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Abstract 
High temperature electromagnetic materials fabrication systems in chemical engineering require ever more 

sophisticated theoretical and computational models for describing multiple, simultaneous thermophysical effects. 

Motivated by this application, the present article addresses transient magnetohydrodynamic heat and mass transfer 

in chemically-reacting fluid flow from an impulsively-started vertical perforated sheet. Thermal radiation flux, 

internal heat generation (heat source), Joule magnetic heating (Ohmic dissipation), thermo-diffusive and diffuso-

thermal (i.e. cross-diffusion) effects and also viscous dissipation are incorporated in the mathematical model. To 

facilitate numerical solutions of the coupled, nonlinear boundary value problem, non-similar transformations are 

employed and the partial differential conservation equations are normalized into a dimensionless system of 

momentum, energy and concentration equations with associated boundary thermal conditions. An implicit finite 

difference method (FDM) is utilized to solve the unsteady equations. Verification of the FDM solutions for 

dimensionless velocity, temperature and concentration functions is achieved with a variational finite element 

method code (MAGNETO-FEM) and also a network simulation method code (MAG-PSPICE). The influence of 

the emerging thermo-physical parameters on transient velocity, temperature, concentration, wall shear stress, 

Nusselt number and Sherwood number is elaborated. The flow is accelerated with increasing thermal radiative flux, 

Eckert number, heat generation and Soret number whereas the flow is decelerated with greater wall suction, heat 

absorption, magnetic field and Prandtl number. Temperatures are also observed to be elevated with magnetic 

parameter, radiation heat transfer, Dufour number, heat generation (source) and Eckert number with the contrary 

effects computed for increasing suction parameter or Prandtl number. The species concentration is enhanced with 

Soret number and generative chemical reaction whereas it is depressed with greater wall suction, Schimidt number 

and destructive chemical reaction parameter 

Keywords: Unsteady radiation magnetohydrodynamics; Soret and Dufour effects; Chemical reaction; magnetic materials 

processing; Numerical solutions; Ohmic dissipation.   
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1. INTRODUCTION 

Unsteady magnetohydrodynamic (MHD) boundary layer flows continue to stimulate significant 

interest in engineering sciences and applied physics owing to new emerging applications in 

magnetic materials processing [1], optimization of Hall and Faraday MHD generators [2], heat 

transfer control in nuclear reactors [3] and external ionized aerodynamics of flight vehicles [4]. 

The combined momentum, heat, and mass transfer from a vertical surface is particularly relevant 

to polymer processing dynamics [5] and also arises in electrochemical treatment of materials [6]. 

These flows may involve transverse static or alternating magnetic fields, oblique magnetic 

mailto:gortoab@gmail.com
mailto:O.A.Beg@salford.ac.uk


2 

 

fields, Hall currents, ionslip effects and Alfven waves. They may also be laminar, transitional or 

turbulent in nature. The presence of diverse chemical reactions which are executed at different 

rates, in fluid mechanics processes in hydrometallurgy further necessitates mathematical 

modelling of thermal-mass diffusion processes including chemical reaction phenomena. 

Numerous transport processes feature   combined buoyancy forces due to both thermal and mass 

diffusion in the presence of chemical reaction [7]. These processes are observed in 

chromatography, manipulation of materials, furnace combustion systems, solidification of 

binary alloys and crystal growth dispersion of dissolved materials, drying and dehydration 

operations in food processing plants, and rocket atomized liquid fuel burning. The presence of 

foreign mass in water or air may frequently generate some kind of chemical reaction. In many 

chemical engineering processes such as polymeric sheet extrusion, chemical reactions, which 

may be homogenous or heterogenous occur between a foreign mass and the fluid material which 

moves as a sheet. The interaction between homogeneous reactions in the bulk of fluid and 

heterogeneous reactions occurring on some catalytic surfaces is generally very complex, and this 

phenomenon may yield and also consume reactant species at different rates both within the fluid 

and on the catalytic surfaces as elaborated in detail by Aris [7]. Many simplified mathematical 

models of such processes (often termed Sakiadis flows) have been communicated. Das et al. [8] 

studied the influence of first-order homogeneous chemical reaction of unsteady flow from a 

vertical plate with the constant heat and mass transfer. Ferdows and Al Mdadall [9] investigated 

multiple order chemical reaction effects on coupled heat and mass transfer from an extending 

polymer sheet, observing that velocity, temperature and concentration are all reduced with 

increasing Schmidt number with fixed order of chemical reaction. They also noted that velocities 

are enhanced with greater order of reaction with constant Schmidt number and that 

concentrations are more strongly modified than temperatures with increasing order of chemical 

reaction. Makinde and Bég [10] employed Arrhenius chemical kinetics to examine inherent 

irreversibility and thermal stability in reactive magnetohydrodynamic isothermal channel flow, 

deriving solutions based on a perturbation method coupled with a special Hermite-Pade’ 

approximation technique. They studied the velocity field, temperature field and thermal 

criticality conditions and computed volumetric entropy generation numbers, irreversibility 

distribution ratio and the Bejan number for the flow, demonstrating the sensitivity of stability to 

chemical reaction effects. Uddin et al. [11] studied magnetized reactive nanofluid flow 

numerically, noting that the flow is accelerated and temperatures increased while nanoparticle 

volume fraction is suppressed with increasing order of chemical reaction. Rao et al. [12] 

examined the chemical reaction effects on transient magneto-convection in porous media with 

heat generation. Zueco et al. [13] used an electrothermal network method and the PSPICE 
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software to analyse double-diffusive reactive convection from a buried cylinder in geological 

material. Mukhopadhyay et al. [14] examined transport of a species (solute), undergoing a 

chemical reaction, between a moving surface and a moving stream, showing that concentration 

boundary layer thickness is reduced with greater Schmidt number and reaction rate parameter, 

and mass absorption at the plate arises with a constructive chemical reaction. Makinde et al. [15] 

studied variable viscosity effects on a radially stretching nanofluid surface. Siddheshwar and 

Manjunath [16] investigated the effects of heterogeneous chemical reaction on the exchange, 

convective and diffusive coefficients in transient dispersion in a micropolar tube flow, showing 

that first coefficient arises due to the catalytic wall reaction which also modifies the other two 

coefficients.  

Unsteadiness is also an important in coupled thermal and species diffusion problems. Time can 

have a significant influence on evolution of concentration and temperature profiles in boundary 

layer flows. Representative investigations of transient convective heat and mass transfer include 

Ruckenstein [17], Chang et al. [18] employed a local non-similarity method to study unsteady 

species diffusion in non-Newtonian boundary layer flows along a porous sheet.  Unsteady 

nanofluid flow from a rotating stretching polymer sheet has been analyzed using a finite element 

method by Rana et al. [19]. Further studies of time-dependent diffusive boundary layer flows 

include Hussanan et al. [20] who considered unsteady magnetic convection in permeable 

materials with special thermal boundary conditions. 

The above studies have neglected so-called “cross diffusion” effects. When heat and mass 

transfer occur simultaneously driving potentials between the fluxes can be of a more intricate 

nature. An energy flux can be generated not only by temperature gradients but by composition 

(species diffusion) gradients. The energy flux caused by a composition is called the Dufour or 

diffusion-thermo effect. Temperature gradients can likewise also create mass fluxes, and this is 

termed the Soret or thermal-diffusion effect. Generally, the thermal-diffusion and the diffusion 

thermo effects are of smaller-order magnitude than the effects prescribed by Fourier’s or Fick’s 

laws and are often neglected in heat and mass transfer processes. The thermal-diffusion effect, 

for instance, has been utilized for isotope separation and in mixing between gases with very light 

molecular weight (Hydrogen, Helium etc) and of medium molecular weight (Nitrogen-air) the 

diffusion-thermo effect was found to be of a significant magnitude. A very good review of the 

fundamentals of Dufour-Soret convection is provided in Gebhart [21] albeit for non-magnetic 

scenarios. Boundary-layer flows in the presence of Soret, and Dufour effects and with mixed 

convection have been addressed by several authors both with and without magnetic fields. Islam 

and Alam [22] investigated Dufour and Soret effects on transient hydromagnetic convection heat 
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and mass transfer flow in rotating porous media. Mansour et al. [23] obtained shooting solutions 

for reactive cross-diffusion magnetized boundary layer flow in thermally-stratified porous 

media. Prasad et al. [24] obtained numerical finite difference solutions for steady-state 

magnetohydrodynamic double-diffusive natural convection in non-Darcy porous media with 

Soret (thermo-diffusion) and Dufour (diffusion-thermo) effects included. They showed that 

increasing Soret number and simultaneously decreasing Dufour number boosts the  local heat 

transfer rate (local Nusselt number) with the converse response computed for the  mass transfer 

rate (local Sherwood number). Bég et al. [25] investigated Soret and Dufour effects on magneto-

convection along an extending sheet embedded in a porous medium. Further examples of Soret-

Dufour convection include Uwanta et al. [26] who examined magnetized Soret-Dufour flow 

from a vertical sheet under buoyancy forces. Bég et al. [27] studied Soret/Dufour effects on 

inclined plate solar panel convection. 

Materials processing is frequently conducted at very high temperatures in which thermal 

radiation becomes significant.  The interaction of buoyancy with thermal radiation is also often 

present in such processes and this permits the modification of flow fields and heat and mass 

transfer phenomena in order to produce specific characteristics in materials. Both isothermal and 

non-isothermal scenarios are relevant. Typical examples of materials fabrication applications 

include super alloy metallurgical liquid metal manufacturing [28], enclosure flows [29] and laser 

processing of magnetic materials [30]. Thermal radiation by its nature is intrinsically 

significantly more complex to simulate than conduction or convection. Not only is radiation a 

quartic temperature function, it also involves spectral effects, wavelength considerations, 

attenuation, sensitivity to geometrical characteristics and many other aspects. The general 

equation describing thermal radiation is also integro-differential in nature. For this reason it 

poses a formidable challenge for even numerical methods. Although numerous approaches have 

been developed for computing solutions to the radiative transfer equation including 

Chandrasekhar’s discrete ordinates method [31] and Hamaker’s 6-flux model [32], even these 

methods have their limitations and are computationally extremely intensive. They are also very 

difficult to implement for multi-physical flows where other body forces e.g. magnetic, gravity, 

surface tension etc, may be present and generally necessitate the use of commercial CFD 

(computational fluid dynamics) codes, which are not accessible to the vast majority of academic 

researchers. An alternative approach has been the use of the algebraic flux approximation. This 

methodology significantly simplifies radiative transfer problems by replacing the radiation 

intensity field with a differential formulation, usually of a 1-dimensional nature. While restricted 

to simpler systems, it does provide a reasonable estimate of radiative flux contribution and is 
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particularly appropriate for problems in which simultaneous convection and conduction heat 

transfer are present. Examples of this approach are the Traugott P1 differential approximation 

[33, 34], the Cogley-Vincenti-Giles non-gray flux approximation [35, 36], the Schuster-

Schwartzchild dual flux approximation [37, 38] and the Rosseland-Boltzmann diffusion 

approximation [39, 40]. The last of these models is generally valid when the optical thickness of 

the medium in which radiation is propagating is very large (optically thick approximation). As 

optical thickness (optical depth) increases, thermal radiation is better attenuated in the medium 

and this induces heating. Optical thickness is a dimensionless quantification of how much a 

given medium retards the passage of thermal radiation. Radiative intensity falls by an 

exponential factor when optical thickness is unity. Physically, optical thickness will be a 

function of absorption coefficient, medium density and propagation distance. Modest [41] 

provides a succinct discussion of the applicability of the Rosseland-Boltzmann diffusion flux 

model. Cess [42] was probably the first researcher to implement this model in convective 

boundary layer flows, motivated by aerodynamics heating applications. Many studies have 

subsequently appeared deploying the Rosseland-Boltzmann model including Lee and Viskanta 

[43], Hossain and Rees [44], Uddin et al. [45], Ferdows et al. [46], Hayat et al. [47], Bég et al. 

[48], Sattar and Kalim [49] and Atdin and Kaya [50]. Several authors have also studied radiative 

convection flows in the presence of combined Soret and Dufour effects, including Shateyi et al. 

[51] who also considered magnetic field and Hall current effects in porous media and 

Olanrewaju and Gbadeyan [52] who investigated the collective influence of Soret/Dufour 

diffusive, chemical reaction, thermal radiation and volumetric heat generation/absorption effects 

on mixed convection stagnation point flows in permeable materials.  

In this present work we conduct a numerical simulation of radiative transient 

magnetohydrodynamic transport phenomena with chemical reaction from an impulsive-started 

vertical porous sheet. Heat source/sink, Joule electromagnetic dissipation and viscous 

dissipation effects are included. A finite difference method (FDM) is employed based on 

Carnahan et al. [53]. Extensive validation of the FDM solutions is provided via a finite element 

method (FEM) based on the weak variational formulation [54]. Further validation is achieved 

with PSPICE-MAGNETO software employing the electro-thermal network simulation method 

(NSM) [55]. Recent relevant work in multi-physical materials processing has been 

communicated by Mabood et al. [56-58] describing  various complex flows including magnetic 

stagnation flows with reaction, magnetized nanofluid stretching sheet flows and radiative non-

Newtonian magnetic slip flows with chemical reaction. Further work has been presented by 

Mabood and Khan [59] on radiative-convective heat transfer in porous media using homotopy 
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analysis. All these studies justify further investigation into nonlinear heat and mass transfer in 

materials processing. In the present investigation, extensive interpretation of the effect of 

emerging thermophysical parameters on the heat, mass (species) diffusion and flow 

characteristics is documented. The study is relevant to high-temperature electromagnetic 

materials fabrication systems. To the authors’ knowledge the present problem has not yet 

received the attention of the research community. 

 

2. RADIATIVE MAGNETOHYDRODYNAMIC TRANSPORT MODEL  

The physical regime under investigation is presented in Fig. 1. We consider transient 

magnetohydrodynamic (MHD) mixed convective heat and mass transfer in electrically- 

conducting incompressible viscous optically-dense flow from an electrically non-conducting 

isothermal permeable impulsive vertical sheet with thermal diffusion (Soret) and diffusion-

thermo (Dufour) effects. The effects of internal heat generation, Joule heating (Ohmic magnetic 

dissipation) and viscous dissipation are incorporated. The applied magnetic field acts 

transversely to the sheet plane and is sufficiently weak to negate Hall current and other effects. 

The positive x -coordinate is measured along the sheet in the direction of fluid motion and the 

positive y -coordinate is measured normal to the sheet. Initially both the sheet and fluid are 

sustained at the same temperature   TT  and the same concentration level   CC . The fluid 

is stagnant and the sheet moves with a constant velocity U  in its own plane. Instantaneously at 

time 0t , the temperature of the plate and species concentration are raised to   TTw  and 

  CCw  respectively, which are thereafter sustained.  Here, wT , wC  are temperature and 

species concentration at the wall and T , C  designate the temperature and concentration of the 

species far from the wall (sheet) i.e. in the free stream, respectively. A uniform magnetic field H 

is imposed parallel to the y axis and it can be taken as  0,,0 0H . The magnetic Reynolds 

number is of sufficiently low value for induced magnetic field to be negligible in comparison 

with the applied magnetic field and therefore the magnetic lines are fixed relative to the fluid. 

Using the relation 0 J  for the current density  zyx JJJ ,,J  where Jy is constant, since the 

sheet is non-conducting, 0yJ  at the sheet and hence also vanishes everywhere. Assuming the 

sheet is infinite in extent, then all physical quantities are solely dependent on y  and t . Uni-

directional radiative flux (qr) is assumed to act normal to the sheet. Incorporating the appropriate 

terms from the Maxwell electromagnetic field equations, following Takhar and Bég [60], with 
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the thermal Boussinesq approximation, the appropriate conservation partial differential 

equations including heat generation (or absorption) and chemical reaction terms, take the form: 

 

Continuity equation; 
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Energy (heat) equation; 
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Concentration (species diffusion) equation; 
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The corresponding initial and boundary conditions are; 

t = 0; u=0, w=0, T = T∞, C=C∞ everywhere  

t ≥ 0; u =0, w=0, T = T∞, C=C∞ at x=0 

0yCCTTwUu ww   at,,0,                           

  yCCTTwu as,,0,0                                   (5) 

where u  is the x  component of velocity vector, 0v  is the transpiration (lateral wall mass flux)  

velocity,   is the kinematic coefficient viscosity,   is the fluid viscosity,   is the density of the 

fluid,   is the thermal conductivity, pc  is the specific heat at the constant pressure , 0k  is the 

rate of chemical reaction and D  is the coefficient of mass diffusivity, tk  is the thermal diffusion 

ratio, sc  is the concentration susceptibility, respectively. The radiative heat flux, rq , is described 

by the Rosseland-Boltzmann approximation following Brewster [61]) such that 

y
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4
,  where *  and *k  are the Stefan-Boltzman constant and the mean absorption 

coefficient, respectively. If the temperature differences within the flow is sufficiently small then 

4T  can be expressed as a linear function after using Taylor series to expand 4T  about the free 

stream temperature T  and neglecting higher-order terms. This results in the following 

approximation:  
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434 34   TTTT  .        (6) 

To obtain the governing equations and the boundary condition in dimensionless form, the 

following non-dimensional quantities are introduced for transverse coordinate, velocity, time, 

temperature and concentration, respectively:   
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Substituting the above dimensionless variables in equations (2)-(4) and corresponding boundary 

conditions (5) are: 

 

Dimensionless Momentum; 
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Dimensionless Energy equation; 
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Dimensionless Concentration; 
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The corresponding normalized temporal and spatial initial and boundary conditions are 

transformed to: 

 

 ≤ 0; U=0,  T = 0, C =0 everywhere  

 >0; U =0, T = 0, C =0 at leading edge  

1,1,1  CTU  at 0Y                                                                                                    

0,0,0  CTU  as Y                      (11) 

 

where   represents the dimensionless time, Y  is the dimensionless Cartesian coordinate, U  is 

the dimensionless velocity, T  is the dimensionless temperature, C  is the dimensionless 
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3. FINITE DIFFERENCE NUMERICAL SOLUTIONS 

To solve the non-dimensional system defined by eqns. (8)-(10) under boundary conditions (11), 

we employ an implicit finite difference method (FDM). Following Carnahan et al. [53], the 

dimensionless partial differential equations are formulated as a set of finite difference equations. 

The boundary layer domain is discretized as depicted in Fig. 2. Let nn TU ,  and nC  denote the 
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values of TU ,  and C  at the end of a time-step respectively. Using the implicit finite difference 

approximation, the following appropriate set of finite difference equations are generated: 
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The associated spatial boundary conditions are: 
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Here the subscript k  designates the grid points with Y  coordinate and the superscript n  

represents a value of time,   n  where .....,....2,1,0n . The velocity  U , temperature 

 T  and concentration  C  distributions at all interior nodal points may be computed by 

successive applications of the above finite difference equations. The numerical values of the 

shear stress, Nusselt number and Sherwood number are evaluated by five-point approximate 

formula for the derivatives. The stability conditions are 
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approach zero then numerical convergence is achieved i.e. the computational results of the 

implicit finite difference method approach the actual solutions. 
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4. VALIDATION WITH FINITE ELEMENT METHOD (FEM) 

The FDM numerical solutions have been validated using a Galerkin finite element method 

(FEM) based on the variational (weak) formulation, as elaborated in detail in Rao [62]. This 

approach has been used extensively in recent years in transient and magnetohydrodynamic 

(MHD) flows. For example Gupta et al. [63] studied non-Newtonian heat transfer from an 

extending polymer sheet at high temperature with FEM. Other applications which have 

successfully simulated complex nonlinear flow problems with FEM algorithms include pulsatile 

magneto-hemodynamics [64], magnetized micro-continuum polymer flow [65], oscillatory 

conducting nanofluid dynamics from circular bodies (spacecraft) [66] and solar collector nano-

convection [67]. FEM uses the opposite approach to FDM, viz numerical integration rather than 

numerical differentiation, which is infact much more efficient computationally. Applying the 

Galerkin finite element method to equations (8) to (10) over the element (e) (yjyyk), we have 

following Bég et al. [64]: 

Finite element momentum equation: 
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Finite element energy equation; 
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Finite element concentration equation; 
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Next, we postulate linear piecewise approximate solutions for the velocity, temperature and 

concentration functions with appropriate shape functions (interpolation functions). In order to 

prove the convergence and stability of the Galerkin finite element method, the Matlab program 

MAGNETO-FEM is executed with slightly modified values of the mesh distance in the y-and 

-directions i.e. j and k, and no significant change is observed in the values of the velocity 

components. Mesh independence of solutions was therefore achieved with excellent stability and 

convergence. The boundary conditions (10) are easily specified in MAGNETO-FEM. To 

validate the FDM finite difference code, a comparison solution is performed for each of the 
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plots in Section 6 i.e. Figs 4a,b-13a,b. For all cases, excellent correlation is achieved between 

FDM and Galerkin MAGNETO-FEM. The boundary layer regime is discretized into a domain 

which is delineated into smaller elements (sub-domains) of finite dimensions called “finite 

elements”. The collection of elements is called the finite-element mesh or grid. The element 

matrix, which is called a stiffness matrix, is constructed by using element interpolation 

functions. The algebraic equations so obtained are assembled by imposing the inter-element 

continuity conditions. This yields a large number of algebraic equations defining the global 

finite element model, which governs the whole domain.  The essential and natural boundary 

conditions are imposed on the assembled   equations.  The assembled equations so obtained can 

be solved by any “matrix” numerical technique e.g. Householder’s approach, LU Decomposition 

method, Choleski decomposition etc. Further details are readily available in [63-67]. Criteria for 

the selection for elements are also documented in [63-67]. The non-linear algebraic system of 

equations is solved iteratively. An accuracy of 0.00001 is used. A convergence criterion based 

on the relative difference between the current and previous iterations is employed. When these 

differences reach the desired accuracy, the solution is assumed to have converged and the 

iterative process is terminated. Two-point Gaussian quadrature is implemented for solving the 

integrations. The FEM algorithm has been executed in MATLAB running on an Octane SGI 

desktop workstation and takes 15-20 seconds on average. We note that in Figs. 4a,b-13a,b the 

green triangles ( ) denote the MAGNETO-FEM solutions. Confidence in the FDM code is 

therefore justifiably high. However to further validate the solutions, in the absence of results 

from other studies and to provide a rigorous benchmark for future simulations, we have also 

verified the FDM and FEM computations with a network method which is described briefly 

next. 

 

5. FURTHER VERIFICATION WITH NETWORK SIMULATION METHOD  

The transformed partial differential equations (8) to (10) subject to the temporal and spatial 

boundary conditions (11) have been solved with the MAG-PSPICE Network Simulation Method 

software (NSM) approach. This technique is founded on the thermo-electrical analogy and has 

been implemented in many diverse areas of applied mechanics, thermal sciences and fluid 

dynamics, being equally adept at solving linear and non-linear, steady or transient, 

hydrodynamic or coupled transport problems. Network  simulation methodology uses  the  

network theory  of  thermodynamics,  in  which  flux-force  relationships  in  dynamical  systems  

are  modelled  using  electric  networks.  NSM effectively exploits the  formal  similarities  
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between  the  mathematical  structure  underlying  different  phenomena  with  the  same  

balance  and  constitutive  equations and intrinsic to this approach is the design of an “analogous 

electric  circuit”  which  possesses  the  same  balance  and  constitutive  equations  as  the  

physical  problem  of  interest.  NSM was introduced by Nagel [68] originally for semi-

conductor and transient electrical circuit problems. It has more recently been implemented in  

magnetic tribology (squeeze films for spacecraft landing gear) [69], magnetic biopolymer 

materials processing  [70], magneto/electro-rheological (M/ER) smart lubrication [71] systems 

for earthquake shock protection (seismic bearings) and electro-kinetic stabilization of 

geotechnical materials [72]. Discretization of the differential equations is founded on the finite-

difference methodology, where only a discretization of the spatial co-ordinates is necessary. 

Numerical differentiation is implicit in such methods and some expertise is required in avoiding 

numerical diffusion, instability and convergence problems. NSM simulates the electrical 

variable of voltage as being equivalent to the velocity (U), temperature  T  and 

concentration  C , while the electrical current is equivalent to the velocity flux (∂U/∂Y), 

temperature flux (∂T /∂Y) and concentration flux (∂ C /∂Y). A network electrical model for each 

volume element is designed so that its electrical equations are formally equivalent to the spatial 

discretized equation. The whole network model, including the devices associated with the 

boundary conditions, is solved by the modified numerical computer code Pspice [69]. Fourier’s  

law  is  utilized  in  the  spatial  discretization  of  the  dimensionless  transport  equations.  The  

electrical  analogy  is  applied  to  the  discretized  equations  together  with  Kirchhoff´s  law  

for  electrical  currents. To implement the boundary conditions,   constant   voltage   sources   

are   employed   for    velocity, temperature and concentration.  Time remains as a real 

continuous variable.  Researchers need not manipulate the finite difference differential equations 

to be solved nor expend effort in convergence exercises.  The   principal  advantage of NSM is 

that it negates the requirement in standard numerical finite  difference  schemes of  manipulation  

of  difference  equations  and  the  constraints  of  specified  yardsticks  around  the  convergence  

of  numerical  solutions. Details of the discretization and electronic network diagram 

construction have been provided in many previous studies and the reader is referred to Zueco 

and Bég [69] and Bég and Bég [71, 72]. The MAG-PSPICE code is designated the “electric 

circuit simulator”. Nagel [68] has elucidated in detail the local truncation errors present in the 

original SPICE algorithm. A necessary criterion for using MAG-SPICE effectively is a 

familiarity with electrical circuit theory. Momentum, temperature and concentration balance 

“currents” are defined systematically  for  each  of  the  discretized  equations  and  errors  can  

be  quantified  in  terms  of the quantity of control volumes. The user however needs to program 



14 

 

a customized protocol file, (file “MagNetwork.cir”). This program rapidly generates the file for 

execution in MAG-PSPICE, and the program permits the reading of the solutions provided by 

MAG-PSPICE (file “MagNetwork.out”).  Following the simulations, the code plots waveform 

results so the designer can visualize circuit behavior and determine design validity. Graphical  

results of  each  simulation  are  presented  in  the MAG-PSPICE  “Probe  window  waveform  

viewer” and  analyzer,  where  it  is  possible  to  see  the  velocity, temperature  and 

concentration  field at any  point  of  the boundary layer.  A summary of the procedure is given 

in Fig. 3 below.  NSM implements the most recent advances in software in the resolution of 

electrical networks to solve diverse types of partial differential equations which may be 

elliptical, hyperbolical, parabolic, linear, non-linear and 1-, 2- or 3-dimensional. At least one of 

the FDM and FEM computations in each of the Figs. 4a,b-13a,b have been closely verified with 

MAG-PSPICE. The NSM (MAG-PSPICE) solutions are given as red diamonds ( ). The FDM 

computations are therefore shown to be highly accurate as corroborated by two independent 

numerical simulation tools. Although steady-state models do exist with which we can 

benchmark very special reduced cases of the general model presented in the current article, we 

have opted to validate the general model including all thermophysical effects i.e. Ohmic 

dissipation, Soret and Dufor effects and also chemical reaction. This is a significantly more 

zealous approach and confirms all possible families of solutions obtained by the FDM code with 

the two other codes. Moreover, it provides extensive confidence to other researchers who may 

wish to extend the present model to for example non-Newtonian flow and are therefore provided 

with extensive graphical solutions to validate their own programs. In all three numerical 

methods, we have adopted data from a number of references to achieve physically viable 

simulations. These include refs. [23], [44] and [51] which cover all the essential parameters 

featured in the present model. Furthermore we have used the references [61, 73] for additional 

guidance as to parameter selection.  

 

6. FDM COMPUTATIONAL RESULTS AND DISCUSSION 

Extensive FDM simulations have been conducted and are illustrated in Figs. 4a,b-13a,b. In 

order to investigate the transport phenomena characteristics inherent to the current radiative 

magnetic materials processing problem, numerical results are depicted graphically for 

velocity  U , temperature  T  and concentration  C  versus transverse coordinate. Furthermore 

transient plots for shear stress, Nusselt number and Sherwood number are included. The 
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influence of wall mass flux parameter  S , magnetic body force parameter  M , Rosseland-

Boltzmann conduction-radiation parameter  R , Prandtl number  rP , Dufour number  uD , 

Eckert number  cE , heat sink/source parameter   , Schmidt number  cS , Soret number  rS , 

and chemical reaction parameter    on the different transport characteristics is studied and 

visualized with the help of a computer programming language Compaq Visual Fortran 6.6a. 

Tecplot 7 was deployed to visualize the FDM numerical results. To obtain the steady-state 

solutions, the computations have been carried out up to dimensionless time, 80 . It is 

observed that the numerical values of CTU and,  however, show no tangible changes after 

15 . Hence at 15  the solutions of all variables are taken to have converged to steady-state 

solutions. For the sake of brevity although every parameter arising in the transport model is 

studied, we confine the examination of parameter effects on selected variables. We further 

emphasize that for every plot depicted at least one FDM solution has been validated with the 

FEM (green triangles) and NSM (red diamond) numerical codes. Furthermore we have 

conducted mesh independence (grid tests) with the codes. Grid independence is usually essential 

to show if only one numerical scheme is used. We have used three. The solutions have all been 

shown to agree between FEM, network simulation and finite difference methods. The grids used 

were obviously successively refined to achieve the correct converged solution. Table 1 provides 

the mesh independence for the three different numerical methods utilized. This has been done, 

for one variable i.e. the steady state velocity solution (U), with all thermo-physical parameters 

also given. Generally all the methods used achieve mesh independence with 100 steps in the Y -

direction, for the steady state solution. Further improvement in the solution is not required after 

this stage and it is assumed that the solution has converged. To determine the physical influence 

of the key thermophysical effects, we have presented steady-state solutions in Figs. 4a,b-10a,b 

and time-dependent solutions in Figs 11a,b-13a,b.  

Figs 4a,b-6a,b illustrate the evolution in velocity profiles for various values of wall mass flux 

parameter  S , magnetic parameter  M , conduction-radiation parameter  R , Dufour number 

 uD , Prandtl number  rP , heat generation/absorption parameter   ,  Eckert number  cE  and 

Soret number  rS . The case of 0  and 0  are treated respectively as heat absorption and 

genaration and correspond to “hot sink” and “hot spot” scenarios in materials processing. In fig 

4a excellent correlation is achieved for the case of S= 2.00 with all three numerical codes i.e. 

FDM, FEM and NSM. With increasing S values which imply progressively greater suction 

(lateral mass flux removal via the permeable sheet from the boundary layer flow), there is a 

significant deceleration in the boundary layer flow i.e. velocity magnitudes are depressed. 
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Values are however consistently positive demonstrating that flow reversal is never induced. The 

monotonic decay in velocity profiles for any suction value is smoothly computed from the 

permeable sheet (wall) into the free stream. The asymptotic tendency of profiles indicates and 

confirms the imposition of an adequately large “infinity boundary condition” and verifies that 

indeed correct solutions are achieved for the steady state. Greater suction essentially draws the 

momentum boundary layer closer to the sheet surface i.e. causes stronger adherence which 

serves to destroy momentum and delay boundary layer separation. An increase in magnetic body 

force parameter (M) is observed in fig. 4b, to substantially depress the velocity magnitudes, 

although once again (as with increasing suction) no back-flow is instigated in the boundary layer 

regime. The magnetic field effect is sustained via a single linear body force term in the 

dimensionless momentum equation (8), namely –MU. )(
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influence of the Lorentizian magneto-hydrodynamic body force (acting transverse to the 

direction of the applied magnetic field i.e. in the Y- direction) to the inertial force. For increasing 

values of M, the Lorentzian body force, which is a drag force, becomes stronger and this 

impedes the flow. The flow is therefore strongest with weak magnetic field (M = 3.00) and most 

inhibited with strongest magnetic field (M=15.0). In Fig. 5a, six sets of three profiles are plotted 

to study the collective influence of conduction-radiation parameter (R) and Dufour number (Du). 

Each cluster of triple profiles corresponds to a single Du value and three R values. With an 

increase in Dufour number, there is a significant enhancement in velocity. Dufour number, 
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, embodies the ratio of the increase in enthalpy of a unit mass during 

isothermal mass transfer divided by the enthalpy of a unit mass of mixture. It arises in the 

second order cross-diffusion gradient term, in the normalized energy equation (9),
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 . 

Effectively it simulates the influence of species diffusion on the thermal diffusion field 

(temperature). The Dufour effect is the reciprocal phenomenon of the Soret effect. The latter 

(thermal diffusion) represents the occurrence of a diffusion flux due to a temperature gradient 

whereas the former is the occurrence of a heat flux due to a chemical potential gradient.  

Dursunkaya and Worek [73] have also identified the accelerating effect of Dufour number on 

boundary layer flows. Their analysis confirms the present trend, namely that flow velocity is 

minimized with absence of the Dufour effect (curves 1). The presence of strong heat flux 

induced by the species diffusion aids momentum diffusion and accelerates the flow. The 

influence of Rosseland-Boltzmann (conduction-radiation) number (R) on velocity evolution is 
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also interesting. This parameter arises in the augmented thermal diffusion term also in the 

energy conservation eqn. (9), viz 
2

21

Y

T

P

R

r 









 
.




*

3*

3

16

k

T
R   which simulates the relative role of 

thermal radiative heat transfer compared with thermal conduction heat transfer. As R is 

increased thermal radiation contributes more and this elevates the heat flux in the medium which 

aids in accelerating the flow. A similar observation has been reported by numerous other studies 

including Hossain and Rees [44], Hayat et al. [47] and Sattar and Kalim [49], although they 

have not explained the cause for flow acceleration. Increasing thermal radiation implies that the 

random kinetic energy of charged particles is elevated. This energizes the boundary layer and 

boosts heat flux leading to a momentum enhancement which accelerates the flow. Evidently the 

velocity of the fluid is minimized for low values of R (0.05) and peaks for highest value of R 

(0.15). The influence is non-trivial. Smooth convergence of all profiles is attained in the free 

stream again testifying to the imposition of an adequately large infinity boundary condition 

(Y=6) in the computations. In fig. 5b an increase in Prandtl number (Pr) is clearly seen to 

decrease velocities. Prandtl  number  defines  the  ratio  of  viscous diffusion  to  thermal  

diffusion  in  the  boundary  layer  regime.  For Pr > 1, momentum diffusivity will exceed 

thermal diffusivity, whereas for Pr < 1 thermal diffusivity will exceed momentum diffusivity. 

With greater Pr, since the velocity is reduced, there is a corresponding increase in momentum 

boundary layer thickness. The presence of a heat source (β =0.5) is found to accelerate the flow 

at low Pr (0.71), whereas a heat sink (β = -0.5) induces the opposite effect and depresses the 

flow velocity. There is no tangible modification in flow velocity with either heat sink 

(absorption) or heat source (generation) at high Pr (7.0). T is the heat source/sink term 

appearing in the energy eqn. (9) as a linear temperature term. The effect is straightforward and 

has been documented by many researchers, notably Stewart and Burns [74] where a similar 

observation has been reported to that of the present computations. Fig. 6a reveals that with 

increasing Eckert number (Ec) a significant elevation in flow velocity is generated. 

Conventional viscous dissipation, which is associated with the Eckert number, appears in the 

energy eqn. (9) as the familiar quadratic spatial velocity gradient, viz, 
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Ec . However since 

magnetic field is non-zero (M=3.0) the Ohmic dissipation (Joule heating) term is also invoked 

which is a product of magnetic parameter, Eckert number and square of the velocity, 2UMEc . 

The kinetic energy of the fluid is enhanced with greater Ec values. This is observed in a strong  

acceleration in the flow. Free convection currents also arise for Ec >0 and these aid in 

accelerating the flow in the boundary layer. The converse would arise for Ec <0 although this 
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case is not considered here. Schlichting [75] defines Eckert number as representing the ratio of 

kinetic energy at the wall to the specific enthalpy difference between wall and fluid i.e. 

quantifying frictional heat due to mechanical dissipation effects internal to the fluid. It is 

therefore intimately associated with dissipation created by shear stresses in the fluid at the wall. 

Dissipation takes place mainly where the greatest velocity gradients are and this location is not 

situated at the wall where the fluid adheres, but in the boundary layer. Gebhart [76] 

demonstrated very early that positive Eckert number leads to boundary layer acceleration. 

Gebhart and Mollendorf [77] further confirmed this trend. The present results would therefore 

appear to be consistent with other investigations. Fig. 6b indicates that a rise in Soret number 

(Sr) substantially boosts the velocity. This effect which is also variously referred to as the 

thermophoretic effect is common in mixtures of mobile particles where the different particle 

types exhibit different responses to the force of a temperature gradient. Sr arises in the second 

order temperature gradient in the species diffusion eqn. (10), viz 
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, and evidently exerts a 

marked influence on velocity, since molecular diffusion encourages momentum diffusion. 

Diffusion of matter caused by temperature gradients (Soret Effect) and diffusion of heat caused 

by concentration gradients (Dufour Effect) become significant when temperature and 

concentration gradients are very large, as considered in the present study. Generally these effects 

are considered as a second order phenomenon but can exert first order effects.  Weaver and 

Viskanta [78] have reported similar findings to those in fig. 6b, namely that when the differences 

of the temperature and the concentration are large or when the difference of the molecular mass 

of the two elements in a binary mixture is great, the coupled interaction is significant enough to 

aid momentum development in buoyancy-driven convection. In figs 5a, b-6a, b again excellent 

correlation is achieved with FDM, FEM and NSM numerical techniques. 

Figs. 7a,b, 8a,b and 9a illustrate the temperature (T ) response to various thermophysical 

parameters. Increasing suction (S > 0) in fig. 7a is observed to strongly suppress temperatures 

throughout the boundary layer. A velocity overshoot is also witnessed in close proximity to the 

wall, and this is amplified with stronger suction effect. Fig. 7b shows that greater magnetic 

parameter (M) enhances temperatures throughout the regime from the wall to the free stream. 

The additional work which must be carried out by the fluid in dragging itself against the 

imposed magnetic field is dissipated as thermal energy. This results in heating of the fluid and 

an increase in thermal boundary layer thickness. The effect is prominent and is a classical result 

in magnetohydrodynamic convection, as identified in many other studies. The pertinence to 

materials processing is that supplementary heat can be produced with transverse static magnetic 
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fields, to aid in the manipulation of materials which when combined with thermal radiative flux 

and heat generation, provides engineers with a powerful combination for thermally-induced 

modification of materials. Fig. 8a shows that the temperatures are enhanced generally with 

increasing Rosseland-Boltzmann number (R) and also with greater Dufour number (Du). As 

elaborated earlier the parameter, R represents the relative contribution of radiative to conduction 

heat transfer. It arises in the augmented thermal diffusive flux term. As this parameter is 

increased, progressively stronger radiative flux is present which energizes the flow and elevates 

temperatures and also thermal boundary layer thickness. 

Similarly the Dufour number which encapsulates the contribution of species concentration 

gradients to the thermal field successfully aids in heating the regime and also elevating thermal 

boundary layer thickness. Peak temperatures generally arise close to the sheet and they are 

systematically displaced further from the sheet with increasing R and Du values. Thermal 

boundary layer thickness is effectively increased with greater radiative flux and also diffuso-

thermal (Dufour) cross-diffusion effects. In all cases, temperature profiles follow a smooth 

decay from the wall to the free stream indicating that the FDM (and where appropriate the 

MAGNETO-FEM and MAG-SPICE NSM) computational solutions are stable and convergent 

with an adequate infinity (free stream) boundary condition prescribed in each respective 

numerical code. Fig 8b illustrates the response of temperature function to a variation in both 

Prandtl number and heat source/sink parameter. It is apparent that increasing Prandtl number 

(Pr) significantly depresses temperatures in the boundary layer. Prandtl number signifies the 

ratio of momentum diffusivity to thermal diffusivity. It is the single most important parameter in 

heat transfer analysis since it corresponds to actual physical properties of fluids unlike the vast 

majority of other dimensionless thermofluid numbers. Higher Prandtl values imply a thinner 

thermal boundary layer thickness and more uniform temperature distributions across the 

boundary layer. Hence the thermal boundary layer will be much reduced in thickness compared 

with the hydrodynamic (momentum) boundary layer. Prandtl number < 1 corresponds to greater 

thermal diffusion rate compared with momentum diffusion rate. A lower Prandtl number (Pr 

=0.71 i.e. gas) implies that the fluid will possess higher thermal conductivity (and an associated 

thicker thermal boundary layer structure) so that heat can diffuse away from the vertical surface 

faster than for higher Prandtl number fluid (Pr = 7.0 i.e. liquids associated with thinner boundary 

layers). Therefore lower Prandtl number fluids will achieve significantly larger temperatures in 

the boundary layer. Higher Prandtl number fluids possess lower thermal conductivities causing 

less thermal energy to be diffused from the sheet surface into the body of the fluid and resulting 

in lower temperatures. With heat generation (source) i.e. β=0.5, temperatures are, as expected, 
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increased, whereas with heat absorption (sink) i.e. β= -0.5 temperatures are depressed. The case 

where no heat sink/source is present i.e. β= 0, naturally falls between the other two cases. Fig. 

9a presents the evolution of the temperature with a variation in the dissipation parameter, Ec. As 

anticipated the increase in viscous dissipation manifests with an addition of thermal energy to 

the flow which results in a rise in temperature. Thermal boundary layer thickness is also 

enhanced. Temperature overshoot is present in the vicinity of the wall and this has also been 

observed in numerous other investigations including Gebhart [76]- it is a characteristic feature of 

double-diffusive convection flows. The temperature overshoot migrates further from the wall 

(sheet) with greater Eckert number. Temperature profiles converge towards each other in the 

free stream. 

Figs. 9b and 10 a, b depict the spatial species concentration evolution with various emerging 

parameters. In fig. 9b, the influence of the lateral wall mass flux i.e. suction parameter, S,  is 

shown. This simple parameter is associated with geometric modification of the sheet (wall) via 

perforations. It arises not only in the dimensionless momentum eqn. (8) in the linear velocity 

gradient term, but also in the heat eqn. (9) and concentration eqn. (10) where it is coupled with 

the linear temperature gradient (
Y

T
S



  ) and linear concentration gradient (

Y

C
S



 ) terms, 

respectively. Concentration clearly decreases with increasing suction effect i.e. removal of the 

fluid (not species) via the sheet. The destruction in momentum associated with greater suction 

forces the boundary layer to adhere more strongly to the wall and this discourages species 

diffusion. In Fig. 10a, the species concentration profiles for several values of chemical reaction 

parameter    with two values of Schimdt number 60.0cS  (water vapor) and 94.0cS  

(carbon dioxide) are presented, respectively. It is noted that the concentration decreases with the 

increase of chemical reaction parameter   , where 0  and 0  are treated as genarative 

and destructive chemical reactions respectively. The appropriate term in the concentration eqn. 

(10) is the linear term, C . With increasingly negative γ values more species is converted via 

chemical reaction and this boosts the species concentration levels in the boundary layer. With 

increasingly positive γ- values the opposite effect is induced, namely, less species is converted 

and this manifests in a reduction in concentration levels. Similar findings have been documented 

by Chaudhary and Merkin [79] among others.  Schmidt number (Sc) embodies the ratio of the 

mass (species) and viscous diffusion time scales.  It also defines the ratio of momentum 

diffusivity to species diffusivity.  The Schmidt number in mass transfer is analogous in 

importance to the Prandtl number in heat transfer, as both are associated with properties of fluids 

and diffusing species, respectively. For  Sc  <  1 (as considered in the present materials 
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processing problem), the  momentum  diffusivity  is  lower  than  the  species  (mass)  diffusivity  

and  the species  diffusion  rate  exceeds  the  momentum  diffusion  rate. For Sc > 1 (not 

considered here) this scenario is reversed.  Higher values of Sc correspond to higher density 

species diffusing in air, e.g. Sc = 1.0 corresponds to methanol diffusing in electrically 

conducting gas, Sc = 2.0 may represent ethyl-benzene diffusing in air. Here we are concerned 

with low molecular weight gas diffusion in denser liquids e.g. saline solutions, low viscosity 

electro-conductive polymeric materials etc. Schmidt numbers less than 1 are therefore 

appropriate. Increasing Sc lowers the chemical molecular diffusivity of the species. As Sc is 

increased the concentration boundary layer will become relatively thinner than the viscous 

(momentum) boundary layer. Concentrations will therefore be reduced and species boundary 

layer thickness will also be decreased. With thinner concentration boundary layers, the 

concentration gradients will be enhanced due to an inhibition of species flux in the boundary 

layer. For Sc < 1, species diffusivity exceeds momentum diffusivity and this accounts for the 

greater concentration values for Sc = 0.64 compared with the minimized concentration profile 

for Sc = 0.94. The implication for materials processing engineers is that in such a regime, a 

lower Schmidt number diffusing species must be employed to enhance concentration 

distributions in the medium which may then be manipulated to alter the magnetic material 

characteristics for different applications (aerospace, medical, energy etc). Fig. 10b demonstrates 

that a dual effect is induced by increasing Soret number. In the near -wall region, concentration 

of the species decreases within the interval 45.00 Y  (approximately) with an increase in 

Soret number. However for 45.0Y  the concentration magnitudes are markedly elevated with 

greater Soret number. Evidently there is therefore a critical distance from the wall (sheet) at 

which the Soret (thermo-diffusion) gradient, 
2

2

Y

T
S r




 , appearing in eqn. (10) terminates its 

opposing influence on species diffusion and commences an assisting role. Further deatiled 

analysis is therefore required to elaborate the exact mechanism by which this phenomenon arises 

and will be addressed in a separate study. The asymptotic decay of concentration profiles 

towards the free stream, for any Soret number is clearly attained in Fig. 10b.  

Figs. 11a,b-13a,b depict respectively the transient shear stress, Nusselt number and Sherwood 

number distributions at the sheet (Y=0) for variation in Eckert number  cE , Soret number  rS , 

Suction parameter  S , chemical reaction parameter    and Schimdt number (Sc), with all 

other parameters constrained. Shear stress (x) is clearly strongly enhanced with greater 

dissipation effect (Eckert number) as seen in fig. 11a. Generally shear stresses ascend very 

rapidly from the intitiation of the flow and all attain the steady state distribution for  = 15. 
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Increasing Soret number (fig. 11b) is also observed to considerably elevate the shear stress 

values indicating significant acceleration in the boundary layer flow. Conversely with increasing 

Eckert number (fig. 12a), there is a substantial reduction in Nusselt number. The increase in 

thermal energy in the fluid with greater dissipation causes heat to diffuse more intensively from 

the boundary layer to the wall (sheet) leading to a net decrease in heat transfer from the wall to 

the fluid body i.e. lower Nusselt numbers. The opposite trend is achieved for wall mass transfer 

rate i.e. Sherwood number, with greater wall suction (fig. 12b) wherein it is apparent that greater 

adherence of the boundary layer to the wall (associated with a deceleration in the flow) while 

decreasing the species concentration levels in the fluid, induces greater species diffusion flux 

from the sheet (wall) to the fluid. Under Fick’s law of mass diffusion, the mass transfer rate at 

the wall must therefore increase and this is testified to in fig. 12b. Finally in figs 13a,b, it is 

apparent that Sherwood number is increased for destructive chemical reaction (   <0) whereas 

it is reuced for constructive (generative) reaction (   >0). Sherwood number is enhanced i.e. 

mass transfer rate at the wall (sheet) is boosted with greater Schmidt numbers (fig. 13a). Fig 13b 

indicates that with greater Soret number, there is a noticeable elevation in Sherwood number at 

all time values. Thermo-diffusion (Soret) therefore promotes species diffusion from the wall 

(sheet) into the boundary layer.  In all the plots shown the FDM solutions are found to 

corroborate extremely closely with the MAGNETO-FEM and MAG-SPICE NSM solutions. 

 

7. CONCLUSIONS 

An implicit finite difference numerical solution has been developed for transient 

magnetohydrodynamic chemically-reacting radiative fluid flow from an impulsively-started 

vertical porous sheet. Soret/Dufour, heat generation/absorption, Joule heating and viscous 

dissipation effects have also been integrated into the mathematical model. Verification of 

computations has been achieved with two distinct numerical algorithms- variational finite 

elements (MAGNETO-FEM code) and electrothermal network simulation (MAG-SPICE NSM 

code). The present solutions have demonstrated that the boundary layer flow is accelerated with 

increasing thermal radiative flux, Eckert number, heat generation and Soret number whereas the 

flow is decelerated with greater wall suction, heat absorption, magnetic field and Prandtl 

number. Temperatures are also observed to be elevated with magnetic parameter, radiation heat 

transfer, Dufour number, heat generation (source) and Eckert number with the contrary effects 

computed for increasing suction parameter or Prandtl number. The species concentration is 
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boosted with Soret number and generative chemical reaction whereas it is depressed with greater 

wall suction, Schimidt number and destructive chemical reaction parameter. Wall shear stress is 

found to increase with Eckert number and Soret number but is depressed with greater wall 

suction. Sherwood number is elevated with suction parameter, Schimidt number, generative 

chemical reaction parameter  and also Soret number. The present investigation is relevant to the 

simulation of certain electro-conductive polymer processing systems under high temperature. It 

has demonstrated that the FDM algorithm is very stable and adaptive to nonlinear magnetic 

materials problems and furthermore that FEM and NSM also provide an excellent platform for 

advanced simulations in this field. Future studies will extend the present investigation to 

consider non-Newtonian properties of smart polymers (e.g. poly (ethylene terephthalate)) and 

will be communicated imminently.  
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FIGURES 

 

 

Fig. 1 Physical model for thermal radiative magnetic materials sheet processing system 

 

 

 

Fig. 2. Implicit finite difference system grid (mesh) 

 

 

 

Thermal radiation flux, qr 
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Fig. 3: MAG-PSPICE network simulation methodology  
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Fig. 4. FDM solutions for velocity for various values of (a) Suction parameter, S  and (b) Magnetic parameter, M  

respectively (N.B. green triangle = MAGNETO-FEM solution, red diamond = MAG-SPICE NSM solution here 

and in all other figures for appropriate FDM case validation).  
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Fig. 5. FDM solutions for velocity for various values of (a) Radiation-conduction parameter, R  and Dufour 

number, uD   and (b) Prandtl number, rP  and Heat generation/absorption parameter,   respectively. 
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Fig. 6. FDM solutions for velocity with various values of (a) Eckert number, cE  and (b) Soret number, rS  

respectively. 
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Fig. 7. FDM solutions for temperature evolution with various values of (a) Suction (lateral wall mass flux) 

parameter, S  and (b) Magnetic parameter, M  respectively.  
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Fig. 8. FDM solutions for temperature evolution with various values of (a) Radiation-conduction parameter, R  and 

Dufour number, uD   and (b) Prandtl number, rP  and Heat generation/absorption parameter,   respectively. 
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Fig. 9. FDM solutions for (a) temperature evolution with various values of Eckert number, cE  and (b) concentration 

distribution with various values of Suction (lateral wall mass flux) parameter, S  respectively. 
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Fig. 10. FDM solutions for concentration distribution with various values of (a) Schmidt number, cS  and Chemical 

reaction parameter and (b) Soret number rS  respectively. 
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Fig. 11. Transient FDM solutions for shear stress distribution with various values of (a) Eckert number, cE  and (b) 

Soret number, rS  repectively. 
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Fig. 12. Transient FDM solutions for (a) Nusselt number with various values of Eckert number, cE  and (b) 

Sherwood number for various values of Suction (lateral wall  mass flux) parameter, S  respectively. 
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Fig. 13. Transient FDM solutions for Sherwood number with various values of (a) Schmidt number, cS  and 

Chemical reaction parameter and (b) Soret number rS  respectively. 

TABLES  

 

FDM MAGNETO-

FEM 

MAG-

SPICE 

GRID SIZE 

(Y direction)  

0.2388 0.2378 0.2391 50 

0.2444 0.2452 0.2456 75 

0.2601 0.2602 0.2604 100 

0.2601 0.2602 0.2604 120 

Table 1: Grid refinement for steady state U (velocity) solution with different numerical schemes 

at  =15 and Y = 1 with Gr=1, Gm=1, M = 3, R = 0.15, Pr=0.71, Du = 0.2, Ec = 0.5,  =0.5, 

Sc=0.6, Sr = 0.2, S= 2.0 and  =1.0. 
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