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Abstract:   

Gliding bacteria are an assorted group of rod-shaped prokaryotes that adhere to and glide on certain 

layers of ooze slime attached to a substratum. Due to the absence of organelles of motility, such 

as flagella, the gliding motion is caused by the waves moving down the outer surface of these rod-

shaped cells. In the present study we employ an undulating surface model to investigate the 

motility of bacteria on a layer of non-Newtonian slime. The rheological behavior of the slime is 

characterized by an appropriate constitutive equation, namely the Carreau model. Employing the 

balances of mass and momentum conservation, the hydrodynamic undulating surface model is 

transformed into a fourth-order nonlinear differential equation in terms of a stream function under 

the long wavelength assumption. A perturbation approach is adopted to obtain closed form 

expressions for stream function, pressure rise per wavelength, forces generated by the organism 

and power required for propulsion. A numerical technique based on an implicit finite difference 

scheme is also employed to investigate various features of the model for large values of the 

rheological parameters of the slime. Verification of the numerical solutions is achieved with a 

variational finite element method (FEM). The computations demonstrate that the speed of the 

glider decreases as the rheology of the slime changes from shear-thinning (pseudo-plastic) to 

shear-thickening (dilatant). Moreover, the viscoelastic nature of the slime tends to increase the 

swimming speed for the shear-thinning case. The fluid flow in the pumping (generated where the 

organism is not free to move but instead generates a net fluid flow beneath it) is also investigated 

in detail. The study is relevant to marine anti-bacterial fouling and medical hygiene biophysics. 

Keywords: Carreau non-Newtonian fluid, bacterial gliding, shear-thinning, shear-thickening, perturbation 

expansions, finite difference method (FDM), finite element method (FEM), propulsive force. 
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1. INTRODUCTION 

Gliding is a mode of locomotion adopted by taxonomically heterogeneous rod-shaped prokaryotic 

bacteria on solid substrata. Gliding bacteria are generally Gram-negative and do not possesses 
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organelles of motility, such as flagella. Some common examples of gliding bacteria include 

vitresalla, oscillatoria, flexibector and cystobacter. The complex mechanisms by which these 

organisms achieve motility is still not fully understood, and such mechanisms may differ 

substantially among various species. Nearly all gliding bacteria as they move over a surface leave 

a trail of sticky liquid or slime [1]. Possible mechanisms of gliding which have been postulated 

include the presence of fimbriae-like appendages at the pole of gliding cell, generation of 

peristaltic waves, surface tension or pushing by secreted slime [2]. However, there is no conclusive 

evidence in support of any one particular mechanism of motility. Most of the gliding bacteria are 

less than 10 m  long and 1 m  in diameter. It is therefore not possible to make direct observations 

of their propulsion machinery. It is desired that any proposed mechanism of gliding motility must 

satisfy certain requirements in order to be acceptable. These are three-fold. Firstly the model must 

explain the observed behavior of the glider. Secondly the model must incorporate a power 

requirement for the motor. Thirdly the motor should be related to molecular structures within the 

organism [3-6]. It has been observed that gliding motility is often used by bacteria to their 

advantage. For instance, it helps many aerobic chemoheterotrophic bacteria to search for insoluble 

macromolecular substrates such as cellulose and chitin. Gliding is also well adapted to drier 

habitats and to movement within solid masses including soil, sediments and rotting wood. 

Furthermore, gliding motility enables bacteria to position themselves in optimal conditions of light 

intensity, oxygen, hydrogen sulphide, temperature and other environmental factors which 

significantly influence growth. 

The available literature on morphology and gross behavior of certain glider for instance, 

vitreoscilla [4], oscillatoria [5-8] and flexibacter [9-11], supports an undulating surface model as 

a feasible mechanism of motility. It has been suggested that gliding may be caused by 

unidirectional surface waves travelling on the cell surface. These waves may be a result of lateral 

deformation of elements of a parallel array of fibrils ( 050 80 A wide) which have been found to 

be continuous over the surface of 300 mm wide trichome [12]. Jarosch [13] has proposed that the 

organism should be in contact with the solid substrate for gliding motility to occur, in which case 

the presence of this solid surface will serve as a structural base on which the motility mechanism 

of the trichome occurs. 

Based on the above studies, O’Brien [14] carried out a mathematical analysis to investigate the 

fluid mechanism aspects of gliding motility caused by waves moving down the outer surface of 
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flexibacter, observing that for any progressive waveform there is an optimum distance from the 

wall at which the flexibacter may maximize its speed for a given power output. This  investigation, 

nevertheless, did not incorporate any rheological features of the slime in the analysis. However, in 

a later study it was shown by Siddique et al. [15] that slime is a viscoelastic material that is 

composed of macromolecular polysaccharides, glycoproteins and proteins in an aqueous medium. 

It was further emphasized by Siddique et al. [15] that rheological features of slime may be quite 

diverse, and to this extent they explored, for the first time, the constitutive equation of third grade 

fluids (Reiner-Rivlin differential viscoelastic liquids) to mathematically simulate the rheological 

properties of the slime. Their analysis for non-Newtonian slime revealed that a lift force is 

generated due to the normal stresses. It was also shown that for a shear-thinning third-grade fluid, 

the power required for translation is reduced. Later attempts that incorporated shear-thinning/ shear 

thickening and viscoelastic nature of slime in undulating surface models for motility of gliding 

bacteria were made by Wang et al. [16] and Hayat et al. [17]. However, thusfar, no study is 

available in the mathematical biology or engineering biomechanics literature, in which an 

undulating surface model has been employed to study gliding motion of bacteria on a layer of non-

Newtonian slime characterized by the Carreau fluid. The Carreau model uses three parameters 

(compared with two parameters in the power-law model). The additional parameter featured in the 

Carreau model is the material relaxation time (usually denoted by ) which allows correlation 

with the molecular structure of the non-Newtonian liquid. It is therefore hoped that utilization of 

this model will more robustly represent the shear-thinning, shear thickening and viscoelastic 

properties of biological slime. Some recent studies dealing with flows of Carreau fluids can be 

found in refs. [18-20]. Moreover, it is strongly anticipated that the speed of the organism, forces 

generated by organism and power required for propulsion will be substantially influenced by the 

material relaxation time and the rheological power-law index. It is important to emphasize that the 

objective of the work is not merely a mathematical exercise. There is a great desire currently in, 

for example, the marine engineering (hydronautics) industry to develop intelligent materials for 

coating ocean-going vessels to counteract the compliant biofilms which are formed by bacteria in 

such environments [21]. Rheology has been shown to a  be a critical factor in this regard [22] as it 

allows more effective development of synthetic materials for deployment in marine engineering 

systems e.g. offshore platforms, yacht hulls, pipelines etc. Similar interest is surfacing in 

microbiological engineering of waste treatment systems in civil engineering, biomimetic hydraulic 
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structures in hydropower systems and also lake regeneration initiatives. In this sense “smart” 

systems may be designed for reducing drag, mitigating corrosion, combatting slime adherence and 

other phenomena associated with bacterial and other aquatic/marine micro-organisms interacting 

with engineered devices [23]. The motivation of the present study is also, in part, due to some 

recent works carried out in the general area of microorganism swimming hydromechanics. In 

particular, Lauga et al. [24] have identified that near the solid surface, both force-free and toque-

free swimming is responsible for the clockwise circular motion of micro-organism swimmers 

(cells) as well for their hydrodynamic vertical trapping. It has also been elucidated by Riley and 

Lauga [25] that the locomotion speed of micro-organisms is decreased, if all travelling waves move 

in same direction. However, an enhancement of the swimming speed has been observed if waves 

propagate in two opposite directions. The clockwise circular motion of the microorganism above 

the rigid surface and counterclockwise below the free surface, has been investigated in detail by 

Lopez and Lauga [26]. The results presented by Rusconi et al. [27] have revealed that the 

hydrodynamic environment may directly affect bacterial fitness and should be carefully considered 

in the study of microbial processes. A review of fluid physics governing the locomotion and 

feeding of individual planktonic microorganisms has been presented by Guasto et al. [28], largely 

orientated towards microbiological oceanic applications for civil engineering hydrosystem 

optimization. A comprehensive study of group micro-organism propulsion has been made by Koch 

and Subramanian [29] demonstrating that spontaneous motions may occur in systems of organisms 

induced by the coupling between the stresses generated by bacteria while swimming in fluids and 

furthermore the rotary motions of the bacteria arising as a result of the associated hydrodynamic 

disturbances. Further studies include the detailed simulations reported by Alouges et al. [30] 

dwelling on viscous-dominated optimization of micro-organism propulsion, Alouges et al. [31] 

concerning hydrodynamic efficiency of axisymmetric swimming of bacteria  and Dal Maso et al. 

[32] on mathematical aspects of micro-organism swimming. All these investigations have 

emphasized the richness and complexity of bacterial hydrodynamics and re-charged this subject 

with a fresh motivation for new simulations with more sophisticated hydrodynamic models. 

The structure of the present study is as follows: The geometry of the problem is illustrated in 

section 2. The equations governing the flow are described in section 3. The problem formulation 

and analytical expressions of pressure rise per wave length, forces generated by the organism and 

power required for propulsion valid for small Weissenberg number are presented in section 4. The 
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results based on numerical solution methodologies are expounded in section 5. Conclusions and 

future directions are elaborated in section 6. Details of the perturbation, finite difference and finite 

element solution techniques are documented in Appendix sections A, B and C respectively at the 

end of the article. 

 

2. GEOMETRIC MODEL  

Fig. 1 provides an illustrative diagram of the undulating sheet model utilized for the present 

mathematical simulation of bacterial gliding hydrodynamics. It is assumed that the bacterium is 

gliding over a flat surface and each point on the surface of the organism moves only in a direction 

transverse to the surface of the organism. The layer of exuded slime is pushed backward by the 

bacterium which generates a force that propels the bacterium in the direction opposite to the 

direction of the travelling wave. The glider will maintain a constant speed as a result of the balance 

between the work done by the waving sheet and the energy dissipated by the viscosity of the slime. 

Let 
gV  denote the propelling speed of the bacterium relative to the solid boundary and moving to 

the left, and let c  denote the speed of the undulating wave relative to the organism and moving to 

the right. The apparent wave speed of the organism as viewed in a fixed co-ordinate frame is 

( )gV c . Let us choose a rectangular co-ordinate system ( , )X Y  with X -axis along the direction 

of propagation of waves and parallel to the substrate and Y -axis perpendicular to the substrate. 

The shape of the undulating surface, in this co-ordinate system, is expressed by: 

                                                  0

2
, ( ) t ,gh X t h a Sin X c V





  
     

  
                                                   (1) 

where 𝜆 is the wavelength, t  is the time, 0h denotes the mean distance of glider to the substratum 

and a is the amplitude. 

 

3. HYDRODYNAMIC MODEL  

The balances of mass and linear momentum for the flow of an incompressible fluid in vector form 

may be presented as: 

                                                                      . 0, u                                                                   (2)  
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. . ,
d

p
dt

   S
u

                                                          (3) 

where u is the fluid velocity, ρ is the density, S is the extra stress tensor and /d dt is the material 

time derivative. Let the rheological properties of the slime be represented by the Carreau model. 

The appropriate extra stress tensor S  becomes [18-20]: 

                                                
1

2 2 2
0 11 .

n

µ µ


 

 
       

 
S A                                           (4) 

In Eqn. (4)   is the infinite shear-rate viscosity, 0  is the zero shear rate viscosity,  is the time 

constant, n is the rheological power law index, 1A  is the first Rivilin-Ericksen tensor and   is 

given by: 

                                                                 
1

21
.

2
tr  A                                                             (5) 

For the subsequent analysis, we shall assume that 0  . 

 

4. PROBLEM FORMULATION 

Consider the unsteady, two-dimensional, laminar flow of an incompressible Carreau fluid in the 

form of a thin layer of slime. The velocity field for two-dimensional flow is given by: 

                                                    , , , , , ,0 ,U X Y t V X Y t   V                                               (6) 

where U  and V  are respective velocity components in X and Y  directions. In view of Eqn. (6), 

the continuity Eqn. (2), the momentum Eqn. (3) and component of extra stress S  take the following 

form: 

0,
U V

X Y

 
 

 
                                                           (7) 

,XY YYS Sp
U V V

t X Y X X Y


     
      

      
                            (8) 
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                   ,XY YYS Sp
U V V

t X Y Y X Y


     
      

      
                            (9) 

                                               
1

2 2 2
02 1 ,

n

XX

U
S

X


  
       

                                                   (10) 

1
2 2 2

0 1 ,
n

XY

U V
S

Y X


   
     

 


                                          (11) 

                                                
1

2 2 2
02 1 ,

n

YY

V
S

Y


  
       

                                                 (12) 

where 

                                      

2 2 2

2 2
U V U V

X Y Y X

         
         

       


 

.                                     (13) 

In the fixed frame, the adherence boundary conditions may be simulated as follows: 

                                                             
at ,

0 at 0.

gU V Y h

U Y

  

 
                                                       (14) 

Let us define the following transformations to switch from the fixed frame ( )X,Y  to the wave frame 

( )x, y . This co-ordinate transformation is advantageous since flow phenomena in the wave frame 

become steady and the boundary shape appears to be stationary: 

                                                          
( ) , ,

( ), ,

g

g

x X c V t y Y

u U c V v V

   

   
                                                 (15) 

where u, v  are the respective velocity components in the x  and y  directions. Implementing the 

above transformations, we simultaneously introduce the following dimensionless variables and 

numbers: 

        

  2
* * * * * * *0 0

0 0 0 0

2
* * *0 0 0 0 0

e

0 0 0 0

22
, , , , , ,

2 2
, , , , , ,

xx

xy yy

xx

xy yy

h x h hy u v
x x y u v h p p, S S

h c c h c c

h h h h ch c
S S S S We

c c c h
R



   

  


   

      


       

      (16) 
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Furthermore we define a dimensionless stream function as follows: 

                                                         , ,u v
y x

  
  
 

                                                        (17) 

Omitting the superscript * for convenience, we find that the continuity Eqn. (7) is identically 

satisfied and Eqns. (8)-(13) reduce to: 

                             ,e xx xy

p
R S S

y x x y y x x y

  
 

          
      

          
                           (18) 

                          
3 2 ,e xy yy

p
R S S

y x x y x y x y

  
 

          
       

          
                        (19) 

                                                   
1 2

2 2 22 1 ,
n

xxS We
x y




  
         

                                             (20) 

                                                  
1 2 2

2 2 32
2 2

1 ,
n

xyS We
y x

 


   
         

                                    (21) 

                                                    
1 2

3 2 2 22 1 ,
n

yyS We
x y




  
          

                                        (22) 

where 

                                                  

1
2 2 22 2 2

2

2 2
2 .

x y y x

  
 

      
       

        

                                  (23) 

In the above equations,   is the dimensionless wave number, eR  is the Reynolds number and We  

is the Weissenberg number (characterizing rheology of the slime). Eliminating pressure between 

Eqns. (18) and (19), we obtain: 

 

          
2 22 2 2

2 2

2 2 2 2
.

xy xy

e xx yy

S S
R S S

y x x y y x y x x y

   
   

          
                       

        (24) 
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The subsequent analysis is based on the assumption that <<1. This assumption is known as the 

long wave length assumption in the literature and is popular in lubrication theory and other areas 

including bacterial transport phenomena modelling [14-17] and peristaltic propulsion [33, 34]. In 

view of this assumption, Eqn. (24) reduces to: 

                                            

1
2 22 2 2

2

2 2 2
1 0.

n

We
y y y

 

 
       
              
 

                                          (25) 

Similarly, we can write Eqn. (18) as follows: 

                                         

1
2 22 2

2

2 2
1 .

n

p
We

x y y y

 

 
        
                
 

                                            (26) 

Eqn. (25) is subject to following boundary conditions [15]: 

                                                    

0, 0,

, 1 1 sin ,

bV at y
y

F at y h x
y





 


  




     



                                 (27) 

where 
0

a

h

 
 
 

 is the occlusion parameter, 1
g

b

V
V

c
   and F  is the dimensionless mean flow 

rate in the wave frame. The dimensionless mean flow rate  , in the fixed frame is related to F  

according to the simple relation: 

.bF V                                                                (28)  

With the objective of deriving analytical expressions of pressure rise per wavelength, forces 

generated by the gliding bacteria and the power required for propulsion, a perturbation approach 

valid for small values of We  is employed. For large values of We , recourse to an implicit finite 

difference method (FDM) is required. The results obtained via FDM are further verified by 

variational finite element method (FEM). Details of analytical as well as the alternative numerical 

(FDM) procedure to achieve computational solutions of the problem and furthermore validation 

of the FDM graphical computations with a robust variational finite element method (FEM), for 
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fixed values of the speed of the organism, are all documented in sections A, B and C of the 

Appendix. 

For small values of We , the expression of 
 1

P   can be written in the following form:  

       

           

        

1 1 1

2 3 2 4 5 6 7

2
1 1 1

4 5 6

2

4 5 4

18
6 I 2 1 7 2 16 9 3 2

5

11 44 54 11 32 7 .

b

b b b

P F I I V n I F I F I FI

V I F I F V I

We

F II I V

          


  



   




      (29) 

The organism will maintain a steady speed at a fixed distance from the substrate only when net 

forces in the longitudinal and transverse direction are zero. Additionally, we may assume pressure 

difference per wavelength to be zero [14, 15]. The resulting expression of horizontal and vertical 

forces per unit width per wavelength on the surface of the organism and power required for gliding 

of the organism at a steady speed bV  , valid to the first order in We , are given by: 

              
        

1 1 1 1 1

1 2 1 3 4 5 6

2
1 1 1

3 4 5 3 4

2

3

2
2 3 2 1 19 9 11 2 11 9

5

6 7 33 48 57 189 44 ,

x b

b b b

F F I I V n I F I F I F I

V I F I F V I F I

I We

I I V




        

 
        

 (30) 

    
 1

0,yF                                                                                                                          (31)      

           1 1
.xP F                                                                                                                     (32) 

Now in order to obtain the steady speed maintained by the glider, we equate each of the quantities 

 1
,xF

 1

yF  and  1
P   to zero and seek a unique set of rules such that 0 1  ; 

 1
0F   and 0.bV   

It is noted that, similar to the Newtonian case, the lift force generated by the Carreau slime is zero. 

Therefore, similar to the Newtonian case, there is only one degree of freedom. Due to the non-

linear expressions for  1

xF  and  1
P   it is possible to find closed form expressions of bV  and  1

.F

However, for given values of  , We  and n,  plausible numerical values of bV  and  1
F  must be 

found using symbolic softwares such as Mathematica or Matlab. The results obtained with this 

approach are plotted in Figs. 2(a)-(c). Fig. 2(a) shows the variation of speed of the organism with 

respect to the power-law index for fixed values of   and We . This figure demonstrates that the 

speed of the organism decreases as the rheology of the slime changes from shear-thinning to 
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shear-thickening. Fig. 2(b) illustrates that speed increases with an increase in the occlusion 

parameter. The variation of the speed of the organism with respect to Weissenberg (We ) is shown 

for both shear-thinning and shear-thickening fluids in Fig. 2(c). As expected the organism 

maintains a constant speed for 1n  (Newtonian case). For shear-thinning fluid an increase in We  

decreases the speed. On the contrary, the speed of the organism increases with increasing We  for 

shear-thickening fluid. 

 

5.  FDM NUMERICAL RESULTS AND DISCUSSION 

The finite difference method (FDM), a robust computational technique, has been implemented to 

solve the boundary value problem defined by eqn. (25) under boundary conditions (27) and results 

generated are displayed for several values of the hydrodynamic control parameters. The 

computations are also carried out for 1bV   . As far as the problem of gliding motility of the 

organism is concerned, 1bV   . The assumption for the case 1bV    correspond to the case of 

pumping transportation of fluid by the wavy motion of the upper wall. In other words the case 

1bV    corresponds to the flow problem of a slime layer between the organism and the substrate. 

However, in order not to resist our investigations for 1bV   , numerical results for 1bV    are 

also displayed. The result presented here are also appropriate to the channel flow of Carreau fluid 

between two walls or between one plate and a wavy surface with corresponding boundary 

conditions. 

Fig. 3(a) illustrate the velocity profiles at a cross-section x  for different values of n  

corresponding to three different values of prescribed flow rate F  for 0
b

V   and 7We  . It is noted 

that for 0.5,F   the velocity varies linearly with respect to .y In this case, the curves for different 

values of n  coincide i.e. for this specific choice of flow rate the velocity at this cross-section is 

independent of the power-law index, n . For 1,F  the velocity at this cross-section varies in a 

nonlinear function with respect to y . In this case, the longitudinal velocity exhibits boundary layer 

character for 0.1n  (strong shear-thinning i.e. pseudoplastic fluid). The largest gradients in 

velocity occur at the boundary region for this case and the middle-most region out of the thin 

boundary layers moves as though it were a plug flow. The boundary layer thicknesses formed at 

either wall 0 or( )y y h  are found to be inversely proportional to 
b

V . On the contrary, the 
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shearing effects near the boundaries extend to the whole domain with increasing power-law index 

(i.e. for 0.76, 1, 1.24n  ). In these cases, no sharp boundary layer exists at either wall. This fact is 

delineated in Fig. 3(b). It is further noted from Fig. 3 that the magnitude of velocity in the central 

part of the gap between the wavy wall and the substrate increases with increasing power-law 

index. A converse trend is noted in the vicinity of the walls.  

The effects of Weissenberg number on longitudinal velocity at a cross-section x   for different 

values of We  corresponding to three values of flow rate F  for 0
b

V   and 0.8n   are shown in 

Fig. 4(a). It is observed that the longitudinal velocity in the central part of the domain [0, ]y h  

decreases by increasing We . The profiles of longitudinal velocity for shear-thickening fluid with 

similar parameter values, as used in Fig. 4(a), are shown in Fig. 4(b). It is found that longitudinal 

velocity exhibits the converse trend with increasing We  for a shear-thickening fluid i.e. its 

magnitude in the vicinity of the central part increases with increasing We . A comparison of 

velocity profiles for Newtonian and Carreau fluids can also be made via examination of Figs. 3 

and 4. Generally, it is observed that the longitudinal velocity in the case of Carreau fluid exhibits 

a behavior which is similar to the velocity of Newtonian fluid in a qualitative sense provided that 

the Weissenberg number is sufficiently small. In the quantitative sense, the Carreau model predicts 

higher values of longitudinal velocity in comparison with the Newtonian model depending on the 

nature of fluid. For shear-thinning Carreau fluid, the magnitude of the longitudinal velocity is 

higher than the magnitude of longitudinal velocity for a Newtonian fluid. The longitudinal velocity 

based on the Carreau model for the shear-thinning case, with greater Weissenberg number, shows 

significant quantitative deviation from the corresponding velocity for the Newtonian model. In 

such a situation, contrary to the Newtonian case, the velocity for the Carreau model is characterized 

by formation of thin boundary layers near the walls 

The relationship between pressure rise per wavelength and flow rate for the case when the 

organism is restrained and its oscillatory motion entrains a net fluid flow along the x direction, is 

shown in Figs. 5 and 6 for different values of power-law index and Weissenberg number, 

respectively 

Fig. 5 reveals that pressure rise per wavelength in the pumping region ( 0, 0p    ) is elevated 

with increasing power-law index. In other words pressure rise increases in going from shear-

thinning to shear-thickening fluids. The free pumping flux i.e   for 0p   is also found to 

increase when fluid behavior changes from shear-thinning to shear-thickening. It is also interesting 
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to note that in the co-pumping region ( 0, 0p    ), the magnitude of pressure rise per 

wavelength also increases as we progress from shear-thinning to shear-thickening fluids. 

Moreover, for an appropriately chosen 0p  , the pumping flux increases from the shear-

thickening scenario to the shear-thinning fluids.  

The pressure rise per wavelength plotted against flow rate ( ) for different values of We  is shown 

in Fig. 6(a) for a shear-thinning fluid. Here it is found that p  in the pumping region decreases 

with increasing We . The curve for a Newtonian fluid lies below all other curves corresponding to 

different values of We . In this way, the organism has to work against greater pressure rise to 

maintain the same flux for a Newtonian slime in comparison to a slime with shear-thinning 

properties. On the contrary, Fig. 6(b) implies that in the shear-thickening case the curve for 

Newtonian fluid lies below all other curves corresponding to different values of We . This indicates 

that much greater effort is rendered by the organism to maintain the same flux with the change in 

rheological properties of slime from Newtonian to shear-thickening. 

The patterns of streamlines for different values of power-law index and Weissenberg number when 

1
b

V    and 0.5F   are shown in Fig. 8. Generally, it is observed that streamlines near either 

boundary assume the shape of that boundary. However, in the central region, circulating eddies 

emerge depending on the value of prescribed flow rate. Fig. 8(a) illustrates the streamlines pattern 

for three different values of We  corresponding to slime exhibit shear-thinning rheological 

behavior. A small eddy is found in the central region of flow field for 0We   (Newtonian fluid). 

The size of this eddy is found to diminish by increasing We  and eventually the eddy disappears 

for large values of We . Fig. 8(b) depicts that for the shear-thickening fluid case ( 0.5, 1.2We n  ) 

the size of the eddy which was originally present for a Newtonian fluid, increases and another 

eddy appears near the undulating surface. It is further observed that both the eddies grow larger in 

size for higher values of We . The patterns of streamlines of different values of power-law index 

are shown in Fig. 9. This figure confirms the appearance of a single eddy in the central region for 

0.2n  . The size of eddy increases with increasing the value of n  from 0.2 to 1. For 1.5n  , the 

eddy in the central region grow further in size and another eddy appears near the undulating 

surface. It is anticipated that size of both eddies grows further with increasing n. Overall, the 

influence of slime rheology is significant on the fluid dynamic characteristics. 
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6.  CONCLUDING REMARKS 

An undulating surface model for gliding motion of bacteria has been developed for the case when 

gap width between the organism and substrate is small as compared to the organism, and the 

substrate is small as compared to the wavelength of the undulating wave on the organism surface. 

A perturbative analysis is carried out to estimate the speed of organism as a function of rheological 

parameters of the slime and amplitude of the undulating wave. Numerical computations based on 

the finite difference method are also carried out to analyze the pumping problem, where the sheet 

is not allowed to move and its oscillatory motion entrains a net fluid flow along the x-direction. 

Validation of the finite difference method (FDM) solutions is achieved with a variational finite 

element method (FEM). Excellent correlation is attained. The important deductions from the 

present mathematical and computational study may be summarized as follows.  

 For a fixed Weissenberg number, the gliding speed of the bacteria decreases with a change 

in rheological properties of the slime from shear-thinning to shear-thickening. 

 For shear-thinning of slime, the speed of the organism increases with increasing 

Weissenberg number. However, a converse trend is noted for an organism gliding on shear-

thickening slime. 

 The speed of the organism is an increasing function of the amplitude of the undulating 

wave. 

 For small values of the amplitude of the undulating wave, the speed of the organism is 

independent of the rheological properties of the slime. 

 For slime with strong shear-thinning properties, the flow exhibits boundary layer 

characteristics. In this case, the largest gradients in velocity are confined to thin layers near 

the substrate and the organism surface while the flow in the central zone is uniform. 

 For 0
b

V   (the case in which organism is held fixed), it is found that greater effort is 

expended by the organism to maintain the constant flux with the change in the rheological 

properties of the slime from Newtonian to shear-thickening. 

 For 0
b

V   the circulation of fluid in the central region between the substrate an undulating 

surface increases from the shear-thinning to shear-thickening case. 
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 For the shear-thinning case with 0,
b

V  an increase in Weissenberg number decreases the 

circulation of the fluid in the central region. A converse trend is observed for shear-

thickening slime. 

The present study may be further generalized to consider more complex rheological models e.g. 

micro-continuum models [35] which consider micro-structural features of the slime (e.g. rotary 

motions of micro-elements) and also inclined surface glider dynamics. These are presently being 

addressed. The present perturbation, FDM and FEM approaches all appear to hold excellent 

promise for these more complex simulations. 
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FIGURES 

 

  Fig.1. Diagram of undulating surface model. 

  

(a) (b) 

 

 

(c) 

Fig. 2. Plots of the variation the speed of the gliding organism in the moving frame with respect to different involved 

parameters. 
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Fig. 3. (a) Plots of velocity profile for various values of n  and F at a position of 1h  . 

The relative speed of the substrate is fixed as 0bV  and the Weissenberg number 7.We   

 

 

Fig. 3. (b) Plots of velocity profile for various values of n and F at a position of 1h  .  

The relative speed of the substrate is fixed as 2bV   and the Weissenberg number 6.We   

 

Fig. 4. (a) Plots of velocity profile for various values of We  and F at a position of h =1. 

The relative speed of the substrate is fixed as 0bV   and for thinning effects 0.8n  . 
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Fig. 4. (b) Plots of velocity profile for various values of We  and F at a position of h =1.  

The relative speed of the substrate is fixed as 0bV   and for thickening effects 1.2n  . 

 

Fig. 5. Plots of pressure rise per wavelength p  versus flow rate   for various values of n .  

The other parameters are: 5We  , 1bV   . 

  

                                                  (a)                                                   (b) 

Fig. 6. Plots of pressure rise per wavelength p  versus flow rate   for various values of We . 

Panel (a) 0.85n  (thinning) and panel (b) 1.15n  (thickening). Here 1bV   . 
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Fig. 7. Streamlines for different values of We . Panels (a)-(d) corresponds to the values.  0 ,We Newtonian  

 0.5, 1, 2We   respectively. The other parameters are: 0.5, 1, 0.7.bF V n      
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Fig. 8. Streamlines for different values of We . Panels (a)-(d) corresponds to the values.  0 ,We Newtonian  

 0.5, 1, 2We   respectively. The other parameters are: 0.5, 1, 1.2.bF V n      

  

 

  

  

Fig. 9. Streamlines for different values of n . Panels (a)-(d) corresponds to the values.  0.2, 0.7, 1, 1.5n   

 respectively. The other parameters are: 0.5, 1, 0.5.bF V We     
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APPENDIX 

 

A. PERTURBATION EXPANSION SOLUTION 

For small values of ,We  Eqns. (25) and (26) give: 
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                                (A2)         

In the interest of deriving an approximate solution valid for small Weissenberg number, we write  , p 

and F in the following power series expansion form: 

                                                          

2

0 1

2

0 1

2

0 1

... ,

... ,

... .

We

p p We p

F F We F

    

  

  

                                                       (A3) 

Now, performing the usual perturbation analysis [15], it is possible to extract the following expressions 

for stream function, longitudinal velocity, pressure gradient and pressure rise per wavelength, 

respectively: 
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Here: 
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Now using the relation  1 2

0 1F F We F    in (A7) and retaining the terms of order 2We , one gets the 

expression (29).                                                                                                                             

The dimensionless formulae defining the horizontal and vertical forces per unit width per wavelength on 

the surface of the organism are given by: 
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Here x  and y  are the component of stress vectors   given by: 
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We refer the reader to ref. [14] for detailed derivation of above the formulae which is omitted here 

for brevity. On substituting the values of x  and y  in (A11) and using the relation

 1 2

0 1,F F We F   one readily obtain the expressions (30) and (31). 
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The non-dimensional expression for power required for gliding of the organism at a steady speed 

bV  is calculated by: 
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In term of dimensionless stream function the above expression becomes: 
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In view of the long wavelength assumption, the expression (A14) readily contracts to: 
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According to Eqns. (27) and (A11), Eqn. (A15) gives the expression (32).                                                                                                                             

 

B. FINITE DIFFERENCE METHOD (FDM) NUMERICAL COMPUTATIONS 

A numerical solution of the boundary value problem consisting of Eq. (25) and boundary 

conditions (27) provides validation of the perturbation solutions for large values of the 

hydrodynamic parameters. To this end, we shall employ an implicit iterative finite difference 

method (FDM). We construct an iterative procedure to convert the original nonlinear problem to 

a linear one at the (m+1)th iterative step, as follows:  
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where 
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Here the superscript (m) denotes the iterative step. It is now clear that the above boundary value 

problem is linear in 
 1m




. Inserting finite-difference approximations of 
 1m




 and its derivative 

in Eq. (25) and boundary conditions given in Eq. (27), a system of linear algebraic equations may 

be obtained and solved for each iterative (m+1)th step. In this way numerical values of 
 1m




 at 

each cross-section can be obtained. Of course some suitable initial numerical values of 
 m

 are 

specified at each cross-section to start the iterative procedure. Unfortunately by increasing the 

number of iterations a convergent solution is not always possible, especially when initial numerical 

values of   are not prescribed carefully. In such circumstances the method of successive under-

relaxation is used. In this method the estimated value of  at (m+1) iterative step i.e. 
 1m




 is 

refined to achieve the convergent value of   at the same step. This can achieved by the following 

formula: 
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where 0,1   is an over-relaxation parameter. It is also pertinent to select  as sufficiently small 

such that convergent iteration is readily attained. The iteration in this problem is carried out to 

calculate the value of  convergent to 10−8. The above method has earlier been successfully 

implemented by Wang et al. [16] and also Hayat et al. [17] in the context of gliding motility of 

bacteria showing excellent accuracy and stability. 

 

 

C. VALIDATION WITH VARIATIONAL FINITE ELEMENT METHOD (FEM) 

The nonlinear two-point boundary defined by eqn. (25) and boundary conditions (27) has also been 

solved with a third approach, namely the finite element method. To this end the same F and Vb 

values are prescribed in the boundary conditions as employed in the FDM computations. The 

formulation adopted is “weak” and particularly suited to fluid dynamics phenomena. It has been 

applied quite recently also to simulate many diverse problems in for example nanofluid solar 
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energy collector heat transfer [36], biomagnetic transport phenomena in tissue [37], polymeric 

fluid dynamics [38], hemodynamics [39] and magnetic smart materials [40]. The code, BAC-

FLOW [41] has been customized to simulate gliding bacterial rheological flows. Following some 

numerical tests, mesh-independence is confirmed for the present scenario with 100 finite elements. 

The whole domain is therefore discretized into a set of 100 line elements of equal width, each 

element being two-noded. Line elements are sufficient since only one spatial variable i.e. 

normalized radial coordinate, y is involved. A variational form is derived for the eqn. (25) in which 

the non-dimensional stream function,, is the master dependent variable. Numerical integration 

is performed over the artificial finite element domain in terms of the normalized coordinate (ye; 

ye+1) using arbitrary test functions (W1, W2) which can be viewed as the variation in the master 

variables. The nonlinear terms in eqn. (25) are easily accommodated. The finite element form of 

the variational equations is achieved by appropriate substitutions based on the following 

approximation: 
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Here  represents  (stream function). With the following definitions for weighting functions 

[42]: 

2,1,21  iWW i                                                    (A21) 

The shape (interpolation) functions for a typical line element (ye, ye+1) in eqn. (56) are prescribed 

as follows: 
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The matrix-vector form of the finite element model is then generated. Comprehensive details are 

given in [36-42]. This system of non-linear algebraic equations produced after assembly of the 

element equations is linearized by incorporating the stream function  which is assumed to be 

known. The collection of elements is called the finite-element mesh or grid. The element matrix, 

which is called a stiffness matrix, is constructed by using element interpolation functions. The 

algebraic equations so obtained are assembled by imposing the inter-element continuity 
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conditions. This yields a large number of algebraic equations defining the global finite element 

model, which governs the whole domain. The essential and natural boundary conditions are 

imposed on the assembled   equations.  The assembled equations so obtained can be solved by any 

“matrix” numerical technique e.g. Householder’s approach, LU Decomposition method, Choleski 

decomposition etc. Criteria for the selection for elements are also documented in Rao [42]. The 

non-linear algebraic system of equations is solved iteratively. An accuracy of 0.00000001 is used. 

A convergence criterion based on the relative difference between the current and previous 

iterations is employed. When these differences reach the desired accuracy, the solution is assumed 

to have converged and the iterative process is terminated. Two-point Gaussian quadrature is 

implemented for solving the integrations. The BAC-FLOW FEM algorithm has been executed in 

MATLAB running on an Octane SGI desktop workstation and takes 10-15 seconds to converge. 

We note that in Figs. 3-6 the red filled circles denote the FEM solutions. In each figure one 

particular case for either F, n or We has been validated. Excellent correlation is obtained for all 

cases included (indicated by red filled circles in the respective plots). Confidence in the FDM code 

is therefore justifiably high.  

 

 


