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Abstract 25 

Anurans are renowned for a high diversity of reproductive modes, but less than 1% of species 26 

exhibit internal fertilisation followed by viviparity. In the live bearing West African Nimba 27 

toad (Nimbaphrynoides occidentalis), females produce yolk-poor eggs and internally nourish 28 

their young after fertilisation. Birth of fully developed juveniles takes place after nine 29 

months. In the present study, we used genetic markers (eight microsatellite loci) to assign the 30 

paternity of litters of 12 females comprising on average 9.7 juveniles. In nine out of twelve 31 

families (75%) a single sire was sufficient; in three families (25%) more than one sire was 32 

necessary to explain the observed genotypes in each family. These findings are backed up 33 

with field observations of male resource defence (underground cavities in which mating takes 34 

place) as well as coercive mating attempts, suggesting that the observed moderate level of 35 

multiple paternity in a species without distinct sperm storage organs is governed by a balance 36 

of female mate choice and male reproductive strategies. 37 

 38 

Keywords: multiple paternity, internal fertilisation, operational sex ratio, male harassment, 39 

Amphibia, Nimbaphrynoides occidentalis 40 

 41 

Introduction 42 

It is now well established that polyandry is more common in the animal kingdom than 43 

originally assumed (Pizzari and Wedell, 2013). For females, advantages of multiple matings 44 

include an increased availability of ressources provided by males (Gray, 1997), enhanced 45 

fertilisation success (Caspers et al., 2014; Plough et al., 2014), higher genetic heterogeneity 46 

(Nichols et al., 2015; Rovelli et al., 2015) and genetic quality of offspring (Bouwman et al., 47 

2006; Byrne and Whiting, 2011; Johnson and Brockmann, 2013). In species with internal 48 

fertilisation, polyandry also enables females to excert cryptic choice of fertilising males (for 49 
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reviews see Parker and Birkhead, 2013; Simmons, 2005). Negative effects of polyandry for 50 

females can include higher predation risk (Arnqvist, 1989) and female injuries during mating 51 

(Xavier, 1971), and a higher probability to suffer from sexually transmitted parasites and 52 

diseases (Ashby and Gupta, 2013). Males, on the other hand, generally maximise their 53 

reproductive success through rather opportunistic and sometimes coercive matings (Arnqvist, 54 

1989; Arnqvist and Kirkpatrick, 2005; Sztatecsny et al., 2006). However, male mating 55 

strategies that involve for example territoriality can also reduce the level of polyandry 56 

through female monopolisation (e.g.: Arnqvist and Kirkpatrick, 2005). 57 

Apart from differential mating strategies exhibited by each sex, levels of polyandry are also 58 

governed by reproductive life histories. Among the classes of vertebrates, amphibians 59 

arguably demonstrate the highest diversity of reproductive modes (Duellman and Trueb, 60 

1986; Wells, 2010). Caecilians and caudates are generally characterised by internal 61 

fertilisation (Wake, 1993), with sperm storage organs allowing for sperm competition and 62 

multiple paternity which are possibly influenced by cryptic female choice (Caspers et al., 63 

2014; Jehle et al., 2007; Kupfer et al., 2008; Rovelli et al., 2015). In anurans, on the other 64 

hand, the vast majority of species fertilise their eggs externally (Wake, 1993, 2015a). 65 

Polyandry in anurans is common (for a review see Byrne and Roberts, 2012) and male mating 66 

tactics such as multiple amplexi (Byrne and Roberts, 1999; Byrne and Whiting, 2011), clutch 67 

piracy (Vieites et al., 2004) and possibly the release of stray sperm into aquatic environments 68 

(Hase and Shimada, 2014) can lead to multiple paternity within single clutches beyond the 69 

control of females. 70 

Internal fertilisation is a prerequisite for viviparity through uterine egg retention until an 71 

advanced developmental stage (Wake, 1993, 2015a, 2015b). However, while viviparity is 72 

common in caecilians, it is only exhibited by 2.7% of caudates (Buckley, 2012; Wake, 2015a, 73 

2015b). In anurans, only 0.3% of species (17 out of approximately 6600, Frost, 2015) from 74 
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five genera are known or assumed to be viviparous, comprising three different viviparous 75 

reproductive modes (Haddad and Prado, 2005; Iskandar et al., 2014). One mode is generally 76 

termed ovo-viviparous, in which yolk-rich eggs are retained in the uterus and juveniles are 77 

born after metamorphosis (Haddad and Prado, 2005; Lamotte and Xavier, 1972; Wake, 78 

1978). This is the viviparous reproductive mode known or assumed for 15 viviparous anuran 79 

species, whereas the remaining two modes are each known from only a single anuran species. 80 

The second viviparous reproductive mode is generally termed viviparous, or truly viviparous, 81 

in which mothers nourish their larvae during gestation and juveniles are born after 82 

metamorphosis (Haddad and Prado, 2005; Xavier, 1977, 1986). Only recently the third 83 

viviparous reproductive mode was discovered: Limnonectes larvaepartus giving birth to 84 

tadpoles (Iskandar et al., 2014). In comparison to oviparous species, viviparity is often more 85 

costly for females, as clutch sizes are restricted by the available intra-uterine space and 86 

locomotion may be reduced (Blackburn, 1999; Shine, 1987; Wourms and Lombardi, 1992). 87 

Compared to egg-laying internal fertilisers, cryptic female choice should therefore pose a 88 

particular advantage to viviparous species. 89 

The West African Nimba toad (Nimbaphrynoides occidentalis) is the only known anuran 90 

representative of the truly viviparous reproductive mode (Wake, 2015b; Wells, 2010; Xavier, 91 

1986). Nimba toads mate at the end of the rainy season (September-November), before 92 

moving underground until the beginning of the next rainy season in March or April (Lamotte, 93 

1959). After internal fertilisation of small, yolk-poor eggs (~ 500 µm in diameter, Xavier, 94 

1986), females nourish their foetuses (matrotrophy) and give birth to 4-17 fully developed 95 

juveniles (pueriparity) after about 9 months (Lamotte, 1959). At a longevity of 3-5 years 96 

(Castanet et al., 2000), lifetime reproductive output per female is low. 97 

In the present paper we focus on the Nimba toad to, for the first time, elucidate patterns of 98 

paternity in a viviparous anuran with internal fertilisation. More specifically, we link our 99 
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findings from genetic parentage analyses of litters derived from known females with 100 

behavioural field observations of male fighting and mating attempts. Together with 101 

presenting data on operational sex ratios, we discuss whether internal fertilisation in the 102 

Nimba toad leads to a genetic mating system which can be more controlled by females 103 

compared to the external fertilisation which is exhibited by the vast majority of anurans. 104 

 105 

Materials and Methods 106 

Field work 107 

The study was conducted in the high altitude grasslands of the Guinean Nimba Mountains, 108 

West Africa. The area is characterised by a dry season from December to March and a rainy 109 

season from April to November, a seasonality which has a strong influence on Nimba toad 110 

abundance and sex ratios (Lamotte, 1959). A male-biased operational sex ratio (OSR) was 111 

previously hypothesised to be the main driver for anuran polyandry (Byrne and Roberts, 112 

2012; Hase and Shimada, 2014; Lodé et al., 2005; Sztatecsny et al., 2006). Therefore, we 113 

estimated the average OSR per calendar week within the rainy season based on annual 114 

monitoring data from 2007 to 2014. We included 333 areas of 5 x 5 m in size at a search 115 

effort of 90 person minutes (for more details see Hillers et al., 2008; Sandberger-Loua et al., 116 

2016). Weekly OSRs were fitted to an additive generalised model using the mgcv package in 117 

R (Wood, 2011). 118 

We collected 12 gestating females in the field, and kept them singly in plastic terraria about 5 119 

km from the capture location, feeding them with small flying insects and termites. Humidity 120 

levels were kept high through moistened polyurethane foam, and the temperature was kept at 121 

levels representing their natural environment (20-25°C). All females gave birth between three 122 

and 10 days after capture. After birth, we clipped a tip of the second toe from the mother and 123 

all offspring (following procedures described in (Grafe et al., 2011)), to store in 98% ethanol 124 
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for DNA analysis. All toads (mothers and juveniles) appeared in good condition after this 125 

procedure and were released where the mother had been caught. 126 

 127 

Development of microsatellite loci for N. occidentalis 128 

We used up to eight newly developed microsatellite loci to determine the number of fathers 129 

in each litter. For development of a genomic library, DNA was extracted from thigh muscles 130 

of six individuals using Puregene DNA Purification Kit (Gentra Systems) according to the 131 

manufacturer’s recommendations. GENterprise Genomics (Mainz, Germany; 132 

http://genterprise.de) was contracted to develop a repeat-enriched library. Twenty-seven 133 

sequences containing more than eight repeats and sufficient flanking regions were chosen to 134 

design PCR primers using Primer3 (Rozen and Skaletsky, 2000). Eight loci proved 135 

polymorphic and unambiguously scorable based on an initial test with 4 individuals and 136 

subsequent characterisation based in a further 40 individuals. Microsatellite sequences were 137 

deposited in Genbank. 138 

 139 

Genotyping 140 

DNA for the paternity analysis was extracted using the Roche PCR template preparation kit 141 

according to the manufacturer’s recommendations. PCRs were performed using a 12.5 µl 142 

PCR reaction volume containing 1 ×PCR-buffer, 2 mM MgCl2, 160 μM dNTPs, 2.5 μM of 143 

each primer (forward primer labelled with fluorescent IR-700 or IR-800 dye by Licor), 0.5 U 144 

of Taq DNA polymerase (New England BioLabs) and 1 µl of 1:10 diluted template DNA. All 145 

loci were amplified on a 2720 Thermal Cycler (Applied Biosystems, version 2.09). Loci G07 146 

and D03 were amplified using a fixed annealing temperature of 57°C, and a touchdown 147 

program was applied to all other loci (Nocc4, A09, C05, C10, E06 and F03). PCR conditions 148 

for the two protocols were as follows: 57°C: 3 min at 94°C, 35 cycles with 30 sec. each at 149 

http://genterprise.de/
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94°C, 57°C and 72°C, followed by 20 min at 72°C; touchdown: 5 min at 94°C, 10 cycles 150 

with annealing temperature decreasing 0.5°C per cycle from 63°-57°C, with 30 sec. each at 151 

94°C, annealing temperature and at 72°C, followed by 25 cycles with 30 sec. each at 94°C, 152 

55°C and 72°C, followed by 7 min elongation at 72°C. Allele lengths were analysed with 153 

SAGAGT (LICOR). Primer characteristics are given in Table 1. To minimise scoring errors, 154 

every sample was amplified at least twice for each locus. 155 

 156 

Paternity analyses 157 

We used two complementary approaches to estimate the minimum (GERUD) and the most 158 

likely (COLONY) number of sires in each litter, respectively. In a first step, we applied the 159 

maximum likelihood approach implemented in COLONY2 (Jones and Wang, 2010) 160 

assuming a large error rate (10%) to identify potential genotyping errors. The following 161 

specifications were used: the maternal genotype was known, no candidate fathers included, 162 

we gave no known population allele frequency, we used a sib-ship size prior and two runs of 163 

medium length. Individuals whose alleles were classified as typing errors (0.4% of alleles or 164 

one allele in 3.4% of individuals) were genotyped a third time and in all cases the allele sizes 165 

were confirmed. Final results from COLONY2 runs were subsequently derived with an 166 

assumed error rate of zero (all other specifications as described above), and repeated a second 167 

time with the inclusion of population-wide allele frequencies. Population-wide allele 168 

frequencies were derived from a dataset from 600 adult toads (Sandberger-Loua et al., 169 

unpublished). As a second approach, we applied GERUD2.0 (Jones, 2005) to estimate the 170 

minimum number of fathers to explain the observed genotypes. Because GERUD2.0 does not 171 

allow for missing data, we had to alternatively exclude 17% of individuals or reduce the 172 

number of markers used. The statistical power was assessed by running GERUD2.0sim 173 

(Jones, 2005) 10 times with 1000 iterations, assuming that the mother’s genotype is known, 174 
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that one of 10 offspring is sired by a second male, and that either four or five loci are 175 

available, based on the population wide allele frequencies. In all 10 runs, an additional father 176 

was recognised in > 99% of iterations, demonstrating that only a subset of available loci is 177 

sufficient for reliable paternity detection. We considered litters to contain multiple paternity 178 

when GERUD and COLONY independently identified multiple fathers, and when the 179 

number of most probable sires determined by COLONY was identical or larger than the 180 

minimum number of fathers estimated by GERUD. The effective mating frequency (me), a 181 

quantity which takes the actual paternity of contributing males into account, was calculated as 182 

me = (1/Σpi²), where pi is the proportion of offspring in a clutch sired by male i (Starr, 1984). 183 

 184 

Results 185 

The 12 Nimba toad females gave birth to an average of 9.7 young each (range: 4–16; total 186 

116). We genotyped 5-7 loci for each individual and included 117 individuals in the paternity 187 

analysis (12 mothers and 105 offspring, 11 young had to be discarded due to poor DNA 188 

quality, Table 2). The microsatellite markers proved highly polymorphic, comprising on 189 

average 14 alleles per locus (range: 7–19 alleles). All offspring could be unambiguously 190 

assigned to their mothers, and in nine out of twelve families a single sire was sufficient to 191 

explain the observed genotypes in each family. Three families contained multiple paternity as 192 

identified by both GERUD and COLONY, with the most successful male siring between 55-193 

70% of offspring (effective mating frequency, me: 1.72–1.98; Table 2). The same results were 194 

obtained when considering population allele frequencies (data not shown). However, whereas 195 

GERUD identified two fathers in all three cases, COLONY identified two families with two 196 

fathers and one family with three fathers. This discrepancy in sire number is due to GERUD 197 

and COLONY identifying the minimum and the most likely number of fathers, respectively. 198 
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In total, 7.6% (COLONY) and 8.6% (GERUD) of juveniles were estimated to be fathered by 199 

a secondary sire. 200 

The operational sex ratio (OSR) significantly progressed from a female bias at the beginning 201 

of the mating season, increasing to a male bias towards the end of the mating season (GAM: 202 

estimate: 0.55, t = 10.17, p < 0.001, adjusted r2: 0.59, Fig1).  203 

 204 

Discussion 205 

This is the first study examining genetic paternity in an anuran with internal fertilisation, 206 

demonstrating the occurrence of multiple sires at a moderate proportion of examined litters. 207 

In line with a high diversity of reproductive modes, previous studies on frequencies of 208 

multiple paternity in externally fertilising anurans revealed a range spanning from 0% 209 

(Brown et al., 2010) to over 90% (Byrne and Whiting, 2011). For internally fertilising 210 

caudates, multiple paternity was reported to range between 38% (Caspers et al., 2014) and 211 

96% of clutches (Adams et al., 2005). Our results for the Nimba toad (25%) are lower than 212 

those reported for caudates, and in the lower part of the anuran range. Polyandry allows for 213 

fertility assurance, sperm competition, and possibly cryptic female choice (Birkhead, 1998). 214 

In Nimba toads fertilisation rates have previously shown to be high (on average 90%, 215 

Lamotte et al., 1964). It is currently unknown whether in Nimba toads mating with high 216 

quality males results in more eggs being ovulated (as observed e.g. in carnivore mammals, 217 

Larivière and Ferguson, 2003). In contrast to other bufonids, Nimba toads engage in a lumbal 218 

amplexus through which males clasp females in the region of their ovaries (Xavier, 1971), 219 

possibly inducing or facilitating ovulation. However, females kept without males ovulate and 220 

develop a pseudo-gestation (Xavier, 1974), and atresia of follicles should occur if not all 221 

mature eggs are ovulated due to missing induction, but is very rare (Xavier, 1971; Xavier et 222 



10 

 

al., 1970). Taken together, it seems likely that other factors than increased fertilisation 223 

success are the main drivers for polyandry.  224 

In contrast to caudates, internally fertilising anurans have no apparent sperm storage organs 225 

(Wake, 2015a). In Nimba toads due to the development of a pseudo-gestation without mating 226 

as well in older females (> 2 years, Xavier, 1974), inter-season sperm storage can be 227 

excluded. Nevertheless, short-term sperm storage (hours to days) can still allow for sperm 228 

competition and cryptic female choice (Orr and Brennan, 2015). Relative testes size is 229 

generally correlated with the level of sperm competition (e.g. Dziminski et al., 2010). 230 

Accounting for about 0.4% of body weight, (Gavaud, 1976; own data), Nimba toad males 231 

have normal sized testes comparable to other anurans without evidence for elevated sperm 232 

competition (Kusano et al., 1991). Additionally, despite a large sample size of investigated 233 

females, no accumulation of sperm was found in their reproductive organs (Xavier 1971). 234 

Considering that amplexus in Nimba toads can last for more than one day (Xavier, 1971), 235 

cryptic female choice is only possible if spermatozoa remain viable for longer time periods 236 

than mating duration. Another possibility for females to favour offspring from high quality 237 

males, is to vary resource allocation. Gestating Nimba toad females secrete mucoproteins 238 

from uterine epithelial cells into the uterus cavity, on which developing young are orally 239 

feeding (Vilter and Lugand, 1959; Xavier, 1971, 1977). It is therefore likely difficult for 240 

females to favour offspring sired by particular males. Hence, so far no indication for 241 

increased sperm competition was recorded for males, nor sound indication for sperm 242 

longevity or sperm storage in females, nor mechanisms enabling females to vary the provided 243 

resources. Additionally, the prolonged amplexus is costly for females, as they are injured by 244 

the tight grip and the nuptial spines of males (Xavier, 1971). Taken together, these 245 

observations indicate that pre-mating female choice might be more important than post-246 

mating (cryptic) female choice in conjunction with sperm competition. 247 
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In externally fertilising anurans, male display territories or defence of resources such as 248 

breeding sites can facilitate female choice (Chen et al., 2011; Hudson and Fu, 2013; Lodé and 249 

Lesbarrères, 2004). Our field observations suggest similar phenomena in Nimba toads. Males 250 

defend entrances to underground cavities in which Nimba toads reside during the dry season 251 

and in which matings are assumed to take place (Angel and Lamotte, 1947, see Online 252 

Resource 1 for a field observation). To enter these cavities at the end of the rainy season, 253 

females have to pass the guarding males, providing them an opportunity for mating. 254 

Individual males can be observed over several weeks around the same cavity entrances which 255 

they defend against other males (Sandberger-Loua, personal observation). Males also engage 256 

in antagonistic behaviour accompanied by calling and often physical combat (see Online 257 

Resource 2). Unfortunately, we were not able to sample DNA in the field from males to test 258 

the hypothesis that individuals winning combats at entrances to dormancy cavities sire the 259 

majority of offspring in given litters. Nevertheless, for externally fertilising anurans, within-260 

clutch multiple paternity appears to be lower for territorial species (0-29%: Brown et al., 261 

2010; Chen et al., 2011; Hudson and Fu, 2013; Knopp and Merilä, 2009) compared to non-262 

territorial species (30 - > 90%: Byrne and Roberts, 1999; Byrne and Whiting, 2011; Hase and 263 

Shimada, 2014; Sztatecsny et al., 2006; Vieites et al., 2004). Despite reporting on an internal 264 

fertiliser, our results are in line with the proportions of polyandry reported for other anurans 265 

with territorial males, suggesting that Nimba toad females may not have more control over 266 

genetic sires than females of species with external fertilisation. 267 

In reptiles, high levels of polyandry may mainly arise from the combination of high male 268 

benefits and low female cost from frequent mating (e.g.reviewed in Uller and Olsson, 2008). 269 

Similarly, for several anurans, male harassment coupled with a male-biased OSR was found 270 

to be the main driver for polyandry (Byrne and Roberts, 1999; Hase and Shimada, 2014; 271 

Sztatecsny et al., 2006; Zhao et al., 2016). During the breeding season, female Nimba toads 272 
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are most commonly found hiding in small shelters (Sandberger-Loua, personal observation), 273 

probably avoiding undesired matings and harassment by males. Additionally, possibly 274 

providing females the opportunity to observe males and judge on their, or their cavity’s, 275 

quality. Males target both single females as well as amplected pairs for mating attempts, 276 

trying to dislodge the male in the latter case (Online Resource 3). Due to the viviparous 277 

reproductive mode, clutch sizes are very small and a female’s value hence, presumably very 278 

high. This may justify the high male effort to defend territories and harass females and the 279 

taken increased predation risk due to the calling and fighting activity. Mainly cavities and to a 280 

lesser extend females are defended by males, possibly indicating a high value of dormancy 281 

cavities for females and multiple paternity may arise if females change dormancy sites. 282 

Interestingly, females also appear to physically resist mating with specific males by 283 

dislodging them from their back (Online Resource 4). In externally fertilising anurans with 284 

male harassment, polyandry levels similar to Nimba toads were observed (19-30%: Lodé et 285 

al., 2005; Sztatecsny et al., 2006). The level of male harassment is likely related to the OSR, 286 

which becomes male-biased towards the end of the mating season. We however lack the 287 

information to test the hypothesis that the documented cases of multiple paternity stem from 288 

matings at the end of the reproductive period. Future studies should examine the effect of a 289 

male-biased OSR, female efficiency of dislodging males and the existence of mate order 290 

effects on the proportions of multiply sired clutches. Due to the internal fertilisation, 291 

successfully dislodging males may give Nimba toad females more control over genetic sires 292 

than females of species with external fertilisation. 293 

 294 

Conclusion: 295 

Representing the first study of polyandry in an anuran with internal fertilisation, we reported 296 

moderate proportions of multiple paternity in the viviparous Nimba toad. High levels of 297 
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sperm competition and cryptic female choice are unlikely for example due to the lack of 298 

morphological adaptations, and male territoriality in combination with matings which are 299 

costly for females. This suggests that pre-mating female choice is likely more important than 300 

cryptic female choice to determine the observed genetic mating system in Nimba toads. 301 

Taken together, we assume that the observed frequency of multiple paternity is caused by a 302 

combination of female choice and male harassment. Because such effects can also be 303 

observed in anurans with external fertilisation, they are not indicative for an increased female 304 

control over paternity in Nimba toads compared to other anurans. Nevertheless, the ability for 305 

Nimba toad females to physically resist male mating attempts in combination with internal 306 

fertilisation may give females more control over the genetic mating system compared to the 307 

majority of externally fertilising anurans. 308 
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Figure caption 514 

Fig 1 Operational sex ratio for Nimba toads within the rainy season. Shown is the average 515 

operation sex ratio (OSR) per calendar week, based on annual monitoring data in those areas 516 

where females for this study were captured; data recorded between 2007 and 2014 (based on 517 

333 squares (5x5m) examined for Nimba toads). The mating season is indicated in grey. The 518 

line shows the predictions of the OSR of an additive generalised model. The horizontal line 519 

indicates and equal OSR. The inset figure in the upper left shows a brightly coloured male, 520 

the inset in the lower right a pair in amplexus. The graphic was produced in R, the inset 521 

photographs added in Illustrator. 522 


