of control volumes. The user however 

needs to program a customized protocol file, (file “RadNetwork.cir”). This program rapidly 

generates the file for execution in RAD-PSPICE, and the program permits the reading of 

the solutions provided by RAD-PSPICE (file “RadNetwork.out”).  Following the 

simulations, the code plots waveform results so the designer can visualize circuit behavior 

and determine design validity. Graphical  results of  each  simulation  are  presented  in  the 

RAD-PSPICE  “Probe  window  waveform  viewer” and  analyzer,  where  it  is  possible  

to  see  the  velocity, temperature  and concentration  field at any  point  of  the boundary 

layer.  A summary of the procedure is given in Fig. 2 below. NSM implements the most 

recent advances in software in the resolution of electrical networks to solve diverse types 

of partial differential equations which may be elliptical, hyperbolical, parabolic, linear, 

non-linear and 1-, 2- or 3-dimensional. At least one of the FTCS finite difference 

computations in each validated graph has been closely verified with RAD-PSPICE. The 

NSM (RAD-PSPICE) solutions are given the      symbol in selected graphs (Figs. 3-10) 

presented. The FTCS computations are therefore shown to be highly accurate as 

corroborated by an independent numerical simulation tool. Although simpler models do 

exist with which we can benchmark very special reduced cases of the general model 

presented in the current article, we have opted to validate the general model including all 

hydrodynamic and heat transfer effects. This is a significantly more zealous approach and 

confirms general solutions obtained by the FTCS code with the RAD-SPICE code. 

Moreover, it provides extensive confidence to other researchers who may wish to extend 

the present model to for example non-Newtonian flow and are therefore provided with 

solutions to validate their own programs. 
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5. NUMERICAL RESULTS AND DISCUSSION 

In the present study we present an extensive range of FTCS solutions. Figs 3-10 include 

RAD-SPICE validation. The nonlinear boundary value problem entails 4 variables to 

compute in the axial (X) and radial (R) direction i.e. U, V, , Io. The regime conservation 

equations and boundary conditions are controlled by 9 thermo-physical parameters: Pr, Ra, 

Da, Fs, , , 0, f, N and 2 geometric parameters i.e. A  and ri. We note that  
D

H
A   i.e. 

aspect ratio, represents the ratio of height of the cylinders to the gap radius, H height 

of cylindrical annulus,  D (= ro-ri) and  
o

i

r

r
r *  is the radius ratio and generally for an 

annular regime ro> ri. For example for ro= 2ri, r* = 0.5, for ro= 4ri, r* = 0.25. We consider 

the case of constant axial and radial pressure gradients, so these parameters may be 

prescribed unity values i.e.  In Eqn (6), 
X

P




 = -1 and in Eqn (7), 

R

P




 = -1. We primarily 

study the effects of Ra, Da, Fs, N, A and 0. In the plots dimensionless radius, R, is denoted 

by numerical r. Generally we prescribe Pr = 2.0 (water-based suspensions), Da = 0.1 (very 

high permeability), Fs = 1 (weak quadratic porous drag) are prescribed. 

Evidently in fig. 3 an increase in Rayleigh number accelerates the axial flow. With Ra > 1, 

the thermal buoyancy force exceeds the viscous hydrodynamic force. This aids momentum 

development and increases velocities. The axial velocity profiles also evolve from a plateau 

structure at lower Rayleigh numbers to a more parabolic nature at higher Rayleigh 

numbers. The Rayleigh number, 


 3)( DTTg
Ra ch  , arises only in the axial momentum 

eqn. (6) and couples this equation to the energy eqn.  (8) via the term, Ra Pr. Although 

linear, this term has a profound effect on the interaction of heat transfer and momentum in 
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the regime. Fig. 4 presents the temperature variation across the annular zone with variation 

in Rayleigh number. At low radial coordinate values, the temperature is found to be 

enhanced with greater Ra i.e. increasing thermal buoyancy force; however at further radial 

values the opposite behavior becomes apparent. The Rayleigh numbers required to achieve 

a change in temperature are orders of magnitude greater than for the velocity field. 

Momentum is therefore extremely sensitive to buoyancy effects whereas temperature field 

is much less responsive. Velocity vanishes at the initial and final radial coordinate values, 

whereas temperature has a non-zero value here in accordance with the specified boundary 

conditions. Temperatures at r=0 are however in excess of those at r= 2, irrespective of the 

Rayleigh number value. Fig. 5 illustrates the effect of Rayleigh number on dimensionless 

zero moment of intensity (I0) in the axial direction. In the present study we have aimed to 

directly address the response of this radiative heat transfer characteristic, in addition to 

elucidating the effect of conduction-radiation parameter (N), rather than indirectly studying 

solely the influence of radiative heat transfer on velocity and thermal fields. The former 

direct methodology has been followed by Bouallou and Sacadura [32]. The latter indirect 

approach yields very limited understanding of the physics of radiative heat transfer- it is an 

approach that was adopted for example by Weng and Chu [37]. Evidently I0 magnitudes 

are suppressed with increasing Rayleigh number; they are observed to peak at central axial 

coordinate values. There is very strong dual coupling between the energy (temperature) 

field in eqn. (8) and the radiative field i.e. eqn. (9). For example in the former we observe 

the algebraic term ].)1[( 0

4

2

0
I

N f

f








In this term only,  

3
4 c

a

T

k
N




  i.e. the 

conduction: radiation heat transfer parameter also arises. In the latter, another algebraic 

term arises, viz: ])1([3 4

0

2

0 





f

I . In both terms zero moment of intensity is linear 
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whereas in the former temperature is both linear and quartic, whereas in the latter it is a 

quartic term. Despite these terms, physically the Rayleigh number only exerts a very weak 

influence on radiative field. The dominant influence is on the velocity field owing to the 

buoyancy effect. Fig. 6 shows that moment of intensity, Io, exhibits a montonic decay in 

the radial direction, distinct from the parabolic distribution in the axial direction (fig. 5). 

Once again there is a marginal reduction in radiative moment of intensity with a very 

significant rise in Rayleigh number (thermal buoyancy effect). 

Figs. 7-11 illustrate the influence of the permeability parameter i.e. Darcy number on 

velocity, temperature and radiative moment of intensity distributions. Radial velocity (fig. 

7) is found to be strongly increased with a rise in Darcy number. Da appears as a 

denominator in the axial Darcian and Forchheimer drag force terms, 2,
1

U
Da

Fs
U

Da
   

in eqn (6) and the  radial Darcian and Forchheimer drag force terms, 2,
1

V
Da

Fs
V

Da
 

in eqn (7). As Da increases the medium becomes progressively more fluid with lesser and 

lesser solid fibers present. This depletes both the Darcian and Forchheimer impedances, 

with constant  (viscosity parameter),  (thermal diffusivity parameter) and Fs 

(Forchheimer number). This leads to acceleration in the radial flow (fig. 7). A weak 

increase in temperature (fig. 8) also accompanies increasing Darcy number, in the axial 

direction. However the effect of greater Darcy number values on radial temperature 

distribution, albeit assistive, is very weak (fig. 9). Marginal elevation in radiative zero 

moment of intensity is also computed in both axial (fig. 10) and radial (fig. 11) directions. 

Figs. 12-14 depict the evolution of axial and radial velocity components and temperature, 

with different Forchheimer numbers. Contrary to the Darcy number, which appears as a 

denominator in both Darcian and Forchheimer drag forces, as elaborated earlier, 
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Forchheimer number arises only as a numerator in  terms, 2U
Da

Fs
  and  2V

Da

Fs
 . 

Although Forchheimer drag is second order and is related to high velocity flow, it increases 

as the flow velocity increases. This leads to a substantial deceleration in both axial (fig. 

12) and radial (fig. 13) flow with increasing Fs values. Therefore greater Fs values will 

decrease viscous diffusion rate. This will also oppose energy diffusion. Temperatures (fig. 

14) are therefore also reduced with greater Forchheimer effect. Higher velocity flow in the 

porous medium therefore acts to depress temperatures. The Forchheimer number is related 

more to the geometry of the porous medium and is an inertial effect, as opposed to the 

Darcy number which is a global representation of the medium permeability. The general 

trends reported in figs 12-14 concur with earlier studies by other researchers, for example 

Dybbs and Edwards [50]. Although we have examined Fs influence on radiative moment 

of intensity, no tangible changes were observed and therefore both axial and radial 

distributions are omitted here.  

Fig. 15 presents the response of temperature to a variation in conduction-radiation 

parameter, 
3

4 c

a

T

k
N




 . This parameter features as a denominator in the energy eqn. (8), 

viz ].)1[( 0

4

2

0
I

N f

f




 
 As N increase in value the radiative contribution is decreased 

and conductive heat transfer contribution is increased. For N = 1 both modes of heat transfer 

contribute equally. As N, the radiative contribution vanishes and thermal conduction 

dominates.  Fig. 15 shows that a significant decrease in temperature is induced with greater 

N values. The temperature is maximized for lowest N value of 0.1 i.e. strongest thermal 

radiation case and minimized for the largest value of N = 1.2 i.e. weakest thermal radiation 
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case. Thermal radiation therefore exerts the correct effect on temperature distributions i.e. 

heats the saturated porous medium by introducing significant thermal energy. 

Figs 16-19 exhibit the variation in axial and radial velocity, temperature and radiative 

moment of intensity with a change in the annulus aspect ratio (A).  
D

H
A   which defines 

the ratio of height of the cylinders to the gap radius, D (= ro-ri ). For A>>1, taller and 

narrower cylindrical annular zones arise and with A<<1 shorter and wider geometries are 

produced.  In the former case therefore axial dimensions exceed radial dimensions and vice 

versa for the latter case. This parameter is therefore very important from the view point of 

solar collector design. In earlier plots we have considered only A= 2 i.e. the annulus is 

twice as high as it is wide, for which symmetrical axial velocity distributions were 

computed (e.g. fig. 4). In figs. 16 and 17, we observe that as A increases from 1 through 2, 

5 to 10, both axial and radial flow are accelerated. However the parabolic distribution of 

axial flow (fig. 16) at low aspect ratio is transformed to a strong plateau distribution at large 

aspect ratio i.e. the profiles are evened out in the axial direction. The radial flow is not 

affected in this way- for any aspect ratio a homogenous profile is obtained across the radial 

gap (fig. 17). Magnitudes of axial velocity are however greater at higher aspect ratio than 

corresponding radial velocities. The constriction in geometry of the annulus with greater 

aspect ratio results in a slight decrease in temperature (fig. 18) whereas it leads to a strong 

elevation in radiative moment of intensity, this being sustained for all radial coordinates 

(fig. 19). Evidently geometrical configuration of the medium has a marked influence on 

the propagation of thermal radiation and momentum diffusion, whereas it has a weak 

influence on thermal diffusion. Since greater radiative moment of intensity is associated 

with better solar collector performance, it would appear that taller and slender solar 
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collectors achieve enhanced efficiency compared with shorter and wider cells. Indeed this 

has been noted in several experimental studies of solar cell performance, notably [51 - 53].   

Finally figs. 20-25 illustrate the effect of optical thickness (0), a key radiative property, on 

thermofluid characteristics. In the vast majority of radiative-convective studies, optical 

thickness is assumed to be either very small (optically thin approximation) or very large 

(optically thick approximation). The latter results in a Rosseland-type diffusive flux model 

[54]. These extreme values of optical thickness are not representative of real media in solar 

collectors. More robust values correlating with solar cell design fall between 0.1 and 1, and 

these are implemented in the present computations. As optical thickness (optical depth) 

increases, thermal radiation is better attenuated in the medium and this induces heating. 

Optical thickness is a dimensionless quantification of how much a given medium retards 

the passage of thermal radiation. Radiative intensity falls by an exponential factor when 

optical thickness is unity. Physically optical thickness will be a function of absorption 

coefficient, medium density and propagation distance. Strong axial flow acceleration is 

generated with greater optical thickness (fig. 20) whereas weak radial deceleration (fig. 

21) is produced. Figs. 22 and 23 show that both axial and radial temperature distributions 

are strongly enhanced as the medium becomes more optically thick. Higher temperatures 

are observed in the radial direction however. Lord and Arpaci [55] have observed a strong 

increase in temperatures with increasing optical thickness- this trend is confirmed in the 

present study. A weak decrease in radiative moment of intensity distribution with radial 

coordinate is caused with increasing optical thickness (fig. 24). Conversely at low and high 

axial coordinates, radiative moment of intensity is elevated with optical thickness whereas 

at intermediate axial coordinate values it is depressed. Optical thickness therefore exerts a 

consistent and negative effect in the radial direction whereas the influence is more complex 
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in the axial direction (fig. 25). This has important implications in optimized solar cell 

design. 

 

6. CONCLUSIONS 

An axisymmetric (X, R) dimensionless heat transfer model has been developed for the 

radiative-convective flow of a gray fluid in an absorbing-emitting fluid-saturating a porous 

medium contained in a cylindrical annulus regime, as a simulation of a hybrid solar energy 

collector system. The Traugott P1-Differential radiative transfer model has been used to 

analyze radiative flux and transpose the general integral radiative equation to a partial 

differential equation. The nonlinear Darcy-Forcheimmer porous medium drag force model 

is utilized with isotropic permeability (i.e. the same permeability in both the radial (R) and 

axial (X) directions), in order to study the effects of more complex porous absorber 

materials on the thermofluid dynamics. A finite difference numerical scheme has been 

employed to compute the velocity, temperature and radiation intensity distributions in the 

regime, for the effects of conduction-radiation parameter (N), Forcheimmer parameter 

(Fs), Rayleigh buoyancy number (Ra), annulus aspect ratio (A), Darcy number (Da) and 

optical thickness (0). Greater aspect ratio has been shown to generally accelerate flow and 

enhance radiative moment of intensity. Larger Darcy number and Forchheimer number, 

respectively accelerate and decelerate the axial and radial flow. With greater optical 

thickness of the saturated porous medium, radial flow is weakly retarded, axial flow is 

accelerated, temperatures are enhanced, however radial distributions of radiative moment 

of intensity are slightly depressed whereas at high and low axial coordinate values, 

radiative moment of intensity values are boosted. The current study has applications in 

hybrid porous media absorber solar energy systems. Although quite sophisticated 
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characteristics have been studied herein, the work can be refined to examine slip flows [56] 

and furthermore non-Newtonian working fluids [57]. 
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FIGURES 

 

Figure 1: Radiative convection in a cylindrical isotropic porous medium annulus 

 

 

 

 

Fig. 2: RAD-PSPICE network simulation methodology  
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Fig 3: Axial velocity (U) versus radius (at X = 1) for Pr =7.0, Da = 0.1, Fs = 1,  =1,  

=1, 0 = 0.1, f =0.5, N = 1, A = 2, ri = 0.5. [RAD-SPICE case validated for Ra =5] 

 

 

Fig 4: Temperature () versus radius (at X = 1) for Pr = 2.0, Da = 0.1, Fs = 1,  =1,  

=1, 0 = 0.1, f =0.5, N = 1, A = 2, ri = 0.5 for various Rayleigh numbers. [RAD-SPICE 

case validated for Ra =1000] 
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Fig 5: Dimensionless zero moment of intensity (I0) versus X (at R = 1) for Pr =2.0, Da = 

0.1, Fs = 1,  =1,  =1, 0 = 0.1, f =0.5, N = 1, A = 2,  ri = 0.5  for various Rayleigh 

numbers. [RAD-SPICE case validated for Ra =100] 

 

Fig. 6: Dimensionless zero moment of intensity (I0) versus radial coordinate (at X = 1) for 

Pr =2.0 (water), Da = 0.1 (high permeability), Fs = 1 (weak quadratic porous drag),  

=1,  =1, 0 = 0.1, f =0.5, N = 1, A = 2, ri = 0.5 for various Rayleigh numbers.[RAD-

SPICE validation for Ra =10] 
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Fig. 7: Radial velocity versus X (at R = 1) for Pr =2.0, Ra = 10, Fs = 1,  =1,  =1, 0 = 

0.1, f =0.5, N = 1, A = 2,  ri = 0.5  for various Darcy numbers. [RAD-SPICE  validation 

for Da =0.1] 

 

 

 

Fig. 8: Temperature () versus axial coordinate (X) at R = 1, for Pr =2.0, Ra = 10, Fs = 

1,  =1,  =1, 0 = 0.1, f=0.5, N = 1, A = 2,  ri = 0.5 for various Darcy numbers. [RAD-

SPICE validation for Da= 0.1] 
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Fig. 9: Temperature () versus radial coordinate  at X = 1, for Pr =2.0, Ra = 10, Fs = 1, 

 =1,  =1, 0 = 0.1, f=0.5, N = 1, A = 2,  ri = 0.5  for various Darcy numbers. [RAD-

SPICE validation for Da= 1] 

 

 

Fig. 10: Dimensionless zero moment of intensity (I0) versus axial coordinate (X) at R = 1, 

for Pr =2.0, Ra = 10, Fs = 1,  =1,  =1, 0 = 0.1, f =0.5, N = 1, A = 2,  ri = 0.5  for 

various Darcy numbers. [RAD-SPICE validation for Da= 1] 
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Fig. 11: Dimensionless zero moment of intensity (I0) versus radial coordinate at X = 1, for 

Pr =2.0, Ra = 10, Fs = 1,  =1,  =1, 0 = 0.1, f =0.5, N = 1, A = 2,  ri = 0.5  for various 

Darcy numbers. 

 

 

Fig. 12: Axial velocity (U) versus X (at R = 1) with Pr =2.0, Ra = 10, Da = 0.1,   =1,  

=1, 0 = 0.1, f =0.5, N = 1, A = 2,  ri = 0.5 for various Forchheimer numbers. 
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Fig. 13: Radial velocity (V) versus radius (at X = 1) with Pr =2.0, Ra = 10, Da = 0.1,   

=1,  =1, 0 = 0.1, f =0.5, N = 1, A = 2, ri = 0.5 for various Forchheimer numbers. 

 

 

 
Fig. 14: Temperature () versus axial coordinate, X, at R = 1 and  versus R (at X = 1) 

for Pr =2.0, Ra = 10, Da = 0.1,   =1,  =1, 0 = 0.1, f =0.5, N = 1, A = 2,  ri = 0.5  for 

various Forchheimer numbers. 
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Fig. 15: Temperature () versus axial coordinate (X) at R = 1 with Pr =2.0, Ra = 10, Da 

= 0.1,  Fs = 1,  =1,  =1, 0 = 0.1, f =0.5, A = 2,  ri = 0.5 for various conduction-

radiation parameters. 

 

 

Fig. 16: Axial velocity (U) versus axial coordinate (X), at R = 1, with Pr =2.0, Ra = 10, 

Da = 0.1, Fs = 1,  =1,  =1, 0 = 0.1, f =0.5, N = 1, ri = 0.5 for various aspect ratio 

values. 

0 0.5 1 1.5 2
0.16

0.17

0.18

0.19

0.2

0.21

0.22

x



 

 

N = 0.1

N = 0.25

N = 0.5

N = 0.75

N = 1.2

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0.05

0.06

x

u

 

 

A = 1

A = 2

A = 5

A = 10



 37 

 

Fig. 17: Radial velocity (V) versus radial coordinate at X = 1 with Pr =2.0, Ra = 10, Da 

= 0.1, Fs = 1,  =1,  =1, 0 = 0.1, f =0.5, N = 1, ri = 0.5 for various aspect ratio values. 

 

 

Fig. 18: Temperature () versus radial coordinate, at X = 1, with Pr =2.0, Ra = 10, Da = 

0.1,  Fs = 1,  =1,  =1, 0 = 0.1, f =0.5, N = 1, ri = 0.5  for various A values (1, 2, 5, 

10). 
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Fig. 19: Dimensionless zero moment of intensity (I0) versus radial coordinate at X = 1, 

with Pr =2.0, Ra = 10, Da = 0.1,  Fs = 1,  =1,  =1, 0 = 0.1, f =0.5, N = 1, ri = 0.5  

for various aspect ratios.  

 

Fig. 20: Axial velocity (U) versus X, at R = 1, with Pr =2.0, Ra = 10, Da = 0.1,  Fs = 1,  

=1,  =1, f =0.5, N = 1, ri = 0.5, A = 2  for various optical thickness (0) values. 
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Fig. 21: Radial velocity (V) versus radial coordinate at X = 1, with Pr =2.0, Ra = 10, Da 

= 0.1,  Fs = 1,  =1,  =1, f =0.5, N = 1, ri = 0.5, A = 2  for various optical thickness 

(0) values. 

 

Fig. 22: Temperature () versus axial coordinate (X) at R = 1, with Pr =2.0, Ra = 10, Da 

= 0.1,  Fs = 1,  =1,  =1, f =0.5, N = 1, ri = 0.5, A = 2 for various optical thickness (0) 

values. 
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Fig. 23: Temperature () versus radial coordinate at X = 1, with Pr =2.0, Ra = 10, Da = 

0.1,  Fs = 1,  =1,  =1, f =0.5, N = 1, ri = 0.5, A = 2  for various optical thickness (0) 

values. 

 

Fig. 24: Dimensionless zero moment of intensity (I0) versus radial coordinate at X = 1, 

with Pr =2.0, Ra = 10, Da = 0.1,  Fs = 1,  =1,  =1, f =0.5, N = 1, ri = 0.5, A = 2  for 

various optical thickness (0) values.  
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Fig. 25: Dimensionless zero moment of intensity (I0) versus axial coordinate (X) at R = 1 

with Pr =2.0, Ra = 10, Da = 0.1,  Fs = 1,  =1,  =1, f =0.5, N = 1, ri = 0.5, A = 2  for 

various optical thickness (0) values.  
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