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Abstract  

 

Energy conversion under conduction, convection, diffusion and radiation has been studied for 

MHD free convection heat transfer of a steady laminar boundary-layer flow past a moving 

permeable non-linearly extrusion stretching sheet. The nonlinear Rosseland thermal radiation flux 

model, velocity slip, thermal and mass convective boundary conditions are considered to obtain a 

model with fundamental applications to real world energy systems. The Navier slip, thermal and 

mass convective boundary conditions are taken into account. Similarity differential equations 

with corresponding boundary conditions for the flow problem, are derived, using a scaling group 

of transformation. The transformed model is shown to be controlled by magnetic field, 

conduction-convection, convection-diffusion, suction/injection, radiation-conduction, 

temperature ratio, Prandtl number, Lewis number, buoyancy ratio and velocity slip parameters. 

The transformed non-dimensional boundary value problem comprises a system of nonlinear 

ordinary differential equations and physically realistic boundary conditions, and is solved 

numerically using the efficient Runge-Kutta-Fehlberg fourth fifth order numerical method, 

available in Maple17 symbolic software. Validation of results is achieved with previous 

simulations available in the published literature. The obtained results are displayed both in 

graphical and tabular form to exhibit the effect of the controlling parameters on the dimensionless 

velocity, temperature and concentration distributions. The current study has applications in high 

temperature materials processing utilizing magnetohydrodynamics, improved performance of 

MHD energy generator wall flows and also magnetic-microscale fluid devices. 
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Nomenclature 

a  velocity slip parameter (-) 

 B x  local magnetic field strength (T) 

0B  magnitude of magnetic field strength (T) 

C  concentration (kgmol/m3) 

wC  wall concentration (kgmol/m3) 

C  ambient concentration (kgmol/m3) 

pc  specific heat at constant pressure (J/kg K) 

D  diffusion coefficient (m2/s) 

f(η)  dimensionless stream function (-) 

fw  suction/injection parameter (-) 

g  acceleration due to gravity (m/s2) 

fh  heat transfer coefficient (W/m2K) 

mh  mass transfer coefficient (m/s) 

k thermal conductivity (m2/s)  

1k  Rosseland mean absorption coefficient (1/m) 

L characteristic length (m) 

m  power law index of wall temperature and concentration (-) 

M magnetic field parameter (-) 

N radiation-conduction parameter (-) 

1N (x)  local velocity slip factor (s/m) 

 1 0
N  constant velocity slip factor (s/m) 

Nc  convection-conduction parameter (-) 

Nd  convection-diffusion parameter (-) 

xNu  local Nusselt number (-) 

Pr  Prandtl number (-) 

p  pressure (N/m2)  
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mq  wall mass flux (kg/s m2) 

wq  wall heat flux (W/m2) 

rq  component of radiative heat flux in y - direction (W/m2) 

Le Lewis number (-) 

Ra Rayleigh number (-) 

xSh  local Sherwood number (-) 

T fluid temperature (K) 

wT  wall temperature (K) 

rT  temperature ratio parameter (-) 

T  ambient temperature (K) 

u, v  velocity components along the x -  and y - axes (m/s) 

wu  sheet velocity (m/s) 

wv  transpiration velocity (m/s) 

x, y  Cartesian coordinates along and normal to the sheet (m) 

 

Greek  

  thermal diffusivity (m2/s) 

T  volumetric thermal expansion coefficient (1/K) 

C  volumetric mass expansion coefficient (m3/kgmol) 

  similarity variable (-) 

)(  dimensionless temperature (-) 

  viscosity of the fluid (Ns/m2) 

  kinematic viscosity of the fluid (m2/s) 

  fluid density (kg/m3) 

0  constant electric conductivity (S/m) 

1  Stefan-Boltzmann constant (W/m2-K4) 

)(  dimensionless concentration (-) 

  stream function (-) 
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1. Introduction 

 

The investigation of transport problems of viscous fluids associated with energy conversion 

passing a moving/stationary linearly/non-linearly extrusion surface is a relevant problem in many 

industrial processes including manufacture, drawing of plastics and rubber sheets, glass fiber and 

paper production, metal and polymer extrusion processes, cooling of metallic sheets and crystal 

growth, all of which utilize excessive energy input. It is necessary to cool the extrusion stretching 

sheet when the manufacturing process at high temperature. These flows need viscous fluids to 

make a good effect to control excessive temperature in the sheet. In addition, the fluids have been 

processed using a variety of supplementary effects (i.e. magnetic force, thermal/mass buoyancy 

and mass diffusion) for the problem, and effectively such systems constitute a conjugate energy 

conversion system which for optimization, requires both experimental and theoretical analysis. 

The rate of cooling/heating can be instrumental in determining the constitution of manufactured 

materials, in which a moving surface emerges from a slit and consequently, a boundary layer 

flow adjacent to the sheet is generated in the direction of the movement of the surface. Sakiadis 

[1] first investigated the boundary flow past a continuous solid surface, motivated by chemical 

processing applications. Thereafter Crane [2] studied the steady two- dimensional boundary layer 

flow of a viscous, incompressible fluid induced by a stretching sheet. As pointed out by Wang 

[3], there have been numerous analytical and numerical studies communicated on 

stretching/shrinking sheet flows. In this context we quote Pantokratoras [4], Van Gorder et al. 

[5], Hayat et al. [6] and Noghrehabadi et al. [7]. These studies have explored a wide range of 

thermophysical effects in stretching sheet transport phenomena. Yao et al. [8] reported on heat 

transfer of a viscous fluid flow past a stretching/shrinking sheet with a convective boundary 

condition. Bachok et al. [9] examined stagnation point flow toward a stretching/shrinking sheet 
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with a convective surface boundary condition. Some recent studies related to energy conversion 

are the paper of Elshafei [10] who studied natural convection heat transfer from a heat sink with 

hollow/perforated circular pin fins. Sertkaya et al. [11] presented pin-finned surfaces in natural 

convection. Bouaziz and Aziz [12] studied convective–radiative fin with temperature dependent 

thermal conductivity using double optimal linearization. Jang et al. [13] studied 3-D turbulent 

flow of venting flue gas using thermoelectric generator modules and plate fin heat sink. Torabi et 

al. [14] studied longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with 

multiple nonlinearities.  

 

Magnetohydrodynamics (MHD) has also grown into a significant area in many branches of 

engineering, not least in sustainable alternative energy generation. MHD involves the study of the 

influence of a magnetic field on the viscous flow of electrically-conducting fluids. It arises in 

magnetic materials processing, purification of crude oil, magnetohydrodynamic electrical power 

generation, manipulation of electro-conductive polymers, smart braking systems, external 

aerodynamic flow control for spacecraft and is also critical to TOKAMAK energy systems. In 

modern electromagnetic materials processing, MHD transport phenomena are exploited 

frequently in flows from continuously moving, stretching/shrinking, heated/cooled surfaces in a 

quiescent/moving free stream (Bataller [15]). MHD achieves excellent modification and control 

of magnetic fluids, which can be synthesized for specific applications including aerospace alloys 

(Beg et al. [16]). The manufactured materials are affected by the rate of stretching/shrinking, wall 

heat/mass transfer rates as well as by magnetic field strength (Chen [17]). Other uses of MHD 

include spacecraft landing gear systems (Holt [18]), deep space nuclear powered engines (Rashidi 

et al. [19]), magnetoplasma dynamic thrusters (Makinde and Bég [20]) and magnetic materials 

processing (Beg et al. [21]).  
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Thermal radiation heat transfer is important when the difference between the surface temperature 

and the free stream temperature is large and when the operating temperature is significantly high. 

Radiation plays an important role in controlling heat/mass as well as momentum transfer. It 

therefore exerts a substantial influence on the final constitution of materials during 

manufacturing, which can markedly impact on time to delivery by manufacturers. High 

temperature plasmas, cooling of nuclear reactors and glass production are some important 

applications of radiative heat transfer from a surface to conductive fluids. The effect of radiation 

on convective heat/mass transfer flow of both Newtonian and non-Newtonian fluids from either 

linearly or nonlinearly stretching/shrinking sheets has received extensive attention. Important 

studies in this regard include Chen [22], Noor et al. [23], Cortel [24], Misra and Sinha [25] and 

Hakeem et al. [26]. Previous investigators applied a linear Rosseland diffusion approximation for 

radiation which has limited accuracy when the temperature difference between the sheet and 

surrounding is very large. Very recently, Pantokratoras and Fang [27], Uddin et al. [28] and also 

Cortell [29] used the nonlinear Rosseland diffusion approximation to study radiative heat 

transfer. These studies showed that the nonlinear Rosseland flux model is valid for both small 

and large differences between surface temperature and ambient fluid temperature.  

 

All of the previous investigators used uniform/variable concentration, uniform/variable mass flux 

or mass slip boundary conditions. They ignore mass convective boundary conditions. The idea of 

using mass convective boundary condition has been recently explored by Uddin et al. [30, 31].  

Drying mechanism (naturally/artificially) in which heat and mass transfer occurs simultaneously 

is used in many agricultural and industrial sectors, e.g. food, wood, ceramic, pharmaceutical, and 

paper (Silva et al. [32]). The mass convective boundary condition is found to be most appropriate 
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to conduct an analysis of transport phenomena related to drying wet products artificially using 

hot air (Datta [33], Silva et al. [34]). The inclusion of this boundary condition makes the present 

study practically applicable. In the present article, we adopt this model and examine analytically 

and numerically the effect of thermal and mass convective boundary conditions on MHD free 

convective slip flow from a nonlinearly radiating stretching sheet. We develop similarity 

transformations via a one- parameter scaling group of transformations. The dimensionless 

conservation equations are derived as ordinary similarity differential equations for free 

convection flow of viscous incompressible fluid past a moving stretching sheet with thermal 

convective, mass convective and hydrodynamic slip boundary condition. The well-posed 

boundary value problem is solved using numerical quadrature provided in the symbolic code 

Maple 17. The effects of the emerging thermophysical and thermo-diffusive parameters on the 

flow, heat and mass transfer characteristics are explored graphically. Detailed interpretations of 

the solutions are documented. 

 

2. Problem formulation  

The two dimensional steady laminar free convective heat and mass transfer flow of a viscous, 

incompressible and electrically-conducting Newtonian fluid from a permeable moving nonlinear 

radiating stretching sheet is considered. The flow configuration and the coordinate system are 

presented in Fig.1. The sheet is orientated along the x - axis. A magnetic field with variable 

strength ( / )B x L  is applied parallel to the y axis i.e. transverse to the sheet plane. The magnetic 

Reynolds number is small enough to neglect induced magnetic field effects. It is also assumed 

that the external electric field is zero and the electric field due to polarization of charges is 

negligible. The pressure gradient, viscous and electrical dissipation are neglected. Applied 

magnetic field is also sufficiently weak to neglect Hall currents. The left surface of the sheet is 

heated by convection from a hot fluid at temperature fT  which provides a variable heat transfer 

coefficient,  fh x/L . T  denotes the ambient fluid temperature. It is assumed that 
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f wT ( T T )  . It is further assumed that the concentration at the left surface of the sheet is 

f wC ( C C )   which provides a variable mass transfer coefficient  h x/Lm . wC is the wall 

concentration and C  is the ambient concentration. Thermophysical properties are assumed to be 

invariant except the density in the buoyancy terms. The field variables are the velocity 

components ( u , v ), temperature, T, and concentration, C. Under these approximations, the mass, 

momentum, energy and species diffusion conservation equations in dimensional form are: 

 

u v
+ =0,

x y

 

 
                                                                                           (1) 

 
     

22 3 1 3 1
0 3 3

T C2

x/Lσ Bu u u
u v u gβ T-T x/L +gβ C-C x/L ,

x y y ρ

m m



    
    
   



  
   

  




     (2) 

2

2

p p

T T k T
u v ,

x y ρc y

q1

ρc y
r  

 
  





                                                                                        (3) 

2

2

C C C
u v D .

x y y

  
 

  
                                               (4) 

 

The physical wall and far field boundary conditions imposed are (Ghiaasiaan [35]): 

    

  

w slip w f f

f

T
u=u (x/L)+u (x/L), v=v x/L , -k =h x/L T -T(x/L,0) ,

y

C
D =h x/L C -C(x/L,0) at y=0,

y

u 0,T T , C C as y .

m

 










   

            (5) 

Here 

1/3

w

x
u (x)=

LL

 
 
 


is sheet velocity, L is the characteristic length,  1slip

u
(x) N x/L

y
u 





 is 

linear slip velocity, 1N  is velocity slip factor, ρ is density of the fluid,   is the kinematic 

viscosity, k  is the thermal conductivity, 0σ  is the fluid electric conductivity,  B x/L  is applied 

magnetic field, g  denotes acceleration due to gravity, Tβ  designates volumetric coefficient of 

thermal expansion, Cβ  is the volumetric coefficient of concentration expansion, pc  is the specific 

heat at constant pressure, D  is the mass (species) diffusivity,  wv x/L  is mass transfer velocity, 
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rq  is radiative heat flux,   is thermal diffusivity. The fluid is a gray, absorbing-emitting 

radiation but non-scattering medium (Cortell [29]). It is also assumed that the boundary layer is 

optically thick and the Rosseland approximation for radiation is valid. Thus for an optically thick 

boundary layer (i.e. intensive absorption) the radiative heat flux is defined as 
4

1
r

1

4 T
q

3k y

 
 


, 

where 
1  (= 5.67 × 10−8 W/m2K4) is the Stefan-Boltzmann constant and 

1k (1/m) is the 

Rosseland mean absorption coefficient (Sparrow and Cess [36]).  

 

2.1 Non-dimensionalization of Model  

We introduce the following dimensionless variables in Eqns. (1)-(5): 

 

1/4 1/2 1/4

3

0
f f

T-T C-Cx y u L v L
x= , y= Ra , u= PrRa , v= Pr Ra , θ= , ,

L L ΔT ΔC

ΔT
ΔT=T -T , ΔC=C - C ,Ra .

Tg L

   

 





 




 

     (6) 

Introducing a dimensionless stream function   defined as: 

ψ ψ
u and v .

y x

 
  
 

                                                                                                                  (7) 

The continuity Eqn. (1) is satisfied identically and Eqns. (2)-(4) yield: 

     

 

2

T 0

2

3-1/32 22 3
00

3 1/2

0

β ΔTx β ΔCg x Lσ Bψ ψ ψ ψ ψ ψ CPr Pr Pr θ ,
y x y x y y Ra y Ra β ΔT

T

L       
     

         


  

         (8) 

    
2

3

2

ψ θ ψ ψ θ θ 4 θ
θ ln(ΔT) 1 T 1 ,

y x y x x y y 3N y y
r 

         
      

         
                                    (9) 

 
2

2
Le

ψ ψ 1
ln(ΔC) .

y x y x x y y

      
  

      

   
                                                  (10) 

The boundary conditions (5) now take the form: 

  

  

1/4 1/4

1/4

1/4 2
1/3 w1

f2

m

Ra Ra

Ra

v LRa N (x)ψ ψ ψ θ L
x , , h x 1 θ ,

y L y x y k

L
h x 1 at 0,

y D

ψ
0, θ 0, 0 as y .

y

y





   
     

   


  




   













                               (11) 
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Here 3

1 1N=k k /4σ T


the conduction-radiation parameter pPr=μc /k  is the Prandtl number, 

Le / D  is the Lewis number, Ra is the Rayleigh number. It is further assumed 

that    m m

0 0
ΔT= ΔT x ,ΔC= ΔC x ,    

0 0
ΔT , ΔC are constant reference temperature and 

concentration, m is the power law index of wall temperature and concentration (i.e. the flow is 

non-isothermal and non-isosolutal). 

 

2.2 Search for Similarity using Symmetry Analysis 

Following Uddin et al. [37], we select the following one-parameter continuous group of 

transformations: 

 

* * * * * *3 5 61 2 4
f f

* * * 2* 27 8 9 10
w w f f 1 1

εα εα εαεα εα εα
Γ:x =xe , y =ye , ψ =ψe , θ =θe , = e , h =h e ,

εα εα εα εα
v =v e , h =h e , N =N e , B =B e .

 
                                  (12) 

 

Here ε  is the parameter of the group and iα (i=1,2,...,10)  are arbitrary real numbers. We seek the 

values of iα such that the form of the Eqns. (8)-(11) is invariant under the transformation group. 

This transforms the variables from  2

f w 1x, y, ψ, θ, , h ,  h ,v , N , Bm  to 

 * * * * * * * * 2*

f w

*

1, ,  , , , , x y ψ θ h  h , v , N ,Bm . Substituting Eqn. (12) into Eqns. (8)-(11), equating 

powers of e and hence solving the resulting equations, we arrive at:  

 

4 5 0,   , ,1 2 3 2 10 2 6 7 8 2 9 2α =3α , α =2α ,α =-2α α =α =α = α α α
                 (13) 

 

With these values of α , the set of transformations Γ  then reduces to : 

* * ** * *2 2 2 2
f f

* * * *2 22 2 2 2
w w m m 1 1 1 1

3ε α ε α 2εα -ε α
Γ:x =x e , y =e y, ψ =ψe , θ =θ, = , h =h e ,

ε α -ε α ε α -ε 2α
v =v e , h =h e , N =N e , B =B e .

 


       (14) 
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We now seek the absolute invariants under this group of transformations. To determine the 

absolute invariant, we expand transformations (14) as a Taylor series retaining the terms up to the 

first degree and neglecting higher powers of  . This yields the following characteristic equations: 

2

wf m 1

2

f w 1

d vdh dh dNdx dy dψ dθ d dB
= = = = = = .

3x y 2ψ 0 0 -h -v -h N -2Bm


                                       (15) 

 

2.3 Similarity Transformations 

Solving (15), we have the following similarity transformations (absolute invariants)  

     1/3 2/3 1/3 1/3

f f m m
0 0

1/3 1/3 2 2 -2/3
,w w 1 1 0

0 0

η=yx , x f η , θ=θ η , = η , h =h x , h =h x ,

v =v x N =N x , B = B x .

    




 (16) 

Here 2

f w 1 0
0 0 0 0

h , v ,h , N ,Bm  are constant heat transfer coefficient, constant transpiration (wall 

lateral mass flux) velocity, constant mass transfer coefficient, constant velocity slip factor, 

constant transverse magnetic field.      f η , θ η , η are the dimensionless stream function, 

temperature and concentration respectively.  

 

2.4 Similarity Differential Equations 

Using Eqn. (16), Eqns. (8) - (11) reduce to the following coupled, nonlinear similarity equations: 

 21
f  + 2f f f -Mf θ+Nr =0,

3Pr
                                                                                     (17) 

  
3

r

'4 2
θ + 1 T 1 f θ mf  θ =0,

3N 3
 

            
                                                                   (18) 

1 2
''+ f ' m f  =0,

Le 3
  

 
 

 
                  (19)  

             

     

- -f 0 =fw, f 0 =1+a f''(0), θ 0 = -Nc 1 θ 0 , ' 0 = -Nd 1 0 ,

f θ 0.

 

      




              (20) 

Here 2 2

0M=σL B / Ra  (magnetic field parameter),    C T0 0
Nr= /C T    (buoyancy ratio), 

0

1/4

fNc=Lh /Ra k, (convection-conduction parameter), 
0

1/4Nd Lh /DRam  (convection-diffusion 

parameter), 1/4

w0fw 3Lv /2Ra a= -  (suction/injection i.e. wall transpiration parameter), fw >0 for 

suction, fw <0 for injection and fw =0 for solid sheet), 
0

1/4

1a N Ra /L  (velocity slip), 
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f
r

T
T =

T 

(temperature ratio). We note that when Nc=Nd , M=Nr=a=0, Pr 1, the boundary 

value problem retracts to the simpler model investigated by Hsiao (Hsiao [38]). 

 

 

3. Physical Quantities  

In sheet materials processing and near wall MHD energy generator flows, important design 

quantities are the skin friction fxC , the local Nusselt number xNu  and the local Sherwood number 

xSh can be found from the following definitions: 

   
w w m

fx x x2

w f f

x q x q
C , Nu , Sh ,

u k T -T D C -C



  

    (21) 

where w , wq , mq are the wall shear stress, the wall heat and the wall mass fluxes, respectively, 

and are defined as 

31
w w m

1y=0 y=0 y=0

16 T C
, q k 1 T , q D .

y 3k k y y

u 
 

        
           

        
 (22) 

Using Eqns. (6), (16), (22), we have from Eqn. (21) 

  
3-1/2 1/2 1/2 1/2 1/2 1/2

x fx x x r x x

'4
Re Pr C =-f''(0), Re Pr Nu 1 1 T -1 '(0), Re Pr Sh '(0),

3N

           
   

 (23) 

where 
x

Rex

u


  is the local Rayleigh number. 

 

4. Numerical Solution by Maple 17  

With the application of a scaling group of transformations for the governing boundary layer 

equations and associated boundary conditions, the two independent variables are reduced by one. 

Consequently the governing equations reduce to a system of dimensionless nonlinear ordinary 

differential equations and associated boundary conditions. The nonlinear two-point boundary 

value problem is solved using MAPLE17 which uses the Runge–Kutta–Fehlberg fourth-fifth 



 13 

order numerical algorithm (RKF45). This approach has been extensively implemented in a 

diverse array of nonlinear multi-physical flow problems in chemical and materials engineering 

sciences including entropy minimization in magnetic materials processing [39], viscoelastic 

petroleum flows [40], annular magnetohydrodynamics [41], nano-structural mechanics [42], 

nanofluid convection flows [43, 44] and thermo-capillary convection [45]. The robustness and 

stability of this numerical method is therefore well established. A Runge–Kutta–Fehlberg fourth-

fifth order numerical algorithm (RKF45) is employed, available in the symbolic computer 

software Maple 17. The RFK45 algorithm is adaptive since it adjusts the quantity and location of 

grid points during iteration and thereby constrains the local error within acceptable specified 

bounds. In the current problem, the asymptotic boundary conditions given in Eqn. (20) are 

replaced by a finite value 12. The choice of infinity must be selected judiciously to ensure that all 

numerical solutions approached to the asymptotic values correctly. The selection of sufficiently 

large value for infinity is imperative for maintaining desired accuracy in boundary layer flows, 

and is a common pitfall encountered in numerous studies. The stepping formulae used to solve 

Eqns. (17)-(19) under conditions (20) via fifth-fourth order Runge-Kutta-Fehlberg algorithms are 

given below [46]: 

          (24) 

       (25) 

     (26) 

  (27) 

  (28) 
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  (29) 

   (30) 

  (31) 

 

Here 𝑦 denotes fourth-order Runge-Kutta phase and 𝑧 is the fifth-order Runge-Kutta phase. An 

estimate of the error is achieved by subtracting the two values obtained. If the error exceeds a 

specified threshold, the results can be re-calculated using a smaller step size. The approach to 

estimating the new step size is shown below: 

       (32) 

 

5. Presentation of Results  

In order to assess the accuracy of the numerical method, we have compared the local skin friction 

coefficient i.e.  f 0 , with the previously published data of Cortell [29], for selected values of 

suction/injection parameter fw  and Nc  with M = a = 0. The comparison is shown in Table 

1, and is found to be in excellent agreement. This degree of closeness vouches for the high 

accuracy of the present computational scheme. The computational solutions are depicted in Figs. 

2-14 for the influence of selected parameters on the flow, heat and mass transfer characteristics. 

 

In the graphs presented the following default data is employed for the governing thermophysical 

parameters: pPr c / k = 6.8 (high viscosity fluids e.g. polymers, for which momentum 

diffusivity exceeds thermal diffusivity), Le / D = 5 (Lewis number defines the ratio of 
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thermal diffusivity to mass (nanoparticle species) diffusivity. It is used to characterize fluid flows 

where there is simultaneous heat and mass transfer by convection. For Le> 1, thermal diffusion 

rate exceeds species diffusion rate),    C T0 0
Nr C / T    = 0.1 (thermal buoyancy force 

exceeds greatly the species buoyancy force), m =1 (non-isothermal, non-iso-solutal case), 

0

1/4

1a=N Ra /L = 1 (strong velocity slip), 2 2

0M L B / Ra  =M = 0.5 (weak magnetic field), 

0

1/4

fNc = Lh /Ra k, = 0.5 (conduction exceeds convection heat transfer), 
0

1/4

fNd=Lh /DRa = 0.5 

(diffusion exceeds convection), 3

1 1N=k k / 4 T


 = 10 (thermal conduction exceeds thermal 

radiation). f
r

T
T

T 

 =2 (high temperature ratio). This data is realistic for materials processing 

systems and also certain MHD energy generator channel flows in the wall vicinity. 

 

Fig.2 shows a sample computation for the evolution of the dimensionless velocity, temperature 

and concentration. This clearly establishes the nature of the velocity, temperature and 

concentration behavior from the wall, transverse to the sheet into the boundary layer. The 

montonic decay of all flow characteristics from the sheet surface is evident. Velocity is observed 

to be greater than temperature and this in turn exceeds concentration. This indicates physically 

that the momentum boundary layer thickness exceeds thermal boundary layer thickness, which in 

turn is greater than concentration boundary layer thickness. The stable and asymptotically smooth 

nature of the profiles in the free stream, also confirms that with all thermophysical parameters 

invoked (i.e. radiation, mass, momentum, thermal slip, and wall injection) the correct behavior is 

computed for all the variables. Flow reversal is not induced (negative values do not arise for 

velocity), and no temperature or concentration overshoots are observed. Fig. 2 corresponds to 

very weak thermal radiation present ( 3

1 1N=k k /4σ T


i.e. conduction-radiation parameter = 10 i.e. 

conduction>>radiation, in fig. 2) and more details of stronger radiative flux are elucidated in due 

course. 

 

Figs. 3–5, show the effects of radiation-conduction (N) and suction/injection (fw) parameters on 

the dimensionless velocity, temperature and concentration distributions. The dimensionless 

velocity (fig. 3) and temperature (fig. 4) magnitudes evidently are both strongly reduced with 

increasing N. 3

1 1N=k k / 4 T


 and embodies the relative contribution of thermal conduction heat 
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transfer to radiative heat transfer. This parameter, also known as the Rosseland-Boltzmann 

number (Bég et al. [45]) arises in the augmented thermal diffusion term, { }3 /4
1 (T 1)

3N
r q qé ù+ -ê úë û

 in 

the normalized energy conservation equation (18). Clearly this parameter is a reciprocal. As N 

increases the contribution of thermal radiation decreases and thermal conduction increases. As N 

 thermal radiative flux contribution will vanish. As N  0, thermal conduction contribution 

will vanish. Effectively as N increases, the ratio (4/3 N) will be reduced. The temperature in the 

boundary layer will therefore be decreased (lower radiative flux) and thermal boundary layer 

thickness will also be reduced. Via coupling of the energy field with the momentum conservation 

equation (17), an increase in N will decelerate the boundary layer flow leading to a thickening of 

momentum (hydrodynamic) boundary layer thickness. Similar trends of velocity and temperature 

profiles have been observed by Pal et al. [48]. The general trends for radiative effects computed 

are also corroborated in actual materials processing operations, as described by Viskanata [49]. 

Fig 5 demonstrates that the concentration magnitude increases as N increases for both 

permeable  fw 0 and impermeable  fw 0 plates. Species diffusion is thereby clearly 

accentuated with a reduction in radiative heat flux, and this also leads to a thickening in the 

species (concentration) boundary layer thickness. In figs. 3-5, an increase in injection ( fw  <0) 

consistently enhances velocity, temperature and species concentration. The lateral mass flux of 

fluid into the boundary layer regime is enhanced with injection (blowing). This boosts 

momentum and also aids in thermal and species diffusion, leading to thinner velocity boundary 

layers and thicker thermal and concentration boundary layers. The reverse effect is induced with 

suction ( fw >0) which causes the momentum boundary layer to adhere more strongly to the sheet 

surface, inhibits momentum development and simultaneously impedes heat and mass (species) 

diffusion. Evidently both radiation heat flux and wall transpiration exert a profound influence on 

the flow characteristics and both effects are extremely potent in materials processing operations. 

Asymptotically smooth distributions are achieved into the free stream, in all these figures, 

showing that an adequately large infinity boundary condition has been specified in the Maple 

routine dsolve. 

 

Figs. 6–8, display the effects of velocity slip parameter on the dimensionless velocity, 

temperature and concentration distributions in the presence of suction/injection parameter 
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 fw 0  and in the absence of suction/injection parameter  fw 0  respectively. It is observed 

that the velocity distributions decrease with increase in “a” for both cases  fw 0 and  fw 0  

whilst temperature and concentration increase. Greater velocity slip at the wall therefore inhibits 

momentum diffusion in the boundary layer, in particular close to the sheet. Further into the 

boundary layer, the effect is progressively decreased. Since both thermal and species diffusion 

are exacerbated with greater wall velocity slip at the sheet, this will manifest in thicker species 

and thermal boundary layers. The dominant effect of wall velocity slip is generally confined to 

the near-wall zone and in practical materials sheet processing; the hydrodynamic slip effect is 

expected to be most dominant near the sheet surface. This can of course be exploited to achieve 

some modification of for example polymer sheet properties in that region, whereas the influence 

throughout the sheet, transverse to the wall, will be minimal. It is also interesting to note that 

while all three velocity, temperature and concentration distributions exhibit monotonic decays 

from the sheet surface to the free stream, the rate of descent of the concentration profiles is much 

sharper than for velocity and temperature profiles. The species diffusion field is evidently much 

more sensitive to an increase in transverse coordinate value () than the momentum and thermal 

fields. Modification of sheet properties in terms of species distribution therefore requires a faster 

and more pronounced action than the velocity and thermal characteristics of sheets. 

 

Fig. 9, shows the effects of the convection-diffusion parameter (
0

1/4

fNd=Lh /DRa ) on the 

dimensionless concentration distributions in the presence of suction/injection parameter 

 fw 0  and in the absence of suction/injection parameter  fw 0 . The parameter Nd also 

represents the mass Biot number. The dimensionless concentration distributions are elevated by 

increasing mass Biot number for both cases  fw 0 and  fw 0 . The mass Biot number Nd, is 

the ratio of the internal solutal resistance of a solid to the boundary layer thermal resistance. The 

parameter Nd features in the boundary conditions (20) relating to the species gradient at the sheet 

i.e. (0) =-Nd [1-(0)]. When Nd 0  (i.e. without mass Biot number) the left side of the plate 

with high concentrated fluid is totally insulated, the internal solutal resistance of the plate is 

extremely high and no convective heat transfer to the cold fluid on the right side of the plate 

takes place. Fig. 8 also confirms the positive influence of injection on momentum, heat and 

thermal diffusion and the counteracting influence of suction (fw>0) on these characteristics. 
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Strong retardation of the flow accompanies increasing wall suction, whereas significant 

acceleration is associated with increasing injection. Thermal and concentration boundary layer 

thicknesses are also enhanced with injection whereas they are reduced with suction.  

 

Figs. 10-12, show the effects of magnetic field parameter ( 2 2

0M L B / Ra  ) and wall 

transpiration parameter (fw) on the dimensionless velocity, temperature and concentration 

distributions. Magnetic field arises only in the Lorentzian body force term, -Mf/, in the 

momentum boundary layer equation (17). This is a linear force generated by the application of a 

transverse magnetic field to the sheet flow regime, and acts perpendicular to the direction of the 

magnetic field, B0, i.e. along the negative x -axis (fig. 1). The Lorentz magnetohydrodynamic 

force is a drag force therefore resisting momentum development and impeding the boundary layer 

flow. In the absence of the magnetic field, M = 0 (electrically non-conducting fluid) and 

magnetohydrodynamic drag vanishes. The dimensionless velocity is therefore a maximum for 

this scenario (fig. 10). With increasing M, there is a strong deceleration in the flow and 

momentum boundary layer thickness is enhanced. Conversely the dimensionless temperatures in 

the boundary layer are enhanced with increasing M (fig. 11) and this is attributable to the 

dissipation in the supplementary work expended in dragging the fluid against the action of the 

magnetic field. This extra work is dissipated as thermal energy which heats the boundary layer, 

elevates temperatures and enhances thermal boundary layer thickness. A similar but less dramatic 

effect is observed for the concentration field, (fig. 12) where species concentration is also found 

to be elevated with increasing magnetic field, also leading to a thicknening of the concentration 

boundary layer. The magnetohydrodynamic effect therefore aids thermal and species diffusion 

whereas it opposes momentum development. The magnetic field effect is therefore a powerful 

mechanism for modifying flow characteristics during sheet materials processing. We further note 

that fig. 9 presents solutions for the weakly non-isothermal and non-iso-solutal case, m = 0.5, 

whereas other graphs presented correspond to a stronger non- isothermal and non-iso-solutal case 

(m=1). Figs. 10-12 also verify the earlier observations in so far as wall transpiration is concerned, 

namely that the flow is accelerated and temperatures and concentration values are increased with 

wall injection (fw<0), whereas they are stifled with wall suction (fw>0). 
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Figs. 13-14, show the effects of temperature ratio (Tr) and wall mass flux parameter (fw) on the 

dimensionless velocity and temperature distributions. It is observed that the velocity (fig. 13) as 

well as temperature (fig. 14) distributions increases with an increase in temperature ratio 

parameter. Momentum boundary layer thickness is reduced and thermal boundary layer thickness 

is enhanced with increasing Tr values. The enhancement is however more dramatic, as 

anticipated, for the temperature field, since Tr arises solely in the augmented thermal diffusion 

term, { }3 /

r

4
1 (T 1)

3N
q qé ù+ -ê úë û

 in the energy equation (18). Via coupling of the energy and 

momentum equation (17), the velocity field is indirectly influenced with the temperature ratio 

parameter and experiences a lesser modification as a result. Figs. 13, 14 also again demonstrate 

the assistive effect of wall transpiration on heat, mass and momentum characteristics and the 

opposing effect of suction. Smooth convergence of the velocity and temperature fields in the free 

stream is again achieved (as in all other plots), testifying to the selection of an appropriately large 

infinity boundary condition in the numerical computations performed with Maple 17 dsolve 

routines. 

 

6. Conclusions 

A theoretical and computational study has been presented for steady two-dimensional laminar 

free convective radiative magnetohydrodynamic heat, mass and momentum transfer in viscous 

flow from a non-isothermal and non-isosolutal continuously moving sheet. Similarity differential 

equations with corresponding and boundary conditions for the transport equations have been 

obtained via a robust scaling group transformation procedure. The nonlinear ordinary differential 

boundary value problem is shown to be controlled by an extensive range of parameters, including 

magnetic body force parameter (M), conduction-convection parameter (Nc), convection-diffusion 

parameter (Nd), non-isothermal/non-iso-solutal power-law index (m), lateral mass flux 

(transpiration) parameter (fw), radiation-conduction parameter (N), temperature ratio (Tr), Prandtl 

number (Pr), Lewis number (Le), buoyancy ratio (Nr) and velocity slip (a). Numerical solutions 

have been obtained using dsolve command in Maple 17 symbolic software, for selected values of 

certain parameters The numerical methodology has been benchmarked for the non-magnetic case, 

in the absence of wall velocity slip with the previously published data of Cortell [24], for selected 
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values of suction/injection parameter ( fw ) demonstrating excellent correlation. The present 

computations have shown that: 

(i) Increasing magnetic field enhances temperatures and concentrations whereas it depresses 

velocity magnitudes (although flow reversal is not induced). 

(ii) Increasing velocity slip at the wall reduces flow velocity whereas it enhances temperature and 

concentration. 

(iii) Increasing radiation-conduction parameter (corresponding to a reduction in thermal radiative 

flux contribution) generates flow deceleration and a decrease in temperatures, whereas it elevates 

concentration magnitudes. 

(iv) Increasing wall suction ( fw >0) retards the boundary layer flow and depresses temperatures 

and concentration values, whereas increasing injection (blowing at the sheet) manifests in the 

opposite effect. 

(v) Increasing convection-diffusion parameter (Nd) enhances concentration magnitudes. 

(vi) Increasing temperature ratio (Tr) slightly accelerates the flow but strongly enhances 

temperatures through the boundary layer. 

 

The present simulations have been confined to Newtonian viscous fluids. Future investigations 

will study velocity slip effects for a range of rheological materials e.g. viscoelastic liquids (Bég et 

al. [46]), micropolar biopolymers (Bég et al. [47]) and power-law shear thinning/thickening 

nanofluids (Uddin et al. [37]), and will be communicated imminently.  
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Figures 

 

Figure 1: Flow configuration and coordinate system. 

 

 

Fig.2 Sample graph of velocity, temperature and concentration. 
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Fig. 3. Effect of N and fw  on the velocity distributions. 
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Fig. 4. Effect of N and fw  on the temperature distributions. 

 

 
Fig. 5. Effect of N and fw  on the concentration distributions. 
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Fig. 6. Effect of a and fw  on the velocity distributions. 
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Fig. 7. Effect of a and fw  on the temperature distributions. 

 

 
Fig.8. Effect of a and fw  on the concentration distributions. 
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Fig. 9. Effect of Nd and fw  on the concentration distributions. 
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Fig. 10. Effect of M and fw  on the temperature distributions. 

 

 
Fig. 11. Effect of M and fw  on the temperature distributions. 
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Fig. 12. Effect of M and fw  on the concentration distributions. 

 
Fig. 13. Effect of rT  and fw  on the velocity distributions. 
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Fig. 14. Effect of 

rT  and fw  on the temperature distributions. 
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Tables 

 

Table 1 

Comparison of values of  f 0  for several suction/injection parameter fw . 

fw   f 0  

Cortell [24] Present results 

-0.75 0.984417 0.984439 

-0.50 0.873627 0.873643 

0 0.677647 0.677648 

-0.50 0.518869 0.518869 

-0.75 0.453521 0.453523 

 

Table 2 

Values of  f 0 ,-θ (0)   and (0)  when Pr = 6.8,Le=5,m = 1, Nr = fw = 0.1. 

 

M  a  Nc  Nd  N  Tr  -  f 0  (0)  (0)  

0 0.1 0.1 0.1 10 2 0.20026 0.09123 0.09647 

0.5 0.1 0.1 0.1 10 2 0.93573 0.08993 0.09623 

1 0.1 0.1 0.1 10 2 0.88003 0.08899 0.09609 

0.1 0.5 0.1 0.1 10 2 0.27768 0.09040 0.09621 

0.1 1 0.1 0.1 10 2 0.22889 0.09603 0.08992 

0.1 0.1 0.5 0.1 10 2 0.17693 0.09647 0.32727 

0.1 0.1 1 0.1 10 2 0.06352 0.47308 0.09652 

0.1 0.1 0.1 0.5 10 2 0.33178 0.09089 0.42137 

0.1 0.1 0.1 1 10 2 0.33178 0.09089 0.42137 

0.1 0.1 0.1 0.1 50 2 0.34145 0.09148 0.09639 

0.1 0.1 0.1 0.1 100 2 0.34225 0.09155 0.09639 

0.1 0.1 0.1 0.1 10 2.5 0.33394 0.09077 0.09640 

0.1 0.1 0.1 0.1 10 3 0.33276 0.09064 0.09640 

 


