

Learning music production practice through evolutionary algorithms

Alex Wilson / Bruno Fazenda

Acoustics Research Centre, University of Salford, UK

Intelligent Music Production

- The field of intelligent music production has been an active research topic for over a decade.
- The aim is to develop systems which are capable of performing common tasks in music production, such as level-balancing, equalisation, panning, dynamic range compression and application of artificial reverberation.

Intelligent Music Production

Typical system aesthetics and constraints

- Real-time (designed for "live" environment)
- Applies audio-specific processing, based on "bestpractice"
- Searches for the "best" mix, objectively, <u>irrespective of</u> <u>user</u>

Proposed system aesthetics and constraints

- Off-line (designed for "studio" environment)
- Makes no assumptions about "best-practice"
- Searches for the "best" mix, subjectively, <u>according to</u> <u>the user</u>

<u>GTR</u>	<u>BASS</u>	<u>DRUMS</u>

1.0	
0.5	inde bedeele er in er eak helen he ofte bak, het sale he wit here it deale te ofte sake helen hereite daar deas
0.0-	
-0.5	I de naturé a la mé a la che a la mai a luc curé des catés e la manutés da la ménéral de la marié de la c
-1.0	
1.0	
1.0 0.5·	nako ko kole ko zako ko k
1.0 0.5·	whe help had a start by the ball of the ball have been been and be a
1.0 0.5· 0.0-	and helpen here here here here here here here he
1.0 0.5· 0.0-	

"Navigating the mix-space: theoretical and practical level-balancing technique in multitrack music mixtures", Wilson/Fazenda, 2015

GTR	BASS	DRUMS

1.0	
0.5	bake kulou ku yan kuke kuke ku ya kuke kata ku yake ku ya kuke ku ya kuke ku ya kuke ku yana kuke ku yana ku ya
0.0-	
·0.5·	(de catala a la ve e catela, i la via la catela e catela, i la cota da bara da catala de la cota da catala de c
-1.0	
1.0	
0.5	1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.0-	n o server a decente o erre active en de la constante d'arre a la server a server a server a server a decente En altre internet decente a decente active de la decente de la server de la server de la server de la decente de
·0.5·	י אין איז
-1.0	

1.0 0.5 0.0 -0.5--1.0 1.0 0.5-0.5-0.5--1.0

Evolutionary Algorithms

- Generic population-based metaheuristic optimisation algorithm
- Can be used for global optimisation
- Techniques include:
 - Genetic algorithm
 - Particle Swarm Optimisation
 - Ant Colony Optimisation
 - Bees Algorithm

http://ittner.github.io/abelhas/

(Interactive) Evolutionary Algorithms

- Particularly suitable to aesthetic design problems
 - Non-linear, not deterministic

(Interactive) Evolutionary Algorithms

- Particularly suitable to aesthetic design problems
 - Non-linear, not deterministic
- IEA has applied to...
 - Fashion design (Kim/Cho, 2000)
 - Structural design (O'Neill et al. 2010)
 - Logo design (O'Neill/Brabazon, 2008)

(Interactive) Evolutionary Algorithms

- Why have user-assisted system?
 - The "best" mix won't be the best for everyone
 - The user can help guide the mixing system towards their ideal mix

"Perceptual Evaluation of Music Mixing Practices", **De Man et al., 2015**

Flowchart

Import and normalise

Loudness normalisation

 Using modified version of BS.1770, to better account for narrowband signals

For this demo, 6 tracks are used

- Vocals
- Guitar
- Bass
- Snare drum
- Kick drum
- Drum overhead

No EQ, Panning, Compression, Reverb, ..., etc.

"Loudness measurement of multitrack audio content using modifications of ITU-R BS. 1770", **Pestana et. al., 2013**

Flowchart

1.0 0.5 0.0 -0.5--1.0 1.0 0.5-0.5-0.5--1.0

6-tracks, therefore...

...mixes are on the surface of a sphere in 6-dimensional space...

...known as a 5-sphere, as it's surface is 5D.

Initial population

Flowchart

Clustering

- Initialise()
- While not end condition do
 - Select()
 - Crossover()
 - Mutate()
 - Do clustering()
 - Pick representatives()
 - Evaluate representatives()
 - Allocate fitness()
- End while

Fig. 6 Sparse fitness evaluation.

"Sparse fitness evaluation for reducing user burden in interactive genetic algorithm", **Lee/Cho, 1999**

Clustering

Evaluate fitness

- Get fitness of representatives
- Assign fitness to individuals not evaluated

Flowchart

Update population

- Fitness Scaling
 - Ranking
- Selection
 - Roulette
- Crossover
 - One-point, Uniform, ...
- Mutation
 - Random bit flip

Initial population

After 10 generations...

After 10 generations...

After 10 generations...

Convert phi terms to gains as follows

 $g_{1} = r \cos \phi_{1}$ $g_{j} = r \cos \phi_{j} \prod_{k=1}^{j-1} \sin \phi_{k}$ $g_{n-1} = r \sin \theta \prod_{k=1}^{n-2} \sin \phi_{k}$ $g_{n} = r \cos \theta \prod_{k=1}^{n-2} \sin \phi_{k}$

mix = audio*gain';

%generate mix from audio and gains

FURTHER WORK

Improvements / optimisation

Optimise

- Distribution of initial population
- Number of clusters
- Selection of representatives from each cluster
- Test the effects of...
 - GA parameters (Population size, Selection, Crossover, Mutation, ..., etc)
- Expand solution space
 - Add equalisation
 - Add stereo panning

Improvements / optimisation

Spectral centroid

"Variation in multitrack mixes: analysis of low-level audio signal features", **Wilson/Fazenda, 2016**

Fitness function

Subjective (ratings):

- "How much do you like this mix?"
 Creates mixes you would like
- "How clear is this mix?"
 - Creates mixes that are clear
- "How exciting is this mix?"
 - Creates mixes that are exciting

Fitness function

Subjective (physiological):

Conclusions

- Development of system which learns how to present object-based audio according to qualities desired by the user.
- Can be used to learn how certain qualities of audio/music are perceived
- Can be expanded to included further processing

Thanks for listening

Alex Wilson

Postgraduate Researcher | Acoustics Research Centre Newton Building, University of Salford, Salford M5 4WT <u>a.wilson1@edu.salford.ac.uk http://www.salford.ac.uk</u>

@AlexMacLiam