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Abstract 

This paper reports on a novel approach to using a 3-axis accelerometer to capture body segment 

angle for upper limb functional electrical stimulation (FES) control. The approach calculates the angle 

between the accelerometer x-axis and the gravity vector, while avoiding poor sensitivity at certain 

angles and minimising errors when true acceleration is relatively large in comparison to gravity. This 

approach was incorporated into a state-machine controller which is used for the real-time control of 

FES during upper limb functional task performance. An experimental approach was used to validate 

the new method. Two participants with different upper limb impairments resulting from a stroke 

carried out four different FES-assisted tasks. Comparisons were made between angle calculated 

from arm-mounted accelerometer data using our algorithm and angle calculated from limb-mounted 

reflective marker data. After removal of coordinate misalignment error, mean error across tasks and 

subjects ranged between 1.4 and 2.9 degrees. The approach shows promise for use in the control of 

upper limb FES and other human movement applications where true acceleration is relatively small 

in comparison with gravity.  

Keywords: Accelerometer, Body segment angle, Functional electrical stimulation control, Upper limb 

rehabilitation, Functional tasks 

 

Introduction 

A recent systematic review concluded that the use of functional electrical stimulation (FES) to 

promote recovery of upper limb activity after stroke was significantly more effective than activity 

training alone[1].  Although the finding was positive, at least 4 of the included studies were based on 

systems which either did not encourage voluntary effort to achieve a functional task, and/or did not 

offer flexibility over the sequence of stimulation delivered [2-5]. Both voluntary engagement with, 

and variation in, task practice are considered to be important elements of rehabilitation 
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programmes for motor re-learning [6, 7], suggesting limitations with the technologies used in these 

studies. 

In recognition of this, researchers have developed a number of systems which provide the patient 

with FES support for a range of tasks and encourage voluntary engagement of the user.  These 

include devices based on iterative learning control [8], proportionally controlled systems using EMG 

as an input signal [9] and, of most relevance to this paper, user-defined state machine controlled 

systems [10, 11]. User-defined state machine control offers a potentially simple approach to 

implementing task- and patient-specific FES support. However, in order to provide the user with the 

opportunity to directly engage with the task by actively initiating or controlling stimulation, a 

method is required to detect user intent. A range of sensors for this purpose have been investigated, 

including EEG [12] and EMG[13]. Each of these sensing approaches has its limitations and for all bar 

the most severely impaired, limb-mounted movement sensors offer an attractive alternative. 

Although 6 degree of freedom inertial measurement units (IMUs), which typically include 

accelerometers, rate gyroscopes and magnetometers, are available, they remain relatively bulky. 

This precludes their use on, for example, individual fingers. Further, although the price of IMUs has 

reduced over the past few years, compared with these devices, accelerometers remain cheaper, 

simpler to use in terms of data processing, and lower power. A small number of researchers have 

therefore investigated their application to upper limb FES [14-17]. However, as will be discussed 

below the methods used to derive estimations of orientation from accelerometer data are limited in 

these and many other papers.  

Current methods for processing accelerometer signals to estimate orientation can be categorised 

according to the number of independent measures (accelerometer axes) used. The first group of 

methods are based on using just one accelerometer signal, either a single axis device or one axis of a 

multi-axis device. In the first embodiment of these, a series of calibration measurements over a 

range of angles is required and an interpolation algorithm can then be used to derive the angle of 

the sensitive axis from the vertical [18-20]. As the calibration curve is significantly non-linear, the 

accuracy is highly dependent on a thorough calibration. More commonly, a trigonometric approach 

is used, based on arccos or arcsin functions (e.g. [21-24]). Both of these approaches require 

calibration to accurately identify the value of the denominator. Regardless of which of these three 

techniques is adopted for processing the accelerometer signal, they all suffer from the same 

drawbacks. When the magnitude of acceleration on the sensitive axis approaches either 9.81 or -

9.81, the sensitivity approaches zero because sin 𝛽 or cos 𝛽 approach 1, which means the signal to 

noise ratio is very poor [21, 23, 25, 26]. A small number of papers ignore the issue of poor sensitivity 

at zero or 90 degrees by suggesting a workable range for measurements [21, 23, 24]. For example, 

Miroslav Husak [23] refers to the measurement range with zero sensitivity as being a “Dead zone” 

and reports that, using the arcsin function, error increases from less than 2° over 4° when the 

sensitive axis nears ±90°. 

The second group of methods uses a dual axis accelerometer (or two axes of a 3-axis device). The 

signals from both of the sensitive axes can be used to calculate the angle from the vertical 𝜃 =

𝑎𝑟𝑐𝑡𝑎𝑛 (𝑔𝑧 𝑔𝑥⁄ ). This method suffers from decreasing sensitivity and, hence, increasing angle errors 

as 𝜃 approaches 0° [27-29] and extreme sensitivity near ±90° [27, 28]. For example, Šipoš et al [29] 
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reports that, using the arctan function, error increases from 1.37° to over 4.5° when the sensitive 

axis nears 0°. 

When applying either approach to the analysis of accelerometers signals there remains the problem 

that orientation can only be accurately estimated if the true acceleration is small compared with 

gravity (as accelerometers measure the sum of true acceleration and gravity). While the use of 

distributed multiple accelerometers provide a solution to this problem [30, 31], this is less than ideal 

for application to upper limb FES because of the difficulty of donning the additional, rigidly 

connected, accelerometers.  

In upper limb FES applications, the way the accelerometer signals are used for control purposes can 

be categorised as either direct use of the raw accelerometer signals [14, 16, 17] or using an angle-

based approach [15], both of which suffer from one or more of the problems listed above. 

In this paper we report on a novel approach to using accelerometry for upper limb FES control which 

addresses the issues discussed above. The paper begins by introducing a new approach to estimating 

angle relative to gravity from a 3D accelerometer, based on vector mechanics, which includes 

methods for avoiding poor sensitivity at certain angles and minimising errors when true acceleration 

is relatively large in comparison to gravity. The paper then reports on its application in our finite-

state-machine (FSM) controlled FES system and evaluates its performance. 

 

Methods 

Angle estimation algorithm 

The new method calculates the absolute angle from the vertical of one axis of a 3-axis accelerometer 

(for the purpose of the paper, the x-axis).  Referring to Figure 1, the method calculates the angle 𝛽 

between 𝑥 and 𝑔𝑛𝑜𝑤,  where 𝑥 is the unit vector representing the accelerometer x-axis, and   𝑔𝑛𝑜𝑤is 

the gravity vector in the accelerometer frame.  
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Figure 1: Angle between unit vector along x-axis and gravity vector  

 

We use the definitions of the dot product and cross product between the gravity vector and unit 

vector along the x-axis to derive the following equations: 

𝑐𝑜𝑠(𝛽) =
𝑔𝑛𝑜𝑤 ∙ 𝑥

|𝑔𝑛𝑜𝑤| |𝑥|
=

𝑔𝑥

√|𝑔𝑥
2 + 𝑔𝑦

2 + 𝑔𝑧
2|

 
(1) 

sin(𝛽) =
|𝑔𝑛𝑜𝑤 × 𝑥|

|𝑔𝑛𝑜𝑤| |𝑥|
=

√(𝑔𝑧 )2 + ( 𝑔𝑦)
2

√|𝑔𝑥
2 + 𝑔𝑦

2 + 𝑔𝑧
2|

 

 

(2) 

As mentioned in the introduction, when sin(𝛽) or cos(𝛽) approach 1, their sensitivity to changes in 

𝛽 approaches zero (the derivative tends to zero). Therefore, to maximise accuracy, we use sin(𝛽) for 

calculating angles in the ranges 𝛽 = 0° − 45° and 𝛽 = 135° − 180° and cos 𝛽 for calculating angles 

in the range 𝛽 = 45° − 135°. Furthermore, because arcsin does not have a unique solution in the 

range 0⁰ to 180⁰, we use the sign of cos(𝛽) to determine whether the angle given by arcsin lies 

between 0° − 45° or between 135° − 180°. Therefore, combining the principles described above, 

the following logical rules can be used to calculate 𝛽 from sin(𝛽) and cos(𝛽). 
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If 𝑐𝑜𝑠(𝛽) ≥ 0.707107   

    𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛(𝑠𝑖𝑛𝛽) 

Else if  𝑐𝑜𝑠(𝛽) ≤  −0.707107  

    𝛽 = 𝜋 − 𝑎𝑟𝑐𝑠𝑖𝑛(𝑠𝑖𝑛𝛽) 

Else  

    𝛽 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑐𝑜𝑠𝛽) 

End 

(3) 

 

The proposed approach overcomes the problem of poor sensitivity to changes in angle when sin(𝛽) 

or cos(𝛽) approach 1 and does not suffer from the singularities seen in approaches which use 2-axis 

accelerometer signals and arctan. 

 

In addition to the approach outlined above we have included an algorithm to reduce the likelihood 

of misinterpreting the accelerometer data when the true acceleration becomes significant compared 

with g (9.81 m/s2). In cases where the magnitude of the measured accelerometer vector significantly 

exceeds g (i.e. true acceleration is significant compared to g) the data point is ignored. This is 

achieved by applying a g-tolerance band (9.81 ± g-tolerance) and only using good data points that 

lie within that band. The FSM controller triggers a state transition when n good data points (i.e. 

within the g-tolerance band) have exceeded the specified body-segment angle threshold (using n 

good points acts as a noise filter). As the g-tolerance band narrows, it would be expected that a 

larger number of bad data points would be ignored by the controller and hence this may lead to a 

delay in moving between states. Conversely, if the g-tolerance band is too wide, errors in angle 

estimation would be expected to increase. In this study, we explore the effects of different values 

for the g-tolerance band on angle estimation and the trade-off between accuracy and number of 

bad data points ignored. 

 

Experimental protocol 

Following ethical approval (REC ref: 10/H1005/26) two quite different participants, both with upper 

limb impairments following stroke, were invited to the lab to participate in the study. The 

participants are described in table 1. 

Table 1: Participants 

No Gender Age Hemiplegic 

side 

Dominant 

side 

Years since 

onset 

Fugl-Meyer Upper 

Extremity score 

(maximum 66) 
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1 M 81 Left Right 3 years 29 

2 F 42 Right Right 13 years 37 

 

Figure 2 shows the experimental setup for the “Drink from a cup” task. Two inertial sensing units or 

IMUs (MT9 Xsens bv, NL), each with a cluster of four reflective markers on their upper corners, were 

attached to the upper arm and forearm of the subject’s affected limb using self-adherent bandage. 

The IMUs’ x-axes were approximately aligned with the long axes of the body segments. A Vicon 

motion analysis system (Vicon Motion Systems Ltd, Los Angeles, USA) employing ten cameras was 

used to capture the positions of the reflective markers on each IMU at a sampling frequency of 100 

Hz. Only acceleration data was captured from the IMUs, at a sampling frequency of 20 Hz, using a 

separate laptop. This laptop also ran the Finite State Machine controller that produced the 

necessary stimulation profiles via a RehaStim 8-channel stimulator (Hasomed GmbH, Magdeburg, 

Germany), and also ran the graphical user interface (GUI) used to set up the FSM controller. A pulse 

signal from one of the Xsens system’s analog output channels was fed to an analogue input channel 

in the Vicon system to provide synchronization between the Xsens and Vicon systems. This 

experimental setup was also used to study another three tasks (see below for details of each task). 

 

Figure 2: Experimental setup 

 

Each subject was asked to carry out a series of functional tasks assisted by electrical stimulation to 

relevant muscles during relevant parts of the movement. The functional tasks were selected by the 
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therapist at the start of each session as being very difficult or impossible for the user to perform 

unaided. The four tasks were “Brush coins into the other hand”, “Drink from a cup”, “Place an object 

onto a shelf” and “Pour water from a bottle to a cup”. For all tasks, the subject sat at a table with 

their affected hand comfortably placed on the table or on the thigh (for “Place an object into a 

shelf”) at the starting position.  For each repeat of a task, the object(s) to be manipulated was/were 

placed in a pre-defined starting location. 

The therapist used the GUI mentioned earlier to define each task as a sequence of FSM states 

(corresponding to movement phases), each of which was associated with a stimulation profile1 for 

each of the muscles to be stimulated (see figure 3). Threshold values for each muscle were 

established earlier in the setup process, leaving the therapist to define pulse width target and ramp 

time for each stimulated muscle in each phase. Pressing a button on the keyboard to leave the 

neutral phase, the therapist then used the GUI to manually adjust the pulse width target and ramp 

time for each of the stimulated muscles in phase 1, until the relevant limb motion was achieved. This 

process was repeated for each movement phase (FSM state). During each attempt, data were 

recorded from both the Vicon and Xsens systems. Once the therapist was satisfied with the resultant 

movement, he/she invited the participant to repeat the task until data on between 7 and 10 

satisfactory repeats had been captured. 

Descriptions of the finite state machines for each of the four functional tasks are as follows: 

 

Figure 3: Finite state diagrams for the following tasks (a) “Brush coins into the other hand”; (b) “Drink from a cup”; (c) 
Place an object onto a shelf; (d) Pour water from a bottle to a cup. The controller moves between states when the 
transition condition Btn is met (Btn = Button press). In each state (represented by a box), the specified muscles are 
stimulated where: AD&Tr = Anterior deltoid and Triceps; Bi = Biceps; Pr = Pronator; WE = Wrist extensors. 

 

                                                           
1 A stimulation profile consists of a threshold pulse width, a target pulse width and a ramp time. 
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 “Brush coins into the other hand” (figure 3a) 

The subject was required to reach for coins positioned on the table and brush them back into his/her 

other hand. The position of the coins was such that (s)he could only achieve the task with FES 

assistance. 

 “Drink from a cup” (figure 3b) 

The subject was required to reach for a cup, grasp it, lift the cup to the mouth, replace the cup and 

release it. The cup was positioned such that the subject could only achieve the task with FES 

assistance.  

 “Place an object onto a shelf” (figure 3c) 

The subject was required to lift his/her forearm towards an object, grasp it, reach forward to put it 
on to a shelf and release it. The shelf was located such that (s)he could only achieve the task with 
FES assistance.  
 
 “Pour water from a bottle to a cup” (figure 3d) 

The subject was required to reach for a bottle, grasp it and pour the water into a cup, replace the 
bottle and release it. The position of the cup was such that the subject could only achieve the task 
with FES assistance. 

 
Data processing 

 
The absolute angles from vertical of the two IMU x-axes, based on the accelerometer signals and the 
new algorithm described earlier, were recorded directly by the real-time FSM controller. The 
coordinates of the reflective markers attached to the IMUs were exported using Visual 3D software 
(C-Motion, Inc., Rockville, MD, USA). The Vicon marker data were down-sampled to provide data at 
20Hz (frequency of the FSM controller) and synchronized with the IMU data. The calculation of the 
angles from vertical of the x-axes of the two IMUs, based on the Vicon data, is described in [32] and 
was implemented using Matlab (Mathworks inc. Natick, USA). 
 
Data were checked post-collection and task repeats were discarded in cases where the marker 
visibility was incomplete, or synchronisation between the Xsens and Vicon systems failed. 
 
To account for small misalignment errors between the marker-derived sensor coordinate frame and 
the accelerometer coordinate frame, the first 10 frames of static data were used to artificially 
remove the offset.  Comparisons between accelerometer and marker-derived angles were drawn 
using RMS error and Peason Correlation coefficients, before and after removing the offset. 
 
Finally, to investigate the effect of different g-tolerance bands on the angle estimation, we applied 
three different tolerance bands to the data (9.81 ± 0.5 𝑚/𝑠2, 9.81 ± 0.3 𝑚/𝑠2 and 9.81 ±
0.2 𝑚/𝑠2 ). Comparisons are presented between maximum error and number of data points lying 
outside of the tolerance band. 
 

Results 
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Figure 4 shows example data for forearm and upper arm angles from the vertical, obtained from 

both reflective marker and accelerometer approaches, for the task “Brushing coins into the other 

hand” (Left: subject 1; Right: subject 2) 

 

Figure 4: Example data from task “Brush coins into the other hand”  

 

Table 2 compares the angles derived from marker data with accelerometer-derived angles for each 

subject and each task.  

Table 2:  Comparison between marker and accelerometer-derived angles (7-10 trials per subject). Pearson’s correlation 
(r) and RMS error (ɛ) are shown before and after removal of alignment error. (UA = upper arm; FA = forearm) 

Subject 1: 

 
Task 1 Task 2 Task 3 Task 4 

 
FA UA FA UA FA UA FA UA 

r 0.947 0.986 0.992 0.993 0.943 0.988 0.985 0.994 

ɛ (deg.) 3.12 2.27 2.48 1.62 1.61 1.67 1.63 2.06 

ɛ after removal 
of alignment 
error (deg.) 

2.91 2.46 1.73 1.60 1.56 1.50 1.72 2.75 

 

Subject 2: 
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Task 1 Task 2 Task 3 Task 4 

 
FA UA FA UA FA UA FA UA 

r 0.986 0.995 0.995 0.996 0.985 0.998 0.982 0.990 

ɛ (deg.) 2.82 3.47 1.94 3.24 2.12 3.18 1.91 1.93 

ɛ after removal 
of alignment 
error (deg.) 

2.33 2.04 2.02 1.42 1.95 2.25 1.66 2.03 

 

Figure 5 shows how maximum errors are reduced, but not eliminated by removing data points which 

lie outside of the g-tolerance band.  

 

Figure 5: Errors in forearm “absolute angle from vertical” calculated from an example trial of the “Drink from a cup” task 
(subject 1) before and after removal of data points using a g-tolerance ±0.5 m/s2. 

 

Table 3 illustrates the effect of different g-tolerance bands on the accuracy of angle estimation and 

number of data points lying outside of the tolerance band.  

 

Table 3:  Effect of g-tolerance (on maximum error (δ) (.deg) and percentage of invalid data (p) (%) 

Subject 1: 

 Tolerance 
band 

Task 1 Task 2 Task 3 Task 4 

FA UA FA UA FA UA FA UA 

δ 

Infinite 12.0±3.3 7.9±1.8 12.5±4.0 8.3±1.8 8.7±4.1 8.4±4.1 7.6±3.6 5.6±1.2 

± 0.5 m/s2 11.1±2.5 7.3±1.4 10.1±2.1 8.1±1.7 7.2±2.0 7.9±4.0 7.4±3.7 5.5±1.3 

± 0.3 m/s2 10.6±2.6 6.8±1.6 9.7±2.4 7.8±1.5 7.2±2.0 7.7±3.9 6.8±3.8 5.2±1 
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± 0.2 m/s2 10.6±2.6 6.5±1.4 8.1±2.3 6.8±1.2 6.1±2.4 7.3±4.1 6.6±3.8 4.9±0.9 

p 

Infinite 0 0 0 0 0 0 0 0 

± 0.5 m/s2 6.5±2.9 7.1±3.6 7.5±2.2 1.1±0.9 12.7±3.5 2.1±1.4 8.0±3.3 5.1±2.3 

± 0.3 m/s2 17.4±4.5 22.1±8.7 16.0±3.6 6.5±2.1 33.1±6.8 8.6±2.6 18.1±3.7 17.6±4.2 

± 0.2 m/s2 28.1±6.2 34.7±12.6 30.1±5.4 15.9±3.1 51.6±9.7 19.8±3.8 32.3±4.6 30.1±5.4 

 

Subject 2: 

 Tolerance 
band 

Task 1 Task 2 Task 3 Task 4 

FA UA FA UA FA UA FA UA 

δ 

Infinite 11.3±3.2 9.5±1.4 6.5±2.6 7.2±0.9 10.27±4.4 9.43±2.3 8.16±1.3 5.5±0.6 

± 0.5 m/s2 8.9±3.7 8.9±1.8 6.1±2.8 7.0±0.8 6.83±1.1 8.29±3.1 7.39±1.8 5.5±0.6 

± 0.3 m/s2 8.1±2.4 8.1±1.8 4.9±1.0 6.3±0.8 6.20±1.0 7.34±2.7 7.39±1.8 5.1±0.7 

± 0.2 m/s2 8.1±2.4 7.3±1.3 4.6±0.6 6.1±1 5.50±1.0 6.53±2.0 6.86±1.7 4.8±0.8 

p 

 Infinite 0 0 0 0 0 0 0 0 

± 0.5 m/s2 9.5±3.0 15.2±2.8 3.8±1.3 2.2±1.2 8.6±1.5 15.9±2.9 7.9±2.4 3.9±3.1 

± 0.3 m/s2 14.8±4.3 35.4±5.4 12.9±2.2 30.2±5.4 20.1±3.6 33.3±3.7 19.3±4.1 27.6±5.8 

± 0.2 m/s2 20.3±4.8 50.8±7.1 23.6±2.6 61.0±4.8 30.7±5.1 44.7±5.0 31.9±6.0 49.4±6.1 

 

Discussion and conclusions 

This paper has introduced a new method of calculating angle from vertical from a 3-axis 

accelerometer. The approach avoids the key limitation of methods based on single or dual axis 

accelerometer signals, namely when the magnitude of the accelerometer signal on the sensitive axis 

approaches either 9.81 or -9.81, the sensitivity approaches zero and hence the signal to noise ratio 

becomes very poor. Figure 4 and table 2 illustrate the performance of the method using upper limb 

mounted IMUs during the performance of a range of typical FES assisted upper limb tasks.   

Ignoring readings where the true acceleration is significant in comparison to gravity can remove 

some unwanted spikes and thereby improve the robustness of angle triggering (Table 3). However, 

referring to Figures 5, it is clear that not all peaks in error value are removed. This is because only 

those peaks that alter the magnitude of the measured vector are interpreted as bad readings. 

Clearly, depending on the direction of the true acceleration (or the equivalent noise from some 

other source) the magnitude of the measured accelerometer vector may not fall outside the g-

tolerance band. As can be seen in table 3, the tighter the g-tolerance band the greater the number 

of bad data points which fall outside and hence the higher the potential delays in transitioning 

between FSM states using angle triggering. In the worst case, when the g-tolerance is set at ± 0.2 

m/s2, 61% of data points fall outside the tolerance band. Based on our findings a g-tolerance of ± 0.5 

m/s2 appears to be an acceptable value and this was used in subsequent usability trials [33]. 

The approach shows promise for the application described in the paper. However, the method 

would not be applicable to limb segments which experience significant accelerations during normal 

daily activity (e.g. the shank during gait).  
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