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Abstract 

A mathematical model is presented for three-dimensional unsteady boundary layer slip flow 

of Newtonian nanofluids containing gyrotactic microorganisms over a stretching cylinder. 

Both hydrodynamic and thermal slips are included. By applying suitable similarity 

transformations, the governing equations are transformed into a set of nonlinear ordinary 

differential equations with appropriate boundary conditions. The transformed nonlinear 

ordinary differential boundary value problem is then solved using the Runge-Kutta-Fehlberg 

fourth-fifth order numerical method in Maple 18 symbolic software. The effects of the 

controlling parameters on the dimensionless velocity, temperature, nanoparticle volume 

fractions and microorganism motile density functions have been illustrated graphically. 

Comparisons of the present paper with the existing published results indicate good agreement 

and supports the validity and the accuracy of our numerical computations. Increasing 

bioconvection Schmidt number is observed to depress motile micro-organism density 

function. Increasing thermal slip parameter leads to a decrease in temperature. Thermal slip 

also exerts a strong influence on nano-particle concentration. The flow is accelerated with 

positive unsteadiness parameter (accelerating cylinder) and temperature and micro-organism 

density function are also increased. However nano-particle concentration is reduced with 

positive unsteadiness parameter. Increasing hydrodynamic slip is observed to boost 

temperatures and micro-organism density whereas it decelerates the flow and reduces nano-

particle concentrations. The study is relevant to nano-biopolymer manufacturing processes. 
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b
  

chemotaxis constant  m  

C   nanoparticles volume fraction    

xfC   local skin friction coefficient     

pc   specific heat at constant pressure 
J

kgK

 
 
 

 

C   ambient nanoparticle volume fraction    

BD   Brownian diffusion coefficient 
2m

s

 
 
 

 

nD   miroorganism diffusion coefficient 
2m

s

 
 
 

 

TD   thermophoretic diffusion coefficient 

2m

s

 
 
 

 

1D              variable thermal slip factor  m  

 1 0
D              constant thermal slip factor  m  

 

( )f    dimensionless stream function    

j              vector flux of microorganism 2

kg

m s

 
 
 

 

k   thermal conductivity 
W

mK

 
 
 

 

1N            variable first order velocity slip factor 
s
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 1 0
N

            
constant first order velocity slip factor 

s

m

 
 
 

 

xNn   local density number of motile microorganisms ( )  

Nb   Brownian motion parameter ( )BD C
Nb




 

  
 

 

Nt   thermophoresis parameter  
( )

T wD T T
Nt

T









 
  

 

 

xNu   local Nusselt number ( )  

n   number of motile microorganism    

wn   wall motile microorganism    

Pe   bioconvection Péclet  number ( )c

n

bW
Pe

D

 
  

 
 

P   Pressure 
2

N

m

 
 
 

 

Pr  Prandtl number Pr ( )




 
  

 
 

mq              surface mass flux 
m

s

 
 
 

 

n
q              surface motile microorganisms flux 

2

W

m K

 
 
 

 

wq              surface heat flux 
2

W

m

 
 
 

 

r              dimensional radial axis  m  

S              unsteadiness parameter    

Sb   bioconvection Schmidt number ( )
n

Sb
D

 
  

 
 

Sc   Schmidt number ( )
B

Sc
D

 
  

 
 

xSh              local Sherwood number (-) 
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t   dimensional time ( )s  

T   nanofluid temperature ( )K  

wT   surface temperature ( )K  

T   ambient temperature ( )K  

u   dimensional velocity components along the r  axis  
m

s

 
 
 

 

u   dimensionless velocity component along the r  axis     

v   velocity vector 
m

s

 
 
 

 

v   velocity components along the y  axis 
m

s

 
 
 

 

v   dimensionless velocity component along the y   axis    

w   velocity components along the z  axis 
m

s

 
 
 

 

w   dimensionless velocity component along the z   axis    

cW    maximum cell (micro-organism) swimming speed 
m

s

 
 
 

 

x   dimensional coordinate along the surface  m  

x   dimensionless coordinate along the surface    

y   coordinate normal to the surface  m  

y   dimensionless coordinate normal to the surface    

z   dimensional axial axis  m  

z   dimensionless axial axis    

Greek letters 

   effective thermal diffusivity 

2m

s
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              constant of the expansion/contraction strength 
1

s

 
 
 

 

   independent similarity variable    

( )              dimensionless temperature    

             dynamic viscosity 
kg

ms

 
 
 

  

             kinematic viscosity 
2m

s

 
 
 

 

             fluid density 
3

kg

m

 
 
 

 

 
f

c             volumetric heat capacity of the fluid 
3

J

m K

 
 
 

 

 
p

c             volumetric heat capacity of the nanoparticle material 
3

J

m K

 
 
 

 

  ratio of the effective heat capacity of the nanoparticle material to the fluid heat 

capacity  
( )

( )

p

f

c

c





 
  
 

  

w  surface shear stress    

( )    dimensionless nanoparticles volume fraction    

 ( )    dimensionless number density of motile microorganism  
 

 

Subscripts 

( ) '  ordinary differentiation with respect to    

( )w               condition at wall 

 

1. INTRODUCTION 

Studies on flows over stretching surfaces are important in manufacturing processes such as 

aerodynamic extrusion of plastic sheets, boundary layer liquid film condensation, paper 

production and glass blowing.1 Stasiak et al. 2 have reported in detail on the influence of 

stretching on fluid mechanical properties of biopolymer cylinder coatings. Furthermore in 
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Thomas and Yang3 many applications are documented for stretching nano-bio-polymers on 

cylinders, sheets, wedges and other geometries to achieve modified properties. Stretching (or 

contracting) are therefore important technologies which are critical to the performance of 

polymer products from the macroscopic to the nanoscale. After the pioneering work of Khan 

and Pop4 several researchers have studied stretching hydrodynamic flows with mass and heat 

transfer.  Steady boundary layer flow due to a stretching surface in a quiescent viscous and 

incompressible fluid with the Oberbeck-Boussinesq approximation has been considered by  

Partha et al.5 and Ishak et al.,6 Bég et al.7 (with magnetohydrodynamic and cross-diffusion 

effects) and Daskalakis8. Akl9 quite recently investigated unsteady boundary layer flow due 

to a stretching cylinder with prescribed temperature and obtained the solution analytically. 

Bég et al.10 studied stretching flow of a magnetic polymer using the homotopy analysis 

method.  

 

A significant development in materials science and thermal engineering in the past two 

decades has been that of nanofluids. Nanofluids constitute a liquid suspension containing 

very fine particles (diameter less than 50 nm) in a base fluid such as water, oil, ethylene 

glycol etc.11 Nanoparticles can be made from nitride ceramics (AlN, SiN), metals (Cu, Ag, 

Au) and semiconductors (SiC). The accumulation of nanoparticles into the base fluid can 

enhance the fluid flow and heat transfer proficiency of the liquids and increase the low 

thermal conductivity of the base fluid. This has implications in medical applications, power 

generation, micro-manufacturing, thermal therapy for cancer treatment, chemical and 

metallurgical sectors, microelectronics, aerospace and manufacturing.12 Representative works 

on convective boundary layer flow and application of nanofluids were conducted by 

Buongiorno,13 Das et al.,14 Kakaç and Pramuanjaroenkij,15 Saidur et al.16 and Wen et al.17 

Further studies have been communicated by Mahian et al.,18 Nield and Bejan,19 Haddad et 

al.,20 Sheremet and Pop21 and many others. There are two types of model for nanofluids 

which have been commonly used by the researchers, namely Buongiorno's model13 and the 

Tiwari-Das model.22 According to Buongiorno, the velocity of the nanofluid is considered as 

the sum of the base fluid velocity and the relative/slip velocity. His model emphasizes the 

dominant mechanisms as Brownian diffusion and thermophoresis. In contrast to Buongiorno's 

model, the Tiwari-Das model22 considers the solid volume fraction of the nanoparticles. The 

Buongiorno model13 implies that the Brownian diffusion and thermophoresis are the most 

prominent parameters the characteristise nanofluid flows. Recently, work on convective 

boundary layer flow in nanofluids include Ghanbarpour et al.,23 Li et al.,24 Vanaki et al.,25 
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Zhao et al.,26 Serna,27 , Mohyud-Din28 and others. Ferdows et al.29 investigated radiative 

magnetohydrodynamic nano-polymer stretching flows. Uddin et al.30 studied numerically the 

stretching fluid dynamics of magnetic nano-bio-polymers. 

 

Bioconvection refers to a macroscopic convection motion of fluid affected by density 

gradients induced by hydrodynamic propulsion i.e. swimming, of motile microorganisms (see 

Kuznetsov31). Adding microorganisms (such as algae and bacteria) to base fluids (e.g. water) 

creates the process of bioconvection which is directionally-orientated swimming typically 

towards an imposed or naturally present stimulus e.g. light, gravity, magnetic field and 

chemical concentration (oxygen). The density of the microorganism is inclined to be greater 

than that of the free stream fluid and this can cause an unstable density profile with 

subsequent upending of the fluid against gravity (see Raees et al.32). The base fluid has to be 

water for the majority of microorganisms to survive and be active and it is assumed 

nanoparticle suspension remains stable and do not agglomerate for a couple of weeks (see 

Anoop et al.33). For bioconvection to take place, the suspension must be dilute since 

nanoparticles would increase the suspension's viscosity and viscosity tends to dominates 

bioconvection instability (see Pedley34).  

 

A recent innovation for microfluidic devices is to combine nanofluids with bioconvection 

phenomena (see Xu and Pop35). Aziz et al.36 have studied theoretically the natural bio-

convection boundary layer flow of nanofluids and verified that the bioconvection parameters 

influence mass, heat, and motile microorganism transport rates.  Latiff et al. 37 studied 

unsteady forced bioconvection slip flow of a micropolar nanofluid from a 

stretching/shrinking sheet. Bioconvection may have also have a role to play in bio-

microsystems for mass transport augmentation and microfluidic devices such as bacteria-

powered micromixers (see Tham et al.38). Other significant applications of nanofluid 

bioconvection arise in the synthesis of novel pharmacological agents (drugs) as elaborated by 

Saranya and Radha39 and earlier for nano-bio-gels as discussed by Oh et al.40 Micro-

organisms can be deployed strategically to enhance biodegradable polymeric nanomaterials 

and improve various desirable medical characteristics such as bioavailability, 

biocompatibility, encapsulation, DNA embedding in gene therapy, protein deliverability etc. 

The intelligent manufacture of bio-nano-polymers allows drugs to be developed which 

achieve a “controlled release” and this has been shown to increase therapeutic influence in 

patients. Examples of such bio-nano-polymers are poly (lactic-co-glycolic acid), polylactic 
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acid, chitosan, gelatin, poly hydroxy alkaonates, poly caprolactone and poly alkyl 

cyanoacrylate.  

 

To optimize the fabrication of bio-nano-materials, numerical and physico-mathematical 

simulation has an important role to play. This is a strong motivation for the present study in 

which the objective is to investigate the effect of velocity slip, thermal slip and zero mass flux 

boundary conditions on time-dependent bioconvection nanofluid boundary layer flow from a 

horizontal cylinder. The effects of selected biophysical and thermo-physical parameters on 

the dimensionless velocity, temperature, nanoparticle volume fraction, microorganism 

density function and furthermore on rate of heat transfer, the rate of nanoparticle volume 

fraction and the rate of motile microorganism density transfer rate are shown graphically and 

discussed. Validation of the present solutions which are obtained via MAPLE18 symbolic 

software is conducted with earlier studies. 

 

2 BIOCONVECTION NANOFLUID MATHEMATICAL MODEL 

Consider the unsteady forced bioconvection flow of a nanofluid that contains both 

nanoparticles and gyrotactic microorganisms over an infinite cylinder in contracting motion 

as shown in Fig. 1. The diameter of the cylinder is assumed to be a function of time with 

unsteady radius   0 1a t a t   where   the constant of the expansion/contraction 

strength, t  is the time and 0a  is the positive constant.  

 

 

 

 

 

 

 

 

 

Figure 1: The physical model and coordinate system (see Fang et al.41) 

 

The nanoparticles fraction on the ambient is assumed to obey the passively controlled model 

proposed by Kuznetsov and Nield42, while the nanoparticles and temperature distribution on 
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the ambient is assumed to be a constant ,C T   respectively. It is worth mentioning that the 

micro-organisms can only survive in water. This indicates that the base fluid has to be water. 

Under these assumptions and the nanofluid model of Kuznetsov and Nield,42 the relevant 

transport equations are the conservation of total mass, momentum, thermal energy, 

nanoparticle volume fraction and microorganisms concentration (density) which may be 

stated in vector form as follows: (see Xu and Pop36) 

0,v                                                                                                                           (1)

  21
,
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v v P v

t





      


                                                                                  (2) 

2 T
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DT
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t T
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,                                                                      (4) 

0
n

j
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,                                                                                                                (5) 

where  , ,v u v w  is the velocity vector of the nanofluid flow in the x  direction, 

y  direction and the z direction respectively, p  is the pressure, T  is the temperature, C  is 

the nanoparticle volumetric fraction, n  is the density of the motile microorganism,   is the 

nanofluid density,   is the kinematic viscosity of the suspension of nanofluid and 

microorganisms,   is the thermal diffusivity of the nanofluid, 
( )

( )

p

f

c

c





  is a parameter with 

( ) pc  being heat capacity of the nanoparticle and ( ) fc being the heat capacity of fluid, BD  

is the Brownian diffusion coefficient, TD  is the thermophoretic diffusion coefficient, T  is 

ambient temperature, j  is the flux of microorganisms due to fluid convection, self-propelled 

swimming, and diffusion, which is defined by nj n v n v D n


    . Also cv C
C

bW




 
  
 

 

is the velocity vector relating to the cell swimming in nanofluids with nD  being the 

diffusivity of microorganisms, b  being the chemotaxis constant and Wc being the maximum 

cell swimming speed. In cylindrical polar coordinates, r  and z  are measured in the radial 

and axial directions, respectively, and based on the axisymmetric flow assumptions with 
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boundary layer approximations and an order of magnitude analysis, neglecting azimuthal 

velocity component, Eqns. (1)–(5) can be written as: (see Zaimi et al.43) 
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u u w
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The relevant boundary conditions corresponding to the physical problem may be stipulated 

following Zaimi et al.43 as: 
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where wT  is the constant surface  temperature, 1N  is the velocity slip factor, 1D  is the variable 

thermal slip factor, wn  is the constant surface density of the motile microorganism, and 

andT C   denote constant temperature and nanoparticle volume fraction far from the surface 

of the cylinder, respectively. 

 

3. SIMILARITY TRANSFORMATION OF MATHEMATICAL MODEL 

To proceed, we introduce the following transformations: (Zaimi et al.43, Abbas et al.44) 
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Eqn. (6) is satisfies automatically and since there is no longitudinal pressure gradient, Using 

(13), we have transformed Eqs. (8)-(11) into a system of ordinary differential equations: 
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The boundary conditions (13) are transformed into: 
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Here, the controlling parameters involved in the above dimensionless Eqs. (14)-(18) are 
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  is the thermal slip parameter . The pressure can be obtained from Eq. (7) as 

21
constant + .

2

P u u u
u t

r r t




  
     

  
                                                               (19) 

 

3. PHYSICAL QUANTITIES 
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The quantities of engineering interest in bio-nano-materials processing i.e. Sakiadis-type 

flows are the wall parameters. These are respectively local skin friction coefficient ,
xfC  local 

Nusselt number xNu , local nano-particle mass transfer rate i.e. local Sherwood number, and 

finally the local density number of motile micro-organisms, xNn  defined as: 
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where ,w wq , mq and nq  represent the shear stress, surface heat flux, surface mass flux and 

the surface motile microorganism flux and are defined by: 
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Substitute Eqns. (21) and (13) into (20) we obtain: 

 / ''(1),
xf

C z a t f '(1),xNu    
(1)

,
(1)

xSh





  '(1).xNn                                (22) 

 

4. MAPLE 18 NUMERICAL SOLUTION, SPECIAL CASES AND VALIDATION 

Numerical solutions to the ordinary differential Eq. (14) – (17) subject to the boundary 

conditions (18) were obtained using Runge-Kutta-Felhbergh fourth-fifth order quadrature 

(shooting methods) in the Maple software via built-in functions. This approach has been 

successfully used by many researchers in order to solve high order systems of coupled, 

nonlinear ordinary differential equations (ODEs). Readers are referred for example to Uddin 

et al.45, Khan et al.46  When Eqns. (15) – (17) are removed the present generalized unsteady 

forced bioconvection nanofluid dynamic model reduces to the model studied by Fang et al.47 

and also setting Re 1  we retrieve the model of Fang et al.41 Furthermore for 0S  (steady 

case), 0Nt Nb   (nano-particle absence) and disregarding Eqns. (16) and (17), the general 

model developed in eqns. (14)-(18) reduces to the case examined by Ishak et al.6 when 

0 and Re=1M   is prescribed in their paper. Finally the model studied by Zaimi et al.48 is 

retrieved exactly when Eqns. (16) and (17) are neglected and 0Nt Nb   is prescribed in the 

general model defined by eqns. (14) to (18). To validate the accuracy of our present code, we 

compare the numerical result for the local skin friction coefficient  1f   and  1  when 
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0, 0S M   and Re =1 with the solutions given by Ishak et al.49 In real situations, minus 

sign of  1f   infers that the stretching cylinder/tube applies dragging force on the fluid flow 

and vice versa (Ishak et al.6). Solutions obtained via MAPLE 18 are benchmarked with these 

previous studies and in all cases excellent agreement is obtained. All comparison tables are 

documented in the Appendix. There is therefore justifiably high confidence in the present 

MAPLE18 solutions.  

 

5. NUMERICAL RESULTS AND DISCUSSION  

In this section, we present the effects of parameters , ,b c S  and Sb  on '( ), ( ), ( )f       and 

( )  . All computations illustrated in the figs. 2-6 were performed using MAPLE18 software 

We fix the value of  Pr, , , ,Nb Nt Sc Pe  corresponding to Kuznetsov and Nield50. The effects of 

these parameters are well-established and are therefore not re-visited here. We focus 

principally on the influence of unsteadiness (S), hydrodynamic wall slip (b), thermal slip (c) 

and bioconvection Schmidt number (Sb). 

 

Figs. 2(a)-(d) shows the variations in dimensionless velocity, temperature, nanoparticle 

volume fraction and motile microorganism density function, respectively for different values 

of unsteadiness parameter (S) and velocity slip (b) for the stretching cylinder scenario. It is 

necessary to point out that the value of positive S  indicates accelerating flow and negative S  

corresponds to decelerating flow of the surface of the cylinder, which is being stretched. 

Therefore for S 0 the flow is unsteady and for S = 0 it is steady. From Fig. 2(a), the 

dimensionless velocity decreases with increasing velocity (hydrodynamic) slip for both 

positive and negative value of S . When slip ensues, the velocity close to surface stretching 

wall is not equivalent to the stretching velocity of the wall. Additionally under slip 

conditions, the dragging of the stretching wall can only be partially transmitted to the fluid 

and this causes the fluid velocity to fall i.e. induces retardation in the boundary layer flow. 

These results are consistent with published work by Mukhopadhyay51 and also Wang.52 

Furthermore, the magnitude of the wall shear stress decreases with an increase in the 

hydrodynamic slip factor.  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figs 2:Effect of unsteadiness ( S ) and velocity slip (b) on the (a) velocity (b)  temperature, (c) 

nanoparticle volume fraction, (d) motile microorganism density profiles. 
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(a) 

 

(b) 
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(c) 

Figure 3: Effect of unsteadiness (S) and thermal slip (c) on the dimensionless temperature, 

(b) nanoparticle volume fraction and (c) microorganism density profiles. 

 

Figure 4: Effect of unsteadiness (S) and bioconvection Schmidt number (Sb) on the 

dimensionless motile microorganism density function. 
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Figure 5: Effect of velocity slip (b) and thermal slip (c) parameters on the wall heat transfer 

rate. 

 

 

Figure 6: Effect of bioconvection Schmidt number (Sb) and bioconvection Péclet number 

(Pe) parameters on the microorganism density wall transfer rate. 
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The case of 0b   applies to the classical non-slip scenario. The momentum boundary-layer 

thickness decreases with an increase in the velocity slip parameter. In Fig. 2(b), for both S>0 

(accelerating cylinder) or S<0 (decelerating cylinder), with an increasing the velocity slip, b, 

the dimensionless temperature, (), is markedly enhanced. However temperatures are 

somewhat greater for the accelerating cylinder case as compared with the decelerating case. 

The thermal boundary-layer thickness therefore increases with an increase in the velocity slip 

parameter. The deceleration in the velocity field, f /(), implies that momentum diffusion is 

reduced. This benefits the transport of heat via thermal diffusion which manifests in a heating 

in the bio-nano-boundary layer regime and an associated elevation in temperature. Thermal 

diffusivity is dominant in this case i.e. heat conduction is stronger than heat convection. Both 

velocity and temperature profiles are found to decay smoothly from maxima at the cylinder 

surface to the free stream, indicating that a sufficiently large infinity boundary condition has 

been imposed in the MAPLE18 computational domain. The dimensionless nanoparticle 

volume fraction (nano-particle concentration),  (), as depicted in Fig. 2(c) is observed to be 

reduced with increasing velocity slip. The nano-particle concentration boundary-layer 

thickness will therefore be increased with a rise in the velocity slip parameter. The 

dimensionless concentration also decreases for accelerated flow (S>0) whereas it is elevated 

for decelerated (S<0) flow. The prescribed Schmidt number in Fig. 2 is 20.0.  Schmidt 

number (Sc) expresses the ratio of momentum diffusivity to species diffusivity i.e. viscous 

diffusion rate to molecular (nano-particle) diffusion rate. Sc is also the ratio of the shear 

component for diffusivity viscosity/density to the diffusivity for mass transfer D. It physically 

relates the relative thickness of the hydrodynamic layer and mass-transfer boundary layer.  

We further note that Pr is prescribed as 6.8 as this quite accurately represents water-based 

nano-bio-polymers. The deceleration in the flow with increasing hydrodynamic slip also acts 

to decrease molecular diffusion rate (via the Schmidt number) and this will result in 

decreasing nano-particle boundary layer thickness. The depletion in nanoparticle 

concentration will cause a corresponding elevation in nano-particle mass transfer rate at the 

cylinder surface (wall). From Fig. 2(d), it is evident that the dimensionless microorganism 

number density function, () increases as velocity slip increases i.e. with flow deceleration. 

The behavior is different from the nano-particle concentration field. Unlike the diffusion of 

nano-particles (which is molecular in nature), the micro-organisms move by flagellar 

propulsion which is encouraged in slower flows. They are therefore able to propel more 
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evenly through the boundary layer for slower flow. The microorganism boundary layer 

thickness also increases with increasing velocity slip. The implication is that more 

homogenous distributions of micro-organisms through the boundary layer regime are 

achieved with deceleration in the flow. This is desirable in the manufacture of biodegradable 

nano-polymers as further elaborated by Thomas and Yang.3  It is also observed that () 

values are greater for the accelerating cylinder case (S >0) as compared with the decelerating 

cylinder case (S<0). Therefore contrary responses in the micro-organism number density 

magnitudes are induced depending on whether the boundary layer flow is accelerating (which 

it does for no-slip) or the cylinder is accelerating. The former is associated with slip absence 

(or presence which causes deceleration in the flow) whereas the latter is connected to the 

unsteadiness in the cylinder stretching motion.  

 

Figure 3(a)-(c) display the collective influence of thermal slip parameter (c) and unsteadiness 

parameter ( S ) on dimensionless temperature, concentration and microorganism profiles 

respectively. It is apparent that the thermal slip parameter leads to a decline in dimensionless 

temperature (Fig. 3(a)). The greatest effect is as expected at the cylinder surface. Physically, 

as the thermal slip parameter rises, the fluid flow within the boundary layer will be less 

sensitive to the heating effects of the cylinder surface and a reduced quantity of thermal 

energy (heat) will be transmitted from the hot cylinder to the fluid, resulting in a fall in 

temperatures i.e. cooling and thinning of the thermal boundary layer (decrease in thermal 

boundary layer thickness). For an accelerating stretching cylinder (S>0), the temperatures are 

substantially higher than for a decelerating stretching cylinder (S<0). The dimensionless 

nano-particle concentration is found to be strongly increased with greater thermal slip. Nano-

particle concentration however is enhanced for the decelerating stretching cylinder case 

whereas it is depressed for the accelerating cylinder case. Micro-organism number density 

function (Fig 3(c)) is however significantly decreased with increasing thermal slip effect. For 

an accelerating stretching cylinder (S>0), the micro-organism density is (as with temperature) 

unlike nano-particle concentration, substantially higher than for a decelerating stretching 

cylinder (S<0).  Micro-organism number density and temperature profiles are very similar 

indicating that fields respond in a similar fashion in the external boundary layer regime on the 

stretching cylinder. Thermal diffusion and micro-organism propulsion obey similar physics in 

the flow as opposed to nano-particle diffusion which has a distinctly different response. An 

increase in thermal slip essentially thickens both the thermal and micro-organism number 
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density boundary layers whereas it thins the nano-particle concentration boundary layer 

thickness. Therefore biotechnological engineers can achieve very different thermo-fluid 

characteristics in nano-bio-polymers by judiciously utilizing thermal slip at the cylinder wall 

and also via the rate of cylinder stretching (unsteadiness). 

 

Fig. 4 illustrates the response of micro-organism number density to a variation in 

bioconvection Schmidt number, Sb. This parameter features solely in the micro-organism 

density conservation eqn. (17), in a similar way to the conventional Schmidt number (Sc) 

arises only in the nano-particle species conservation eqn. (16). It is defined as ,
n

Sb
D


  in 

other words the ratio of momentum diffusivity to diffusivity of microorganisms. For Sb >1 as 

studied in Fig. 4, momentum diffusivity exceeds micro-organism diffusivity. As this 

parameter increases the difference in diffusivity is amplified and momentum diffusion rate 

increasingly dominates the micro-organism diffusion rate leading to a reduction in micro-

organism density number magnitudes, (). There is a corresponding diminishing in the 

thickness of the micro-organism number density boundary layer. For an accelerating 

stretching cylinder (S>0), the micro-organism density is significantly higher than for a 

decelerating stretching cylinder (S<0).   

 

Figs. 5 and 6 depict the variation of selected parameters on the heat transfer rate  1  and 

motile micro-organism number transfer rate,  1  are illustrated in. Figure 5 shows the 

variations of  1  versus c  and S  for different values of b . It is found that 

 1 decreases strongly with increasing thermal slip ( c ) and relatively weakly with 

increasing hydrodynamic slip ( b ).For an accelerating stretching cylinder (S>0), motile 

micro-organism number transfer rate is substantially reduced whereas it is significantly 

enhanced for the decelerating stretching cylinder (S<0) case.  Figure 6 shows the effects of S , 

Sb  and Pe  on  1 .  1  is found to be increased with bioconvection Péclet  number 

(Pe). Pe is directly proportional to b  (chemotaxis constant) and Wc (maximum cell 

swimming speed) and inversely proportional to nD  (diffusivity of microorganisms). 

Therefore for higher Pe values the micro-organism speed will be reduced and/or the 

diffusivity of micro-organisms will be decreased. This will result in reduced concentrations 

of micro-organisms in the boundary layer and an elevation in motile micro-organism mass 
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transfer rate,  1 , to the cylinder surface, as observed in Figure 6.  1  is also 

observed to be decreased for a decelerating cylinder (S<0) and increased for an accelerating 

cylinder (S>0). With increasing bioconvection Schmidt number there is a substantial 

depression in motile micro-organism mass transfer rate,  1 . We further note that since 

no tangible variations are computed in nano-particle mass transfer rate 
(1)

(1)






 and local skin 

friction factor  1f    with bioconvection Schmidt or biconvection Péclet  number, these 

distributions have been omitted. 

 

6. CONCLUSIONS 

The unsteady bioconvective slip flow of a nanofluid (containing both nanoparticles and 

gyrotactic microorganisms) in the external boundary layer from a stretching cylinder, is 

studied as a simulation of bio-nano-polymer fabrication. The Buongiorno nanofluid model is 

employed with physically more realistic passively controlled boundary conditions. Both 

thermal and hydrodynamic slip effects at the cylinder surface are considered. The governing 

transport equations are transformed into a set of ordinary differential equations using 

similarity variables. The transformed well-posed ninth order boundary value problem is 

solved using the Runge–Kutta-Felhberg fourth-fifth order numerical method in MAPLE18 

symbolic software. Validation with previous computations is included. The computations 

have shown that increasing bioconvection Schmidt number reduces motile micro-organism 

density function. Increasing hydrodynamic slip enhances temperatures and motile micro-

organism density function, but decreases nanoparticle volume fraction (nano-particle 

concentration) values. Increasing thermal slip reduces temperatures and furthermore for an 

accelerating stretching cylinder (S>0), the temperatures are greater than for a decelerating 

stretching cylinder (S<0). Nano-particle concentration is conversely elevated with greater 

thermal slip whereas micro-organism number density function is greatly depressed with 

increasing thermal slip effect. At any bioconvection Schmidt number, for an accelerating 

stretching cylinder (S>0), the micro-organism density is much higher than for a decelerating 

stretching cylinder (S<0).  Local Nusselt number is reduced with increasing hydrodynamic 

and thermal slip and also for an accelerating cylinder. The local microorganism transfer rate 

is increased with greater values of bioconvection Péclet number whereas it is suppressed with 

greater bioconvection Schmidt number and for an accelerating cylinder (positive values of 

unsteadiness parameter). The present work has been confined to constant fluid properties and 
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ignored electromagnetic effects. For future work, the present model may therefore be 

extended to consider variable fluid properties and also multi-physical effects e.g. chemical 

reaction, magnetohydrodynamics, second order slip and melting effects. These are also 

relevant to bio-nano-polymer processing applications and efforts in this regard are under way. 
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APPENDIX (VALIDATION TABLES) 

Table 1:  Values of the skin friction factor   1f  for Pr 0.7.   

 
 

 
 Ishak et al. 

(2008) 

Wang 

(1988) 

Present Study 

 

 1f   

 

 

-1.1780 

 

-1.17776 

 

-1.17805 

Table 2: Values of the Nusselt number  1  for Pr 7.   

 Ishak et al. 

(2008) 

Wang 

(1988) 

Present Study 

 

 1  

 

 

2.0587 

 

2.059 

 

2.05862 


