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1 Introduction

The semiparametric smooth coefficient (SPSC) model was proposed by Hastie and Tibshirani (1993)

and Chen and Tsay (1993). It was further studied/extended by Fan and Zhang (1999), Cai, Fan

and Li (2000), Li, Huang, Li and Fu (2002), and Li and Racine (2010). Because of its flexibility

and interpretability of regression coefficients, the SPSC model has been widely applied in the

literature, e.g., Zhang, Sun, Delgado and Kumbhakar (2012), Heshmati, Kumbhakar and Sun

(2014), Bhaumik, Kumbhakar and Sun (2015), among others.

Recent development of the SPSC model includes accommodating the endogeneity of the right-

hand-side variables. Cai et al. (2006) proposed an instrumental variable (IV) method to handle

the endogeneity of regressors via a two-stage procedure, where the fitted values of the endogenous

variables are obtained in the first stage and are then used in the second stage as IV’s. Cai and Li

(2008) further suggested a one-step estimator via a nonparametric generalized method of moments

(GMM) as an alternative. These methods of controlling for endogeneity have also been applied

in the literature, e.g., Delgado, McCloud and Kumbhakar (2014), Liu (2014), and Polemis and

Stengos (2015), among others.

In this paper we apply the SPSC model in a production system where we explicitly consider

the endogeneity of inputs. More specifically, we look at the endogeneity problem from economic

point of view in the sense that the quantities of variable inputs used by a firm are chosen by the

firm based on some economic behavior such as profit/revenue maximization or cost minimization.

Here we consider profit maximization as the criterion for choosing optimal quantities of variable

inputs. Thus, instead of using the production function alone (which is the standard practice),

we also use the first-order conditions (FOC’s) of profit maximization to estimate the production

technology. This gives us a system of equations consisting of the production function and the

FOC’s of profit maximization (Kumbhakar 1987). The system automatically takes into account

endogeneity of input and output variables. Since we use a translog production function, the FOC’s

are expressed in terms of input cost share equations. Each coefficient of the production function

and the share equations is a nonparametric function of some exogenous environmental variables.
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We estimate this system (which we call primal as opposed to the dual cost and profit systems)

in two steps.1 The first step is to run a nonparametric regression of each input on a number of

instruments, including environmental variables as well as input prices. This step follows Cai et al.’s

(2006) IV method for treating the endogeneity of regressors in a smooth coefficient framework.

The second step is to replace the input quantities with their fitted values obtained in the first step,

and then apply Henderson et al.’s (2015) SPSC seemingly unrelated regression (SUR) estimation

method to estimate all the smooth coefficients. Finally, technical inefficiencies are calculated using

the stochastic frontier analysis (SFA) and allocative inefficiencies are defined in terms of the error

terms in the share equations. In other words, allocative inefficiencies are interpreted as deviations

of the actual input shares from the optimal shares arising from non-fulfillment of the FOC’s of

profit maximization (Kumbhakar 1987, Kumbhakar and Lovell 2000).

As an empirical example, we use a firm-level Chinese food industry panel data set that covers

3,922 firms over 9 years. To account for firm heterogeneity, we use the time trend as well as some firm

characteristics as exogenous environmental variables. For comparison purposes, in addition to the

semiparametric system approach, we also estimate a single equation SPSC model and a traditional

parametric SFA model without endogeneity correction. The results show that the semiparametric

system approach gives most economically meaningful results in terms of estimated input elasticities,

while the other two models generate many negative elasticity estimates that are not economically

meaningful in the sense that negative input elasticities mean negative marginal products. We then

calculate the technical and allocative inefficiencies, as well as the technical efficiency change (TEC)

and technical change (TC), and compare the temporal behaviors of the input elasticities, returns

to scale (RTS), and inefficiencies based on our system approach.

The rest of this paper is organized as follows. Section 2 motivates a primal system via a profit

maximization problem before proceeding to details about how to estimate a SPSC SUR model with

endogenous regressors. Section 3 describes the data set used as an empirical example. Section 4

presents and interprets the estimation results, and section 5 concludes.

1Such a procedure has been used in the past, e.g., Kumbhakar (1987), but not for the SPSC model. To the best
of our knowledge, the SPSC model in a simultaneous equation setup has not been used before.
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2 Semiparametric Primal System Approach

We write the production technology as

y = f(x;β(z)), (1)

where y is the output, x is a vector of K traditional inputs such as capital and labor, and z is a vector

of S policy variables or external factors (often referred to as facilitating inputs). In specifying the

production function in (1) we separate the traditional inputs (x) from the environmental (policy)

variables (z). The z variables affect output via the technology parameters β. It is a very flexible

specification and allows technology to vary with the z variables even when f(·) is Cobb-Douglas.

We assume that the firm chooses to maximize its profit to decide on the input levels as well as

output. Thus a firm’s optimization problem can be stated as:

maxy,x π = py − w′x

st. y = f(x;β(z)),

(2)

where π denotes profit, p is the output price, and w is a vector of K input prices. The solution to

the above optimization problem is:

wj = pfj(x;β(z)), ∀j = 1, . . . ,K, (3)

where wj is the j-th input price, fj(x;β(z)) is the marginal product of the j-th input, viz.,

fj(x;β(z)) = ∂f(x;β(z))/∂xj . If the above FOC’s are satisfied exactly, then there is no opti-

mization error or allocative inefficiency. That is, the presence of allocative inefficiency would mean

that the FOC’s are not satisfied exactly.

If we multiply both sides of the above FOC’s in (3) by xj/(py), we get:

wjxj

py
=

fj(x;β(z))xj

y
. (4)
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The right-hand-side of (4) is equivalent to ∂ ln f(x;β(z))/∂ ln xj, and therefore we can say that

(wjxj)/(py) (cost share of input xj in the total revenue) is the same as the j-th input elasticity,

∀j = 1, . . . ,K.

To empirically estimate the production technology, we take the natural logarithm of (1) and

get ln y = ln f(x;β(z)), and then specify ln f(x;β(z)) as:

ln f(x, z) = β0(z) +
∑

j

βj(z) ln xj +
1

2

∑

j

∑

k

βjk(z) ln xj ln xk. (5)

That is, the production function is specified as a translog function of traditional inputs, x, but the

associated coefficients are unknown functions of external factors, z. Given this specification, we

can find the cost share of the j-th input as (wjxj)/(py) = ∂ ln f(x;β(z))/∂ ln xj , viz.,

qj = βj(z) +
∑

k

βjk(z) ln xk, ∀j = 1, . . . ,K, (6)

where qj = (wjxj)/(py) is the cost share of the j-th input in the total revenue. If we add εj to (6)

and let q∗j = βj(z) +
∑
k

βjk(z) ln xk, ∀j, be the optimal shares, then

qj = q∗j + εj , ∀j = 1, . . . ,K, (7)

where εj is interpreted as an input misallocation (allocative inefficiency), i.e., deviation of the

actual cost share from optimal cost share for the j-th input. Note that the allocative inefficiency

comes from non-fulfillment of the FOC’s in (4). We follow Schmidt and Lovell (1979, 1980) and

Kumbhakar (1987) for this interpretation.2 If εj > 0 (< 0), then the actual share is higher (lower)

than optimal share by a proportion of εj .

To estimate the smooth coefficient functions in (5), we consider the following K + 1 system of

2In defining the production function in (1), we have not introduced either noise or inefficiency. If noise is added as
in (8a) or both noise and inefficiency is added as in (10), the FOC’s based on expected (or median) profit maximization
conditional on inefficiency, when expressed as input cost shares, will depend on the noise term but not on inefficiency
(follows from the derivation in Kumbhakar (1987)). In such a case εj will be affected by noise, i.e., εj cannot be
interpreted as pure input misallocation.
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equations. Adding subscripts i and t to all variables, the system becomes:

ln yit = β0(zit) +
∑

j

βj(zit) ln xjit +
1

2

∑

j

∑

k

βjk(zit) ln xjit lnxkit + vit (8a)

q1it = β1(zit) +
∑

k

β1k(zit) ln xkit + ε1it,

... =
...

qKit = βK(zit) +
∑

k

βKk(zit) ln xkit + εKit,

(8b)

where (8a) is the first equation (i.e., production function) of the system,3 and (8b) consists of

the rest of the K share equations of the system. vit is the noise term that reflect the impact of

uncontrollable/unforeseen factors (such as weather, machine break down, etc.) on output. We also

interpret the error terms εj , ∀j = 1, . . . ,K, in the share equations as allocative inefficiency for each

input.

Recall that in the profit maximization problem, the firm chooses the output and inputs simul-

taneously. This means both output and inputs are endogenous. This is captured in the system of

(K + 1) equations in (8), which consists of (8a) and (8b). However, since xjit and yit are hidden

in qjit, the endogenous variables appear everywhere in (8) – not just on the right hand side of

(8). Thus, although we have a system of (K + 1) equations, we cannot solve them analytically for

the (K + 1) endogenous variables (which will give us the unconditional input demand and output

supply equations as in the Cobb-Douglas case of Kumbhakar (1987)). We take a different approach

to get around the problem.

Although no analytical solution is possible for the unconditional input demand functions, we

can write them implicitly as:

ln xjit = mj(zit, wit) + ηjit, ∀j = 1, . . . ,K, (9)

where ηjit is a function of vit and ε1it, ..., εKit. In the absence of these errors, one gets the textbook

3We replace (8a) with (11) in estimation for the purpose of estimating the technical inefficiency.

6



type deterministic solutions of input demand functions. Our goal is to use these input demand

functions to construct two-stage least squares (2SLS) type instruments for ln xjit. For this, we first

run a nonparametric regression for each j using (9), where E(ηjit|zit, wit) = 0, and obtain ̂ln xjit.

Following the spirit of the 2SLS procedure for smooth coefficient models (Cai et al. 2006), we replace

ln xjit in the system with ̂ln xjit = ̂mj(zit, wit), ∀j = 1, . . . ,K to avoid the endogeneity problem

associated with lnxjit being correlated with εjit. The smooth coefficients can then be estimated

using Henderson et al.’s (2015) SPSC SUR estimator. In addition to taking into account the cross-

equation correlations in the error terms in the system, we also need to impose the cross-equation

restrictions on the smooth coefficients, such that βj(zit), ∀j = 1, . . . ,K, in the first equation of the

system, are equal to the corresponding intercepts in the share equations; and similarly, βjk(zit),

∀j = 1, . . . ,K, in the first equation of the system, are equal to the corresponding slopes in the share

equations. Appendix B gives a brief introduction of the SPSC SUR estimator with our empirical

example, as well as its first order gradient estimator for estimating marginal effects.

Our analysis so far does not include technical inefficiency. It is not obvious how technical

inefficiency should be modeled in the SPSC models. Note that the technology is observation-

specific when the environmental (z) variables are observation-specific. This raises the issue of what

the reference technology is. Conditional on the inputs, the technology varies with the environmental

variables, and one cannot find a single reference technology that is invariant to the z variables. One

solution is to think of measuring inefficiency for each firm relative to its own frontier. That is, a

firm at a point in time might not be able to attain its potential output given by its own frontier.

Under this scenario, one can simply add a one-sided inefficiency term which may or may not be

dependent on the z variables. If we do this and the production function in (8a) can be written as:

ln yit = β0(zit) +
∑

j

βj(zit) ln xjit +
1

2

∑

j

∑

k

βjk(zit) ln xjit ln xkit + vit − uit (10)

where uit ≥ 0 is the technical inefficiency. To allow the possibility that the environmental variables

can affect the inefficiency, we assume that uit = g(zit) × u∗ where g(·) is the scaling function,

u∗ ∼ iidN+(0, σ2
u) is the basic function and vit ∼ iidN(0, σ2

v). Using these specifications, we can
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rewrite the above equation as:

ln yit = θ0(zit) +
∑

j

βj(zit) ln xjit +
1

2

∑

j

∑

k

βjk(zit) ln xjit ln xkit + [vit − (uit − E(uit))], (11)

where θ0(zit) = β0(zit)−E(uit) = β0(zit)−g(zit)
√

(2/π)σu. Thus the steps we discussed earlier still

work4 because the new error term [vit− (uit−E(uit))] has a zero mean.5 The only difference is that

the smooth coefficient for the so-called intercept is now a different function, θ0(·), instead of β0(·).6

The residuals are computed from ln yit − θ̂0(zit) −
∑
j

β̂j(zit) ln xjit − 1
2

∑
j

∑
k

β̂jk(zit) ln xjit lnxkit.

To estimate inefficiency, we consider the residuals eit = vit − uit + E(uit) = vit − uit +

g(zit)
√

(2/π)σu which can be viewed as a stochastic frontier except that the frontier part of it,

g(zit)σu

√
(2/π), is nonlinear and it has no additional parameters. That is, the parameters in the

frontier function are exactly the same as that appear in E(uit). With these changes in place one can

estimate the function eit = vit −uit + g(zit)σu

√
(2/π) using the maximum likelihood (ML) method

which will give estimates of the parameters in the g(·) function, σ2
u and σ2

v . These estimated values

can then be used to obtain estimates of uit using the Jondrow, Lovell, Materov and Schmidt (1982)

formula. Note that it is not necessary to assume that uit depends on all the zit variables. In fact,

the zit variables in uit can be completely different from those in the smooth coefficients.

3 Data

The data set is based on the Annual Surveys of Industrial Production (ASIP) conducted by the

National Bureau of Statistics (NBS) of China. It covers all the state-owned enterprises (SOE’s) and

the non-SOE’s with annual sales exceeding 5 million renminbi (RMB) in the agricultural product

and food industries. This is an unbalanced panel data set covering 3,922 firms over 9 years. Output

quantity is measured as the monetary value of output (in thousands of RMB) divided by regional

Producer Price Index (PPI) of food. The price of capital (w1) is calculated as the sum of the loan

4Since the mean inefficiency is a function of the z variables, the input demand functions based on expected profit
maximization will depend on input prices and the z variables. Thus, there is no need to change anything in the input
demand functions in (9) for the construction of IV’s.

5For this, we do not need to have a scaling function representation of inefficiency.
6In estimation we use (11) together with the share equations in (8b), replacing inputs by their predicted values.
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interest of capital and depreciation rate of fixed assets. The capital inventory (x1) is measured as

the net value of fixed assets in thousands of RMB. Labor quantity (x2) is measured as the number

of employees, and wage (w2) is the annual income (in thousands of RMB), including wages and

benefits, per employee. Based on the regional input-output table of China in 2007, intermediate

inputs are divided into three categories: agricultural products, food products, and other materials

(e.g, packaging materials, simple gadgets, etc). Because of competitive markets of the intermediate

inputs, we take the regional PPI of each intermediate input as its input price. The quantities of

these intermediate inputs are calculated as the monetary value (in thousands of RMB) of each

intermediate input divided by its regional PPI.

We use four z variables in the model. z1 is a marketization index. It is a general index published

by the National Economic Research Institute (NERI) of China that measures the degrees of markets’

competitiveness of provinces in China. China is still switching from a centrally planned economy

to a market economy, and the extent of market freedom varies greatly across regions. z2 is the time

trend that goes from 1 (year 2000) to 9 (year 2008). z3 is a firm ownership variable that discretizes

types of ownership and z4 is a binary regional variable for the eastern and western regions of China.

Table 1 contains summary statistics of all the variables used.

4 Estimation results

For comparison purposes, we estimate the following three models:

Model 1: the SPSC SUR model consisting of (11) and (8b),7

Model 2: the single equation SPSC model, that is (8a), without taking into account the endo-

geneity of inputs, and

Model 3: a standard translog parametric model (Kumbhakar and Sun 2013):

ln yit = β0 +
∑

j

βj ln xjit +
1

2

∑

j

∑

k

βjk ln xjit ln xkit + vit − uit (12)

7We set z1 (marketization index) as a continuous variable, z2 (time trend) as an ordered categorical variable, and
z3 (ownership type) and z4 (region) as unordered categorical variables.
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where vit ∼ iidN(0, σ2
v ) and uit ∼ N+(µ(zit), σ

2
u(zit)).

8 No endogeneity (of inputs) correction is

made in Models 2 and 3.

Table 2 reports the mean and quartile values (Q1-Q3) of the input elasticity as well as RTS

estimates for all the three models. We calculate RTS as the sum of input elasticities, i.e., RTS =

∑
j ∂ ln y/∂ ln xj =

∑
j q̂∗j . Note that RTS is observation-specific. It can be seen that the SPSC

SUR model has only positive input elasticity estimates for these values, suggesting positive marginal

products, while the SPSC single equation and parametric model has negative input elasticity esti-

mates for some inputs.9 This might be because of the fact that for the SPSC SUR model we take

into account the endogeneity of inputs, while inputs are assumed to be exogenous in the other two

models. Meanwhile, the SPSC SUR model generates more precise estimates: it gives the smallest

standard errors for the median (Q2) estimates for all input elasticities. This may be because by

estimating a system of equations, we take into account more information via the cost share equa-

tions in the system approach compared to the other two models which does not take into account

information on cost shares and input prices.

Figure 1 illustrates Table 2 via kernel density plots. We can see that the distributions of the

input elasticity estimates from the SPSC SUR model lie on the right-hand-side of the zero vertical

line, and the dispersions of the elasticity estimates of labor, agriculture products, food products,

and other materials are much wider for the SPSC single equation and parametric models than

those for the SPSC SUR counterpart. Finally, the RTS estimates from the SPSC SUR model,

inclining towards decreasing returns to scale, are stochastically dominated by those from the other

two models which show stronger evidence for constant returns to scale. However, these estimates

are not appropriate because they include negative elasticities.10

Since the SPSC SUR model gives more reliable and precise estimates, Figure 2 further plots

the mean input elasticity estimates over time based on it, and compare the trends of the estimates

between the eastern and western regions of China. The results of the rest of this paper will also

8We set z1 as a continuous variable, and z2-z4 as dummy variables in this model.
9Thus RTS estimates from Models 2 and 3 are not meaningful because these estimates include negative input

elasticities also. There are too many violations for the input elasticity of x3 in Model 2, and x1 in Model 3. Dropping
them would lead to dropping most of the observations.

10See footnote 9.
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be based on this model. It can be seen that the mean input elasticity estimates of capital, labor,

and food products, are generally higher in the eastern region, while the elasticities of agricultural

products and other materials are generally higher in the western region. This is because firms in

the eastern region tend to replace agricultural products with food products and/or use advanced

machineries instead of simpler equipments. These firms tend to have a higher level of labor spe-

cialization than those in the western region. The RTS is higher in the eastern region because most

input elasticities are higher in the eastern region. With an increasing amount of accumulated capi-

tal during the years of rapid development of China, the marginal productivity of capital diminishes

over time. The labor productivity increases after 2004 because of increases in labor efficiency in

state-owned firms as well as effects of one-child policy and education.

Figure 3 plots the mean marginal effects of marketization index on the output (ln y) over

time for each region. A higher marketization index indicates a higher level of market freedom.

These estimates are calculated using the first order gradient estimator of the SPSC SUR estimator

presented in Appendix B. It can be seen that there is a decreasing trend of the effects over time.

This is probably because of government control or intervention that can not be easily quantified.

It is obvious that the western region benefits more from a market economy than the eastern region.

This is probably because the western region currently is at a lower level of market freedom, and

enjoys a higher level of marginal benefit of an increase in the level of market freedom.

Table 3 reports the summary statistics of the technical (u) and allocative (εj , ∀j) inefficiency

estimates. The mean technical inefficiency is 0.0586. This means that an average firm could have

gained 5.86% more output if there had been no inefficiency. The median estimates of the allocative

inefficiencies11 for the first three inputs (i.e., ε1-ε3) are all less than zero. This means that the actual

shares of these inputs are lower than their respective optimal shares. For example, the actual share

of capital is 2.64% lower than the optimal share of capital. Therefore, given the distributions of

the estimated allocative inefficiencies, it seems that most firms in the food industry in China are

11Since the presence of unobserved noise term v in the production function is likely to affect the cost shares, the
error terms εj will also be affected by v under expected or median profit maximization (following the derivation in
Kumbhakar (1987) for the Cobb-Douglas model). Because of this, one may be careful in interpreting the estimated
residuals as pure allocative errors, although the noise term might be washed away in the median values. We owe this
point to an anonymous referee.
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still not doing their best in terms of optimizing input use. To maximize profits, an average firm

should increase using those inputs that are currently under-used, for example, capital, labor, and

agricultural products, and decrease the over-used inputs such as food products and other materials.

Figure 4 plots the mean technical (u) and allocative (εj , ∀j) inefficiencies over time for each

region. It can be seen that the technical inefficiency (u) generally follows a decreasing trend. This

is probably because of the restructuring of the state-owned enterprises in the western region, as well

as of the benefit from the reform and opening-up policy in the eastern region. The western region

gradually catches up with the eastern region in terms of the technical inefficiency. This is probably

because a large number of the firms in the food industry have been migrating from the eastern to

the western region. The technical inefficiency gradually increases in 2004 possibly because of the

increases in the labor cost as well as an influx of low-quality food. The allocative inefficiencies of

capital and labor show that the two inputs are under-used (i.e., their actual shares are less than

their respective optimal shares) in China spanning most years of this study. However, the allocative

inefficiencies of almost all inputs seem to be improving over time, approaching the horizontal lines

at zero. The western region uses more capital and agricultural products than the eastern region.

The eastern region uses more labor, food products, and other materials than the western region.

This is probably because most firms in the eastern region are family-owned business or township

enterprises.

Figure 5 plots the mean marginal effects of marketization index on technical and allocative

inefficiencies over time for each region. These estimates are calculated by running a separate

nonparametric regression of each estimated inefficiencies on the marketization index.12 The median

marginal effect on technical inefficiency is -0.0359 (i.e., 3.59% decrease for a one unit increase in the

marketization index), and is statistically significant at the 1% level. This indicates that a higher

level of market freedom may reduce technical inefficiency in most cases. It is obvious that the

marginal effects on the allocative inefficiencies of all inputs except for labor are mostly negative.

This means that a higher level of market freedom decreases these allocative inefficiencies as well.

For the case of labor, sometimes the marginal effects are positive probably because of corruption

12Kumbhakar and Sun (2013) gives an alternative method of obtaining the marginal effects on technical inefficiency
based on the Jondrow et al. (1982) estimator.
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during the labor hiring processes.

Finally, Figures 6 and 7 plots the mean technical efficiency change (TEC = −∂û/∂t) and

technical change (TC = ∂ l̂n y/∂t). They are obtained by running a nonparametric regression of the

estimated technical inefficiency and output, respectively, on a continuous time trend and the binary

region variable.13 It can be seen that using the entire sample, the technical efficiency decreases

(i.e., technical inefficiency increases) in 2000 and 2004, and it increases (i.e., technical inefficiency

decreases) in all other years. This is consistent with the first plot of Figure 4. Furthermore, the

western region enjoys a more positive TEC during most years than eastern region. This is also

consistent with the first plot of Figure 4 in that the technical inefficiency decreases faster in the

western region than eastern region. The TC’s are positive for most years of the study. The overall

mean TC is 0.0353 (i.e., 3.53% per year) with a standard error of 0.0006. The western region has

a much higher level of TC during the earlier years of the study and then gradually follows the

trajectory of the eastern region. The western region was under-developed before this century, and

the Chinese government launched the Western Development Program in 2000. One of the main

aims of this program is to balance the development between the eastern and western regions of

China. The TC becomes negative in 2008 probably because of the effect of the financial crisis.

5 Conclusion

This paper addresses the endogeneity of inputs in estimating a semiparametric smooth coefficient

(SPSC) production function using a system approach. The system consists of a translog production

frontier and the first-order conditions (FOC’s) of profit maximization. Each coefficient of the

production function is an unknown function of some exogenous environmental variables. The

estimation of the system involves applying the functional coefficient instrumental variable (IV)

method (Cai et al. 2006) for the endogeneity of inputs in the first step, and the semiparametric

smooth coefficient seemingly unrelated regression method (Henderson et al. 2015) in the second step.

Technical inefficiencies are calculated using the stochastic frontier analysis (SFA), and allocative

13Time trend is used as one of the categorical z variables in (11) and (8b), but a continuous variable when calculating
the TEC and TC for the partial derivatives to be well-defined.
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inefficiencies are defined as the error terms of the share equations, which can be interpreted as

deviations of the actual input shares from optimal shares. We then apply a firm-level Chinese

food industry panel data set as an empirical example, and find that the system approach gives

more sensible input elasticity estimates than single equation SPSC or traditional SFA models. We

highlight the differences in the input elasticity, RTS, and inefficiency estimates between the eastern

and western regions of China. Technical efficiency change (TEC) and technical change (TC) are

also computed.

Appendix A

We use the Lagrangian multiplier method to solve for the profit maximization problem in (2). The

Lagrangian function is:

L = py − w′x + λ[f(x;β(z)) − y]. (13)

We maximize this function with respect to y and xj, ∀j = 1, . . . ,K. The first order conditions are:

∂L

∂y
= p − λ = 0 (14)

and

∂L

∂xj
= −wj + λfj(x;β(z)) = 0, ∀j = 1, . . . ,K, (15)

where fj(x;β(z)) = ∂f(x;β(z))/∂xj . Replace λ in (15) with p from (14), and we would have:

wj = pfj(x;β(z)), ∀j = 1, . . . ,K. (16)

Appendix B

Following Henderson et al. (2015), the general form of the SPSC SUR model is:

Y = Xβ(Z) + e, (17)
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where Y is a G
∑N

i=1 Ti × 1 stack vector, G is the number of equations, N is the number of cross-

sectional units, and Ti is the maximum number of years for the i-th unit. X is a G
∑N

i=1 Ti × K̃

data matrix, and Z is a
∑N

i=1 Ti × S data matrix. Note that all coefficients in all equations have

the same Z matrix.

Given our dataset and model, we define the following data matrices for the SPSC SUR estimator:

Y ′ = [ln y′ q′1 · · · q′K ], where ln y and qj, ∀j = 1, . . . ,K, are
∑N

i=1 Ti × 1 data vectors;

X =




X0

0 1 0 0 0 0 ̂ln x1
̂ln x2

̂ln x3
̂ln x4

̂ln x5 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 ̂ln x1 0 0 0 ̂ln x2
̂ln x3

̂ln x4
̂ln x5 0 0 0 0 0 0

0 0 0 1 0 0 0 0 ̂ln x1 0 0 0 ̂ln x2 0 0 ̂ln x3
̂lnx4

̂ln x5 0 0 0

0 0 0 0 1 0 0 0 0 ̂ln x1 0 0 0 ̂ln x2 0 0 ̂lnx3 0 ̂ln x4
̂ln x5 0

0 0 0 0 0 1 0 0 0 0 ̂ln x1 0 0 0 ̂ln x2 0 0 ̂ln x3 0 ̂ln x4
̂ln x5




,

where X0 = [1 ̂ln x1
̂ln x2

̂ln x3
̂ln x4

̂ln x5 0.5̂ln x1
2 ̂ln x1

̂ln x2
̂lnx1

̂ln x3
̂ln x1

̂ln x4
̂ln x1

̂ln x5

0.5 ̂ln x2
2 ̂ln x2

̂ln x3
̂ln x2

̂ln x4
̂lnx2

̂ln x5 0.5̂ln x3
2 ̂ln x3

̂ln x4
̂ln x3

̂ln x5 0.5 ̂ln x4
2 ̂lnx4

̂ln x5 0.5̂ln x5
2
];

̂ln xj, ∀j = 1, . . . ,K, are vectors of fitted values of ln xj ; 0 and 1 are
∑N

i=1 Ti×1 zero and one vectors,

respectively;14 and Z = [z1, z2, z3, z4]. While we set z1 (marketization index) as a continuous

variable, z2 (time trend) is an ordered categorical variable, and z3 (ownership type) and z4 (region)

are unordered categorical variables. Finally, e′ = [v′ ε′1 · · · ε′K ].

The SPSC SUR estimator for β(Z) is:

β̂(Z) = [X ′K(Z)1/2Ω−1K(Z)1/2X]−1X ′K(Z)1/2Ω−1K(Z)1/2Y, (18)

where K(Z) is a G
∑N

i=1 Ti × G
∑N

i=1 Ti block diagonal matrix. Each diagonal element of K(Z) is

a
∑N

i=1 Ti ×
∑N

i=1 Ti kernel diagonal matrix, and the it-th element of the kernel diagonal matrix is

a product kernel function (Li and Racine 2007),

kit(Z) =
L∏

l=1

kc
it(Z

c
l )

M∏

m=1

ko
it(Z

o
m)

R∏

r=1

ku
it(Z

u
r ), (19)

14Note that the X matrix is designed to impose the cross-equation restrictions on the coefficients.
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where

kc
it(Z

c
l ) =

1√
2π

exp

(
−1

2

(
Zc

lit − Zc
l

hc
l

)2
)

(20)

is the kernel function for the l-th continuous Z variable (i.e., Zc
l = z1) and hc

l is the bandwidth for

this variable. Following Aitchison and Aitken (1976), and letting c̃ denote the number of categories

the discrete variable can take,

ko
it(Z

o
m) =




c̃

j


hoj

m(1 − ho
m)c̃−j, when |Zo

mit − Zo
m| = j (21)

is the kernel function for the m-th ordered categorical Z variable (i.e., Zo
m = z2) and ho

m is the

bandwidth for this variable.

ku
it(Z

u
r ) =





1 − hu
r , if Zu

rit = Zu
r

hu
r /(c̃ − 1), otherwise

(22)

is the kernel function for the r-th unordered categorical Z variable (i.e., Zu
r = z3 or z4) and hu

r is

the bandwidth for this variable.

Let h′ = [hc′ ho′ hu′
] be the bandwidth vector for all types of Z variables, and we estimate h

using the least-squares cross-validation method. The cross-validation criterion function is given by:

CV (h) = min
h

N∑

i=1

Ti∑

t=1

[Yit − X ′
itβ̂(Zit)−it]

2, (23)

in which X ′
itβ̂(Zit)−it is the leave-one-out estimator of the conditional mean, and β̂(Zit)−it is the

leave-one-out SPSC SUR estimator where the it-th observation is removed from the g-th equation,

ignoring any cross-equation correlation.

Finally, Ω = ω ⊗ I∑N
i=1

Ti
, where ω is the (K + 1) × (K + 1) variance-covariance matrix of

the error terms in (8). In practice, ω is replaced by ω̂ containing estimates of the variances and

covariances, calculated as means of the cross products of the residuals, v̂, ε̂1, . . . , ε̂K .

In addition to presenting the SPSC SUR estimator, we also derive its first order gradient
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estimator, which facilitates the estimation of marginal effects of any continuous Z variable. Let

S(Z) = K(Z)1/2Ω−1K(Z)1/2, then the SPSC SUR estimator is written as:

β̂(Z) = [X ′S(Z)X]−1X ′S(Z)Y. (24)

Let A(Z) = X ′S(Z)X and B(Z) = X ′S(Z)Y , then the derivative with respect to the l-th contin-

uous Z, Zc
l , is:

∂β̂(Z)

∂Zc
l

=
∂A(Z)−1

∂Zc
l

B(Z) + A(Z)−1 ∂B(Z)

∂Zc
l

, (25)

where ∂A(Z)−1

∂Zc
l

= −A(Z)−1 ∂A(Z)
∂Zc

l
A(Z)−1, ∂A(Z)

∂Zc
l

= X ′ ∂S(Z)
∂Zc

l
X, ∂B(Z)

∂Zc
l

= X ′ ∂S(Z)
∂Zc

l
Y ,

∂S(Z)

∂Zc
l

=
∂K(Z)1/2

∂Zc
l

Ω−1K(Z)1/2 + K(Z)1/2Ω−1 ∂K(Z)1/2

∂Zc
l

, (26)

and

∂K(Z)1/2

∂Zc
l

= diag

[
∂k(Z)1/2

∂Zc
l

, . . . ,
∂k(Z)1/2

∂Zc
l

]
(27)

is a block diagonal matrix, where each element

∂k(Z)1/2

∂Zc
l

= diag

[
∂k1(Z)1/2

∂Zc
l

, . . . ,
∂k∑N

i=1
Ti

(Z)1/2

∂Zc
l

]
, (28)

where a typical element of this diagonal matrix is a function of kit(Z). Finally,

∂kit(Z)1/2

∂Zc
l

=
1

2

Zc
lit − Zc

l

hc2
l

kit(Z)1/2. (29)
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Table 1: Summary Statistics of the Variables

Symbol Variable Name Mean Sd. Min. Max.

y Output quantity 82403.21 229317.38 2.06 5323079.00

x1 Capital stock 15239.90 42113.53 1.00 1085352.00

x2 Number of employee 165.65 286.12 2.00 6023.00

x3 Agricultural products 25748.34 68948.43 0.44 1796366.00

x4 Food products 13333.13 41604.01 0.18 1312121.00

x5 Other materials 20819.63 57604.14 0.33 1707589.00

w1 Capital price 0.14 0.21 0.00 4.97

w2 Labor price 21.53 24.80 0.01 446.70

w3 Agricultural products price 1.11 0.23 0.85 1.63

w4 Food price 1.02 0.08 0.90 1.18

w5 Other materials price 1.01 0.07 0.92 1.17

z1 Marketization index 8.03 1.79 4.41 11.04

z2 Time trend 5.68 2.53 1.00 9.00

z3 Ownership type . . . .

z4 Region . . . .

1. Total number of observations = 13361.
2. t is defined as year - 1999, where year varies from 2000 to 2008.
3. Ownership type= 1 if stated-owned firm, = 2 if collectively-owned firm, = 3
if legal person-owned firm, = 4 if private firm, = 5 if foreign firm, = 6 if firm of
Hongkong, Taiwan and Macau, = 7 if others.
4. Region= 1 if eastern region, = 2 if western region. The eastern region is repre-
sented by the Pearl River Delta, and the western region is represented by Sichuan
province.
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Table 2: Summary Statistics of the Input Elasticity Estimates and RTS

∂ ln y

∂ ln x1

∂ ln y

∂ ln x2

∂ ln y

∂ ln x3

∂ ln y

∂ ln x4

∂ ln y

∂ ln x5
RTS

Model 1: SPSC SUR

Mean 0.0471 0.0849 0.3483 0.1568 0.2587 0.8991

(0.0005) (0.0009) (0.0031) (0.0014) (0.0022) (0.0082)

Q1 0.0312 0.0464 0.3341 0.1276 0.2378 0.8391

(0.0001) (0.0003) (0.0001) (0.0002) (0.0002) (0.0006)

Q2 0.0464 0.0774 0.3486 0.1561 0.2573 0.8879

(0.0002) (0.0003) (0.0002) (0.0004) (0.0002) (0.0005)

Q3 0.0613 0.1172 0.3626 0.1846 0.2789 0.9513

(0.0028) (0.0038) (0.0034) (0.0036) (0.0030) (0.0070)

Model 2: SPSC single equation

Mean 0.0226 0.0561 -0.2074 0.7565 0.3581 0.9859

(0.0004) (0.0011) (0.0084) (0.0103) (0.0104) (0.0087)

Q1 0.0024 -0.0108 -0.7936 0.0314 -0.3949 0.9594

(0.0002) (0.0005) (0.0089) (0.0025) (0.0075) (0.0002)

Q2 0.0205 0.0513 -0.3112 0.9615 0.1492 0.9880

(0.0002) (0.0007) (0.0054) (0.0110) (0.0050) (0.0004)

Q3 0.0405 0.1107 0.3545 1.5293 0.7266 1.0127

(0.0005) (0.0012) (0.0049) (0.0082) (0.0066) (0.0083)

Model 3: Parametric

Mean -0.1064 0.0776 -0.0220 0.2080 0.8544 1.0117

(0.0010) (0.0011) (0.0082) (0.0032) (0.0115) (0.0090)

Q1 -0.1315 0.0059 -0.7867 -0.0193 0.0810 0.9901

(0.0048) (0.0005) (0.0060) (0.0015) (0.0220) (0.0002)

Q2 -0.1061 0.0757 0.1155 0.2326 0.6466 1.0126

(0.0003) (0.0007) (0.0080) (0.0032) (0.0047) (0.0003)

Q3 -0.0814 0.1449 0.6953 0.4182 1.6349 1.0340

(0.0002) (0.0014) (0.0074) (0.0047) (0.0079) (0.0045)

Standard errors are in the parentheses.

20



Figure 1: Kernel Density Plots for Input Elasticity Estimates

− 0. 2 − 0. 1 0. 0 0. 1 0. 20510
15 Ca p i ta l

Densit y S P S C S U RS P S Cs in g lePa ra m e t r ic

− 0. 2 − 0 . 1 0. 0 0. 1 0. 2 0 . 3 0 . 4024
68 La bo r

Densit y S P S C S U RS P S Cs in g lePa ra me t r ic

− 0. 4 − 0. 2 0. 0 0 . 2 0. 40510
15 Ag r ic u l t u r e p r o d u c ts

Densit y S P S C S U RS P S Cs in g lePa ra m e t r ic

− 1. 0 − 0. 5 0. 0 0. 5 1. 0 1. 5 2. 00246
8 Fo o d p ro du c ts

Densit y S P S C S U RS P S Cs in g lePa ra m e t r ic
− 1. 0 − 0. 5 0. 0 0. 5 1. 0 1. 5 2. 002468

1012 O t he r m a te r i a ls
Densit y S P S C S U RS P S Cs in g lePa ra me t r ic

0. 7 0. 8 0. 9 1 . 0 1 . 1 1 . 202468
1012 R T S

Densit y S P S C S U RS P S Cs in g lePa ra m e t r ic

21



Figure 2: Input Elasticity Estimates by Region
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Figure 3: Marginal Effects of Marketization Index on Output
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Table 3: Summary Statistics of Inefficiencies

u ε1 ε2 ε3 ε4 ε5

Output Capital Labor Agricultural Food Other

products products materials

Mean 0.0586 -0.0091 -0.0045 -0.000003 0.000038 0.0008

(0.0007) (0.0033) (0.0015) (0.0008) (0.0004) (0.0006)

Q1 0.0208 -0.0424 -0.0629 -0.0314 -0.0239 -0.0285

(0.0003) (0.0010) (0.0007) (0.0004) (0.0003) (0.0003)

Q2 0.0414 -0.0264 -0.0209 -0.0019 0.0004 0.0010

(0.0001) (0.0002) (0.0005) (0.0003) (0.0002) (0.0003)

Q3 0.0844 -0.0063 0.0273 0.0300 0.0226 0.0293

(0.0005) (0.0001) (0.0005) (0.0004) (0.0003) (0.0004)

Standard errors are in the parentheses.
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Figure 4: Inefficiencies by Region
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Figure 5: Marginal Effects of Marketization Index on Inefficiencies
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Figure 6: Technical efficiency change
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Figure 7: Technical change
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