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Abstract:  
A mathematical model is presented to study the double-diffusive convective heat and mass 

transfer of a micropolar biofluid in a rectangular enclosure, as a model of transport phenomena 

in a bioreactor. The vertical walls of the enclosure are maintained at constant but different 

temperatures and concentrations. The conservation equations for linear momentum, angular 

momentum, energy and species concentration are formulated subject to appropriate boundary 

conditions and solved using both finite element and finite difference numerical techniques. 

Results are shown to be in excellent agreement between these methods. Several special cases of 

the flow regime are discussed. The distributions for streamline, isotemperature, isoconcentration 

and (isomicrorotation) are presented graphically for different Lewis number, buoyancy 

parameter, micropolar vortex viscosity parameter, gyration viscosity parameter, Rayleigh 

number, Prandtl number and micro-inertia parameter. Micropolar material parameters are 

shown to considerably influence the flow regime. The flow model has important applications in 

hybrid aerobic bioreactor systems exploiting rheological suspensions e.g. fermentation.  
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1. INTRODUCTION 
Process engineering embraces many diverse technologies including materials manufacture, 

extrusion and increasingly synthesis of novel agents in bioreactors. Bioreactors are also an 
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important device in medical biotechnology [1]. Working systems employ a variety of circulating 

biofluids which exhibit a diverse range of rheological and thermofluid characteristics. While mass 

transfer is an intrinsic component of bioreactor design [2], heat transfer is preferred in systems 

which are aerobic [3]. The fluid mechanics [4] of such systems involves double-diffusive natural 

convective heat and mass transfer in enclosures, a subject of interest in other disciplines including 

electronics, fuel cells, fire dynamics and solar cell technologies. Many Newtonian studies of 

enclosure (cavity) flows have been reported. A seminal study of double diffusive convection with 

combined driving forces was presented by Ostrach [5]. Makham and Rosenberger [6] studied the 

convective heat and mass transfer in crystal growth regimes in rectangular cavities. Bergman et 

al. [7] reported on the mixing hydrodynamics and growth processes in double-diffusive 

geophysical convection. Raganathan and Viskanta [8] studied analytically and computationally 

the binary free convection in a square cavity with combined thermal and species gradients. 

Nishimura et al. [9] also investigated the solidification of binary systems in double-diffusive heat 

and mass transfer flows. Bejan et al. [10] considered natural convection heat and mass transfer in 

a rectangular cavity subjected to various boundary conditions. Using both analytical and 

numerical techniques natural convection within a porous layer subjected to heat and mass fluxes 

in the horizontal direction was studied for a wide range of parameter values. A numerical study 

was later conducted by Lin [11] to analyze the transient natural convection heat and mass transfer 

in a square enclosure. Influences of the governing parameters on the unsteady variations of 

Nusselt and Sherwood numbers were examined and discussed in detail. Compared to such 

configurations, few investigations have considered the case where cross gradients of temperature 

and concentration are imposed. For this kind of boundary condition, numerical simulations of 

thermosolutal natural convection in a horizontal porous cavity were reported by Mohamad and 

Bennacer [12]. In their study, the porous matrix is heated and cooled along the vertical walls 

while concentration gradients are imposed vertically. They identified flow regimes for the cases 

of thermal and solutal dominating flows. Later they extended this study [13] to numerically 

model two- and three-dimensional thermosolutal convection in a horizontal enclosure filled with 

a saturated porous medium and subjected to cross gradients of temperature and concentration. 

Khanafer and Chamkha [14] used the ADI scheme to investigate the mixed convection flow in a 

Darcian lid-driven enclosure. Khanafer and Vafai [15] more recently studied the double-diffusive 

composite convection in a square enclosure containing a Darcy-Forcheimmer porous medium 

using finite volume and ADI methods.  

All the above studies have been confined to Newtonian fluids. In numerous biomedical systems, 

working fluids (plasma, blood, anti-bacterial agents etc) exhibit non-Newtonian shear stress-strain 
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characteristics and also complex micro-rheology. The Navier-Stokes viscous flow model is 

incapable of simulating such micro-structural characteristics, and biofluids therefore require a 

more sophisticated model for their accurate analysis. In this connection Eringen [16] in 1966 

proposed the theory of micropolar fluids, in which the local effects arising from microstructure 

and intrinsic motions of the fluid elements were taken into account. While significant applications 

of this robust model have been reported in the context of biomechanics, chemical engineering 

heat transfer past bodies and channel flows, relatively few studies have emerged considering the 

convection of micropolar fluids in enclosures, including bioreactors. Several important 

investigations considering only convective heat transfer have been communicated. Jena and 

Bhattacharyya [17] provided one of the first analyses of micropolar thermal convection in a 

rectangular box heated from below. They used the Galerkin method and obtained critical 

Rayleigh numbers for various material parameters. Natural convection of micropolar fluids in a 

square cavity with differentially heated end walls was investigated later by Chen and Hsu [18] 

and Hsu and Chen [19]. In the former study they indicated the strong influence of micropolar 

parameter on the flow regime compared with a Newtonian fluid. In the latter they used a vorticity 

model formulation for two-dimensional convection of the form,  = -  2  where  is the 

dimensionless vorticity and  is the dimensionless stream function. They used a cubic spline 

numerical scheme to show that the average Nusselt number is significantly lower for a micropolar 

fluid than for Newtonian fluid. While heat transfer rates were shown to be depressed by an 

increase in vortex viscosity parameter, heat flux infact was shown to be increased by 

micropolarity of the fluid. Several other studies of micropolar fluids in enclosed geometrical 

systems have also been reported. Chiu et al. [20] used an alternating direction implicit solver to 

examine the unsteady free convection of micropolar fluids in concentric spherical annuli.  

These studies of micropolar convection in enclosed geometries were all restricted to only 

heat transfer. The coupled problem of mass transfer is fundamental to bioreactor systems. 

Important studies of relevance to this area are Srinivas and Murthy [21] who studied entropy 

generation in micropolar transport in porous media and Murthy et al. [22] who examined 

mciropolar hydrodynamics in stratified porous systems.  

In the current study we consider double-diffusive heat and mass transfer of micropolar 

bio-suspension in an enclosure, as a two-dimensional simulation of transport in a bioreactor. The 

coupled differential conservation equations for linear momentum, microrotation (angular 

momentum), energy and concentration are solved numerically using both the finite element 

method and a finite difference method. Both methods have been applied extensively by the 

authors for over a decade in a wide variety of fluid dynamics problems. Contours are plotted for 
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different values of buoyancy parameter, Lewis number, micropolar material parameters and also 

Rayleigh and Prandtl numbers, and the results are interpreted at length.  

 

2. MATHEMATICAL FORMULATION 

We study a two-dimensional enclosure (see figure 1) of height 'H  and width 'L . It is assumed 

that the third dimension of the cavity is large enough so that the transport processes can be 

assumed to be two-dimensional in nature. The vertical walls of the enclosure are subjected to 

temperature 'hT  and 'Tc at the vertical left and right walls, respectively while the adiabatic 

boundary conditions are applied at upper and horizontal walls. Heat conduction in the enclosure 

walls is neglected. The horizontal surfaces are subjected to a fixed concentration, viz a high 

concentration at the bottom ( 'hS ) and low concentration ( 1 'S ) at the upper boundary, with 

adiabatic concentration at the left and right walls. It is assumed that the biofluid is an 

incompressible micropolar (rheological suspension) fluid and laminar flow is maintained. The 

constitutive equations for a micropolar fluid in vectorial form are, following Eringen [23]: 

 

Conservation of Mass 

0)( 



V



t
     (1) 

 

Conservation of Translational Momentum 

( + 2 +) V  - ( + )V +   M  -P +f = 
t

V
-V(V)+ 

2

2

1
V   (2) 

 

Conservation of Angular Momentum (Micro-rotation) 

(*++)  M  -M +   V  - 2M+  l = j M    (3)  

 

where P is the hydrodynamic pressure and , , , *,  and  are viscosity coefficients of 

micropolar fluids, V = translational velocity vector, M is angular velocity (microrotation) vector 

and  the mass density of micropolar fluid. In the micropolar model theory we are only concerned 

with two independent kinematical vector fields, namely the velocity vector field (familiar from 

Navier-Stokes theory) and the axial vector field which simulates the spin or the microrotations of 
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the micropolar fluid particles, these being assumed non-deformable i.e. rigid. The thermophysical 

properties of the micropolar fluid are assumed to be constant, except density variation in the 

buoyancy terms, which is assumed to follow a linear variation with local temperature and 

concentration, in accordance with the Boussinesq approximation. This can be mathematically 

expressed as follows: 

  

    0 0 0
( , ) ' 1 ' ' ( ' ')

T S
T S T T S S             (4) 

 

 where '0S and '0T are reference concentration and temperature at .0',0'  yx  In (4) T and S 

designate the coefficients of thermal and species expansion, which are defined as follows: 
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The conservation equations for micropolar double-diffusive convection in the enclosure can be 

shown to take the following form in an x
/
, y

/
 coordinate system, as illustrated in figure 1, for 

vanishing pressure gradient (the flow is thermally- and solutally-driven, not pressure-

driven): 
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where all  parameters are defined in the nomenclature.  

 

Figure 1: Physical model for micropolar double-diffusive convection in bioreactor enclosure 

 

The equations are now transformed with the following non-dimensional variables, to facilitate a 

numerical solution, under appropriate boundary conditions: 
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The governing equations in non-dimensional form emerge as follows: 
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where Ra is the Rayleigh number, N is the buoyancy ratio, Le is the Lewis number, Pr is Prandtl 

number,  is a micropolar material parameter, B is micro-inertia density parameter and R is the 

micropolar  vortex viscosity parameter. The boundary conditions for flow are the no-slip 

condition at the impermeable walls. Constant temperatures are imposed along the vertical walls 

with adiabatic conditions at the horizontal walls. Constant species concentration conditions are 

employed at the horizontal walls and zero mass fluxes at the vertical walls of the enclosure. 

Mathematically we can write the boundary conditions as follows:    
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The average value of Nusselt and Sherwood numbers, which characterize the dimensionless heat 

transfer rate and mass transfer rate, respectively are evaluated at the horizontal and vertical walls, 

using the following expressions: 
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3. NUMERICAL SOLUTIONS 

The set of equations (14) to (18) are highly nonlinear therefore this system of equations 

does not render analytical solutions. The finite element method has therefore been used to solve 

the model; additionally a finite difference method has been implemented to benchmark the finite 

element solutions. We shall discuss aspects of both numerical techniques now. 

3.1 Finite element method 

 The finite element method is widely used for solving boundary value problems in fluid 

mechanics [24]. The technique has been employed by the authors in a number of areas of biofluid 

mechanics and bioheat and mass transfer, including pulsatile flows [25], nanofluids [26, 27] and 

biomagnetics [28]. The “infinite” flow domain is divided into smaller elements of finite 

dimensions termed ‘finite elements’. The domain then constitutes an assemblage of these 

elements connected at a finite number of joints called ‘nodes’. The concept of discretization as 

used in the finite difference method is then performed. Other features of the method include 

seeking continuous polynomial approximations of the solution over each element in term of nodal 

values, and assembly of element equations by imposing the inter-element continuity of the 

solution and balance of the inter-element forces. The major stages of the method are summarized 

below in flowchart 1: 

1. Division of the domain into linear elements, called the finite element mesh. 

2. Generation of the element equations using variational formulations. 

3. Assembly of the element equations as obtained in step (2). 

4. Imposition of the boundary conditions to the equations obtained in step (3). 

5. Solution of the assembled algebraic equations. 

 The assembled equations can be solved by any of the numerical technique viz. Gaussian 

elimination. The details of the steps given above can be found in [24]. 

 

3.1-1 Variational Formulation: -  

The variational form associated with equations (14) to (18) over a typical square element is 

given by: 
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where 4321 ,,, wwww , 5w  and 6w  are arbitrary test function and may be viewed as the variation 

in STvu ,,,,   and G  respectively. All functions satisfy the homogeneous boundary conditions, 

as per theoretical requirements. 

 

3.1-2 Finite Element Formulation: -  

The flow domain defined as: ,10  x and 10  y  is discretized into square elements of same 

size. The finite element model is now obtained from the equations (23-28), by substituting finite 

element approximations of the form. 
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with  4,3,2,1,6,5,4,3,2,1  jiw ji   and where 321 ,,  and 4  are  the linear 

interpolation functions for a rectangular element 
e and these are defined as: 
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These  equations are then written in matrix-vector form as: 
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where  mnK  and    6,5,4,3,2,1, nmbm  are defined as follows: 
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and  
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4

1
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i

ii

i

ii vvuu  . The whole domain is divided into 100 square elements of 

length 0.1. Each element is four-noded therefore whole domain contains 121 nodes. At each node 

6 functions are to be evaluated; hence after assembly of the element equations we obtain a system 

of 726 equations which is non-linear therefore an iterative scheme is used for solving it. The 

system is linearized by incorporating the functions u  and v , which are assumed to be known. 

The system of linear equations has been solved using Gaussian elimination and an accuracy of 

0.0005 has been maintained in the computations. It has been observed that in the same domain 

the accuracy is not affected even if the number of elements are increased, by decreasing the size 

of the elements. Further mesh refinement serves only to escalate compilation times.  

 

3.2 Finite difference method 

For the purposes of comparison, the same system of equations (14)–(18), subject to boundary 

conditions (20) is solved numerically using the finite difference method. This method is used for 

solving the ordinary as well as partial differential equations governing boundary value problem as 

well as initial value problem. By using the central difference approximations [29], the set of 

differential equations (14)–(18), can be discretized to give: 
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where he  and ke  denote the x and y direction step-lengths. Since the above equations are non–

linear and coupled hence they cannot be solved exactly. Therefore an iterative scheme is required 

to be used. Writing down the equations in the form: 

   ni lllFx .........,, 21       (44) 

where each il  is the function of the variable , , , ,i i i i iu v T S   and ix  is any of the variable 

, , , ,i i i i iu v T S .  Now starting with initial guess values, new iterate values are obtained. This 

process continues until the absolute error 1 ii xx  is less than the accuracy required. The 

condition of convergence of the scheme has been already checked before implementing the 

iterative scheme. Further excellent details on modern applications of the finite difference method 

are available in Sohail et al. [30] and Sohail et al. [31] where adapting of algorithms to capillary 

gravity wave and magnetic nanoscale flow problems have been considered. Therefore while the 

finite difference approach is classical, it is still very versatile and has significant abilities for 

solving nonlinear boundary value problems in transport phenomena. 

 

4.  RESULTS AND DISCUSSION 

 
The controlling parameters which dictate the flow regime for double diffusive natural 

convection in an enclosure are the aspect ratio A , and the dimensionless numbers Ra , Pr , N , 

Le , , B and R. We shall discuss the influence of each of these parameters in detail. Prandtl 

number Pr is fixed at 7.0 and Lewis number, Le at 10 corresponding to a model of salt diffusion 

in water, representative of brine-based bioreactors [3] and for an aspect ratio of 1.0 i.e. a square 

enclosure, unless otherwise stated. (Le = 1 in oxygen). 

Stable solutal stratified fluid resists flow evolution. On the other hand applying horizontal 

temperature gradient across the cavity initiates flow, even for a very small temperature gradient. 

Hence there is a competition between thermal and solutal buoyancy forces. As N  approaches 

zero, the thermal buoyancy drives the flow and formation of a longitudinal recirculated flow is 
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expected for moderately high Ra  parameter. As N  becomes much larger than unity, the flow is 

suppressed in the enclosure and diffusion dominates the heat and mass transfer. For N  of order 

unity, the effect of thermal and solutal buoyancy forces becomes of the same order and 

magnitude.  

Figures 1-9 illustrate the influence of various parameters on the regime. Figures 1 to 4 

demonstrate typical features of aiding double diffusive flow for buoyancy ratio N . Figures 1a, 

1b, 1c and 1d show the representative sequence of streamline isotherm pattern, iso-concentration 

and iso-microrotation pattern in a square domain for 0N  i.e. where buoyancy ratio is zero. 

Setting N = 0 effectively de-couples the vorticity equation (15) from the species conservation 

equation (17). 
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5.0 

10.0 

20.0 

 

1.19437 

1.20667 

1.32167 

1.29295 

1.23751 

1.19164 

 

 

1.19426 

1.2058 

1.32085 

1.29478 

1.23687 

1.19320 

 

 

.99364 

.936199 

.50195 

.941962 

1.18054 

1.192009 

 

.99553 

.936886 

.501228 

.941324 

1.18165 

1.193117 

 

Table 1. Table for the rate of heat transfer  }0'{ T  and rate of mass transfer  }0'{ S with 

different value of buoyancy parameter N  and Lewis number .Le  
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Figure 1a: Stream line profiles in the enclosure for N = 0 
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                        Fig.1.b : Iso-temperature profiles in enclosure for N = 0 
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Fig 1c: Iso-concentration profiles for N = 0 
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Fig.1.d : Iso-micro-rotation profiles for  N = 0 

 

Figures 1a to 1d: 0.,1.,1.,1,1,100  NRBLeRa   
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Figure 2a: Influence of N on the streamline distribution  
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   Figure 2b: Influence of N on the iso-temperature distribution  
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Figure 2c: Influence of N on the iso-concentration distribution  
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Fig.2.d Influence of N on the iso-micro-rotation distribution 

 

Figures 2a to 2d:   1.,1.,1.,1,1,100  NRBLeRa   
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Figure 3a:  Influence of larger N on the streamline distribution 
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Figure 3.b : Influence of larger N on the iso-temperature distribution 
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Figure 3c: Influence of larger N on the iso-concentration distribution 



19 

 

 

   0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

              Figure 3d: Influence of larger N on the iso-micro-rotation distribution 

 

Figures 3a to 3d : 4.,1.,1.,1,1,100  NRBLeRa   
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Figure 4a: Influence of negative N on streamline distribution 
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            Figure 4b:  Negative N effects on iso-temperature distribution   
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Figure 4c:  Negative N effects on iso-concentration distribution  
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              Figure 4d: Negative N effects on iso-micro-rotation distribution 

 

Figures 4a to d: 4.,1.,1.,1,1,100  NRBLeRa   
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Figure 5a: Iso-concentration profile for Le = 0.01    
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Figure 5 b:  Iso-concentration profile for Le = 0.1  
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Figure 5d: :  Iso-concentration profile for Le = 1.0  

 

        0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

Figure 5d:  :  Iso-concentration profile for Le = 2.0  

Figures 5 a to d: 1.,1.,1.,1,1,100  NRBLeRa   
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Figure 6a: Streamline profiles ( 100, 1, 1., 1., 1., .01)Ra Le B R N     

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

         

   Figure 6b: Iso-temperature profiles ( 100, 1, 1., 1., 1., .01)Ra Le B R N        
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      Figure 6c: Iso-concentration profiles( 100, 1, 1., 1., 1., .01)Ra Le B R N        
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Figure 6 d: Iso-microrotation profiles 100, 1, 1., 1., 1., .01)Ra Le B R N       
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Figure 7a: Streamline Profiles ( 200, 1, 1., 1., 1., .01)Ra Le B R N       
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Figure 7b: Iso-temperature Profiles ( 200, 1, 1., 1., 1., .01)Ra Le B R N       
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Figure 7c: Iso-concentration Profiles ( 200, 1, 1., 1., 1., .01)Ra Le B R N       
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Figure 7d: Isomicrorotation Profiles ( 200, 1, 1., 1., 1., .01)Ra Le B R N       

 



27 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
 
Figure 8a: Streamline profiles ( 300, 1, 1., 1., 1., .01)Ra Le B R N       
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Figure 8b: Iso-temperature  profiles ( 300, 1, 1., 1., 1., .01)Ra Le B R N       
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Figure 8c: Iso-concentration profiles  ( 300, 1, 1., 1., 1., .01)Ra Le B R N       
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Figure 8d: Iso-micro-rotation profiles  ( 300, 1, 1., 1., 1., .01)Ra Le B R N        
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Figure 9a:  Iso-microrotation for Pr .733   ( )1.,1.,1.,1,1,100  NRBLeRa   
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Figure 9b:  Iso-microrotation for Pr 1.0  ( )1.,1.,1.,1,1,100  NRBLeRa   

 



30 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
 
Figure 9c:  Iso-microrotation for Pr = 7 ( )1.,1.,1.,1,1,100  NRBLeRa   
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 Figure 9d:  Iso-microrotation for Pr = 10 ( )1.,1.,1.,1,1,100  NRBLeRa   
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Figure 9e :  Iso-microrotation for Pr = 100 ( )1.,1.,1.,1,1,100  NRBLeRa           
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 Figure 9f: :  Iso-microrotation for Pr = 1000 ( )1.,1.,1.,1,1,100  NRBLeRa     
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The variation of the rate of heat transfer (-T
/
(0) ) and mass transfer (-S

/
(0)) with respect to 

buoyancy parameter (N) and Lewis number (Le) are provided in table 1. Results from both the 

finite element computations and the finite difference computations are shown to be in excellent 

agreement. It can be seen that the rate of heat transfer increases with increase in N , while rate of 

mass transfer first decreases for 1N , but increases for 1N . The rate of heat transfer increases 

and mass transfer both decreases for 1Le , while opposite effects are observed for 1Le .  In all 

the data computed, Ra = 100,  = 0.5, Pr = 1.0, R = 1 (micropolar vortex viscosity and 

Newtonian dynamic viscosity are equal) and B = 0.5. 

In the present study the flow in the enclosure comprises a single roll, the tendency of 

which is to rearrange the biofluid into a position of stable stratification, one in which the warm 

fluid that initially occupied the left half eventually moves to the upper half of the domain. 

Concentration gradient reversal is evident at the core of cavity due to strong flow recirculation, as 

shown in figure 1c. The isotherms reveal that the rate of heat transfer is high at the bottom of the 

hot wall due to flow impingement at this location, and rate of heat transfer decreases along the hot 

wall. Iso-concentration plots indicate a concentration bias towards the upper horizontal boundary 

while the micro-rotation profiles (figure 1d) show a clear vortex structure in the centre of the 

enclosure. 

Figures 2a to 2d illustrate the results obtained by increasing N  from zero to unity for 

which the solutal and thermal buoyancy are equal. Lewis number is unity and therefore the 

thermal and species diffusivities are also equal.  For this value of N  there is a competition 

between thermal and solutal buoyancy forces. With the increase in buoyancy ratio the flow near 

the hot right wall is driven vertically upward, and whereas the low concentration at the upper wall 

causes the bioreactor fluid near it to sink. Clearly both the thermal and solutal buoyancy effects 

augment each other and thus they simultaneously accelerate the flow counterclockwise. As N  

increases, the flow is driven solely by the solutal buoyancy forces. We note that for N = 1, the 

iso-temperature curves become more intensely packed towards the left wall of the enclosure 

(figure 2b) compared with the case for N = 0 (figure 1b). The iso-concentration profiles are also 

substantially affected. They are intensified in the region of the upper horizontal wall and the 

vorticity near the central region of the enclosure is also increased (figure 2c) compared with the 

case for N = 0 (figure 1c). The micro-rotation profiles are also affected. Magnitudes in particular 

in the central zone of the enclosure are enhanced for N = 1 (figure 2d) compared with the case for 

N = 0 (figure 1d). 
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The influence of yet larger values of buoyancy ratio (N = 4) are depicted in figures 3a to 

3d. It is clear from all the figures that for N = 4, the strength of the flow circulation is decreased 

(compared with lower N values in figures 1a to 1d and 2a to 2d); conversely concentration and 

thermal reversal diminishes. Heat transfer takes place mainly by conduction as is evident from the 

isotherm distribution. Micro-rotation profiles are also seen to become more intensified with N = 

4. 

The typical feature of opposing double diffusion flow ( 0N ) is shown in figures  4a to 

4d, for which the flow is driven mainly by destabilizing solutal buoyancy forces. In this sceanrio, 

the temperature and concentration are linearly stratified in the horizontal and vertical direction. 

The most striking features of the effect of negative N is the suppression of convection as a 

transport mechanism. The suppression is most dramatic in the vicinity of 1N , i.e. in flows 

where the temperature and concentration buoyancy effects are of the same order of magnitude 

and in opposing direction. Indeed, the flow disappears altogether in the limiting case 1Le , 

1N . The circulation is reversed as N because as low as 4N  as shown in fig.4: here the 

flow is mainly counterclockwise, and the boundary layers start from the upper left hand and lower 

right hand corners. Micro-rotation is seen to weaken considerably in the central enclosure region 

(figure 4d). 

Figures 5a to 5d illustrate the effect of Lewis number (Le) on the concentration field 

which is coupled to the heat transfer driven flow. Lewis number defines the ratio of thermal and 

mass diffusivities. It entails therefore the relative thickness of the thermal boundary layer thickness 

to the concentration boundary layer thickness. It also defines the ratio of Prandtl number to Schmidt 

number, where the latter is a relative measure of the effectiveness of momentum and mass transport 

by diffusion in the velocity and concentration boundary layers. At small Lewis numbers ( 0.1Le  ) 

the concentration boundary layers are no longer distinct and mass transfer through the porous layer 

is mainly by diffusion in the horizontal direction. The opposite effect is encountered at high Lewis 

numbers ( 5.0Le  ), where the concentration boundary layers become sharper than the thermal 

boundary layers. In addition, at high Lewis numbers the mass diffusivity is low enough relative to 

the thermal diffusivity so that the horizontal intrusion layers lining the top and bottom walls are 

considerably sharper than their thermal counterparts. The net result is that the core of the 

concentration field at high Lewis numbers is in a state of almost uniform concentration.  

The influence of Rayleigh number on the flow regime is illustrated in three sets of  plots, 

figures 6a to 6d (Ra = 100), figures 7a to 7d (Ra = 200) and figures 8a to 8d (Ra = 300). The other 

parameters in all three sets of distributions have values of Le = 1, B = 1,  =1, R = 1 and N = 0.01. 

The Rayleigh number signifies the relative importance of the buoyancy force to viscous force in 
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mixed convection flows. As Ra increases from 100, to 200 and 300, streamline profiles (figures 6a, 

7a and 8a) become increasingly concentrated towards the left wall of the enclosure. Iso-temperature 

profiles are seen to intensify also in the vicinity of the left wall as Rayleigh number rises from 100, 

200 to 300 as shown in figures 6b, 7b and 8b. Concentration profiles become increasingly intense 

towards the upper horizontal boundary as Ra increases (figures 6c, 7c and 8c). Finally micro-

rotation profiles are shown in figures 6d, 7d and 8d as Ra increases from 100 to 200 and then 300. 

A rise in Ra to 200 increases the concentration of micro-rotation in the top right zone of the 

enclosure while simultaneously intensifying the micro-rotation (angular velocities) in the central 

region. This trend however decreases as Ra is increased further to 200 indicating a critical zone 

between 200 and 300 where micro-rotation intensity is maximized. 

The influence of Prandtl number on the micro-rotation profiles is illustrated in figures 9a to 

9f.  A rise in Pr from 0.733 (corresponding to air or water) through 1.0 (water), 7 (brine/water), 10 

(weakly bio-rheological suspensions), 100 and 1000 (higher viscosity biofluids), corresponds to a 

decrease in thermal conductivity of the biofluid (i.e. an increase in Prandtl number for constant 

values of dynamic viscosity and specific heat capacity, Pr = cp /Kc).  Prandtl number quantifies the 

relative effectiveness of momentum and energy transport by diffusion in the velocity and thermal 

boundary layers. Prandtl therefore strongly influences the relative growth of the velocity and 

thermal boundary layers. Small values of the Prandtl number, Pr << 1, means the thermal 

diffusivity dominates. Conversely with large values, Pr >> 1, the momentum diffusivity 

dominates the behavior. Prandtl number is inversely proportional to thermal conductivity of 

the biofluid. Therefore as Pr increases, thermal conductivity of the fluid must decrease and 

this reduces the contribution of thermal conduction heat transfer. Furthermore with 

increasing Prandtl number, the viscous boundary layer becomes increasingly larger than the 

thermal boundary layer. Prandtl number therefore is a significant parameter influencing 

thermofluid characteristics in the regime.  

The other parameters in all six profiles have values of Ra = 100, Le = 1, B = 1,  =1, R = 1 

and N = 1. As Pr increases from 0.733 to 1.0 (figures 9a and 9b) we observe a decrease in 

concentration of is-micro-rotations in the upper right corner vicinity of the enclosure; there is 

nevertheless an increase in concentration of profiles in the central region. As Pr rises to 7 (figure 

9c), profiles become less concentrated but then increase again for Pr of 10 (figure 9d).  For very 

high values of Pr, corresponding to lower thermal conductivities, profiles become progressively 

more sparse, even though magnitudes remain essentially the same.  In the right half of the enclosure 

iso-micro-rotations are almost parallel with larger separations for the Pr = 1000 case. 
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5. CONCLUSIONS 

A two-technique numerical solution has been obtained for the micropolar double-diffusive heat 

and mass transfer in an enclosure, as a model of bioreactor systems. The results have indicated 

that: 

1. For sufficiently small N , the flow is mainly governed by the thermal buoyancy, while for 

its large value, the flow characteristics are similar to those of pure solutal convection. The 

flow is solutally driven when Le  is small and thermally driven when Le  is sufficiently 

high. For intermediate value of Le , both solutions are possible. 

2. The rate of heat transfer increases with increase in N , while mass transfer first decreases, 

then increases as N  increases. 

3. The rates of heat and mass transfer are conversely affected with a rise in Lewis number. 

4. Rising Prandtl number generally decreases micro-rotation concentrations in the 

enclosure. 

5. An increase in Rayleigh number also increases streamlines circulation profiles   towards 

the left wall of the enclosure, intensifies iso-temperature profiles in the vicinity of the left 

wall, enhances is-concentration (species) profiles towards the upper horizontal boundary 

and boosts concentration of iso-micro-rotations in the top right zone of the enclosure.  

The present study has demonstrated the excellent versatility of finite element methods in 

simulating transport in bioreactor enclosures. Future studies will also incorporate chemical 

reaction effects. Reactive flows may be either homogenous or heterogenous, destructive or 

productive. They may also be first, second or higher order. These aspects may be of relevance to 

better understanding bioreactor physico-chemical micropolar flows since chemical reaction may 

significantly influence both heat and species diffusion rates. Indeed we have employed many of 

these approaches for simulating chemical reactions in recent years, and the approaches developed 

in [32]-[38] will be explored in enclosure micropolar convection flows in the near future. The 

formulations adopted will range from linear to quadratic and also exponential. They can be 

elegantly integrated into the transport equations. 
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NOMENCLATURE 

Roman 
A enclosure aspect ratio 

B  micro-inertia density parameter  
D species (molecular) diffusivity 
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g gravitational acceleration 

G’ dimensional micro-rotation component (angular velocity) 

G non-dimensional micro-rotation component (angular velocity) 

he   x-direction step-length in finite difference algorithm 

'H  height of enclosure 

Kv Eringen micropolar parameter 

[K
mn

] stiffness matrix in finite element domain 

ke  y-direction step-length in finite difference algorithm 

 Le Lewis number 

'L  width of enclosure 

M  angular velocity (microrotation) vector  

N  buoyancy ratio 

Nu Nusselt number 

P hydrodynamic pressure 

Pr Prandtl number 

R  Eringen non-dimensional micropolar vortex viscosity parameter 

Ra Rayleigh number 

Sh Sherwood number 

S’ concentration difference  

'hS      concentration at lower boundary of enclosure  

1 'S  concentration at upper boundary of enclosure 

'0S   reference concentration at .0',0'  yx  

S’ dimensional concentration  

S non-dimensional concentration 

'hT  temperature at vertical left wall of enclosure  

'Tc      temperature at vertical right wall of enclosure 

'0T   reference temperature at .0',0'  yx  

’ temperature difference  

T’ dimensional temperature 

T non-dimensional temperature 

 u’ dimensional x’-direction velocity 

u non-dimensional x’-direction velocity 

v’ dimensional y’-direction velocity 

v non-dimensional y’-direction velocity 

V  translational velocity vector 

wi arbitrary test function in finite element model 

x
/ 

coordinate parallel to base of enclosure (horizontal) 

y
/ 

coordinate transverse to base of enclosure (vertical) 

 

Greek 

* viscosity coefficient of micropolar fluid 

 thermal diffusivity of micropolar fluid  

 viscosity coefficient of micropolar fluid 

  viscosity coefficient of micropolar fluid 
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 viscosity coefficient of micropolar fluid (micropolar material parameter) 

 viscosity coefficient of micropolar fluid (dynamic viscosity) 

 viscosity coefficient of micropolar fluid 

  mass density of micropolar fluid 

S  coefficient of species expansion  

T  coefficient of thermal expansion 

i   linear interpolation function in finite element model 
e  rectangular element in finite element discretized domain 

 kinematic viscosity 

’ dimensional stream function 

 non-dimensional stream function 
 


