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Abstract 

Population Viability Analysis (PVA) is a commonly used tool to predict the fate of endangered 

populations. However, although amphibians are the most endangered group of vertebrates, PVAs 

have so far been underrepresented in their conservation management. In the last decades, the 

European tree frog (Hyla arborea) has experienced drastic declines mainly caused by habitat 

fragmentation and loss of suitable breeding sites. In the present study, we used the PVA software 

VORTEX to predict the viability of a H. arborea population, comprising about 70 adults and 

inhabiting an isolated pond in the region of Hannover (Germany), by combining life history data 

with genotypic information derived from eight polymorphic microsatellite markers. The PVA 

revealed a high probability of extinction over the next 50 years, with juvenile survival being a 

crucial demographic parameter for population persistence. Simulated immigration through 

metapopulation processes or population supplementation prevented genetic erosion, and 

markedly increased the probability of population survival. Future management interventions 

should consider pond management to enhance survival at early stages, and the creation of 

migration corridors to allow connectivity with adjacent demes and/or the translocation of 

individuals. To our knowledge, this is one of the first studies which applies a genetically-

informed PVA to the management of endangered anuran amphibians. 
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Introduction 

Amphibians are the most endangered group of vertebrates, and a rapid decline in the last decades 

is primarily attributable to habitat loss and modification (STUART et al. 2004, CUSHMAN 2006). 

Habitat fragmentation can rapidly lead to the isolation of populations, which ultimately inhibits 

genetic exchange and thereby contributes to a loss of overall genetic diversity (FRANKHAM et al. 

2010). For conservation management, a central question is whether species and populations are 

capable of persisting in isolated habitat patches or need regional connectivity for long-term 

survival (MARSH 2008).  

Population Viability Analysis (PVA) is an important demographic tool to quantify the extinction 

risk of populations. Taking life-history and environmental data into account, PVA uses computer 

models to simulate population trajectories, and, perhaps most importantly, enables to evaluate the 

influence of factors contributing to vulnerability and decline. A suite of software packages is 

available for PVAs (e.g. VORTEX (LACY & POLLAK 2014), RAMAS (AKÇAKAYA & SJÖGREN-

GULVE 2000), ALEX (POSSINGHAM & DAVIES 1995)). However, despite a wide use for higher 

vertebrates, PVAs are as yet underrepresented in amphibian studies (but see: HELS & NACHMAN 

2002, STEVENS & BAGUETTE 2008, GREENWALD 2010, ARNTZEN 2015), a fact which is likely 

attributable to their high fecundity and general lack of individual lifetables. 

Genetic factors are important to determine the conservation status of populations, and it is widely 

accepted that a joint consideration of demographic, ecological and genetic processes should 

assess the threats posed by population isolation (GREENWALD 2010, OLSEN et al. 2014, PIERSON 

et al. 2015). For example, the amount of genetic erosion in isolated demes is determined by the 

effective population size, which can be quantified with genetic means using markers such as 

microsatellites (JEHLE & ARNTZEN 2002, SELKOE & TOONEN 2006). Genetic erosion is assumed 

to negatively influence population-wide levels of fitness through decreased heterozygosities (e.g. 

LUQUET et al. 2011), with low effective population sizes also increasing the likelihood of 

inbreeding (EDENHAMN et al. 2000, ROWE & BEEBEE 2003, SPIELMAN et al. 2004). However, the 

inclusion of genetic processes into PVAs is so far poorly represented (REED et al. 2002, PIERSON 

et al. 2015). 

The European tree frog (Hyla arborea) is a typical temperate amphibian species affected by 

human habitat alteration. Modification and destruction of breeding sites have caused sharp 

declines in the last decades. Across a range of landscapes inhabited by H. arborea, a clear link 
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between increased habitat fragmentation and genetic deterioration is pertinent (ARENS et al. 2000, 

EDENHAMN et al. 2000, ANDERSEN et al. 2004, BROQUET et al. 2010, KRUG & PROEHL 2013). The 

vulnerability of H. arborea especially in its northern and western range is additionally attributed 

to postglacial population expansions from glacial refugia owing to decreasing genetic diversity 

along the expansion route (DUFRESNES et al. 2013). The present study deals with an isolated 

population of H. arborea in the region of Hannover (Germany). Within a cluster of fragmented 

demes, the population was established in the mid-1980s by translocation, with genetic evidence 

suggesting a propagule ~20 km away (KRUG & PROEHL 2013). The purpose of the present study 

is to (i) predict the viability for the isolated population by incorporating demographic as well as 

genetic data into a PVA, (ii) identify the life history parameters with the biggest impact on 

population persistence, and (iii) examine the possibility of immigration (natural connectivity or 

supplementation from the source population) to enhance population survival. In addition to the 

genetically-informed PVA we also calculated effective population sizes (Ne) comparing three 

complementary approaches. 

 

Materials and Methods 

Field work was undertaken in 2005 and 2008 as part of a wider study (KRUG & PROEHL 2013 and 

unpublished data). The isolated study population (“Benther Berg”) lies west of Hannover 

(Germany) and stems from an  unapproved introduction in 1984 or 1985, with the propagule 

population ~20 km east of it (KRUG & PROEHL 2013). It consists of two ponds at 30 m distance 

connected through irregularly flooded reed beds. The distance to the next known occurrence of 

H. arborea is ~6 km. Although the population size is small, it remained relatively stable within 

the last 20 years (Arbeitsgemeinschaft Biotop- und Artenschutz GbR, ABIA, unpubl. data). 

 

Genotyping and genetic measures of population size 

DNA samples were obtained by buccal swabs collected during the spring breeding season. A total 

of 28 samples were obtained (2005: 17; 2008: 11; pooled for analyses). Genomic DNA from each 

sample was extracted with the Invisorb Spin Swab Kit (Invitek, Berlin) according to the 

instructions supplied by the producer. The DNA was resuspended in 100 µl Invitek Elution buffer 

and stored at -20°C. Eight species-specific microsatellite loci (WHA1-9, WHA1-60, WHA1-67, 

WHA1-104, WHA1-140, WHA1-20, WHA1-25, WHA1-103) previously isolated and 
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characterised by ARENS et al. (2000) were amplified using procedures and protocols described in 

KRUG & PROEHL (2013). Genotyping was conducted using a capillary sequencer (MegaBace 

1000, Amersham Bioscience) and resulting peaks were scored using Genetic Profiler v. 2.3. 

Allelic analyses were conducted using Genepop on the Web (ROUSSET 2008). 

Three different statistical methods were applied to estimate effective population size (Ne). The 

point estimator of WAPLES (1989) as implemented in NeESTIMATOR (PEEL et al. 2004) is based 

on variation in allele frequencies across generations and requires at least two samples. For H. 

arborea, the mean generation time was estimated as 2.7 years, based on an annual survival rate of 

0.3, a mean number of reproductive years of 1.43, and the reaching of sexual maturity at the age 

of two in both sexes (TESTER 1990, FRIEDL & KLUMP 1997); thus the samples from 2005 and 

2008 can be considered to stem from roughly two successive generations. Furthermore, two 

single-sample estimators were employed for both sampling years. LDNE (WAPLES & DO 2008), 

also implemented in NeESTIMATOR, calculates Ne based on gametic disequilibrium reflecting 

non-random selection of parental gametes (HILL 1981, WAPLES 2006). A random mating system 

was chosen and confidence intervals were generated by the jackknife method. Pecrit was set to 

0.05. All alleles with frequencies less than the critical value were excluded from the analysis. The 

sibship assignment method (SA) also uses a single sample and was proposed by WANG (2009). It 

is based on the premise that Ne can be determined by the number of half and full sibs found in a 

sample, and can be estimated using the software COLONY (JONES & WANG 2010). The full 

likelihood model with medium precision and without setting a sibship prior was used, allowing 

for polygamous mating in both sexes. Given the rather short generation time of H. arborea, the 

probability of false sib-ship assignments through parent-offspring relationships in the sample is 

low. The obtained Ne values also further informed the initial population size assumed for the 

PVAs by adopting known Ne/N values obtained from demographic data for H. arborea in a 

previous study (BROQUET et al. 2009).   

 

Population viability analysis 

PVAs were performed with the software VORTEX 10 (LACY & POLLAK 2014), which allows the 

input of demographic as well as genetic data as described by LACY (1993). A summary of input 

variables is shown in Table 1. For each scenario, a total of 1000 simulations were run and the 

time span was set to 50 years; extinction was defined as the absence of at least one sex. As an 

initial population size, we assumed 71 individuals based on two lines of evidence: field 
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observations based on chorus counts (BUND/ABIA Hannover, unpubl. data), and a back-

calculation of population census size based on the obtained Ne estimates (see below) and 

previously published Ne/N values for H. arborea (BROQUET et al. 2009). However, as precise 

population size estimates as for example based on capture-recapture were unavailable, we also 

simulated a set of initial population sizes (27-92 individuals, based on results from the alternative 

Ne analyses). The sex ratio at birth was set to 1:1 (PELLET et al. 2006, BROQUET et al. 2009). 

Conforming to PELLET et al. (2006), we assumed an age at maturity of two years for both sexes 

(although the value can differ across the species range, see TESTER 1990, GIACOMA et al. 1993, 

FRIEDL & KLUMP 1997). The maximum age of reproduction was set to four years (STUMPEL & 

HANEKAMP 1986, GIACOMA et al. 1993). Hyla arborea has one reproductive season per year, 

during which females produce several consecutive clutches of eggs (GIACOMA et al. 1993). 

Assuming a small proportion of reproductive failures e.g. due to clutch desiccation, we set the 

mean number of yearly reproducing females at 80% (standard deviation of 20%). Due to a lack of 

data on egg and larval survival, we combined these two stages and expressed fecundity as first-

year survivors (S1) varying between 4.0 – 20.0 per female. We assumed an average clutch size of 

400 eggs (TESTER 1990, BALETTO & GIACOMA 1993, GROSSE 1994, BROQUET et al. 2009) and 

first-year survival rates between 0.01 and 0.05 (0.01 intervals). The breeding system was 

specified as polygynous, and the percentage of breeding males was set to 100% (males do not 

skip breeding seasons; PELLET et al. 2007). Annual adult mortality rates derived from recapture 

studies vary between 70% and 80% irrespective of age and sex (TESTER 1990, FRIEDL & KLUMP 

1997, PELLET et al. 2006), and we used the mean of 75%. Density dependent reproduction was 

not included into the model, and the carrying capacity was set to a high value (5000) because it 

was assumed that the number of individuals able to occupy the pond is considerably higher than 

the observed numbers (pond sizes ca. 900 m2 and 1,500 m2, respectively). A sensitivity analysis 

was performed by using alternative values of 1000, 2000, 3000 and 4000 individuals. 

For incorporating genetic data into the PVA, we used starting allele frequencies derived from the 

empirical microsatellite data (see below). Small populations of H. arborea show evidence of 

inbreeding depression (reduced survival of early progeny, EDENHAMN et al. 2000, ANDERSEN et 

al. 2004). As recommended by LACY & POLLAK (2014), we therefore used a value of 6.29 lethal 

equivalents to simulate the effects of inbreeding on population persistence. 

After calculating a baseline model we also simulated the impact of a metapopulation structure on 

population survival rates, assuming two subpopulations characterized by the above described 
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population parameters. Dispersal in H. arborea European tree frogs is male- and juvenile-biased 

(STUMPEL & HANEKAMP 1986, VOS et al. 2000), and dispersal rates between adjacent ponds were 

reported as 6% and 9%, respectively (STUMPEL & HANEKAMP 1986). For the present simulation 

we tested three scenarios: 10% dispersal for males, 5% dispersal for males, and 10% dispersal for 

male juveniles only. Dispersal mortality rates were assumed as 50% (default) and 30%. In 

addition to natural dispersal, we also modelled the effect of supplementation. Our goal was to 

identify the release stock number required to retain at least 90% of genetic diversity over 50 years 

(FRANKHAM et al. 2010). A starting scenario was created where three males and females each are 

added to the population every three years, assuming allele frequencies from the putative 

propagule pool (data taken from KRUG & PROEHL 2013). Sensitivity tests were performed by 

varying the number of supplemented animals (2-8 animals) as well as the time interval of 

supplementation (3-9 years). 

Before the start of a simulation, VORTEX provides deterministic population growth rates (det-r) 

projected from life table calculations alone. This gives a first overview on whether the assumed 

rates of reproduction and survival allow for positive population growth in the absence of random 

fluctuations (MILLER & LACY 2005). Mean values of the following statistical parameters were 

documented in 5-year intervals: The mean stochastic growth rate (stoc-r), the mean population 

size (Nall) including both populations becoming extinct and those remaining extant; the 

probability of extinction (PE) equal to the percentage of iterations that have become extinct, and 

mean observed and expected heterozygosities (Ho vs. He). 
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Results 

Basic genetic data and estimation of initial population size 

The eight microsatellite loci employed proved moderately to highly polymorphic, and displayed 

between 4 and 7 alleles each (average 4.9, detailed data not shown). After applying Bonferroni 

correction, locus WHA1-60 displayed a significant excess of heterozygotes (p < 0.01), whereas all 

other seven loci were in Hardy-Weinberg equilibrium (p ranging between 0.03 and 0.81). 

Genetic estimates of Ne using three different methods are summarized in Table 2. The Ne value 

calculated by the temporal method lies between the single sample calculations by the sibship 

assignment method. This was also the case for the LDNE method. Both single-sample estimators 

showed a higher Ne in 2008 in comparison to 2005. Based on the obtained values and previously 

published Ne/N values (Broquet et al. 2009) we assumed a most likely initial population size of 

71 adults, which is in accordance with chorus counts (BUND/ABIA Hannover, unpubl. data). 

 

Population viability analysis 

The first series of simulations was run in order to estimate the effect of fecundity. Figure 1 

presents the changes in mean population size (Nall) for different scenarios, with the mean final 

population sizes ranging between 1561 (S1 = 20) and 0 (S1 = 4). For all scenarios, the probability 

of extinction increased over the simulation period. An increase of first-year survival from 0.01 to 

0.05 lowered the probability of extinction (PE) by 46% after 50 years, with a sharp decrease for 

values above 0.02. Almost all simulated H. arborea populations became extinct at survival rates 

below 0.02 (Fig. 1). For further analyses, a first-year survival rate of 0.03 was used to provide a 

positive population growth based on life-table calculations alone (det-r = 0.1, Supplementary Fig. 

S1A). The mean stochastic growth rate for this scenario was slightly negative (stoc-r = -0.018), 

with high seasonal fluctuations (Supplementary Fig. S1B). Sensitivity analysis showed that PE 

varies between 0.82 and 0.88 depending on the method used to estimate Ne. The simulations were 

insensitive to the carrying capacity (Tab. 3). 

VORTEX calculates the change in genetic variation as difference in expected heterozygosity (He) 

in the simulated time interval. The simulated populations lost on average 37% of the initial He 

after 50 years (see Supplementary Tab. S1). Inbreeding depression through reduced survival 

increased the probability of population extinction by 16%, reducing the mean final population 

size Nall to 19. 

A C B 
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Figure 2A presents the probabilities of extinction for a modelled metapopulation with two demes. 

For both subpopulations, PE was 80% after 50 years, and for the whole metapopulation PE was 

65% with higher final population sizes compared to single-population simulations. A summary of 

results is given in Supplementary Table S2. In general, values for all four models were similar 

except that migration rate set to 5% led to a higher probability of extinction, an effect which was 

less pronounced at reduced mortality rates and when dispersers were set to be exclusively 

juvenile males. When the population becomes supplemented with animals from the putative 

source population, PE drops to 44% (Fig. 3A) and the average population size approaches 384 

individuals. Mean genetic diversity (Fig. 3B) remains relatively stable, at increased Ho (0.56) and 

He (0.50) in comparison to the baseline model (see also Supplementary Tab. S3). Sensitivity tests 

revealed that increasing the number of supplemented animals and reducing the time interval of 

supplementation markedly enhanced the population trajectory, without however any apparent 

threshold effect. The number of release stock necessary to retain at least 90% of genetic diversity 

is 8 individuals per generation (Tab. 4 and Supplementary Tab. S3). 

 

Discussion 

VORTEX is a computer simulation program which simulates the probability of extinction based 

on available biological parameters of the species modelled (MILLER & LACY 2005). In wildlife 

management, it serves primarily as a tool to identify the parameters with the highest influence on 

population trajectories to identify conservation strategies of high benefit. A major limitation of 

PVA is that parameters concerning the demography and life-history of a species are sometimes 

hard to obtain, especially when the species is endangered (BOYCE 1992). In this study, some 

demographic data were derived from the literature, including estimates based on populations 

from different parts of the species’ range. Nevertheless, PVA is regarded as a powerful tool to 

manage threatened species even when concessions have to be made with respect to the 

demographic accuracy of input parameters (BROOK et al. 2000, OLSEN et al. 2014). 

According to our knowledge, the present study is among the first to incorporate genetic data into 

a PVA conducted on anurans (for an example on urodeles see GREENWALD 2010). Our analyses 

showed that, in an isolated tree frog population, the future population size is highly sensitive to 

first-year survival rates, with low values leading to a high probability of population extinction 

over a 50-years period. This coincides with previous finding on other amphibians, which showed 

that juvenile survival has a greater effect on population persistence than survival rates of adults 



 10 

(e.g. Pelobates fuscus, HELS & NACHMAN 2002). The results of our PVA suggest that pond 

management measures to enhance early survival would markedly aid in population persistence, a 

finding which is in line with an empirical study on the effects of pond mitigation on population 

demography (see also VAN BUGGENUM & VERGOOSSEN 2012).  

Initial population sizes were chosen based on rough counts of calling males recorded from 1994-

2014 (BUND/ABIA  Hannover, unpubl. data), matching a value of 71 as derived from Ne values 

based on genetic data obtained in 2005 and 2008 and previously published Ne/N 

values (BROQUET et al. 2009). Sensitivity analysis revealed that there was no considerable 

difference on the projected viability of the population based on the assumed range of initial 

population sizes (27-92). That all simulated populations become extinct despite positive 

deterministic growth is likely due to high fluctuations in population sizes triggered by temporal 

variation in stochastic growth rates and high standard deviations for mean annual population sizes 

(a commonly observed phenomenon, see e.g. HOLSINGER 2000). For H. arborea, stochastic 

events such as successive years with adverse conditions can indeed lead to rapid population 

extinction (PELLET et al. 2006). Small populations are more vulnerable to inbreeding and 

subsequent extinction (BOYCE 1992, FRANKHAM et al. 2010). Also our outcome suggests that 

inbreeding depression can affect population survival in H. arborea. VORTEX allows modelling 

inbreeding depression as reduction in first-year survival but neglects other components of fitness 

possibly affected by inbreeding. However, our findings are in accordance with the negative 

relationship between inbreeding and tadpole survival found for wild Rana sylvativa populations 

(HALVERSON et al. 2006) and for H. arborea under laboratory conditions (LUQUET et al. 2011).  

We assumed density-independence in survival and fecundity although density-dependent 

responses of amphibian populations have previously been reported (VONESH & DE LA CRUZ 

2002, PELLET et al. 2006). For example, BEEBEE et al. (1996) concluded for the natterjack toad 

Bufo calamita that adult population densities as well as regulation of toadlet production are rather 

related to stochastic then density-dependent processes, whereas population fluctuations in H. 

arborea were attributed to density-dependent and climatic factors (PELLET et al. 2006). However, 

caution has to be taken by using a density-dependent model in PVA (BOYCE 1992, BROOK et al. 

1997), and we refrained from such an approach in the present study. 

As H. arborea frequently occurs as metapopulations (CARLSON & EDENHAMN 2000, PELLET et al. 

2006, DUBEY et al. 2009, KRUG & PROEHL 2013), dynamic processes triggered by exchange of 

individuals between populations (or the lack thereof) should be considered for conservation 
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planning. When two connected demes were modelled, the survival time of the metapopulation 

exceeded those of the subpopulations, an effect which largely disappeared when dispersal rates 

were reduced to 5%. Hence, the rate and potential of migration should be considered as an 

important predictor for population persistence, and is linked to H. arborea being characterised by 

high seasonal variation in reproductive success and availability of resources (e.g. VOS et al. 

2000). A metapopulation is in danger of becoming extinct when all of its subpopulations are in 

decline, and that asynchrony in the demography of subpopulations is key to ensure persistence 

(e.g. this study, HANSKI 1991) was confirmed with our simulations. Hyla arborea can exhibit 

source-sink processes (CARLSON & EDENHAMN 2000), and extinction events at single pond 

patches could become compensated by recolonization.  

The translocation of individuals to declining amphibian populations in a metapopulation context 

is highly debated (see e.g. SEIGEL & DODD 2002, MARSH 2008, GERMANO & BISHOP 2009). 

Positive aspects are the stabilization of population dynamics (KINNE 2005), but caution has to be 

taken especially regarding the transmission of parasites or diseases (CUNNINGHAM 1996). Since 

generally applicable protocols for translocations and supplementations are lacking (GERMANO et 

al. 2014, SULLIVAN et al. 2015), PVA can be a helpful tool to facilitate decisions. To preserve 

90% of an initial He is a suitable target for conservation strategies (KAUFMAN et al. 1993, 

PERTOLDI et al. 2013). Our simulated supplementation of individuals from the putative source of 

the study population would facilitate that the genetic diversity remained relatively stable over a 

period of 50 years, showing that the introduction of animals from a donor population could be an 

appropriate management tool. 

Taken together, the persistence of the isolated H. arborea population appears to be largely 

governed by survival rates at premature stages as well as an influx from other demes (through 

metapopulation processes or by translocation and supplementation). Genetic erosion poses an 

additional risk, and be compensated for through immigration even when the immigrant gene pool 

is similar to the focus population. Management strategies should ensure a pond quality in favour 

of high survival of pre-metamorphic stages (such as the removal of introduced fish), and the 

establishment of new breeding ponds including the conservation of surrounding terrestrial habitat 

suitable for inter-pond migration. If the latter proves impossible due to constraints in available 

habitats, occasional supplementation becomes desirable. We would anticipate that similar 

measures are also applicable to other H. arborea populations and other anuran species with 

similar life histories. 
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Tables 

 

Table 1. Input parameters for the default scenario of the VORTEX simulation of a Hyla arborea population. 

 

Variable 

No of iterations 1000 

No of years 50 

Duration of each year in days  365 

Extinction definition Only 1 sex remains 

Lethal equivalents 6.29 

% due to recessive lethals 50% 

Reproductive system Polygynous 

Age of first offspring 2 years 

Maximum breeding age 4 years 

Sex ratio 1:1 

% adult females breeding 80% 

Mortality rate 75% 

% males in breeding pool 100% 

Density dependent reproduction Not included 

Specified age distribution Yes 

Initial population size 71 

Carrying capacity 5000 
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Table 2. Genetic estimates of effective population size (Ne) for a H. arborea population; parentheses show 95% 

confidence limits. For LD method, CIs were computed by jackknifing. Right column shows calculations of the initial 

population size (Ni) by using the effective breeding size (Ne) and a ratio provided by BROQUET et al. (2009). 

 

Method Years covered Ne Ni = Ne/0.48 

Point-estimator (Waples 1989) 2005-2008 33.9 (5.9 - ∞) 71 

Linkage disequilibrium method (Waples 

and Do 2008) 

2005 

2008 

12.9 (4.3-77.9) 

40.6 (8.8 - ∞) 

27 

85 

Sibship assignment method (Wang 2009) 2005 

2008 

23 (12-96) 

44 (17-214743647) 

48 

92 
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Table 3. Summary of output parameters. PE = Probability of Extinction after 50 years, Nall = mean final population 

size, stoc-r = mean stochastic growth rate, S1 = number of first-year survivors of offspring per female, Ni = initial 

population size, CC = Carrying Capacity, *default scenario. 

 

Scenario PE Nall stoc-r 

Default  0.83 265 -0.018 

Sensitivity Testing S1    

4 1.0 0 -0.406 

8 1.0 0 -0.174 

12* 0.83 265 -0.018 

16 0.60 1175  0.117 

20 0.54 1561  0.202 

Sensitivity Testing  Ni    

71*  0.83 265 -0.018 

27  0.88 203  0.008 

85 0.82 306 -0.016 

48 0.87 199 -0.012 

92 0.82 287 -0.017 

Sensitivity Testing CC    

1000 0.84 65 -0.014 

2000 0.83 121 -0.02 

3000 0.84 176 -0.019 

4000 0.85 218 -0.018 

5000* 0.83 275 -0.018 

Inbreeding depression 0.98 19 -0.133 

Metapopulation Model    

Metapop 0.65 646 -0.011 

Subpop1 0.80 310 -0.010 

Subpop2 0.80 337 -0.011 
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Table 4. Comparison of variations in output values when animals are supplemented. The default scenario assumes 

that six animals are supplemented (three males, three females) and that supplementation occurs every three years. 

Further models simulate changes by varying number of supplemented animals (n) and time interval of 

supplementation (Δa) 

 

Scenario PE Nall stoc-r Genetic 

diversity 

No. of 

alleles 

default: n=6, Δa=3 0.44 384  0.023 0.50 3.7 

Sensitivity Testing n      

2 0.75 301  0.02 0.44 3.2 

4 0.59 326  0.027 0.48 3.44 

8 0.30 546  0.024 0.53 3.93 

Sensitivity Testing Δa      

6 0.56 287  0.006 0.48 3.31 

9  0.71 240 -0.009 0.42 2.97 
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Figures 

 

 

 

 

 

Figure 1. Relationship between time and mean population size (Nall) for varying values of offspring per female (S1) 

dependent on first-year survival rates (in brackets). 

 

B
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Figure 2. Metapopulation model assuming that all males are dispersing, a mortality rate of 50% for dispersers and 

migration rates of 10% into both directions. A) Probability of extinction (PE) over time, B) annual fluctuation in 

mean stochastic growth rate (stoc-r) for both subpopulations. 
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Figure 3. A) Probability of extinction over time in case of supplementation in comparison to default scenario without 

supplementation. Hereby, six animals are supplemented every three years during the whole time frame; B) shows 

mean genetic diversity over years. 


