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ABSTRACT

Ecogeographical patterns of morphological variation were studied in the Eurasian pygmy shrew
Sorex minutus to understand the species’ morphological diversity in a continental and island
setting, and within the context of previous detailed phylogeographic studies. In total, 568
mandibles and 377 skulls of S. minutus from continental and island populations from Europe
and Atlantic islands were examined using a geometric morphometrics approach, and the
general relationships of mandible and skull size and shape with geographical and environmental
variables was studied. Samples were then pooled into predefined geographical groups to
evaluate the morphological differences among them using analyses of variance, to contrast the
morphological and genetic relationships based on morphological and genetic distances and
ancestral state reconstructions, and to assess the correlations of morphological, genetic and
geographic distances with Mantel tests. We found significant relationships of mandible size with
geographic and environmental variables, fitting the converse Bergmann’s rule; however, for
skull size this was less evident. Continental groups of S. minutus could not readily be
differentiated from each other by shape. Most island groups of S. minutus were easily
discriminated from the continental groups by being larger, indicative of an island effect.
Moreover, morphological and genetic distances differed substantially, and again island groups
were distinctive morphologically. Morphological and geographical distances were significantly
correlated, but not so the morphological and genetic distances indicating that morphological
variation does not reflect genetic subdivision in S. minutus. Our analyses showed that
environmental variables and insularity had important effects on the morphological differentiation

of S. minutus.

ADDITIONAL KEYWORDS: Bergmann'’s rule — environmental correlates — geometric

morphometrics — island rule — morphological evolution — resource rule — small mammal.

Page 2 of 35

Biological Journal of the Linnean Society



Page 3 of 72

©CoO~NOUTA,WNPE

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Biological Journal of the Linnean Society

INTRODUCTION

Ecogeographical ‘rules’ describe general trends in morphology and related traits along
geographical gradients. Recently, there has been a renewed interest in developing a more
comprehensive and integrative understanding of the generality of these trends and the
mechanisms that cause them (Lomolino et al., 2006; McNab, 2010).

Two of the best-known ecogeographical rules are Bergmann’s rule and the island rule. In its
original form, Bergmann'’s rule states that warm-blooded vertebrate species (or races or
populations within a species) from cooler climates tend to be larger than congeners from
warmer climates (Bergmann, 1847; Blackburn, Gaston & Loder, 1999). This vaguely defined
rule, later reformulated to refer to populations within species or to species in a monophyletic
higher taxon, describes a positive relationship between body size and latitude (Mayr, 1963;
Blackburn et al., 1999; Meiri, 2011). The island rule predicts an increase of body size for small
mammals (gigantism) and a decrease of body size for large mammals (dwarfism) in island
populations compared to mainland populations (Van Valen, 1973). Although it has been argued
that Bergmann’s rule is a valid generalisation (Ashton, Tracy & Queiroz, 2000; Meiri & Dayan,
2003), there are species data showing the opposite trend (the converse Bergmann’s rule) and a
lack of support (non-significant results) from a large number of species [see Ashton et al. (2000)
and Meiri & Dayan (2003)]. Likewise, the validity of the island rule has been questioned
because most studies have used poor size indices, very large islands or mainland populations
only distantly related to the island populations (Lomolino, 2005; Meiri, Dayan & Simberloff,
2006; Meiri, Cooper & Purvis, 2008), and because there is a large number of studies that show
evidence against it (Raia & Meiri, 2006; Meiri et al., 2008; Meiri, Raia & Phillimore, 2011).
Furthermore, McNab (2010) argued that geographic patterns in size variation should not be
subdivided into different ecological rules, but rather considered as aspects of the same
phenomenon concerning the differential allocation of energy and physiological responses to

resource availability.
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Considering the controversy associated with these ecogeographical patterns, more
comprehensive intra- and interspecific studies are needed to determine their validity and basis
(Lawlor, 1982; Lomolino, 2005; Gaston et al., 2008; Meiri et al., 2008). This includes careful
attention to anomalous findings because they may reflect distinctive features that point to causal
explanations, or the use of combined approaches important for developing an integrative
understanding of biogeographic patterns and generation of hypotheses (Lomolino et al., 2006).

In this study, we use the Eurasian pygmy shrew Sorex minutus (Linnaeus, 1766;
Soricomorpha: Soricinae) as a model species for investigating different ecogeographical
patterns along geographic, climatic and environmental gradients in continental and insular
settings, and in a phylogeographic context. S. minutus has a broad geographic distribution in
continental Eurasia, from Lake Baikal in Siberia to Southern, Central and Northern Europe, and
in the British Isles (Mitchell-Jones et al., 1999). It is found in very different habitats such as
alpine and northern tundra, forests, shrub lands, swamps, heaths and grasslands (Hutterer,
1990). The phylogeographic history has been thoroughly studied. Six mitochondrial (mt) DNA
lineages with discrete geographic distributions have been described (Mascheretti et al., 2003,
McDevitt et al., 2010, 2011; Vega et al., 2010a,b), with support from Y-chromosome markers
(McDevitt et al., 2010, 2011): four Southern European lineages distributed within the three
European Mediterranean peninsulas, namely the ‘Iberian’, ‘Italian’, ‘South Italian’ and ‘Balkan’; a
‘Northern’ clade distributed from Lake Baikal to Central and Northern Europe, and also found in
Britain; and a ‘Western’ clade found in the Pyrenees, Northern Spain (Cantabria Mountain
Range), Western France, Ireland and in the periphery of Britain and islands off the western and
northern coast of Britain forming a ‘Celtic fringe’ (Searle et al., 2009; McDeuvitt et al., 2011). The
Northern and Western lineages colonised Britain sometime after the Last Glacial Maximum over
the land bridge with continental Europe (Vega et al., 2010a; McDeuvitt et al., 2011), and the
Western lineage colonised Ireland within the last 10,000 years via a human-mediated

introduction (McDevitt et al., 2009, 2011).
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We explored the following questions: 1) What is the morphological diversity of S.
minutus throughout its European range; in particular, are there geographic, climatic and/or
environmental patterns in continental Europe and/or relating to island occupancy in the British
Isles? 2) To what extent does the morphological diversity in continental Europe and the British
Isles resemble the phylogeographic pattern detected with molecular markers? To study these
questions, we used a geometric morphometric approach (Rohlf & Marcus, 1993) combined with
environmental and phylogeographic information to investigate the biogeography of S. minutus,
one of the many small mammals that are widespread in Europe but for which there has been
remarkably little effort to document or understand their non-molecular geographic variation
using modern methodologies.

Geometric morphometrics is a method for the study of form (the shape and size of an
object) based on Cartesian landmark coordinates, where the geometry of the configuration of
landmarks is preserved throughout the analysis (Zelditch et al., 2004; Mitteroecker & Gunz,
2009). Combined with genetic, ecological, environmental and taxonomical information,
geometric morphometrics is an exceptionally powerful tool for studying intraspecific variation
(Loy, 1996; Zelditch et al., 2004; Nogueira, Peracchi & Monteiro, 2009; Vega et al., 2010b) and

has great potential for our understanding of ecogeographical patterns.

MATERIALS AND METHODS

COLLECTION AND DIGITISATION OF SAMPLES

We acquired S. minutus specimens from our own fieldwork ethically collected (Sikes et al.
2011), from owl pellets and from museum and private collections (Appendix S1, Table S1). In
total, we analysed 568 mandibles and 377 skulls from continental and island sites in Europe
(Fig. 1). Photographic images of the external side of left hemi-mandibles and the left half of the
ventral side of skulls were taken using a digital camera at a fixed distance. Mandibles were

placed flat under the camera lens. Skull samples were placed on a purpose-built polystyrene
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and Plasticine cradle leaving the ventral side parallel to the lens, judged by eye. A small piece of
graph paper was included as a scale in each photograph and the sample was placed in the
middle of the image area to avoid parallax.

Morphological analyses on the mandible and skull data sets were carried out using the

‘tps-Series’ software (by F.J. Rohlf, available at http://life.bio.sunysb.edu/morph/). Eighteen

landmarks were placed on the external side of left hemi-mandibles and 19 landmarks were
placed on the left half of the ventral side of skulls using tpsDig2 (Appendix S1, Fig. S1). The
selected landmarks provided a comprehensive sampling of the morphology of the biological

structures under study (Zelditch et al., 2004).

MORPHOMETRIC ANALYSIS OF MANDIBLES AND SKULLS
The size of each mandible and skull was estimated as the Centroid Size (CS) obtained with
tpsRelw and was transformed with natural logarithms. CS is a convenient estimator for size
used commonly in geometric morphometric studies (Bookstein, 1996; Slice et al., 1996; Frost et
al., 2003); it is uncorrelated with shape in the absence of allometry (Zelditch et al., 2004) and it
is often highly correlated with body mass (Frost et al., 2003). The landmark configurations were
aligned, translated, rotated and scaled to unit CS using Generalised Procrustes Analysis (GPA),
and the Procrustes coordinates and average landmark configuration were obtained (Rohlf &
Slice, 1990). The Procrustes distances to the average configuration and pairwise Procrustes
distances among samples (Zelditch et al., 2004) were computed, approximated to a Euclidean
space using an orthogonal projection and used as a measurement of morphometric distances.
The significance of allometry (change in shape associated with size differences) was
tested for the continental and island groups separately for mandibles and skulls with multivariate
regressions using Morphod (Klingenberg, 2011). Allometry was significant in continental and
island groups for mandibles and skulls; therefore, the regression slopes between groups were

then compared with MANCOVA in tpsRegr and were not statistically significant (data not shown)
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152 (Viscosi & Cardini, 2011). To control for allometric effects on mandible and skull shape
153  variables, we performed multivariate regressions using Morphod and kept the residuals as

154  allometry-free shape variables for further analysis. We performed a Principal Components

©CoO~NOUTA,WNPE

10 155  Analysis (PCA) in JMP version 10 (SAS Institute, Cary, NC, USA) on the shape variables and
12 156 kept 16 and 17 PCs for mandibles and skulls, respectively, which explained = 1% of total shape
14 157  variation. We also carried out a variety of other preliminary analyses including landmark

158  placement repeatability, sexual dimorphism and a test for phylogenetic signal (see Supporting
19 159 Information for details).

51 160

23 161 GENERAL ECOGEOGRAPHICAL PATTERNS

25 162  For each specimen we determined geographical data including latitudinal and longitudinal

27 163  coordinates from fieldwork and museum records, and digital elevation data from the Consortium

ég 164  for Spatial Information at a 90 arc-minute resolution (available at http://srtm.csi.cgiar.org). Data
g; 165  for climatic variables (taken from the 1950-2000 period) were obtained from WorldClim
33

34 166  (available at http://www.worldclim.org/) at a 2.5 arc-minute resolution using DIVA-GIS version

36 167 7.4.0.1 (available at http://www.diva-gis.org/), including annual trends variables and extreme or

38 168 limiting environmental variables: annual mean temperature (BIO1), maximum temperature of the

40 169  warmest period (BIO5), minimum temperature of the coldest period (BIO6), annual precipitation

jé 170  (BlO12), precipitation of the wettest period (BIO13), precipitation of the driest period (BIO14),
jg 171  precipitation of the warmest quarter (BIO18) and precipitation of the coldest quarter (BIO19).
46

47 172 Seasonal variables (annual range in temperature and precipitation) were excluded because they
49 173  are composite climatic variables [e.g. BIO7 = temperature annual range (BIO5-BIO6)] and

51 174  would only complicate the interpretation of the results. We also obtained terrestrial net primary
53 175  production (NPP) values from MODIS GPP/NPP (MOD17) at 1 km resolution from 2000 through
176 2009 (Zhao & Running, 2010). NPP is an environmental variable that quantifies the amount of

58 177  atmospheric carbon fixed by plants and accumulated as biomass. In total, we obtained data for
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12 geographic, climatic and environmental variables, and for simplicity they are called
‘environmental variables’ throughout.

Because combinations of the 12 environmental variables showed correlations with each
other, we performed a PCA using JMP on these variables and kept the first three environmental
PCs for further analysis. PC1, PC2 and PC3 had eigenvalues = 1.0 and together explained
more than 80% of the variation for the environmental data sets (Appendix S1, Tables S2 and
S3). The eigenvector matrices showed that: 1) PC1 was loaded with positive eigenvectors for all
precipitation variables; low values indicate low precipitation mostly found in the central regions
of the Iberian peninsula, eastern parts of the Balkan peninsula but also in central-northern
regions in Europe, while high values indicate high precipitation mostly found in the western
coast of Ireland and in some areas of the Alps. 2) PC2 was loaded with a combination of
negative eigenvectors for latitude and minimum temperature of the coldest period, and positive
eigenvectors for longitude and altitude; low values indicate high latitude, low altitude and
moderate temperatures during winter mostly found in central and western regions of continental
Europe and in the Atlantic islands, while high values indicate high altitude, low latitude, high
longitude and relatively low temperatures during winter mostly found in central and eastern
regions like in the Balkan peninsula and in mountain areas of the Italian peninsula. 3) PC3 was
loaded with a combination of negative eigenvectors for latitude and positive eigenvectors for
annual mean temperature, maximum temperature of the warmest period and NPP; low values
indicate colder climate and moderate productivity from high latitudes, while high values indicate
warmer climate and higher productivity mostly found in central latitudes.

Several statistical analyses were done on size and shape variables for the mandible and
skull data sets. Using a Standard Least Squares approach in JMP, we performed multiple
regressions of size on latitude, altitude and annual mean temperature (typical variables used to
study Bergmann’s rule) for the mandible and skull data sets. Because Bergmann’s rule and the

island rule may be better explored using biologically relevant environmental variables, we
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204  performed multiple regressions of size and shape on the three environmental PC for the
205 mandible and skull data sets. This approach was used to see the effects of each variable on

206  size but controlling for the effects of the other variables. The significance of the models and of

©CoO~NOUTA,WNPE

10 207 each variable was obtained with ANOVAs comparing the fitted model to a simple mean model.
12 208 Moreover, size differences between continental and island samples for the mandible and skull

14209 data sets were estimated with ANCOVA in JMP using the three environmental PCs as

13 210  covariates after testing for homogeneity of slopes.
ig 211 To evaluate the environmental effects on mandible and skull shape, and to estimate how
20

21 212 well the variation in shape can be predicted by environmental variables, we did multivariate
23 213  multiple regression analysis of shape variables on the three environmental PCs using JMP.
25 214  Two-Block Partial Least Squares analysis was conducted in JMP to describe the covariation

27 215  between the geographical (latitude, longitude, altitude), climatic (WorldClim) and NPP variables

ég 216  with the variation in shape (Appendix S1, Tables S4 and S5). In Two-Block Partial Least
g; 217  Squares analysis linear combinations of the predictors are extracted with the objective of
33

34 218  explaining as much of the variation in each response variable as possible, but accounting for
36 219  variation in the predictors.
38 220 The mandible and skull photographs, landmark coordinates (in TPS format) and the

40 221 environmental variables for all samples are available from DRYAD (doi: upon acceptance).

42

43 222

j;‘ 223 GENETIC ANALYSES
46

47 224  Atotal of 519 cyt b sequences of S. minutus were obtained from GenBank (AB175132,

49 225 AJ535393-AJ535457, GQ494305-GQ494305, GQ272492-GQ272518, JF510321-JF510376). A
51 226  sequence of S. volnuchini (AJ535458) from Anatolia was used as the outgroup (Fumagalli et al.,
53 227  1999). DNA sequences were edited in BioEdit version 7.0.9.0 (Hall, 1999) and aligned by eye.
228  The phylogenetic relationships within S. minutus were inferred by Bayesian analysis as in Vega

58 229  etal (2010a). The lineages found were the same as in previous phylogeographic studies (e.g.

60 Page 9 of 35
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Mascheretti et al., 2003; McDeuvitt et al., 2010, 2011; Vega et al., 2010a, b) and were used as
phylogroups for further analysis.

With DnaSP version 5.10 (Librado & Rozas, 2009), we calculated the corrected net
number of nucleotide substitutions between pairs of phylogroups (Da), which represent the
proportional sequence divergence among them (Nei, 1987). The pairwise divergence values
(Da) among previously identified phylogroups were used for statistical comparison with the
morphometric data. We used the matrix of pairwise Da values to construct a Neighbour-Joining
(NJ) tree with MEGA version 4 (Tamura et al., 2007) to depict the evolutionary distances and

relationships between the phylogroups.

ECOGEOGRAPHICAL PATTERNS IN GEOGRAPHICAL GROUPS

To analyse size and shape differences in S. minutus among regions in a phylogeographic
context, we pooled the mandible and skull samples into 12 and 11 mutually exclusive
geographical groups, respectively, according to their cyt b phylogroup membership (if DNA data
were available from samples used in other studies) or to their known geographical origin (Fig.
1). The groups were designated as: ‘Iberian’, ‘ltalian’, ‘South Italian’, ‘Balkan’, ‘Northern’ and
‘Western’. Island groups were identified separately as ‘Ireland’, ‘Orkney Mainland’, ‘Orkney
Westray’, ‘Orkney South Ronaldsay’, ‘Belle fle’ (not available for skulls) and ‘Britain’.

We performed multiple regressions of size on the three environmental PCs using a
Standard Least Squares approach in JMP to determine the differences among the geographical
groups while controlling for the effects of each predictor variable. Mandible and skull size
differences among the groups were evaluated by ANCOVA followed by Tukey—Kramer post-hoc
tests as it allows for unequal sample size (Sokal & Rohlf, 1995).

Mandible and skull shape differences among the groups were evaluated with MANOVAs
on the allometry-free shape variables (16 for mandibles and 17 for skulls), followed by Hotelling

T? tests for multivariate comparisons performed in PAST version 2.17 (Hammer, Harper & Ryan,
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256  2001). Shape changes were visualised as thin-plate spline transformation grids (Zelditch et al.,
257  2004) computed with tpsSplin. Canonical Variate Analyses (CVA) using the shape variables as

258  predictors were performed in JMP to differentiate among the groups for the mandible and skull

©CoO~NOUTA,WNPE

10 259 data sets. The first two CVs were used to graph the samples separated by group membership
12 260 (Appendix S1, Table S6). Discriminant Function Analyses (DFA) were performed in JMP to

14 261  estimate group membership of the mandible and skull data sets using linear combinations of the
16 262 predictor variables that best discriminate between the groups. The leave-one-out (jackknife) with
19 263  cross-validation approach was used to validate the DFA (Cardini et al., 2009). Results were

21 264  averaged among three runs using a random subset of 70% of the samples from each group for
23 265 training the model and 30% for testing. The number of discriminant functions used for analysis
25 266  equalled the number of groups (K= 12 or K= 11) minus 1.

27 267 The Procrustes distances among the average configurations of the groups (including the
268  outgroup), for the mandible and skull data sets, were computed with tpsSmall and entered into
3 269 PAST to produce distance matrices and distance trees using the NJ method to evaluate the

34 270  morphological relationships. The geographic midpoints for the groups were calculated with the

36 271  Geographic Midpoint Calculator (available at http://www.geomidpoint.com/), and were used to

38 272  obtain the pairwise geographic distances among them with the Geographic Distance Matrix
40 273 Calculator version 1.2.3 (by P.J. Ersts, available at

274  http://biodiversityinformatics.amnh.org/open_source/gdmg). Mantel tests were performed in

a5 275 PAST on pairwise Procrustes and geographic distances among the groups, and on pairwise

47 276  Procrustes distances among the groups and pairwise genetic divergence (Da) values of the cyt
49 277 b phylogroups. In addition, we did a partial Mantel test of Procrustes distances and geographic
51 278 distances, but controlling for genetic distance. The significance of the tests was obtained by a
53 279  permutation procedure with 10,000 bootstraps. Mandible and skull CS and Procrustes distances

280  were mapped onto the NJ tree of cyt b phylogroups using squared-change parsimony in
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Mesquite 2.75 (Maddison & Maddison 2011) to show size and shape evolution using eight

categorical bins.

RESULTS
GENERAL ECOGEOGRAPHICAL PATTERNS
The results from multiple regressions of size on latitude, altitude and annual mean temperature),
or on environmental variables (PC1, PC2 and PC3) are summarised in Table 1 (see also
Appendix S1, Table S3). Typical Bergmann’s rule variables statistically predicted mandible size,
but the data contains a high amount of unexplained variability (F, s¢3 = 5.274, P < 0.001, R? =
0.036). Latitude was negatively related with size, and annual mean temperature did not
contribute significantly to the model. Environmental variables statistically predicted mandible
size also with a high amount of unexplained variability (Fy, 563 = 4.179, P = 0.02, R?= 0.029). All
variables were positively related with size and contributed significantly to the model. On
average, continental samples showed significantly larger mandible size than island samples (F
= 6.204, P = 0.013) mostly driven by the larger mandible size of southern samples from
continental Europe. Typical Bergmann’s rule variables statistically predicted skull size, and the
model explained more variability than in the mandible data set (F, 37, = 31.155, P < 0.001, R?=
0.251). Annual mean temperature did not contribute significantly to the model and latitude only
marginally so. Environmental variables statistically predicted skull size with a high amount of
unexplained variability (F, 57> = 4.1, P = 0.03, R? = 0.042), and only PC1 contributed significantly
to the model. On average, island samples showed marginally significant larger skull size than
continental samples (F = 4.661, P = 0.031).

Environmental variables had small but significant effects on allometry-free shape of
mandibles and skulls, and together accounted for 5.1% and 11.9% of mandible and skull shape
variation, respectively (Table 2). PC3 explained the highest percentage of shape variation in

both data sets. With the Two-Block Partial Least Squares analysis, 10 and 9 factors were
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extracted which explained 13.6% and 18.4% of mandible and skull shape variation, respectively

(Appendix S1, Tables S4 and S5).

GENETIC ANALYSES

There were 303 cyt b haplotypes for S. minutus that clustered into six main phylogroups
(Mascheretti et al., 2003; McDevitt et al., 2010, 2011; Vega et al., 2010a, b). We distinguished
the following continental phylogroups for comparison with the morphological data (Fig. 3):
‘Northern’ (n = 101), which included samples from Central and Northern Europe to Lake Baikal
in Siberia. ‘Italian’ (n = 26), mostly restricted to the northern and central parts of the Italian
peninsula. ‘Western’ (n = 15), which included samples from the Cantabrian Mountains, the
Pyrenees and Western France. ‘South Italian’ (n = 4), geographically restricted to La Sila
Mountain, Calabria in Southern Italy. ‘Iberian’ (n = 3), geographically restricted to the Iberian
peninsula. ‘Balkan’ (n = 4), which included samples from Macedonia and Turkish Thrace in the
Balkan peninsula. We also distinguished the following island groups (Fig. 3): ‘Ireland’ (n = 94),
‘Orkney Mainland’ (n = 44), ‘Orkney Westray’ (n = 33), ‘Orkney South Ronaldsay’ (n = 40) and
‘Belle Tle’ (n = 5) which clustered within the Western clade, and ‘Britain’ (n = 91) which clustered
within the Northern clade. Other samples (n = 59) clustered in the Western clade in the
molecular studies but were not used here because they belong to islands in the periphery of
Britain from where there were no morphological samples for comparison. Pairwise divergence
(Da) values among the phylogroups are shown in Appendix S2, Tables S7 and S8. The South
Italian, Iberian and Balkan groups and the outgroup showed the highest pairwise Da values,

whilst pairwise Da values among the Western, Irish and Orkney islands groups were the lowest.

ECOGEOGRAPHICAL PATTERNS IN GEOGRAPHICAL GROUPS
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While controlling for environmental factors, we found significant size differences among groups
for the mandible and skull data sets (mandibles: F; 556 = 24.186, P < 0.001; skulls: F1o, 366 =
8.658, P <0.001; Appendix S3, Table S9).

For mandible and skull size, there were latitudinal trends converse to Bergmann’s rule
among the continental groups, and island effects for the island groups (Fig. 2A, B). The South
Italian, Iberian and Balkan groups, belonging to the southernmost latitudes, had the largest
mandibles among the continental groups. The Northern group had the smallest mandible of all
continental groups, and it was significantly different from all other continental groups, but not
significantly different from some island groups. The Orkney Mainland group, although at a high
latitude, had the largest mandible of all island groups, but only significantly different from Orkney
South Ronaldsay. All other island groups had comparable mandible sizes to those found in
continental groups, but larger than expected by latitude. The skull data set showed less
variation in size among the groups than the mandible data set, but also had a decreasing size
tendency with increasing latitude. The Iberian group had the largest skulls of the continental
samples. The Northern group had the smallest skulls on average, as in the mandible data set,
but this group was only significantly different in size from the Iberian and Orkney Westray
groups. Notably, the skulls from the Orkney islands were as large as the ones from the southern
groups and larger than the ones from the northern group, indicative of an island effect even
controlling for the latitudinal effect. The results relating to South Italy and Britain should be taken
with caution because of low sample size, but they are still indicative of the size trends in these
two areas.

The MANOVAs on allometry-free shape variables of mandibles and skulls showed
significant differences among the groups (mandibles: Wilks’ A = 0.1954, Fi76, 4950 = 5.521, P <
0.001; skulls: Wilks’ A = 0.0415, F170, 3056 = 5.319, P < 0.001; Appendix S3, Tables S10 and

S11). Based on thin-plate splines (Fig. 3A, B), shape variation was small and mostly evident
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356  between the southern groups and the Orkney islands. In southern latitudes and in larger
357 mandibles there was a relative forward movement of the landmarks on the lower part of the

358 mandible (landmarks 1 and 16 — 18) in relation to the landmarks between teeth alveoli

©CoO~NOUTA,WNPE

10 359 (landmarks 3 — 8), and a relative forward shift of the coronoid process (Fig. 3A). The three

12 360 groups from the Orkney islands had notable backward shifts of the coronoid process in

14 361  comparison to other groups, with Westray also showing pronounced variation in the frontal part
16 362  of the mandible, whereas in the Iberian and Balkan groups the coronoid process moved slightly
19 363 forward (Fig. 3A). In southern latitudes and in larger skulls, there was an outward movement of
21 364 landmarks 2 and 7 in relation to other landmarks between teeth alveoli (landmarks 3 — 6, 8 and
23 365 9), and opposite movements of landmarks 16 and 17 (Fig. 3B). This generally resulted in a

25 366  wider separation of the upper premolars, less pointed snouts, and smaller foramen magnum
27 367  compared to skulls from northern latitudes (Fig. 3B).

368 The first two CVs explained 69.6% and 62.2% of total shape variation among groups in
3o 369  the mandible and skull data sets, respectively (Appendix S1, Table S6). For purposes of

34 370 visualisation, scatter plots of the first two CVs are presented with group memberships for

36 371 mandibles (Fig. 4A) and skulls (Fig. 4B). In both data sets, the shape distribution of the

38 372  continental groups mostly overlapped, while Ireland and the Orkney islands could be

40 373 discriminated. Westray was the island group most easily discriminated, in accordance with the

jé 374  large Procrustes distances and shape variation found in the mandible and skull data sets. Belle
jg 375 lle (mandible data set only) and Britain (mandibles and skull data sets) could not be
46

47 376  differentiated from the continental samples. With the DFA, we classified correctly on average
49 377  44.9% and 54.6% of the individuals to their predefined group of mandibles and skulls,

51 378  respectively; however, this was mostly due to low classification scores for the continental

53 379 groups. The classification scores in the mandible and skull data sets were high the Orkney

380 islands groups in agreement with its notable shape differences.
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There were different topologies among the phylogenetic tree and the Procrustes
distances trees of mandibles and skulls (Fig. 5). For mandible and skull shape, the South Italian
group is the first to split from the rest, and Orkney Westray shows the highest shape distance of
all groups (Fig. 5A, B). Intraspecific variation in size and shape, mapped using squared change
parsimony and visualized on the NJ tree of phylogroups (based on Da), showed no apparent
relationship of size and shape with phylogenetic history of S. minutus (Fig. 5C-F). The Mantel
tests revealed that there were significant positive correlations between Procrustes and
geographic distances of mandible (R = 0.2653, P = 0.0471) and skull groups (R = 0.6019, P =
0.0004). However, the correlations between Procrustes and genetic distances were not
significant for mandible (R = — 0.0827, P = 0.5978) and skull groups (R =-0.2189, P = 0.8869).
While controlling for genetic distances, partial Mantel tests also revealed significant correlations
among Procrustes and geographic distances for mandible (R = 0.2935, P = 0.0360) and skull
groups (R =0.6818, P < 0.0001). Pairwise geographic and Procrustes distances among

mandible and skull groups are shown in Appendix S2, Tables S7 and S8.

DISCUSSION

CONTINENTAL DIFFERENTIATION IN SOREX MINUTUS

Bergmann’s rule has traditionally been studied in terms of latitude, altitude and temperature

(Meiri & Dayan, 2003; Meiri, 2011) and we explored this in S. minutus. However, because

Bergmann’s rule may relate to a combination or an interaction of environmental factors, we also

explored the morphological variation in S. minutus in relation to a whole range of geographic,

climatic and NPP variables within a phylogeographic and continental-and-island framework.
For S. minutus, the significant negative relationship of mandible size with latitude, and

the larger mandible and skull size in southern than in northern continental groups indicate a

pattern converse to Bergmann'’s rule. Using PC of geographical and environmental variables

shows a more complex basis to the size trends in S. minutus than purely an impact of latitude,
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407  altitude or temperature. PC1, PC2 and PC3, loaded with various combinations of latitude,
408 longitude, temperature and precipitation variables and NPP consistently showed a positive

409 relationship with mandible size, but only PC1 showed a positive relationship with skull size. We

©CoO~NOUTA,WNPE

10 410 concur with McNab (2010) that an emphasis in relation to Bergmann’s rule may be unhelpful,
12 411 and that the size trends relate to the availability of resources in a broad sense, which in turn
14 412  relates to various underlying environmental factors.

413 The converse Bergmann'’s rule has frequently been reported in shrews and may be a
19 414 common trend within Soricidae [for exceptions see White & Searle (2007) who found

21 415 Bergmann’s rule in S. araneus from British islands, and Ochocifiska & Taylor (2003) who

23 416 showed non-significant relationships of size with latitude for S. isodon and S. tundrensis].

25 417  Accordingly, the condylobasal skull lengths of S. araneus, S. caecutiens and S. minutus from

27 418 the Palearctic region relate negatively to latitude (Ochocinska & Taylor, 2003). Three mainland

ég 419  populations of S. trowbridgii from Western USA have decreasing cranial and mandibular
g; 420 dimensions with increasing latitude (Carraway & Verts, 2005) and variation in body size of S.
33

34 421  cinereus in Alaska contradicts Bergmann’s rule (Yom-Tov & Yom-Tov, 2005). Morphological
36 422 measurements of Neomys anomalus from Eastern Europe and the Balkans also relate
38 423  negatively to latitude but show evidence of character displacement when in sympatry with N.

40 424  fodiens (Kry$tufek & Quadracci, 2008). The northern short-tailed shrew (Blarina brevicauda) has

jé 425  a negative albeit non-significant relationship of size with latitude (Ashton et al., 2000).
jg 426  Consistent with converse Bergmann’s rule, size in N. anomalus and N. fodiens from Poland was
46

47 427  the smallest in the north and largest in the south when in sympatry, but when in allopatry both
49 428  species were larger at northern latitudes, showing the opposite pattern (Rychlik, Ramalhinho &
51 429  Polly, 2006).

53 430 Regarding shape patterns, environmental variables (reflected in the first three PCs)

431  explained small percentages of total shape variation (5.1% and 11.9% for mandibles and skulls,

58 432 respectively). It is not surprising that so much shape variation remained unexplained because
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other exogenous and endogenous factors may be playing important roles. Based on the CVA,
evolution on islands maybe a contributing factor. In a similar ecogeographical study on the
primate Cercopithecus aethiops from sub-Saharan Africa, the response of skulls to climatic
variables was stronger for size than for shape despite the evident intraspecific geographical
differences, and approximately 80% of shape variance remained unexplained (Cardini, Jansson
& Elton, 2007). Morphology can also be influenced in a complex way by climatic and
phylogenetic factors, and in Microtus savii both sets of factors contribute to shape variation of
the first lower molars, while tooth size is not affected by climatic conditions (Piras et al., 2010).
However, we did not detect a significant phylogenetic signal and the mapping of size and shape
on the phylogeny showed no apparent relationships. Although Mantel tests showed no
relationships of shape and genetic distances, the results have to be taken with caution because
Mantel test has lower power in comparison with other tests (Legendre & Fortin, 2010); however,
Mantel test has been traditionally used in morphological, ecological and genetic studies, it is
useful when data can be expressed as distances, and the Mantel test results are coherent with
other results presented here.

Why is the pygmy shrew generally smaller in northern latitudes than in southern
latitudes? There is some dispute about the mechanisms involved for Bergmann’s rule or its
converse (Blackburn et al., 1999; Meiri, 2011). However, the lower food availability in northern,
colder or less productive habitats is likely to be a selective factor acting on small mammals,
combined with lower absolute food requirements for smaller vs. larger species of small
mammals in less productive habitats (Ochocinska & Taylor, 2003). This may explain the small
size of shrews of the northern group of S. minutus which evolved in and expanded from
northern glacial refugial areas (Vega et al., 2010a). Populations of S. araneus in Finland are up
to 13% smaller inland than in the coast, where the main differences are lower winter
temperatures and less snow cover at inland sites, factors associated with lower habitat

productivity, which could selectively favour smaller shrews (Frafjord, 2008). In S. cinereus it has
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1

2

2 459  been suggested that the increase in size during the second half of the twentieth century is

2 460 related to increasing winter temperatures and higher food availability in winter due to improved
2

8 461  weather conditions for its prey (Yom-Tov & Yom-Tov, 2005).

9

10 462 Dehnel’s phenomenon (i.e. reduction of body size and mass of organs of soricine

11

12 463  shrews from northern temperate regions during winter) has been interpreted as an adaptation to

14 464  reduced prey abundance permitting a reduction in absolute food requirements in a group of

12 465  species that do not hibernate. However, recent findings indicate that prey numbers and biomass
ig 466  available for shrews (which do not hibernate) do not decrease during winter, but soil
20

21 467  invertebrates do change their vertical distribution, apparently requiring shrews to have a
23 468 modified more energetically costly foraging behaviour for consumption of energetically less
25 469  favourable prey (Churchfield, Rychlik & Taylor, 2012). In our study, a Dehnel effect is unlikely to

27 470 play a role because < 5% of our samples were collected during winter (those few individuals

ég 471  that were collected in winter were from Switzerland where we have a good sample size, and
g; 472  from Central Spain where results indicate large mandible and skull size). It should be noted that
33

34 473  phenotypic plasticity (the ability of a single genotype to produce more than one alternative form
36 474  of morphology, physiological state or behaviour in response to changes in environmental

38 475  conditions) cannot be ruled out as a possible explanation until proper experimental studies are
40 476  undertaken with shrews (Husby, Hille & Visser, 2011).

477 Size and shape variation of the mandible can affect the biomechanics of mastication by
45 478  modifying the sites of attachment of mandible muscles (Monteiro, Duarte & dos Reis, 2003).
47 479  Larger and morphologically distinctive mandibles could reflect stronger bite force or higher

49 480 mechanical potential for mastication, which could be an adaptation or a plastic response to

51 481 more arid conditions, to exploit a wider size-range of prey and prey with harder exoskeletons,
53 482  and/or character release in the absence of competitors (Strait, 1993; Carraway & Verts, 2005;
483  Monteiro et al., 2003). The association of diet and skull shape can be strong because muscles

5g 484  used for mastication are tightly linked to bone structure; for example, diet may explain up to
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25% of skull shape variance in marmots (Caumul & Polly, 2005). In S. minutus, a stronger bite
force was estimated for South Italian than for north European populations in relation to the
positioning of the coronoid process and horizontal ramus length (Vega et al., 2010b), and the

morphological patterns described in that study were similar to those found here.

ISLAND DIFFERENTIATION IN SOREX MINUTUS

Under the island rule, it is expected that small mammals on islands will have a larger body mass
than mainland conspecifics (Van Valen, 1973). Our results indicate that there is a strong island
effect operating on the size of mandibles and skulls of S. minutus from Ireland and the Orkney
islands. Moreover, these island groups were distinctive from continental groups in terms of
shape variation, and samples were assigned correctly to their island of origin. There was a lack
of correspondence between Procrustes distances and cyt b tree terminal branches. Overall, it
appears that environmental factors and insularity have stronger effects on morphology, perhaps
through local adaptation, genetic bottlenecks and/or plastic responses, than provided by
phylogenetic relationships. Therefore, S. minutus from Ireland and the Orkney islands shows
morphological differentiation from continental groups through island effects, while cyt b reveals
the close phylogenetic relationship of these island groups with continental Western Europe
(McDevitt et al., 2011).

Other shrew species on islands share similar trends. For example, S. trowbridgii from
Destruction Island (Washington State, USA) has greater average skull-breadth and mandibular
dimensions than the mainland counterpart (Carraway & Verts, 2005). S. araneus from several
Scottish islands are significantly larger than populations in mainland Britain and show larger
body size on islands in relation to distance to the mainland (White & Searle, 2007). Crocidura
russula from several French islands also show divergence in mandible shape in relation to
distance from the mainland and island size (Cornette et al., 2012). C. suaveolens from Corsica

is larger and has a smaller litter size than mainland populations in Southern France (Fons et al.,
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511  1997), indicating an island effect (Adler & Levins, 1994). Studies of other small mammals have
512  also shown morphological divergence of recently colonised island populations (e.g. Michaux et

513  al., 2007; Renaud & Michaux, 2007; Cucchi et al., 2014). Similar to our study, the mandible and

©CoO~NOUTA,WNPE

10 514  skull shape of Marmota vancouverensis from Vancouver Island is highly divergent from the

12 515 mainland counterpart M. caligata, despite small mtDNA sequence divergence (Cardini, 2003;
14 516  Cardini & O’Higgins, 2004). Previous morphological studies on S. minutus from islands around
517  Britain relate to presence/absence of S. araneus (Malmquist, 1985) but are difficult to interpret
19 518  because of anomalies in the reporting of sympatric and allopatric status of S. minutus on these
21 519  islands.

23 520 It may be possible that morphological traits in mammals evolve quickly on islands in a
25 521 matter of a few decades after colonisation (Pergams & Ashley, 2001; Millien, 2006; Cucchi et

27 522 al., 2014; but see also Meiri et al., 2006, 2008; Raia & Meiri, 2006, 2011). Given that S. minutus

ég 523 is the only shrew species in the Orkney islands and, until recently, it was the only shrew species
g; 524  inIreland, larger body mass (reflected in larger mandibles and skulls) could have evolved on
33

34 525 these islands driven by competitive release, the absence of predators and availability of
36 526 resources (McDevitt et al., 2014). Additionally, geographic isolation from continental populations
38 527 for several thousand years, genetic bottlenecks after colonisations from a low number of

40 528  migrants and low genetic diversity (very few cyt b haplotypes were observed in the Orkney

jé 529 islands despite the large sample size) could lead to deviation in morphology of island
jg 530 populations of S. minutus compared with the mainland (Cornette et al., 2012). Contrastingly,
46

47 531  specimens of S. minutus in Belle Tle and Britain have higher cyt b diversity (McDevitt et al.,

49 532 2011) and are similar in terms of mandible shape to continental samples. Additionally, Belle ile
51 533 and mainland Britain are occupied by other species of shrews.

53 534 Morphological differences may actually represent phenotypic plasticity expressed in
535 insular environments; however, this hypothesis has rarely been tested. Although, with our

58 036 resultsin S. minutus we cannot rule out phenotypic plasticity as a possible explanation, at least
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for C. suaveolens, differences in body size and litter size between island and mainland
populations were persistent over three generations in laboratory breeding conditions, thus
supporting the hypothesis that these differences are genetically determined rather than
phenotypic plasticity (Fons et al., 1997). The evolution of different size and shape in island
populations of S. minutus may thus be an adaptive response to changed availability of
resources, the ‘resource rule’ sensu McNab (2010), acting together with demographic and

historical factors.

CONCLUSIONS

In this study we explored the morphological variation of mandibles and skulls of S. minutus
across Europe using a geometric morphometric approach. We found notable ecogeographical
variation in mandible and skull size related to environmental variables and insularity, which may
suggest that the converse Bergmann’s rule and the island rule operate in S. minutus. We
believe, however, that these ecogeographical patterns could be more reasonably explained as a
response to resource availability, possibly reflecting adaptation or a phenotypically plastic
response to different habitats and environmental conditions, differential allocation of energy and
physiological responses, differential food availability and presence/absence of competitors.
Correlative studies such as this are an important source for identifying patterns that require
further investigation by in-depth studies measuring the strength of selection or the experimental
link between performance, morphology, and ecology generating local adaptations (Calsbeek &
Irschick, 2007).

Considering variation in morphological shape rather than size, the most divergent
populations among those examined in S. minutus were those from the Atlantic islands, although
distinctive features could also be identified for populations in southern Europe (e.g. with thin-
plate spline transformation grids). Interestingly, with respect to both size and shape, the

morphological variation observed here does not follow previous genetic subdivisions within the

Page 22 of 35

Biological Journal of the Linnean Society



Page 23 of 72 Biological Journal of the Linnean Society

563  species, and indicate a complex role for different evolutionary and/or environmental processes
564 in determining geographical variation in S. minutus.

565
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FIGURE LEGENDS
Figure 1. Sampling localities of Sorex minutus for morphological analysis. (A) Mandible data set
and (B) skull data set. The symboils distinguish the geographical groups defined by previous

genetic studies or by geographic isolation on islands (see text).

Figure 2. Boxplots of (A) mandible and (B) skull Centroid Size (transformed with natural
logarithms; LnCS) after Standard Least Squares analysis of geographical groups of Sorex
minutus. Symbols correspond to sampling localities shown in Fig. 1. Groups are arranged by
increasing latitude and by continental and island origin. The outgroup (S. volnuchini) was not
included in the analysis but is shown for comparison purposes. Letters A-D show pairwise

significance.

Figure 3. Shape changes from the average configuration of (A) mandibles and (B) skulls of
Sorex minutus represented using thin-plate spline transformation grids (3X scale factor to
highlight shape changes). Arrows denote shape changes discussed in text. Symbols correspond

to sampling localities shown in Fig. 1. Groups are arranged by increasing latitude.

Figure 4. Canonical Variate Analysis (CVA) of shape variables for (A) mandibles and (B) skulls
of Sorex minutus showing differences among geographical groups. All continental samples are

shown with the same symbol for simplicity.

Figure 5. Rooted Neighbour-Joining (NJ) trees of pairwise Procrustes distances for (A)
mandible and (B) skull groups of Sorex minutus. Rooted NJ trees of cyt b genetic distances (Da)
among phylogroups of S. minutus (detected here and in previous studies) showing intraspecific

variation in Centroid Size (CS) and shape (Procrustes distances, PD) for mandible (C, D) and
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808  skull groups (E, F) mapped onto the phylogeny using squared change parsimony. Symbols

809  correspond to sampling localities shown in Fig. 1. Asterisks indicate bootstrap support (= 50%).
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TABLES

Table 1. Multiple regressions between size and predictor variables for the mandible and skull data sets

Traditional Bergmann’s rule variables Geographical and environmental variables

Mandibles (n = 568)

Factor Coefficient®  tvalue® P value Factor Coefficient tvalue P value
Latitude -0.002 -6.723 < 0.001 PC1 0.008 9.211 < 0.001
Altitude 0.000 7.022 < 0.001 PC2 0.003 2.501 0.013

AMT 0.001 1.427 0.154 PC3 0.005 3.959 < 0.001

Skulls (n = 377)

Factor Coefficient t value P value Factor Coefficient tvalue P value
Latitude 0.000 -1.975 0.049 PC1 0.002 3.303 0.001
Altitude 0.000 3.066 0.002 PC2 -0.001 -1.617 0.107
AMT 0.001 1.379 0.169 PC3 0.000 -0.266 0.790

dUnstandardised coefficients.

®Test for the statistical significance of each independent variable.
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Table 2. Multivariate multiple regressions between shape and environmental Principal

Components (PCs) for mandibles and skulls

Mandibles All factors PC1 PC2 PC3
Wilk's A 0.240 0.792 0.653 0.613
F ratio 7.139 4.387 8.895 10.556
DF1 128 32 32 32
DF2 2119 535 535 535

P value < 0.0001 < 0.0001 < 0.0001 < 0.0001
Percentage 5.1% 0.9% 1.7% 2.4%
explained

Skulls All factors PC1 PC2 PC3
Wilk's A 0.1583 0.7748 0.5284 0.5697
F ratio 5.8560 2.9230 8.9760 7.5960
DF1 136 34 34 34
DF2 1352 342 342 342

P value < 0.0001 < 0.0001 < 0.0001 < 0.0001
Percentage 11.9% 0.92% 4.8% 6.2%
explained
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Figure 5. Rooted Neighbour-Joining (NJ) trees of pairwise Procrustes distances for (A) mandible and (B) skull
groups of Sorex minutus. Rooted NJ trees of cyt b genetic distances (Da) among phylogroups of S. minutus
(detected here and in previous studies) showing intraspecific variation in Centroid Size (CS) and shape
(Procrustes distances, PD) for mandible (C, D) and skull groups (E, F) mapped onto the phylogeny using
squared change parsimony. Symbols correspond to sampling localities shown in Fig. 1. Asterisks indicate
bootstrap support (= 50%).
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SUPPORTING INFORMATION

LANDMARKS

A description of landmarks (Fig. S1): mandibles: 1) inferior end of the alveolus of the incisor, 2)
inferior margin of the alveolus of the incisor, 3-8) posterior ends of the alveoli of the mandibular
teeth, 9) superior margin of the coronoid process, 10) inferior point of the saddle between the
condylar and coronoid processes,11) lateral end of the superior surface of the condyle, 12)
posterior end of the inferior surface of the condyle, 13) medial end of the inferior surface of the
condyle, 14) superior side of the junction of the angular process to the body of the mandible, 15)
inferior side of the junction of the angular process to the body of the mandible, 16) inferior-most
point of the posterior convex saddle of the body of the mandible, 17) superior-most point of the
concave saddle of the body of the mandible, and 18) inferior-most point of the anterior convex
saddle of the body of the mandible; skulls: 1) anterior point of the midline suture between the
premaxillae, 2-10) medial side of the point at which adjacent teeth meet, from the incisor
through the third molar, 11) intersection between the lateral margin of the pterygoid plates and
the posterior margin of the palate, 12) anterior margin of the glenoid fossa, 13) mastoid process,
14) lateral end of the posterior margin of the occipital condyle, 15) medial end of the posterior
margin of the occipital condyle, 16) midline of the posterior margin of the foramen magnum, 17)
midline of the anterior margin of the foramen magnum, 18) midline of the posterior margin of the

palate, and 19) midline of the sutures between the palatine and maxilla.
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48  Figure S1. Landmarks placed on (A) mandibles and (B) skulls of Sorex minutus. A description
34 49  of landmarks is shown in Supporting Information.

36 50

38 51

40 52 PRELIMINARY MORPHOMETRIC ANALYSES

42 53  To check for landmark placement repeatability we photographed 23 mandibles and 28 skulls

jg 54  five times each. The size of mandibles and skulls among photographs were subjected to
j? 55  Analysis of Variance (ANOVA) and the shape variables among photographs were analysed with
48

49 56  Multivariate Analysis of Variance (MANOVA). To check for sexual dimorphism male and female
51 57 samples were compared by ANOVA for size and by MANOVA for shape variables. There were
53 58 130 known males and 127 known females for mandibles, and there were 133 known males and

55 59 126 known females for skulls. To establish whether the mandible and skull data sets contain a

g; 60  phylogenetic signal (i.e. closely related individuals are phenotypically more similar to one
59
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another than expected by chance), we performed a Phylogenetic Independent Contrast in
Morphod version 1.05a between the cytochrome b (cyt b) NJ tree and the size and shape of the
average configurations of the mandible and skull data sets divided into groups. This test
simulates the null hypothesis of the absence of phylogenetic signal by randomly permuting the
size and shape data among the terminal taxa of a known phylogeny in the analysis (20,000

iterations for the permutation tests) (Klingenberg & Gidaszewski, 2010).

RESULTS OF PRELIMINARY MORPHOMETRIC ANALYSES
Preliminary analyses supported landmark placement repeatability, no sexual dimorphism for
size and shape and negligible phylogenetic signal in the morphological dataset. There were no
significant differences with respect to size or shape among the five repeated photographs of
mandibles (size: F4 110 = 0.0053, P = 0.9999; shape: Wilks’ A = 0.8861, Fes4 3742 = 0.1835, P =
0.9999) and skulls (size: F4 135 = 0.0726, P = 0.9903; shape: Wilks’ A = 0.8688, Fes, 4693 =
0.2518, P = 0.9999); therefore, landmarks can be considered to have been placed accurately.

There were no significant differences between male and female mandibles for size (F;,
255 = 0.0235, P = 0.8782) and shape (Wilks’ A = 0.9419, Fig 240 = 0.9256, P = 0.5404). Similarly,
there were no significant differences between male and female skulls for size (F4, 257 = 0.0352, P
= 0.8513) and shape (Wilks’ A = 0.9507, F17 241 = 0.7345, P = 0.7658). Moreover, comparisons
of male and female samples within groups and within large regional samples showed no
significant differences (data not shown). All subsequent analyses on mandibles and skulls were
performed pooling all samples irrespective of sex.

The null hypothesis (absence of a phylogenetic signal) was not rejected when mapping
the phenotypic data of the average configurations of the groups for the mandible (Ps,. = 0.7448,
Pshape = 0.1247) and skull data sets (Psi,e = 0.0748, Pghape = 0.6867) onto the cyt b NJ tree;

therefore, we concluded that the phylogenetic signal in our data sets is negligible.
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SUPPORTING INFORMATION

Appendix S1. Sample information and dimensionality reduction results for Principal

Components Analysis and for Partial Least Squares Analysis.

Table S1. Sorex minutus and S. volnuchini samples for the mandible and skull data sets

Sample ID
ATDo1611

BAKu2517
BAOs5670
BAZe4239
GREp6406
MEB;381
MEB;382
MEB;383
MEDu3403
MEDu3430
MKBi2450
MKJa9212
MKJa9222
MKJa9223
MKKo194
MKKo195
MKPe3834
MKPe3835
MKPe3836
MKPe3896
MKPe9494
MKPe9505
MKPe9645
RSBe178
RSKo040169
RSMF53266
RSMF566
RSMK10066
RSMK1078
RSMK1276
RSMK17377
RSMK2449
RSMK578
RSMK678
RSMP35866

Group
Balkan

Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan

Cont/Island

Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent

Continent

Source
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Museum
Museum
Trapping
Museum
Trapping
Trapping
Museum
Trapping
Trapping
Trapping

Museum

LongDec
16.641250

17.320656
16.288742
18.388903
21.169192
19.701092
19.701092
19.701092
19.041186
19.041186
20.768839
21.418861
21.418861
21.418861
22.394211
22.394211
21.167500
21.167500
21.167500
21.167500
21.167500
21.167500
21.167500
20.080025
20.998061
19.662544
19.662544
20.810628
20.810628
20.810628
20.810628
20.810628
20.810628
20.810628
20.361897

LatDec
47.895703

44.002197
44.239742
43.394850
39.770506
42.865747
42.865747
42.865747
43.145475
43.145475
41.516908
41.689061
41.689061
41.689061
41.154392
41.154392
41.008939
41.008939
41.008939
41.008939
41.008939
41.008939
41.008939
45.614672
44.729006
45.170711
45.170711
43.296739
43.296739
43.296739
43.296739
43.296739
43.296739
43.296739
42.839728
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Data set
mand/skull

mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand
mand/skull
mand
mand/skull
mand/skull
mand/skull
mand
mand/skull
skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull

mand
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RSMP35966
RSVa7841
RSVa7842
RSVa7855
S1Go2042
SIHo015910
SIKr14709
SiLe1145
SiLe1146
SiLe1147
SiLe1163
SIPh3126
SIPh3131
SIPh3489
SIRa16104
SISe16100
SISe16101
FRBI100
FRBI101
FRBI102
FRBI103
FRBI104
FRBI105
FRBI106
FRBI107
FRBI108
FRBI109
FRBI110
FRBI111
FRBI93
FRBI94
FRBI95
FRBI96
FRBI97
FRBI98
FRBI99
GBCa1
GBCH1
GBDrG140
GBHe1
ESArE135
ESPE47
ESPE57
ESRa0640
ESRa2653

Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Balkan
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Britain
Britain
Britain
Britain
Iberian
Iberian
Iberian
Iberian

Iberian
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Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Belle lle
Britain
Britain
Britain
Britain
Continent
Continent
Continent
Continent

Continent

Museum
Trapping
Trapping
Trapping
Trapping
Museum
Museum
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Museum
Museum
Museum
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Museum

Museum

20.361897
19.736253
19.736253
19.736253
15.561217
16.329503
15.476147
16.457517
16.457517
16.457517
16.457517
15.256711
15.256711
15.256711
15.340292
15.234997
15.234997
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-3.195833
-0.892633
-0.910433
-4.489267
-1.057706
-4.200000
-4.999678
-4.999678
-3.879364
-3.879364

42.839728
44.314847
44.314847
44.314847
45.857758
46.811033
45.895617
46.551106
46.551106
46.551106
46.551106
46.519253
46.519253
46.519253
45.685878
45507833
45507833
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
47.337500
53.964711
54.120878
57.308992
53.943211
43.033300
43.104939
43.104939
40.903628
40.903628
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mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand
mand/skull
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand/skull
mand/skull
mand
mand/skull
mand
mand/skull
mand/skull
mand/skull

mand/skull
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ESRa3443
ESRa3444
ESRa3445
ESRa3446
ESRa3447
ESRa3448
ESRa3449
ESRa3451
IECL1
IECL10
IECL11
IECL12
IECL13
IECL14
IECL15
IECL16
IECL17
IECL18
IECL19
IECL2
IECL20
IECL3
IECL4
IECL5
IECL6
IECL7
IECL8
IECL9
IEDY1
IEDY10
IEDY11
IEDY12
IEDY13
IEDY14
IEDY15
IEDY16
IEDY17
IEDY18
IEDY19
IEDY2
IEDY20
IEDY3
IEDY4
IEDY5
IEDY6

Iberian
Iberian
Iberian
Iberian
Iberian
Iberian
Iberian
Iberian
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland

Ireland
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Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland

Ireland

Museum
Museum
Museum
Museum
Museum
Museum
Museum
Museum
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping

-3.879364
-3.879364
-3.879364
-3.879364
-3.879364
-3.879364
-3.879364
-3.879364
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.947964
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000
-7.250000

40.903628
40.903628
40.903628
40.903628
40.903628
40.903628
40.903628
40.903628
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
53.267756
55.000000
55.000000
55.000000
55.000000
55.000000
55.000000
55.000000
55.000000
55.000000
55.000000
55.000000
55.000000
55.000000
55.000000
55.000000
55.000000
55.000000
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mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull

mand/skull
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IEDY7
IEDY8
IEDY9
IEE1RV
IEE2RV
IEE3RV
IEE4RV
IEGw1
IEGw17
IEGW1RV
IEGw26
IEGw3
IEGw4
IEGw43
IEGw46
IEGw5
IEGw51
IEGW51A
IEGw51B
IEGw51C
IEGw55
IEGw55B
IEGw5b
IEGwW5C
IEGw64
IEGWTILES
CHVI4746
CHVI4748
CZHa9166
CZSSs4767
CZSS4838
FRDi3003
FRHa59
FRHa60
FRHa61
FRHa62
FRHa63
FRHa64
FRHa65
FRLa87
FRLa88
FRLa89
FRLGOO03A
FRLG003B
FRLG003C

Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian

Italian
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Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Ireland
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent

Continent

Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Museum
Museum
Museum
Trapping
Trapping
Trapping
Owl pellet
Owl pellet
Owl pellet
Owl pellet
Owl pellet
Owl pellet
Owl pellet
Owl pellet
Owl pellet
Owl pellet
Trapping
Trapping
Trapping

-7.250000
-7.250000
-7.250000
-8.350450
-7.515247
-7.515247
-7.515247
-8.230000
-8.230000
-8.383333
-8.230000
-8.230000
-8.230000
-8.230000
-8.230000
-8.230000
-8.230000
-8.230000
-8.230000
-8.230000
-8.230000
-8.230000
-8.230000
-8.230000
-8.230000
-8.230000
6.892742
6.892742
15.560653
13.475481
13.475481
6.143175
6.284722
6.284722
6.284722
6.284722
6.284722
6.284722
6.284722
5.410833
5.410833
5.410833
5.903056
5.903056
5.903056

55.000000
55.000000
55.000000
54.950261
54.975419
54.975419
54.975419
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
55.050000
46.204300
46.204300
49.604761
49.065617
49.065617
46.356817
47.843611
47.843611
47.843611
47.843611
47.843611
47.843611
47.843611
48.939722
48.939722
48.939722
45.091944
45.091944
45.091944
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mand/skull
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mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand/skull
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand
mand
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FRLV27
FROR15
FRS0091A
FRS0091B
FRS090
FRS092
ITAn23
ITCh16
ITCh17
ITCh18
ITGa33
ITGa36
ITGa38
ITMa9815
ITMa9830
ITMa9832
ITMa9833
ITMa9834
ITMa9835
ITMa9849
ITMa9850
ITMC32500
ITPr0001
ITSC54303
ITTg47
ITTg48
ITTr17692
ITVB54317
SiCe142
SID02040
SID02041
SIDr2778
SIDr2779
SIGro73
SIGro74
Slig1563
Slig1564
Slig1565
Slig1628
Slig1648
Slig1766
Slig1773
Slig1847
Slig2143
SIKn6167

Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian
Italian

Italian
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Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent
Continent

Continent

Owl pellet
Owl pellet
Trapping
Trapping
Trapping
Trapping
Museum
Museum
Museum
Museum
Museum
Museum
Museum
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Museum
Trapping
Museum
Museum
Museum
Museum
Museum
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping
Trapping

5.589069
5.870556
7.336111
7.336111
7.336111
7.336111
7.696569
7.622858
7.622858
7.622858
7.848183
7.848183
7.848183
14.115697
14.115697
14.115697
14.115697
14.115697
14.115697
14.115697
14.115697
10.836031
10.248014
8.832010
7.571240
7.571240
11.833333
9.064750
14.945650
14.797406
14.797406
14.029192
14.029192
14.132525
14.132525
14.542856
14.542856
14.542856
14.542856
14.542856
14.542856
14.542856
14.542856
14.542856
13.784367

45.127964
44.921944
47.483889
47.483889
47.483889
47.483889
45.822425
45.621664
45.621664
45.621664
45.851881
45.851881
45.851881
42.083411
42.083411
42.083411
42.083411
42.083411
42.083411
42.083411
42.083411
46.238711
46.286975
44.477300
45.807200
45.807200
46.250000
44.555300
46.172950
45.501464
45.501464
46.358772
46.358772
46.105453
46.105453
45.946967
45.946967
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SIKo6827
SIKo6845
SIKr1042
SING54318
SING54320
SIPd1045
SIPd1372
SIPd1374
SIPk16394
SISI1378
SISI1380
SISI1381
SISI1382
SISI1383
SISI1384
SISn1043
SISn1044
ATDo1612
ATUmA139
CHBa0441
CHBa1816
CHBa1817
CHBa1818
CHBa1819
CHBa1820
CHBa1821
CHBa3002
CHCh7622
CHPo7628
CHVI4747
DEEb3996
FIAE1747
FIAE1760
FIKu2071
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FISo1779
FISo1783
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FRAF174
FRAF175
FRAF176
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Italian
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Northern
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Museum
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13.810889
19.611839
19.611839
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4.663333
4.663333
4.657222
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Table S2. Eigenvalues from Principal Components Analysis of geographical and environmental variables for mandible

and skull data sets
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Mandibles Skulls

Number  Eigenvalue Percentage Cumulative Eigenvalue Percentage Cumulative

explained percentage explained percentage

explained explained

1 4.1837 34.864 34.864 4.3544 36.286 36.286
2 3.2244 26.87 61.735 3.3111 27.593 63.879
3 2.5958 21.632 83.366 2.4222 20.185 84.064
4 0.8096 6.746 90.113 0.8591 7.159 91.223
5 0.5171 4.309 94.422 0.544 4.533 95.756
6 0.3681 3.067 97.489 0.2713 2.261 98.017
7 0.179 1.492 98.981 0.1268 1.057 99.074
8 0.0709 0.591 99.572 0.0696 0.58 99.654
9 0.0334 0.279 99.851 0.0254 0.212 99.866
10 0.0103 0.086 99.936 0.0101 0.084 99.95
11 0.0056 0.046 99.983 0.0043 0.036 99.986
12 0.0021 0.017 100 0.0017 0.014 100
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Table S3. Eigenvectors from Principal Components

Analysis of geographical and environmental variables

Mandibles PC1 PC2 PC3
Longitude -0.1907  0.4422 0.0015
Latitude 0.0607  -0.3332  -0.4329
Altitude 0.0278 0.4675 -0.0171
BIO1_AMT -0.0405 -0.2898 0.5037
BIO5_MxTempWarPer -0.2066  0.1227 0.5115
BIO6_MnTempColdPer 0.1452  -0.4855 0.1828
BIO12_AnnPrec 0.4748 0.0905 0.0842
BIO13_PrecWetPer 0.4518 0.0321 0.0526
BlIO14_PrecDrPer 0.4070 0.2001 0.0888
BIO18_PrecWarQrt 0.3145 0.2788 0.0226
BIO19_PrecColdQrt 0.4462 -0.1133  0.0706
NPP -0.0244  0.0196 0.4903
Skulls PC1 PC2 PC3
Longitude -0.1830  0.4487 0.0418
Latitude -0.0687 -0.4075 -0.3332
Altitude 0.0114 0.4541 -0.0995
BIO1_AMT 0.1235 -0.2309  0.5340
BIO5_MxTempWarmPer -0.0538 0.2154 0.5541
BIO6_MnTempColdPer 0.1994  -04515 0.1799
BIO12_AnnPrec 0.4686 0.0869 -0.0650
BIO13_PrecWetPer 0.4530 0.0432  -0.0027
BIO14_PrecDrPer 0.4082 0.1834  -0.1518
BIO18_PrecWarmQrt 0.3148 0.2505 -0.1226
BIO19_PrecColdQrt 0.4416 -0.1036 -0.0356
NPP 0.1351 0.0796 0.4574

Values in bold indicate the most significant eigenvectors in

each principal component.
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Table S4. Factors extracted from Partial Least Squares Analysis of shape and geographical
and environmental variables

Mandibles
Factor Percentage Cumulative Percentage Cumulative
explained percentage explained explained percentage explained

(Effect) (Effect) (Response) (Response)

1 26.8121 26.812 5.0756 5.0756

2 25.089 51.901 2.3507 7.4262

3 31.1802 83.081 0.7513 8.1776

4 4.9684 88.05 1.9711 10.1487

5 5.4054 93.455 0.3503 10.499

6 3.9181 97.373 0.2679 10.7669

7 1.3028 98.676 0.4685 11.2354

8 0.4718 99.148 0.782 12.0174

9 0.6864 99.834 0.4828 12.5003

10 0.0975 99.932 0.6343 13.1346

11 0.0505 99.982 0.2603 13.3948

12 0.0177 100 0.1872 13.582

Skulls

Factor Percentage Cumulative Percentage Cumulative

explained percentage explained explained percentage explained

(Effect) (Effect) (Response) (Response)

1 26.1993 26.199 10.1024 10.1024

2 34.1241 60.323 1.5007 11.6031

3 22.4314 82.755 1.198 12.8011

4 7.6432 90.398 1.5977 14.3988
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5.2877
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0.0351
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95.686
97.991
98.725
99.633
99.856
99.947
99.965
100

0.6531
0.2945
0.6411
0.2471
0.5511
0.582
0.7281
0.3197

15.0519
15.3464
15.9875
16.2346
16.7858
17.3677
18.0959
18.4156
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Table S5. Variable Importance Plot (VIP) values
for Partial Least Squares analysis of geographical
and environmental variables

Mandibles Skulls

VIP VIP
Longitude 1.1503 1.0294
Latitude 1.3708 1.6241
Altitude 1.0498 1.1775
BIO1_AMT 0.9164 0.8505

BIO5 MxTempWarPer 1.2166 1.3348

BIO6_MnTempColdPer 0.9967 0.853
BIO12_AnnPrec 0.6698 0.7057
BIO13_PrecWetPer 0.9439 0.6765
BIO14_PrecDrPer 0.8143 0.7348
BIO18_PrecWarQrt 0.7745 0.7531
BIO19_PrecColdQrt 0.8542 0.6901
NPP 1.0248 1.0698

Significant VIP values in bold.
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Table S6. Eigenvalues from Canonical Variates Analysis of shape variables for mandible and skull data sets
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Mandibles Skulls

Number Eigenvalue Percentage Cumulative Eigenvalue Percentage Cumulative

explained percentage explained percentage

explained explained

1 1.052651 45.2558 45.2558 1.277708 43.6205 43.6205
2 0.566254 24.3445 69.6004 0.543716 18.5623 62.1828
3 0.186308 8.0098 77.6101 0.351271 11.9923 74.1751
4 0.179597 7.7213 85.3314 0.308121 10.5191 84.6942
5 0.098454 4.2328 89.5642 0.197237 6.7336 91.4278
6 0.090917 3.9087 93.4729 0.126866 4.3311 95.7589
7 0.067079 2.8839 96.3568 0.056318 1.9227 97.6816
8 0.049882 2.1445 98.5013 0.027568 0.9412 98.6228
9 0.017839 0.7669 99.2682 0.024096 0.8226 99.4454
10 0.011404 0.4903 99.7585 0.016246 0.5546 100
11 0.005617 0.2415 100

Significant eigenvalues in bold.
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SUPPORTING INFORMATION

Biological Journal of the Linnean Society

Table S7. Pairwise distances for mandible data set

Appendix S2. Pairwise distances for mandible and skull data sets.

Mandibles

Procrustes Distances 1 2 3 4 5 6 7 8 9 10 11 12 13
1-Balkan

2-lberian 0.0120

3-Ireland 0.0175 0.0151

4-Northern 0.0146 0.0151 0.0169

5-Italian 0.0119 0.0119 0.0160 0.0095

6-O Mainland 0.0207 0.0201 0.0171 0.0206 0.0172

7-O S Ronaldsay 0.0225 0.0225 0.0177 0.0211 0.0189 0.0135

8-O Westray 0.0300 0.0293 0.0299 0.0317 0.0270 0.0203 0.0220

9-Western 0.0156 0.0170 0.0154 0.0137 0.0164 0.0214 0.0201 0.0336

10-South ltalian 0.0304 0.0310 0.0293 0.0350 0.0341 0.0269 0.0304 0.0363 0.0263

11-Belle lle 0.0197 0.0170 0.0204 0.0182 0.0199 0.0203 0.0264 0.0325 0.0179 0.0273

12-Britain 0.0201 0.0189 0.0213 0.0205 0.0221 0.0249 0.0269 0.0388 0.0185 0.0291 0.0209
13-Outgroup 0.0213 0.0231 0.0214 0.0262 0.0248 0.0191 0.0219 0.0334 0.0200 0.0201 0.0208 0.0221
Genetic distances 1 2 3 4 5 6 7 8 9 10 11 12 13
1-Balkan

2-lberian 0.0135

3-Ireland 0.0228 0.0173

4-Northern 0.0172 0.0109 0.0163

5-Italian 0.0219 0.0153 0.0114 0.0150

6-O Mainland 0.0217 0.0143 0.0038 0.0139 0.0092

7-O S Ronaldsay 0.0246 0.0171 0.0063 0.0172 0.0125 0.0048

8-O Westray 0.0224 0.0150 0.0035 0.0146 0.0099 0.0003 0.0045

9-Western 0.0204 0.0138 0.0026 0.0129 0.0083 0.0019 0.0042 0.0016
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10-South ltalian 0.0221 0.0150 0.0095 0.0144 0.0102 0.0070 0.0099 0.0077 0.0061

11-Belle lle 0.0213 0.0150 0.0048 0.0139 0.0094 0.0035 0.0060 0.0033 0.0017 0.0070

12-Britain 0.0186 0.0121 0.0176 0.0008 0.0163 0.0152 0.0185 0.0159 0.0142 0.0157 0.0152
13-Outgroup 0.0548 0.0502 0.0582 0.0490 0.0535 0.0537 0.0595 0.0550 0.0549 0.0559 0.0540 0.0502
Geographic distances (km) 1 2 3 4 5 6 7 8 9 10 11 12 13
1-Balkan

2-Iberian 1916.9

3-Ireland 2277.3 1480.0

4-Northern 1013.2 1286.8 1265.4

5-Italian 677.7 13234 16417 399.0

6-O Mainland 2264.8 1956.7 5822 1329.9 1728.2

7-O S Ronaldsay 22491 1936.9 567.7 13117 17102 204

8-O Westray 2280.3 1988.9 6123 13515 17494 325 52.0

9-Western 1577.0 4784 11842 8199 9264 15755 1555.1 1606.5

10-South ltalian 543.0 17544 2477.8 1255.6 856.7 2583.2 2565.4 2603.7 1538.0

11-Belle lle 1780.7 663.9 8574 8750 1104.6 12952 12752 1327.2 336.8 1817.5

12-Britain 19425 1505.2 392.6 948.8 13435 4654 4450 496.1 1110.8 2197.8 8413
13-Outgroup 1080.4 2979.2 3269.9 2040.8 1750.8 3139.6 3127.6 3147.7 2657.1 1306.3 2855.2 2902.9
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Table S8. Pairwise distances for skull data set
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Skulls

Procrustes distances 1 2 3 4 5 6 7 8 9 10 11 12
1-Balkan

2-lberian 0.0104

3-Ireland 0.0116 0.0134

4-Northern 0.0114 0.0157 0.0095

5-Italian 0.0048 0.0089 0.0095 0.0096

6-O Mainland 0.0157 0.0167 0.0097 0.0124 0.0141

7-O S Ronaldsay 0.0127 0.0166 0.0079 0.0095 0.0120 0.0089

8-O Westray 0.0174 0.0181 0.0135 0.0122 0.0152 0.0112 0.0145

9-Western 0.0080 0.0103 0.0150 0.0161 0.0088 0.0186 0.0169 0.0217

10-South ltalian 0.0119 0.0170 0.0196 0.0207 0.0153 0.0219 0.0207 0.0242 0.0144

11-Britain 0.0132 0.0167 0.0095 0.0092 0.0125 0.0098 0.0091 0.0131 0.0180 0.0196
12-Outgroup 0.0089 0.0166 0.0175 0.0169 0.0123 0.0200 0.0177 0.0217 0.0129 0.0089 0.0165
Genetic distances 1 2 3 4 5 6 7 8 9 10 11 12
1-Balkan

2-lberian 0.0135

3-Ireland 0.0228 0.0173

4-Northern 0.0172 0.0109 0.0163

5-Italian 0.0219 0.0153 0.0114 0.0150

6-O Mainland 0.0217 0.0143 0.0038 0.0139 0.0092

7-O S Ronaldsay 0.0246 0.0171 0.0063 0.0172 0.0125 0.0048

8-O Westray 0.0224 0.0150 0.0035 0.0146 0.0099 0.0003 0.0045

9-Western 0.0204 0.0138 0.0026 0.0129 0.0083 0.0019 0.0042 0.0016

10-South lItalian 0.0221 0.0150 0.0095 0.0144 0.0102 0.0070 0.0099 0.0077 0.0061

11-Britain 0.0186 0.0121 0.0176 0.0008 0.0163 0.0152 0.0185 0.0159 0.0142 0.0157
12-Outgroup 0.0548 0.0502 0.0582 0.0490 0.0535 0.0537 0.0595 0.0550 0.0549 0.0559 0.0502
Geographic distances (km) 1 2 3 4 5 6 7 8 9 10 11 12
1-Balkan

2-lberian 1916.9
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3-Ireland
4-Northern
5-Italian

6-O Mainland
7-O S Ronaldsay
8-O Westray
9-Western
10-South Italian
11-Britain
12-Outgroup

2277.3
1013.2
677.7
2264.8
22491
2280.3
1577.0
543.0
1942.5
1080.4
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1480.0
1286.8
1323.4
1956.7
1936.9
1988.9
478.4

1754.4
1505.2
2979.2

1265.4
1641.7
582.2
567.7
612.3
1184.2
2477.8
392.6
3269.9

399.0
1329.9
1311.7
1351.5

819.9
1255.6

948.8
2040.8

1728.2
1710.2
1749.4
926.4

856.7

1343.5
1750.8

20.4

325 52.0

1575.5 1555.1 1606.5
2583.2 25654 2603.7
4654 4450 4961
3139.6 31276 31477

1538.0

1110.8 2197.8

26571

1306.3 2902.9
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Appendix S3. Post-hoc results for analyses of variance of size and shape variables.

Table S9. Analysis of covariance of size among morphological groups for mandible and skull data

sets

Mandibles

Group n Least Squares SE Lower 95%  Upper 95% Pairwise
mean’ significance2

South Italian 3 24422 0.0315 0.0182 2.3638

Balkan 51 2.4017 0.0313 0.0044 2.3929 C

Iberian 13 2.3851 0.0297 0.0082 2.3671 C

Western 58 2.3785 0.0492 0.0065 2.3656 B C

Italian 79 2.3759 0.0419 0.0047 2.3665 B C

Northern 146 2.3294 0.0331 0.0027 2.3239 A

O Mainland 52 2.3856 0.0232 0.0032 2.3791 C

Belle Tle 19 2.3784 0.0143 0.0033 2.3715 B C

Ireland 63 2.3703 0.0376 0.0047 2.3608 A B C

O Westray 40 2.3574 0.0449 0.0071 2.3430 A B C

O S Ronaldsay 40 2.3359 0.0404 0.0064 2.3230 A B

Britain 4 2.3272 0.0369 0.0185 2.2685 A

Outgroup 8 2.4160 0.0242 0.0085 2.3958 - - -
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Skulls

Group n Least Squares SE Lower 95%  Upper 95% Pairwise
Mean significance*

Iberian 12 3.1276 0.0351 0.0101 3.1053 D

Italian 57 3.0953 0.0224 0.0030 3.0894 B C D

Western 28 3.0947 0.0172 0.0032 3.0880 B C

South ltalian 3 3.0934 0.0166 0.0096 3.0521 B C

Balkan 46 3.0932 0.0274 0.0040 3.0851 B C

Northern 42 3.0708 0.0398 0.0061 3.0584 A B

O Westray 39 3.1056 0.0134 0.0021 3.1012 C

O S Ronaldsay 37 3.0996 0.0128 0.0021 3.0953 B C D

O Mainland 50 3.0991 0.0278 0.0039 3.0912 B C

Ireland 60 3.0905 0.0163 0.0021 3.0863 B C

Britain 3 3.0481 0.0171 0.0099 3.0057 A

Outgroup 8 3.0948 0.0199 0.0070 3.0782 - - - -

'Groups ordered by mean size in descending order and by continental and island groups.

“Groups not connected by letters are significantly different.
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Table S$10. Post-hoc results for multivariate analyses of variance of shape variables for mandible data set

Group 1 2 3 4 5 6 7 8 9 10 11 12
1-Balkan

2-lberian 0.4853

3-Ireland 0.0023 0.3747

4-Northern <0.001 0.0079 <0.001

5-Italian <0.001 0.0024 <0.001 <0.001

6-O Mainland <0.001 0.1117 0.0004 <0.001 0.0004

7-O S Ronaldsay <0.001 0.0437 <0.001 <0.001 <0.001 <0.001

8-O Westray <0.001 0.0066 <0.001 <0.001 <0.001 <0.001 0.1763

9-Western <0.001 0.0026 <0.001 <0.001 <0.001 <0.001 0.0003 0.2481

10-South ltalian 0.0594 1 0.0351 0.0009 0.0039 0.0771 0.1364 0.2582 0.0934

11-Belle lle <0.001 0.1292 <0.001 <0.001 <0.001 0.0001 0.0995 0.2152 0.0079 0.7736

12-Britain 0.4531 1 0.4569 0.0378 0.1199 0.9099 0.8959 0.9414 0.8867 1 0.9919

Significant values shown in bold (Bonferroni corrected).
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Table S11. Post-hoc results for multivariate analyses of variance of shape variables for skull data set

Group 1 2 3 4 5 6 7 8 9 10 11
1-Balkan

2-Iberian 0.0279

3-Ireland <0.001 0.0026

4-Northern <0.001 0.0059 <0.001

5-ltalian 0.9919 0.0058 <0.001 <0.001

6-O Mainland <0.001 <0.001 <0.001 <0.001 <0.001

7-O SRonaldsay  <0.001 0.0006 <0.001 <0.001 <0.001 <0.001

8-O Westray <0.001 0.0002 <0.001 0.0001 <0.001 <0.001 <0.001

9-Western 0.0009 0.4016 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

10-South ltalian 0.2085 1 0.2016 0.0624 0.1061 0.0818 0.1277 0.0790 0.7271
11-Britain 0.4506 1 0.8055 0.6768 0.3436 0.8760 0.9244 0.5953 0.5825 1

Significant values shown in bold.
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