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ABSTRACT 

A theoretical investigation of magnetohydrodynamic (MHD) flow and heat transfer of 

electrically-conducting viscoplastic fluids through a channel is conducted. The robust Casson 

model is implemented to simulate viscoplastic behavior of fluids. The external magnetic field is 

oblique to the fluid flow direction. Viscous dissipation effects are included. The flow is 

controlled by the metachronal wave propagation generated by cilia beating on the inner walls of 

the channel. The mathematical formulation is based on deformation in longitudinal and 

transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to 

follow elliptic trajectories. The model also features velocity and thermal slip boundary 

conditions. Closed-form solutions to the non-dimensional boundary value problem are obtained 

under physiological limitations of low Reynolds number and large wavelength. The influence of 

key hydrodynamic and thermo-physical parameters i.e.  Hartmann (magnetic) number, Casson 

(viscoplastic) fluid parameter, thermal slip parameter and velocity slip parameter on flow 

characteristics are investigated. A comparative study is also made with Newtonian fluids 

(corresponding to massive values of plastic viscosity). Stream lines are plotted to visualize 

trapping phenomenon. The computations reveal that velocity increases with increasing the 

magnitude of Hartmann number near the channel walls whereas in the core flow region (centre 

of the channel) significant deceleration is observed. Temperature is elevated with greater Casson 

parameter, Hartmann number, velocity slip, eccentricity parameter, thermal slip and also 

Brinkmann (dissipation) number. Furthermore greater Casson parameter is found to elevate the 

quantity and size of the trapped bolus. In the pumping region, the pressure rise is reduced with 

greater Hartmann number, velocity slip, and wave number whereas it is enhanced with greater 

cilia length.  

Keywords: Heat Transfer; Brinkmann number; Cilia motion; Viscoplastic fluids; Oblique  

Magnetic field; Slip Boundary Conditions; Metachronal wave propagation. 
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NOMENCLATURE: 

,x y  coordinates Greek Symbols 

p  pressure    cilia length 

,u v  velocity components    wavelength 

ijS  stress tensor    thermal slip parameter 

 Re Reynolds number   velocity slip parameter 

M  Hartmann number   measure of eccentricity 

Ec  Eckert number,   Casson parameter 

Br  Brinkman number 
B  plastic viscosity of the fluid 

Pr Prandtl number   inclination of magnetic field 

c  wave number   electrical conductivity of Casson fluid 

a  half width of the channel   density of Casson fluid 

pc  specific heat at constant pressure  k  thermal conductivity of Casson fluid 

yp   yield stress of Casson fluid    wave number 

 

1. INTRODUCTION 

Driven by the realization that numerous proteins involved in mammalian diseases localize to 

basal bodies and cilia, and that the aberrant ciliary function can be linked to a large number of 

human diseases and syndromes, extraordinary progress has been achieved over the past few 

decades. Cilia are present on the majority of mammalian cells throughout development and 

feature prominently in the adult life of an organism. They are found to be associated with a 

variety, often overlapping, of clinical abnormalities affecting the function of numerous tissues 

and organs including epithelium of the respiratory tract, oviduct, testes, brain, kidney, eye, inner 

ear, and olfactory epithelium. Defects in the respiratory tract manifest as rhinitis, sinusitis, otitis 

media or bronchiectasis [1]. Ciliary movement occurs in the axoneme by the unidirectional 

sliding of the outer doublets of microtubules generated by the adenosine triphosphate (ATP)-

energized dynein arms. It can be assessable in the absence of membrane or ciliary matrix and can 
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be reproduced on "models" of cilia whose membrane has been partially or completely destroyed 

by detergents. Thus, isolated cilia or flagella, or "models" of whole ciliates (for instance, 

Paramecium), gently treated with Triton X-100, can be re-activated and are able to swim 

normally when they are bathed in an appropriate medium whose main components are the 

specific substrates for dynein. The complex dynamics of cilia has therefore stimulated substantial 

attention in mathematical biology and bioengineering. Sleigh [2] studied the biology of cilia and 

flagella and discussed the propulsion of cilia as a metachronic wave and emphasized their 

significance in propulsion. Miller [3] investigated the movement of Newtonian fluids initiated 

and sustained by mechanical cilia. Blake [4] extended Sleigh’s work from a mathematical 

perspective and employed a spherical envelope approach to analyze ciliary propulsion. Blake [5] 

further presented comprehensive mathematical results for cilia-induced Stokes flows in tubules, 

considering the array coordination as a metachronal wave. Khaderi et al. [6] investigated 

rigorously the mechanics and performance of magnetically-driven artificial cilia for lab-on-a-

chip applications. Dauptain et al. [7] addressed both analytically and numerically the 

hydrodynamics of ciliary propulsion. Khaderi et al. [8] again reported interesting results 

concerning their observations that the metachronal motion of symmetrically beating cilia 

establishes a net pressure gradient in the direction of the metachronal wave, which creates a uni-

directional flow field. In another article, Khaderi and Onck [9] further developed a numerical 

model to simulate in some detail, the interaction of magnetic artificial cilia with surrounding 

fluids in three-dimensional viscous flow. In this direction, some substantial extensions [10-12] 

have been made to refine mathematical models of cilia hydrodynamics.   

Many physiological fluids can be characterized as viscoplastic fluids which are a sub-branch of 

rheological liquids possessing both viscous and plastic properties. Plasticity is characterized by a 

yield stress, below which the materials will not deform, and above which they will deform and 

flow according to different constitutive relations. Some popular viscoplastic models which have 

emerged, largely from chemical engineering research, are the Bingham plastic [13], the Herschel 

Bulkley model [14], and the Casson model [15], [16]. Bird et al. [17] elaborated extensively on 

the diverse rheology of viscoplastic materials and their associated hydrodynamic characteristics. 

Numerous researchers have utilized viscoplastic models [18-22] to more accurately mimic 

realistically the dynamics of blood flow and also food bolus movement in digestive system. The 
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Casson model has proved to be quite advantageous in this regard as it is relatively simple but 

provides comparatively accurate representation of the shear-stress strain characteristics of actual 

biological liquids.  

The inner surfaces of physiological vessels are generally smooth and hydrophobic in nature. This 

leads to the possibilities of hydrodynamic and thermal slipping of fluids during physiological 

transport. Since many biological processes involve both flow and heat transfer (e.g. blood is 

heat-conducting), researchers have explored both hydrodynamic (velocity) and thermal slip 

effects. Cottin-Bizonne et al. [23] have studied the boundary slip on smooth hydrophobic 

surface. They employed a dynamic surface force apparatus to evaluate more precisely the 

hydrodynamic boundary condition of simple liquids flowing on smooth hydrophobic surfaces 

and suggested possible mechanisms for large slip length on smooth hydrophobic surfaces caused 

by hydrophobic particle contamination. Ngoma and Erchiqui [24] investigated thermal and slip 

effects on fluid flow through microchannels, observing that for pressure-driven electro-osmotic 

flows, slip coefficient exerts a significant effect on flow velocity, local temperature and Nusselt 

number. In the context of hemodynamics, Misra and Schit [25] addressed the role of slip velocity 

in blood flow through arteries using the Herschel–Bulkley equation, and examining mild, 

moderate, and severe stenosis growth at the lumen. They found that slip influences significantly 

the volumetric flow rate of blood, flow resistance and also wall (skin) friction. Ebaid [26] 

discussed the effects of magnetic field and wall slip conditions on peristaltic transport. Yilmaz 

and Gundogdu [27]   reviewed the blood flow in large arteries and analyzed the role of slipping.  

Ellahi [28] studied with the homotopy analysis method the Oldroyd 8-constant non-Newtonian 

slip flow in a channel. Srinivas et al. [29] investigated the effects of heat transfer, magnetic fields 

and slip condition on peristaltic transport, observing that with great Knudsen number (slip 

effect), the quantity of trapped boluses is markedly increased. Uddin et al. [30] considered 

thermal, velocity and mass slip effects on bioconvection nanofluid flow with wall transpiration, 

showing that increased thermal slip decelerates the flow, whereas greater mass (solutal) slip 

accelerates the flow and also elevates temperatures but suppresses nano-particle concentration. 

Tripathi [31] examined slip effects on peristaltic flow of couple stress fluids through a porous 

channel. Akbar and Nadeem [32] computed thermal and velocity slip effects on peristaltic 

transport of viscoelastic fluids with the Jeffrey model. Latiff et al. [33] studies thermal and 
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velocity slip on transient micropolar slip flow from a stretching/shrinking sheet with the 

numerical quadrature MAPLE code. Tripathi et al. [34] used the homotopy method to analyze 

slip effects on peristaltic viscoelastic propulsion. All these studies confirmed the non-trivial 

influence of slip effects on biofluid dynamics processes. 

In light of the above works, it is evident that numerous simulations have been conducting 

relating to cilia induced flow, MHD flow, flow of Casson fluids through various type of 

geometries and peristaltic transport in the presence or absence of thermal and velocity slip 

conditions. However, thusfar, to the authors’ knowledge, the problem of viscoplastic flow due to 

metachronal wave propulsion generated by cilia beationg under the effects of inclined magnetic 

field and thermal and velocity slip effects, has yet to be addressed. In the present article, we 

therefore consider two-dimensional flow of Casson fluid through an oscillating channel with the 

distensible walls lined with homogenous cilia structures. An inclined (oblique) magnetic field is 

applied to control the flow. Thermal and velocity boundary conditions are taken into account. 

Lubrication theory is employed to simplify the coupling governing non-linear equations. The 

influence of magnetic field, Casson fluid parameter, cilia geometry, thermal and velocity slip 

parameters and also viscous heating parameter (Brinkmann number) on cilia movement and 

thermo-fluid dynamic characteristics (pressure, velocity, temperature) is evaluated and 

furthermore discussed with the help of illustrations. The present investigation is relevant to the 

analysis of magnetically-controlled surface-modified biomimetic pumps in medical engineering 

[35] and is in particular aimed at evaluating in more detail rheological working fluid, geometric 

and heat transfer effects on the flow characteristics. 

 

2. MATHEMATICAL FORMULATION 

Let us consider the heat transfer and flow of an incompressible electrically-conducting Casson 

non-Newtonian fluid through a symmetric channel with thermal and velocity slip boundary 

conditions imposed at the channel walls. Viscous dissipation is incorporated. We choose 

Cartesian coordinates   ,Y X  , where  X  -axis lies along the centre of the channel and  Y   is 

transverse to it. The channel flow is regulated by an oblique static magnetic field imposed at an 

angle  to the X-axis. This generates both horizontal and vertical components of Lorentzian 
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magnetohydrodynamic body force, which have been elaborated earlier in detail by Bég et al. [36] 

and Ghosh et al. [37]. When the angle  becomes 90 degrees, the field is imposed transverse to 

the X-direction (i.e. aligned with the Y-direction). Flow is generated due to a metachronal wave 

which is produced by the collective, rhythmic beating of the cilia with constant wave speed, c, 

along the channel walls which have inner surfaces that are ciliated. A constant temperature, 0T , 

is prescribed at the channel walls. The geometry of the wall surface is shown in Fig.1. and 

expressed as :  

 

Fig.1. Geometry of the problem.  
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Sleigh [2] observed that cilia tips move in elliptical paths. In line with this approach, the vertical 
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The governing equations (mass, momentum and energy conservation equations) for two- 
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dimensional unsteady flow of incompressible viscoplastic fluids under the effects of inclined 

magnetic field and heat transfer may be presented as follows: 
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The last terms in eqn. (6) and (7) denote the magnetohydrodynamic body force components. The 

stress tensor for an isotropic flow of a Casson fluid can be expressed as (Eldabe and Silwa [38]): 
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where  ys   is the yield stress of the fluid,  ,i j i je e   (product of the component of deformation 

rate with itself) and ije   is the   ji, -th  component of deformation rate expressed as 
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,  c  is a critical value of    based on the non-Newtonian model,    is the 

plastic viscosity of the fluid. This model reduces to Newtonian model for vanishing yield stress 

i.e. when ys =0.   

To facilitate analytical solutions, we introduce the transformation between the laboratory frame 

and wave frame which is given as: 

, , , , ( , ) ( ), ( , ) ( )X ct x Y y U c u V v P X t p x H X t h x        .   (10) 

Furthermore we invoke the following one-dimensional physical parameters:  
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where  , ,Br,Ec,Pr   respectively denote the wave number, Casson (viscoplastic) fluid 

parameter, Brinkman number, Eckert number and Prandtl number. Now, employing the long 

wavelength and low Reynolds number assumptions, since we consider creeping flow, Eqs. (6-8) 

reduce to: 
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The boundary conditions are transformed to: 
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Here the third and fourth boundary conditions are associated with the velocity slip and thermal 

slip conditions, respectively. The volumetric flow rate in the channel is defined as: 

0

.

h

Q udy                                                                                                                                      (16) 

 

3. ANALYTICAL SOLUTIONS 

Solving Eqs. (12)-(14) with boundary condition (15), exact solutions for velocity, temperature 

and pressure gradient can be obtained as: 
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The pressure rise  ( p ) is computed by the following expression: 

1

0

.
p

p dx
x

 
   

 
                                                                                                                            (21) 

The stream function in the wave frame (obeying the Cauchy-Riemann equations, u
y





and 

v
x


 


) may be computed by using Eq.(17). Visualization of streamlines is achieved with 

Mathematica symbolic software which allows an examination of bolus formation and trapping. 

4. GRAPHICAL ILLUSTRATION AND DISCUSSION 

In this section we have presented distributions of pressure rise, pressure gradient, velocity, 
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temperature profile and streamlines for the Casson fluid parameter ( ), Hartmann number ( M ), 

measure of the eccentricity ( ), cilia length ( ), volumetric flow rate (Q), wave number (  ) 

and Brinkman number (Br). Numerical integration is performed in Mathematica software for the 

pressure rise per wavelength. In the present work we do not explicitly consider the influence of 

magnetic field inclination () on flow characteristics. This is deferred to a subsequent study 

[37]. All computations are conducted with  = 2 i.e. the magnetic field is imposed in the X-

direction.   

Figs.2 (a-d) illustrate the velocity profiles under the effects of Hartmann number (M), velocity 

slip parameter (), volumetric flow rate (Q) and measure of the eccentricity ( ). Fig.2 also 

shows a comparative study for Casson fluids and Newtonian fluids under the same conditions. 

Fig. 2a indicates that the velocity increases with increasing the magnetic field in neighborhood of 

center line while opposite behavior is pointed out near to boundary of walls, for case of Casson 

fluid. With  = 2, Cos = Cos2 =1 and therefore the x-direction magnetic body force in eqn. 

(12), viz –(u+1)M2Cos reduces to –(u+1)M2. This body force is retarding and orientated at 

right angles to the channel axis i.e. normal to the x-axis (it is perpendicular to the direction of 

magnetic field). This serves to accelerate the flow in the core region and decelerate it near the 

boundaries, for the Casson fluid case. Velocity profile is weakly altered for Newtonian fluid and 

a slight deceleration is observed in the core region (around the channel centre line). Fig.2b shows 

the effect of velocity slip parameter () on velocity profile. Clearly velocity is enhanced in 

magnitude with increasing the magnitude of slip parameter in the interval -1<y<1 whereas the 

converse response is computed in the near wall zones. Therefore greater wall hydrodynamic 

(velocity) slip accelerates the flow in the core region of the channel but decelerates the flow near 

the channel wall boundaries. A similar observation has been reported by Ebaid [26] among 

others.  
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Figs.2. Velocity profile for different values of (a) Hartmann number, (b) velocity slip parameter, 

(c) flow rate, (d) measure of the eccentricity .   

Fig.2c confirms that increasing volumetric flow rate corresponds to acceleration in the flow 

throughout the entire channel domain. However greater velocity magnitudes are attained at the 

channel wall for the Newtonian case as compared with the Casson viscoplastic fluid case. Fig.2d 

depicts that velocity increases with increasing the measure of the eccentricity in both cases 

Casson fluid as well as Newtonian fluid. It is also revealed that the velocity is greater in the core 
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region for Casson fluids in comparison to Newtonian fluids. Numerical solutions for velocity 

profile with all physical parameters are also given in Table 1. Here both slip and no-slip cases 

are documented, for a section of the upper channel half-space (0<y<0.5) and other parameters are 

also varied.  With increasing cilia length () velocity is observed to decrease both for the no slip 

(=0) and slip (=0.5) case; however magnitudes are significantly greater with no slip.  

 

Table. 1. Numerical values of the velocity profile. 

   

           

, No slip 0 , Slip 0.5

0 0.25 0.5 0 0.25 0.5

0.01 2 0.5 0.3 0.34078 0.35135 0.176162 0.0308918 0.0289219 0.023012

0.05 0.30442 0.30917 0.116049 0.0284459 0.026476 0.0205662

0.1 0.24896 0.34624 0.0301369 0.

u x y u x y

M y y y y y y  

   

     

0255304 0.0235605 0.0176507

1 0.27758 0.26665 0.0317633 0.17758 0.16665 0.0217633

3 0.30601 0.21532 0.0273027 0.20601 0.11532 0.0173027

5 0.29880 0.13639 0.0176741 0.19880 0.03639 0.0176741

0.1 0.29877 0.13636 0.0176717 0.00510608 0.00471209 0.00353013

0.2 0.19877 0.13637 0.0176723 0.0102122 0.00942419 0.00706026

0.3 0.19878 0.13637 0.0176729 0.0153182 0.0141363 0.0105904

0 0.15493 0.12505 -0.0039357 0.06075 0.0560625 0.042213

0.1 0.10044 0.16110 0.00434531 0.0405774 0.0374464 0.0280535

0.2 0.14898 0.19876 0.0115899 0.0261495 0.0241318 0.0180787

 

With increasing eccentricity parameter (geometric cilia parameter),, for the no-slip case, very 

little modification in velocity distribution is computed. However with slip present, there is a 

marked elevation in velocity i.e. the flow is accelerated in the upper channel half space. With 

increasing metachronal wave number, β, velocities are enhanced somewhat for the no slip case, 

whereas they generally reduced in the slip case.  

Fig. 3 (a-d) present the variation of pressure rise against the flow rate under the influences of 

physical parameters Hartmann number, velocity slip parameter and wave number, with all other 

parameters invariant. Fig.3a illustrates that pressure rise is elevated with the effect of magnetic 

field in the case of Casson fluids whereas it is depleted for the case of Newtonian fluids in the 
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pumping region i.e. for Q<0. The opposite trends are observed in the augmented pumping region 

i.e. for Q>0. Pressure rise is significantly greater for Casson fluid compared with Newtonian 

fluid and this is probably attributable to the greater momentum required to mobilize viscoplastic 

fluids- however this is only the case in the pumping region. In the augmented pumping region, 

the opposite behavior is observed and Newtonian fluid achieves greater pressure rise than Casson 

fluids. Fig. 3b demonstrates that pressure rise diminishes with an increase in the velocity slip 

parameter (), but only to a critical value of flow rate beyond which the reverse trend is 

observed, for >0. However when slip is absent (=0) there is a sustained decrease in pressure 

rise for all values of flow rate.   
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Figs.3. Pressure rise for different values of (a) Hartmann number, (b) velocity slip parameter, (c)  

Cilia length, (d) wave number. 

 

Fig. 3c shows the pressure rise increases with increasing cilia length parameter () for Q<1 

whereas the reverse behavior is computed for Q>1. The Casson fluid however consistently 

attains the greatest pressure rise, relative to the Newtonian fluid. Fig. 3d depicts that pressure rise 

reduces with increasing the magnitude of wave number across the entire range of flowrate values 

(Q) and indeed this observation is consistent with many other studies on ciliary propulsion fluid 

dynamics [39]. The Casson fluid again achieves greater pressure rise than the Newtonian fluid. 

 

Figs. 4(a-d) depict the distributions in pressure gradient for different values of the flow 

parameters. Inspection of the figures shows that magnitude of pressure gradient increases with 

an increase in Hartmann number (for the case of Newtonian fluid), flow rate, cilia length and 

velocity slip parameter whereas with the increase in Hartmann number (for the case of Casson 
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fluid), pressure gradient decreases. Stronger magnetic field clearly opposes pressure gradient 

build-up in Casson fluids whereas it assists it for Newtonian fluids.  
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Fig.4. Pressure gradient for different values of (a) Hartmann number, (b) flow rate, (c) Cilia 

length, (d) velocity slip parameter. 
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It is also observed that the maximum pressure gradient occurs when x=0.48 and near the channel 

walls the pressure gradient is small. This implies that the flow can easily pass in the central 

region of the channel. Pressure gradient magnitudes are higher for Casson fluid compared with a 

Newtonian fluid. The pressure distributions for the Casson fluid are also generally more peaked 

whereas for the Newtonian fluid they are more oblate parabolas. 
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Fig.5. Temperature profile for different values of (a) Hartmann number (b) velocity slip 

parameter.  
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Fig.6. Temperature profile for different values of  (a) Casson fluid parameter (b) flow rate. 
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Fig.7. Temperature profile for different values of (a) measure of the eccentricity (b) Brinkmann 

number. 

 

Figs 5-7 illustrate the temperature profiles for different flow parameters. The profiles are 

consistently parabolic across the channel span, and are similar to velocity profile which is also 

clear from the eq. (19). From temperature profile, a comparative study of Casson fluids and 

Newtonian fluids is also made. It is observed that temperature increases with the increasing the 

magnitude of Casson fluid parameter, flow rate, Hartmann number, velocity slip parameter,  

measure of the eccentricity and also Brinkman number. It is also noticed that temperature with 

thermal slip is of greater magnitude than for the no slip case, a pattern which has also been 

computed by Srinivas et al. [29] and Uddin et al. [30]. Effectively Br embodies the relative 

influence of heat produced by viscous dissipation and heat transported by molecular conduction. 

It therefore can be used to express the ratio of viscous heat generation to external heating in 

thermofluid dynamics. Higher Br implies a lower contribution in thermal conduction generated 

via viscous dissipation and greater elevation in temperatures, a trend which has been observed in 

many studies including Gorla et al. [40]. Confidence in the present computations is therefore 

high. 
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Figs. 8-10 depict the trapping and bolus evolution for different values of Hartmann number, 

Casson fluid parameter and slip parameter. Figs. 8(a-c) reveal that with greater Hartmann 

number (which corresponds to an increase in the magnetic field strength), the electromagnetic 

retarding force (Lorentz body force) substantially exceeds the viscous hydrodynamic force and 

this serves to inhibit bolus growth - as a result the size of the trapping bolus decreases whereas 

the number of boluses increases. Figs. 9(a-c) illustrate that an increase in Hartmann number (for 

the case of Newtonian fluid) increases both the size and number of trapping boluses. Figs.10(a-c) 

indicate that an increase in velocity slip parameter effectively enhances the number of boluses but 

decreases the size of bolus. Figs. 11(a-c) provide a visualization of the isotherms for different 

values of Casson fluid parameter. A line connecting points of equal temperature is called an 

isotherm. The small orange numbers are contour labels, which identify the magnitude of an 

isotherm (75, 85 degrees Fahrenheit). Increasing the magnitude of Casson fluid parameter i.e. 

elevating viscoplastic effect is found to enhance temperatures.  
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Figs.8. Streamlines for Casson fluid for different values of Hartmann number  (0.5,3,5)M  . 
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Figs. 9. Streamlines for Newtonian fluid for different values of  

(0.5,3,5)M
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Figs.10. Streamlines for different values of velocity slip parameter (0,0.3,0.5) . 
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Figs.11. Isotherms for different values of Casson fluid parameter  (0.1,0.15,0.17)   

 

5. CONCLUSIONS 

The magnetohydrodynamic flow and heat transfer in an electrically-conducting Casson 

viscoplastic fluid generated by metachronal wave propagation induced by beating cilia effect 

through a channel under the effect of an oblique magnetic field, has been studied theoretically.  

Velocity and thermal slip conditions and also viscous heating have been incorporated in the 

mathematical model. The linearized non-dimensional problem has been solved analytically. The 

computations have shown that: 

1. The velocity field decreases with an increase in Hartmann number ( M ), velocity slip 

parameter (), cilia eccentricity parameter ( ) and volumetric flow rate (Q) in the 

vicinity of the channel walls whereas it increases at the center of the channel. 

2. Velocity field is qualitatively similar for Newtonian and Casson fluids in view of all 

parameters whereas the magnitudes computed are significantly different.  

3. Velocity magnitudes for Newtonian fluid are distinctly lower as compared to Casson 

fluids. 
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4. In the pumping region (negative volumetric flow rate), the pressure rise decreases with 

the increase of Hartmann number, velocity slip parameter and wave number whereas 

pressure rise increases with the increase in cilia length. 

5. Pressure rise for a Casson (viscoplastic) fluid is generally in excess of that for a 

Newtonian fluid. 

6. Magnitude of pressure gradient increases with greater Hartmann (magnetic body force) 

number (for the case of Newtonian fluid), volumetric flow rate, cilia length and velocity 

slip parameter. However with an increase in Hartmann number (for the case of Casson 

fluid) pressure gradient decreases. 

7. Temperatures are elevated significantly and consistently with an increase in Casson fluid 

parameter, flow rate, Hartmann number, velocity slip parameter, measure of the 

eccentricity and Brinkmann (viscous dissipation) number.  

8. Temperatures achieve substantially greater values with high thermal slip compared with 

no thermal slip. 

9. The size and number of trapping boluses increase with an increase in viscoplasticity i.e. 

Casson fluid parameter. 

The present computations have not considered multiple orientations of the magnetic field. These 

will be addressed in the future. Furthermore other viscoplastic models are available in the 

literature [41] which can also simulate physiological and medical device working fluids and 

these will also be explored. 
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