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ABSTRACT   
A theoretical analysis of magnetohydrodynamic (MHD) incompressible flows of Burger's fluid  

through a porous medium in a rotating frame of reference is presented. The constitutive model of 

a Burger's fluid is used based on a fractional calculus formulation. Hydrodynamic slip at the wall 

(plate) is incorporated and a fractional generalized Darcy model deployed to simulate porous 

medium drag force effects. Three different cases are considered- namely, flow induced by a general 

periodic oscillation at a rigid plate, periodic flow in a parallel plate channel and finally Poiseuille 

flow. In all cases the plate (s) boundary (ies) are electrically-non-conducting and small magnetic 

Reynolds is assumed, negating magnetic induction effects. The well-posed boundary value 

problems associated with each case are solved via Fourier transforms. Comparisons are made 

between the results derived with and without slip conditions. 4 special cases are retrieved from the 

general fractional Burgers model, viz Newtonian fluid, general Maxwell viscoelastic fluid, 

generalized Oldroyd-B fluid and the conventional Burger’s viscoelastic model. Extensive 

interpretation of graphical plots is included. We study explicitly the influence on wall slip on 

primary and secondary velocity evolution. The model is relevant to MHD rotating energy 

generators employing rheological working fluids.  

 

Key words: Magnetohydrodynamics (MHD); Non-Newtonian; Fractional Burger fluid; 

Oscillation; Slip; Porous medium; Fourier transforms; MHD energy generators. 

 

1. INTRODUCTION 

 

Significant attention has been given to physico-mathematical and computational simulations in 

non-Newtonian fluid physics in recent years. These stem from ever-widening applications of such 

fluids in medical engineering (gels, drugs, creams etc) [1], plastics fabrication [2], industrial 

adhesives and lubricants [3] and also environmental systems including hyper-concentrated 

sediments, oil spills, mud flows and contaminant release [4]. The intrinsic properties of non-

Newtonian or rheological fluids invalidate the conventional Navier-Stokes viscous model 
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(Newtonian). Phenomena such as shear-thinning/thickening, yield stress, fading memory, re-coil, 

micro-structure, relaxation, retardation, elongation, stress differences, spurt, Weissenberg effects 

and many others simply are not reproducible within the framework of Newtonian fluid dynamics. 

An excellent appraisal of the departure of rheological fluids from Newtonian behavior has been 

provided by Chaabra and Richardson [5] and also more recently by Irgens [6]. Viscoelastic fluids 

belong to the class of non-Newtonian fluids which exhibit both viscous and elastic effects, in 

varying proportions depending on the constitution of the liquid. They are a special class of non-

Newtonian fluids which sustain normal stress difference in flow fields. A seminal discussion of 

many aspects of viscoelastic hydrodynamics has been given in the monograph of Joseph [7]. 

Viscoelastic fluids have been analyzed with many different constitutive formulations, including 

the Maxwell fluid model [8], Oldroyd-B fluid model [9], Reiner-Rivlin differential second and 

third grade fluid models [10, 11], Jefferys model [12], Sisko’s model [13], Walters-B model [14] 

and Burger's elasto-viscous fluid model [15] are typical viscoelastic models and have been 

implemented in numerous studies in chemical, environmental and also medical engineering 

systems. Certain models of viscoelastic fluids are based on the so-called fractional derivatives 

which employs Leibnitz theory of differentiation to arbitrary non-integers (fractions). Early 

applications of fractional calculus in rheology include the work of Scott Blair et al. [16] and 

Graham et al. [17]. Fractional models essentially replace the ordinary time derivatives by fractional 

order time derivatives, and this plays an important role in more realistically simulating real 

viscoelastic properties of these liquids. This is usually achieved by employing Riemann-Louville 

fractional calculus operators although other approaches do exist. Many analyses of viscoelastic 

fluids employing fractional derivatives have been communicated in recent years. Representative 

studies in this regard include Lei et al. [18] who derived both local and global smooth solutions to 

the Cauchy problem in the whole space and the periodic problem in the n-dimensional torus for 

incompressible viscoelastic fractional Oldroyd-B fluids, also demonstrating the validity of this 

approach to elastic complex fluids, magnetic rheological fluids, liquid crystal and mixture 

suspensions. Lin et al. [19] determined both local and global existence of classical solutions for a 

fractional Oldroyd fluid in the absence of an artificially postulated damping mechanism. Wang 

and Xu [20] investigated transient axial Couette flows of both fractional second grade fluid (FSGF) 

and fractional Maxwell fluid (FMF) between two infinitely long concentric circular cylinders, 

observing that via an analysis of fractional derivative on the models via numerical results, 
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oscillations exist in the FMF velocity field. Tong and Liu [21] investigated analytically the 

unsteady rotational flows of an Oldroyd-B fluid in an annular pipe, constructing also a generalized 

Jeffreys model via fractional calculus. They showed that the  classical Navier–Stokes and also 

Maxwell fluid and second grade fluid solutions may be extracted as special cases of the fractional 

viscoelastic model. Khan et al. [22] have derived exact solutions for transient starting flow of 

fractional Burger's fluid in the gap between two infinitely long concentric circular cylinders, both 

for the case where the outer cylinder makes a simple harmonic oscillation and also  when the outer 

cylinder suddenly begins rotating while the inner cylinder remains stationary. Further appraisals 

of fractional viscoelastic flows have been made by Bagley and Torvik [23], Song and Jiang [24], 

Hilfer [25], Qi and Xu [26] and also Qi and Jin [27].  

The above studies have generally assumed the classical no-slip boundary condition at the surface 

of the body in contact with viscoelastic shearing flow. This condition, which is characteristic of 

Navier-Stokes formulations, is in fact quite unrealistic for non-Newtonian flows. Hydrodynamic 

slip is a very sophisticated phenomenon which involves the non-adherence of fluids to surfaces. It  

can manifest physically in polymers as a result of the formation of a resin rich, low viscosity layer 

adjacent to the wall or loss of adhesion with the wall. Slip in other complex rheological suspensions 

can be generated via dismantling of network structures in the region near the wall and the 

development of a thin lubricating layer generated by flow-induced diffusion. Slip is also intimately 

associated with wall surface texture and material rheology of fluids and is a common feature in 

colloidal crystal material dynamic as well as plastic extrusion systems and magnetohydrodynamic 

generator flows. Here we are concerned with wall slip (rather than interfacial particle-particle slip) 

and this type of boundary slip can be delineated into `true slip' where there is a discontinuity in the 

velocity field at the fluid-solid interface, and `apparent slip' where there is an inhomogeneous thin 

layer of fluid adjacent to the wall with different rheological properties to the bulk of fluid which 

facilitates fluid movement. Causes for the latter may be large velocity gradients across the very 

thin low-viscosity slip layer which mimick slip at the wall although generally the no-slip condition 

is not violated. Both true and apparent slip have been verified experimentally and the general 

consensus is that apparent slip actually is the more typical mechanism for observed wall slip in 

polymers and the so-called true slip is in fact not responsible for tangible macroscopic slip. 

Molecular forces between the fluid and solid are known to impede the motion of non-Newtonian 

fluid at the wall-fluid interface. In any event, wall slip cannot and should not be neglected in 
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realistic polymer rheological flows as it has significant effects on manufactured products. Serious 

investigations of slip in polymer dynamics were initiated many decades ago by Mooney [28] at 

the United States Rubber Corporation, who developed simple formulations for quantifying slip 

based on a hydrodynamical theory of a Newtonian fluid flowing through a capillary viscometer. 

More recent efforts have addressed slip effects in non-Newtonian flows. Betola [29] investigated 

wall slip effects on viscoelastic  foam drainage, identifying that while fluid elasticity exerts no 

tangible influence on drainage velocity, with wall slip incorporated a faster drainage velocity is 

achieved. Mohseni and Rashidi  [30] studied theoretically the axial annular flow of Giesekus 

viscoelastic fluid with dual wall slip effects, observing that slip is initiated first at the inner wall 

and thereafter at the outer wall and identifying three flow regimes, namely the no slip condition, 

slip only at the inner wall and slip at both walls. They further noted that with greater elastic effects, 

slip is reduced at the wall and that increasing slip effect depresses pressure gradient, shear and 

normal stresses whereas an increase in slip critical shear stress induces the opposite effect. Further 

studies of viscoelastic slip flows include Abelman et al. [31] who employed a third grade Reiner-

Rivlin differential model to examine rotating Couette flows and Tripathi et al. [32] who used a 

fractional Oldroyd-B model to simulate peristaltic propulsion with wall slip. In recent years a new 

generation of fluids termed magneto-active polymers has emerged [33]. These intriguing materials 

exhibit both viscoelastic and magnetic properties. They include ferrogels [34] which comprises a 

gel-like matrix and magnetic particles which are randomly distribute in the matrix. The gel bulk 

matrix viscoelasticity leads to rate-dependent behaviors. Magnetic characteristics include 

ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) behavior i.e. such materials 

response to applied magnetic fields (owing to their electro-conductive nature). In the synthesis of 

such materials, slip flows also arise as with conventional polymeric fluids. This has motivated 

many researchers to investigate magneto-viscoelastic fluid dynamics which has potential relevance 

to both materials processing and also to working fluids in novel MHD energy generators. A 

relatively recent summary of ferrogel dynamics is documented in Bég et al. [35] wherein 

Lorentzian drag, Ohmic dissipation, magnetic induction, dipole, Hall current and other effects are 

reviewed in detail. Slip flows of magneto-viscoelastic fluids are equally relevant to ferrogel 

fabrication and also optimization of MHD power generators in for example aerospace applications 

[36]. Loss mechanisms in MHD generators include wall slip, shunt currents in boundary layers 

and also vorticity generation and suppression. Magnetohydrodynamic slip flows for viscoelastic 
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materials in such systems are even more complex than for Newtonian working fluids. The latter 

have been examined by Martin et al. [37] and Fang et al. [38]. Magneto-viscoelastic slip flow has 

been studied by Zheng et al. [39] with the fractional Oldroyd B model.  

Frequently in industrial operations including materials processing, porous media are deployed as 

a filter to regulate transport phenomena. Most simulations of hydrodynamic or magneto-

hydrodynamic flow in porous media utilize some form of the Darcy law which is valid for viscous-

dominated (low Reynolds number) scenarios and assume the medium to be fully saturated. This 

“drag force” approach effectively analyzes the bulk influence of solid fibers in the porous material 

on flow characteristics e.g. pressure, volumetric flux, velocity, shear stress etc. Although extensive 

analysis of Newtonian transport in porous media have been conducted, rheological flows in porous 

media are less frequently reported on, despite enormous applications in petro-chemical, 

environmental, energy systems and other technologies [40]. Studies reported have used various 

formulations for porous media impedance effects and deployed a diverse array of analytical and 

computational methods to solve the resulting boundary value problems. Tripathi and Bég [41] used 

the homotopy perturbation method to investigate peristaltic pumping in porous media saturated 

with Maxwell viscoelastic fluids, as a model of gastric transport. Niu et al. [42] addressed 

hydrodynamic stability aspects in heat transfer in Oldroyd-B viscoelastic fluid saturated porous 

media. Bég et al. [43] studied mass transfer in Maxwell viscoelastic flow in a porous medium 

channel. Kozicki [44] used a capillary hybrid model of viscoelastic flow in porous materials, 

incorporating both a viscous mode and an elongational mode, deriving relationships for friction 

factors and respective Reynolds numbers. Bég et al. [45] applied the third grade viscoelastic model 

to simulate convective heat transfer in boundary layer flow through a permeable half-space with 

both Darcy and inertial porous drag effects using a finite element algorithm. Cao et al. [46] used 

an implicit operator splitting method to study viscoelastic polymer solution flow in porous media 

with physicochemical reaction, employing a modified permeability model and novel relative 

permeability model to simulate flooding in petroleum geosystems. Further studies include Tong 

and Shi [47]. Magnetohydrodynamic viscoelastic flows in porous media extend these studies to 

consider electrically-conducting polymers. Koumy et al. [48] have obtained closed-form solutions 

for magneto-peristaltic flow of Maxwell viscoelastic fluids in porous conduits with Hall cross-

flow effects. Khan and Khan [49] have investigated rotating Burgers viscoelastic MHD flow in 

porous media with Hall currents. Bég et al. [50] have employed a network electro-thermal 
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numerical solver to study transient magneto-viscoelastic flows in porous media. Bég et al. [51] 

have further investigated pulsating magnetized Eyring-Powell viscoelastic flow and species 

diffusion (mass transfer) in porous media channels as a model of drug delivery and control in the 

circulation system.  

The present work first presents a general model for magnetohydrodynamic (MHD) flow of an 

electrically-conducting fractional Burger’s viscoelastic fluid from a non-conducting plate in a 

rotating porous medium. Next three specific cases involving different aspects of hydrodynamic 

slip, periodic oscillation and other effects are studied. A similar approach for mdoelling 

hydrodynamic slip, albeit with thermal slip also included, has been recently presented for nanofluid 

slip flow in porous media by Uddin et al. [52]. A modified Darcy law is employed to model flow 

through the porous medium. Three special oscillatory MHD flow cases are examined. Exact 

solutions for these three cases are obtained by the Fourier transform method. Furthermore the 

limiting cases for viscous, second grade, Maxwell and Oldroyd-B model fluids are retracted from 

the generalized fractional Burgers model analyzed. The study provides a useful benchmark for 

numerical simulations of magnetic polymers, rheological working fluids in MHD generators etc. 

 

2. VISCOELASTIC, ELECTROMAGNETIC AND POROUS MEDIA FORMULATIONS  

The governing equation for an incompressible, Burger's viscoelastic fluid, in a rotating frame of 

reference may be stated as follows: 

 

,)()2( )( RBJTrV
V
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dt
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where ,SIT  p  denotes the Cauchy stress tensor. In eqns. (1-2),   is the density of fluid, p 

is the pressure,   is the angular velocity in a rotating frame, 
222 yxr   and S is the extra 

stress tensor, defined in the following equation:  
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Here,  1   and  2   represents the relaxation time whereas 3   denotes the retardation time,  
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   is the dynamic viscosity, and    and     are fractional parameters which satisfy the 

inequality,  10    . 1A  is the First Rivlin Erickson tensor and is given by  

,)(1

TVVA            (4) 

and  

,)()()(~

~
T

tD

D

Dt

D
VSSVSV

SS










    (5) 

The fractional time derivative of order   with respect to t is given by: 

          (6)  

where  (.)   designates the familiar Gamma function. Setting 1   in eqn. (3), the 

fractional Burgers viscoelastic fluid model reduces to the ordinary Burger's viscoelastic model. 

Further and simpler rheological models may also be extracted from the general eqn. (3). For the 

case 021    and 13   , we retrieve the generalized second grade Reiner-Rivlin 

viscoelastic model. With 32 0   , we  obtain the generalized Maxwell viscoelastic fluid 

model. Furthermore, for the most elementary case, setting 0321    and 1  , and 

thereby negating all rheological effects, the classical Navier-Stokes viscous fluid (Newtonian) case 

is deduced. In the present study we further simulate electrically-conducting fractional Burgers 

viscoelastic flows. These fluids respond to applied magnetic fields. It is therefore necessary to 

consider magnetohydrodynamics (MHD). The relevant field equations are the Maxwell equations 

which fully describe the electromagnetic behavior of fluids and these may be stated following 

Cramer and Pai [53] and Bég et al. [35] in vectorial notation as: 
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Here E is electric field vector, m  is magnetic permeability of the electro-conductive polymer 



8 
 

(ferrogel), J  is the current density and B is the magnetic field vector. Since we have assumed a 

small magnetic Reynold number, induced magnetic field will be negligible. A single magnetic 

field component, 0B  acts in the z-direction i.e. transverse to the x-y plane (the y-axis is normal to 

the x-z plane of the diagram). The absence of applied or polarization voltage implies that electrical 

field effectively vanishes i.e. E = 0. Furthermore we neglect Maxwell displacement currents, Hall 

currents and ionslip effects. In conformity with magnetohydrodynamic conventions, the magnetic 

lines of force are therefore assumed to be fixed relative to the fluid. Advection is relatively 

insignificant and therefore the magnetic field is taken as relaxing towards a purely diffusive state, 

determined by the boundary conditions rather than the flow. Magnetic diffusion greatly exceeds 

viscous diffusion in the regime. In view of these assumptions we have: 

,2

0 VBJ B       (8) 

To simulate the porous media drag effect, we deploy a modified version of Darcy's law, for a 

fractional Burger’s fluid, wherein the porous resistance (impedance), R , satisfies the following 

relation : 
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Here k denotes the permeability and   denotes the porosity of the medium. Implicit in this 

formulation is the neglection of inertial (second order) drag effects, thermal dispersion and 

stratification of the porous medium. 

 

3. GENERALIZED MAGNETO-VISCOELASTIC POROUS MEDIA FLOW MODEL  

In our analysis, we consider three different problems involving incompressible fractional Burger’s 

viscoelastic magnetohydrodynamic flows. First we derive a generic model for customization to 

these three cases. We consider flow past an electrically non-conducting rigid plate in a rotating 

frame of reference. The z -axis is orientated perpendicular to the plate i.e. fluid is rotating parallel 

to the z -axis with uniform angular velocity, . Since the plate is infinite in extent, the velocity 

field will be 2-dimensional (in x-y coordinates) and a function only of z and t independent 

variables. The fluid has dynamic viscosity, . For the velocity field given in Eqn. (3), the continuity 

equation is identically satisfied and momentum equation in component form is given by the 

following equations:  
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where  denotes the kinematic viscosity (=/) and p̂  denotes the modified pressure, defined 

thus:  
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Where ),(zpp   is implied. The coupled (amalgamated) form of Eqn. (10) and Eqn. (11) is 

given by the following fractional partial differential equation: 
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where .ivuF   This denotes the complex variable form of the velocity fields. 
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4. CASE I: FLOW INDUCED BY GENERAL PERIODIC OSCILLATION 

In this second scenario, we examine flow generated by periodic oscillation at the rigid plate. We 

further impose the slip condition is defined by the following mathematical expression: 
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Here  is the slip length or slip coefficient and the following free stream velocity conditions are 

imposed: 

  u, v  0  as z  .        (15c)  

The Fourier series coefficients ck are given by 

       (17) 

Next we write the boundary conditions in terms of F, giving:  

    (18) 

          (19) 

The following non-dimensional quantities are introduced to normalize the boundary value 

problem, viz: 
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        (19) 

Where M*2 is the square of the Hartmann magnetohydrodynamic body force parameter, 1/K is the 

inverse permeability parameter, Uo is a reference velocity and 0* is dimensionless angular 

frequency. All other parameters are dimensionless versions of the original parameter e.g. z* is 

dimensionless z-coordinate etc.   

The non-dimensional form of eqn. (14) in the absence of pressure gradient is then: 

    (20) 

 

The corresponding normalized boundary conditions are: 

    (21) 

 

          (22) 

 

Solving eqn. (20) via implementation of boundary conditions (21) and (22) yields the following 

series solution: 
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Solutions have been derived for different oscillations of the plate via the prescription of certain 

Fourier coefficients, ck. We select the following five oscillations which refer respectively to 

exponential, sine-wave, cosine-wave, step and Dirac delta step wave forms:  

 

 (27) 

The following five sets of results are thereby obtained: 

  (28) 
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   (31) 
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  (32) 

All five oscillatory cases pertaining to Case I are elaborated upon in due course. 

 

5. CASE II: PERIODIC FLOW BETWEEN TWO RIGID PLATES 

A generic geometrical representation for this case is illustrated in Fig. 1 below. Let us know 

consider flow between two plates which are rigid i.e. a parallel plate channel (this geometry is 

more relevant to MHD energy generator systems whereas the scenario in Case I is more relevant 

to sheet processing of ferrogels). The channel depth is h i.e. the plates are separated by a distance 

h. The appropriate non-dimensional equation is as follows:  
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The associated boundary conditions are:  
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By the help of Fourier transforms the following solution is attained: 
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The solutions for the five oscillation cases (as stated in Case I) for the present scenario emerge 

as:  
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6. CASE III: POISEUILLE FLOW 

We consider finally the Poiseuille channel flow version of the generalized model given in section 

3. This case is of fundamental importance in MHD generator flows. Both channel plates are 

stationary, infinite in length and separated by a distance 2h. The flow is generated due to the 

pressure gradient, which is given as: 
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The associated non-dimensional problem for this scenario takes the form:  
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The solution of Eq. (42) subject to boundary conditions (45) and (46) is given by: 

,cosh)()(1

sinh)(1/1)sinh

)(1)()(1

coshcosh
)(1

)()(1
),(

0)]

([]

)[(

))(

)((

)()(

)(

2

0

2

201

03

2

03

2

0

2

201

03

2

0

2

201
0

ti

k

kkkkk

kk

elii

llilll

iii

lzl
i

ii
QtzF

































  (47) 

 

.| 11  kkll          (48) 

 

7. GRAPHICAL RESULTS AND DISCUSSION 

Extensive graphical plots and Tables have been presented for the solutions described above. In 

Tables 1-6 the analytical solutions for u and v i.e. x- and y-components of the velocity field have 

been presented both with slip (Tables 1-3) and without slip (Tables 4-6), for each Case studied. In 

all the tables, the oscillation imposed at the plate (s) is of the cosot waveform. In each of the 

Tables 1-6, five material models are studied i.e. Newtonian, generalized (G.) Maxwell, generalized 

(G.) Oldroyd-B model, Burger's model and the fractional Burger’s model. We do not explicitly 

study the influence of a porous medium and K is prescribed as unity i.e. 1/K = 1 corresponding to 

a highly permeable medium. Furthermore we do not explicitly investigate the influence of 

rotational parameter () which is fixed at 0.3 throughout all computations. The elucidation of 

Coriolis forces on the regime is deferred to a future article. Also the magnetic field strength is not 

studied i.e. a constant M value of 0.5 is imposed and angular oscillation frequency and time 

coordinate are also fixed at 0.1 and 0.5 respectively. Comparing the tables (e.g. Table 1 compared 

with Table 4, Table 2 compared with Table 5 and Table 3 compared with Table 6) allows an 

assessment of the influence of wall hydrodynamic slip on both velocity components. With slip 

present lower magnitudes of u-velocity (primary) component are observed for all five types of 
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fluid material model. However for the secondary v-velocity component, higher values are 

computed for the four non-Newtonian models when slip is present (Tables 1-3) compared with 

when slip is absent (Tables 4-6). Only the Newtonian model achieves higher v-velocity values 

without slip than with slip present. Evidently therefore the presence of slip decelerates the primary 

flow irrespective of the material model, whereas it accelerates the secondary flow for rheological 

fluids only. An implication of this in MHD generators is that greater efficiency can be achieved in 

the secondary flow field with wall slip whereas losses are incurred in the primary flow with wall 

slip, when the working fluid is non-Newtonian. We note that in all cases the primary flow is 

positive whereas the secondary flow is negative indicating that backflow is induced in the latter, a 

characteristic of real MHD energy generator flows. This concurs with the observations of Fabris 

and Hantman [36]. With regard to the influence of material model on velocity distributions, it is 

apparent from inspection of the slip case Tables (i.e. Tables 1-3) that both primary and secondary 

velocity components are maximized for the generalized Maxwell rheological model (G. Maxwell) 

whereas in Tables 1 and 2 (i.e. for Cases I and II) they are minimized for the Burger’s fluid model. 

However in Table 3 the minimum primary velocity is in fact computed for the Newtonian fluid 

whereas the minimum magnitude of secondary velocity corresponds as in Tables 1 and 2, to the 

Burger’s fluid case. Evidently the nature of the flow regime combined with the selection of 

material model has an important collective influence on the efficiency of the flow. Overall the 

fractional Burger’s viscoelastic model is also found to achieve significantly greater primary and 

secondary velocity magnitudes than the conventional Burger’s fluid model. The incorporation of 

fractional calculus in the Burger’s model is therefore not a futile exercise and demonstrates non-

trivial rheological effects. Considering the no-slip solutions (Tables 4-6), a very different response 

is computed from the slip solutions (Tables 1-3). Whereas in the latter the primary velocity minima 

generally correspond to the Burger’s fluid, in the former (no-slip cases) the primary velocity peak 

(maximum) is associated with the Burger’s model, for Cases I and II; however in Case III 

(Pouiseille flow) the maximum primary velocity is computed for the generalized Maxwell model 

(as with Tables 1-3 for slip solutions). The minimum primary velocity magnitudes are found to be 

attained with the Newtonian model in Tables 4 and 5 but again with the Burger’s model in Tables 

6 (Case III). Effectively Table 4 shows that primary (u-) velocity is a maximum in the Burger's 

fluid model and minimum in the Newtonian model. The fractional Burger's fluid therefore achieves 

a lower primary velocity than the Burger’s fluid model. Secondary velocity is a maximum in the 
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Burger's fluid and attains the least value in the fractional Burger’s model. Table 5 demonstrates 

that the primary velocity (u-component) magnitude is greater in the Burger's fluid model than the 

fractional Burger’s model and a similar trend is observed for the secondary velocity (v-

component). Finally Table 6 (corresponding to Case III- Poisuille flow) shows that primary 

velocity magnitude is maximum for the generalized Maxwell fluid, whereas secondary velocity is 

maximum for the conventional Burger’s fluid (i.e. lowest negative value). The fractional Burger’s 

fluid achieves a greater primary velocity than the conventional Burger’s fluid, whereas the 

conventional Burger’s fluid model attains a higher maximum secondary velocity than the 

fractional Burger’s model.  

Figs 2-4 illustrate the graphical distributions of both primary and secondary velocity components 

for all five material models, for each Case examined. These are plotted to investigate slip (γ) effect 

and also rheological parameter effects (i.e. , β, 1, 2, 3) via the different material models). Fig 

2 shows the effect of slip parameter γ for Case 1 i.e. general periodic oscillation in magneto-

viscoelastic flow from a rigid non-conducting plate. With greater slip there is a significant 

deceleration in primary velocity for all five material models. However with greater slip parameter, 

the secondary velocity field is initially decelerated for small values of z, and thereafter it is 

markedly accelerated with increasing slip, for all five material models. Although the trends are 

similar for all five material models, there is a large deviation in magnitudes indicating that the 

selection of material model influences the maximum and minimum values of primary and 

secondary velocity, rather than the nature of the response, which is more dominated by the type of 

flow regime i.e. periodic oscillation from a non-conducting plate. These observations are 

consistent with the earlier literature on rotating magnetohydrodynamic oscillatory flows e.g. Zheng 

et al. [39] and Khan and Khan [45] i.e. monotonic decays are consistently computed for primary 

velocity with strongly skewed parabolic distributions (biased towards the lower values of z) for 

secondary velocity. Fig. 3 shows the effect of slip parameter (  ) on primary and secondary 

velocity components, for Case II i.e. periodic magneto-viscoelastic flow between two plates (flow 

under an imposed cosine waveform t0cos ). Here it is apparent immediately that very different 

profiles are computed compared to Case I. The primary velocity plots are generally linear decays 

whereas the secondary velocity plots are more evenly distributed parabolas. For all five material 

models, the primary velocity initially decreases strongly with increasing slip, and then at 

intermediate values of z the reverse trend arises i.e. thereafter primary velocity ascends with greater 
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slip. This indicates that the slip effect is decelerating close to the plates but this effect is weakened 

further from them i.e. towards the core region of the channel flow. This effect has also been 

observed in real MHD channel flows as elaborated by Sutton and Sherman [54] and Rosa [55]. 

Secondary velocity is observed to be maximized at the channel walls (z=0, 1) whereas it is 

minimized in the core region, for all five fluid models. With increasing slip there is a substantial 

deceleration in the secondary flow across the channel width. There is also a slight skewness in the 

secondary profiles towards the lower channel wall (z = 0). Fig. 4 depicts the influence of slip 

parameter for Case III i.e. Poiseuille flow under a pressure gradient. While secondary velocity 

distributions are similar to Case II (channel flow) the primary velocity plots are significantly 

different from both Case I and II since they are now inverted parabolas which are approximately 

symmetric about the channel centre line (z=0.5). The maximum primary velocity always arises at 

the channel centre whereas the secondary velocity is always a minimum at that location (it is 

maximized at the channel walls). With increasing slip primary velocity is significantly accelerated 

whereas secondary velocity is decelerated, and these patterns are sustained across the channel 

width, for all five materials models. As eludicated earlier, the generalized Maxwell model attains 

the maximum primary velocity, indicating that the presence of fractional and relaxation parameters 

(, β, 1, 2 are all non-zero) and the simultaneous absence of the rheological retardation 

parameter (3=0) has a beneficial effect on the primary flow. Conversely however the generalized 

Maxwell model also achieves the minimum secondary velocity values.  

 

8. CONCLUSIONS 

A generalized mathematical model is developed for hydromagnetic flows of incompressible 

fractional Burger's viscoelastic fluid via a porous medium in a rotating frame of reference with 

wall slip effects. The fractional generalized Darcy model is utilized to model porous medium bulk 

drag force effects. Three different cases are derived from the general non-dimensional 

mathematical model - namely, case I -flow induced by a general periodic oscillation at a rigid 

plate, Case II -periodic flow in a parallel plate channel and finally Case III-Poiseuille flow. In all 

cases the plate (s) boundary (ies) are electrically-non-conducting and magnetic induction effects 

are neglected. The well-posed boundary value problems associated with each case are solved via 

Fourier transforms. Comparisons are made between the results derived with and without slip 

conditions. 4 special cases are retrieved from the general fractional Burgers model, viz Newtonian 
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fluid, general Maxwell viscoelastic fluid, generalized Oldroyd-B fluid and the conventional 

Burger’s viscoelastic model. The computations reveal that both material model selected and the 

nature of the flow problem exert a significant influence on primary and secondary velocity fields. 

The presence of slip is observed to accelerate the primary flow in Case III, whereas it consistently 

decelerates the primary flow in Case I and initially decelerates and thereafter accelerates the 

primary flow in Case II. Conversely increasing wall slip is observed to initially decelerate 

secondary velocity and then accelerate it for Case I, whereas it consistently decelerates the 

secondary flow for both Cases I and II. The results computed also illustrate that primary velocity 

(u-component) magnitude in Case II, for the Burger's fluid model exceeds that for the fractional 

Burger’s model and a similar trend is observed for the secondary velocity (v-component). It is also 

noteworthy that for Case III (Poiseuille flow) primary velocity magnitude is greatest for the 

generalized Maxwell fluid, whereas secondary velocity is a maximum for the conventional 

Burger’s fluid. In this scenario (Case III) the fractional Burger’s fluid attains a greater primary 

velocity than the conventional Burger’s fluid, whereas the conventional Burger’s fluid model 

attains a higher maximum secondary velocity than the fractional Burger’s model. The present 

study provides a useful benchmark for further (numerical) investigations. It is relevant to fluid 

dynamic processes in MHD rotating energy generators employing rheological working fluids, and 

although many non-Newtonian models have been addressed, the influence of micro-structure has 

been neglected. This feature is best addressed with Eringen micro-continuum (e.g. micropolar) 

models [56] and efforts in this regard are underway and will be communicated imminently. 
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TABLES 

 

Type of fluid  Rheological parameters  u v 

Newtonian fluid  λ1 = 0,λ2 = 0,λ3 = 0  0.348290 -0.0753796 

G. Maxwell  λ1 = 2,λ2 = 0,λ3 = 0 (α=β= 0.1)  0.372001 -0.1159010 

G. Oldroyd-B  λ1 = 2,λ2 = 0,λ3 = 1 (α=β= 0.1) 0.350487 -0.0773218 

Burger  λ1 = 2,λ2 = 3,λ3 = 1 (α=β= 1) 0.343626 -0.0710981 

Fractional Burger  λ1 = 2,λ2 = 3,λ3 = 1 (α=β= 0.1) 0.368403 -0.100277 

 

Table 1: Velocity solutions for Case I (general periodic oscillation with slip condition) (Q0 = −1, 

ω0 = 0.1, Ω = 0.3, M = t = 0.5, z = 0.5 and γ = 0.5) 
 

 

 

Type of fluid  Rheological parameters  u v 

Newtonian fluid  λ1 = 0,λ2 = 0,λ3 = 0  0.327715 -0.0540700 

G. Maxwell  λ1 = 2,λ2 = 0,λ3 = 0 (α=β= 0.1)  0.342963 -0.0779771 

G. Oldroyd-B  λ1 = 2,λ2 = 0,λ3 = 1 (α=β= 0.1) 0.329034 -0.0551374 

Burger  λ1 = 2,λ2 = 3,λ3 = 1 (α=β= 1) 0.325006 -0.0515568 

Fractional Burger  λ1 = 2,λ2 = 3,λ3 = 1 (α=β= 0.1) 0.340142 -0.068116 

 

Table 2: Velocity solutions for Case II (Periodic flow between two plates with slip condition) 

(Q0 = −1, ω0 = 0.1, Ω = 0.3, M = t = 0.5, z = 0.5 and γ = 0.5) 
 

 

 

Type of fluid  Rheological parameters  u v 

Newtonian fluid  λ1 = 0,λ2 = 0,λ3 = 0  0.394565 -0.0930379 

G. Maxwell  λ1 = 2,λ2 = 0,λ3 = 0 (α=β= 0.1)  0.548910 -0.1775900 

G. Oldroyd-B  λ1 = 2,λ2 = 0,λ3 = 1 (α=β= 0.1) 0.401474 -0.0962267 

Burger  λ1 = 2,λ2 = 3,λ3 = 1 (α=β= 1) 0.400604 -0.0660502 

Fractional Burger  λ1 = 2,λ2 = 3,λ3 = 1 (α=β= 0.1) 0.443987 -0.1113370 

 

Table 3: Velocity solutions for Case III (Poiseuille flow with slip condition) (Q0 = −1, ω0 = 0.1, 

Ω = 0.3, M = t = 0.5, z = 0.5 and γ = 0.5) 
 

Type of fluid  Rheological parameters  u v 

Newtonian fluid  λ1 = 0,λ2 = 0,λ3 = 0  0.39465  -0.0930379 

G. Maxwell  λ1 = 2,λ2 = 0,λ3 = 0 (α=β= 0.1)  0.560037  -0.0744996 

G. Oldroyd-B  λ1 = 2,λ2 = 0,λ3 = 1 (α=β= 0.1) 0.558487  -0.0742893 

Burger  λ1 = 2,λ2 = 3,λ3 = 1 (α=β= 1) 0.563345  -0.0691876 

Fractional Burger  λ1 = 2,λ2 = 3,λ3 = 1 (α=β= 0.1) 0.534658  -0.0969811 

 

 

Table 4: Velocity solutions for Case I (general periodic oscillations with no slip condition) (ω0 = 

0.1, Ω = 0.3, M = t = 0.5, z = 0.5 and γ = 0) 
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Type of fluid  Rheological parameters  u v 

Newtonian fluid  λ1 = 0,λ2 = 0,λ3 = 0  0.394650 -0.0930379 

G. Maxwell  λ1 = 2,λ2 = 0,λ3 = 0 (α=β= 0.1)  0.416045 -0.0514913 

G. Oldroyd-B  λ1 = 2,λ2 = 0,λ3 = 1 (α=β= 0.1) 0.428460 -0.3009650 

Burger  λ1 = 2,λ2 = 3,λ3 = 1 (α=β= 1) 0.430716 -0.0269874 

Fractional Burger  λ1 = 2,λ2 = 3,λ3 = 1 (α=β= 0.1) 0.422294 -0.0416114 

 

Table 5: Velocity solutions for Case II (periodic flow between two plates with no slip condition) 

(ω0 = 0.1, Ω = 0.3, M = t = 0.5, z = 0.5 and γ = 0) 
 

 

 

Type of fluid  Rheological parameters  u V 

Newtonian fluid  λ1 = 0,λ2 = 0,λ3 = 0  0.394650 -0.0930379 

G. Maxwell  λ1 = 2,λ2 = 0,λ3 = 0 (α=β= 0.1)  0.418020 -0.0843680 

G. Oldroyd-B  λ1 = 2,λ2 = 0,λ3 = 1 (α=β= 0.1) 0.252292 -0.0338033 

Burger  λ1 = 2,λ2 = 3,λ3 = 1 (α=β= 1) 0.239327 -0.0038788 

Fractional Burger  λ1 = 2,λ2 = 3,λ3 = 1 (α=β= 0.1) 0.321577 -0.0441474 

 

Table 6: Velocity solutions for Case III (Poiseuille flow with no slip condition) (Q0 = −1, ω0 = 

0.1, Ω = 0.3, M = t = 0.5, z = 0.5 and γ = 0).  
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FIGURES 

 

 

Fig. 1: Physical model for Case II- periodic rotating magnetohydrodynamic fractional 

viscoelastic flow in porous media channel between rigid plates. 
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Figs. 2: Influence of slip parameter () on velocity evolution for Case I (general periodic 

oscillations from a rigid plate) with M =t =0.5, o=0.1 and  =0.3. 
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Figs. 3: Influence of slip parameter () on velocity evolution for Case II (periodic channel flow) 

with M =t =0.5, o=0.1 and  =0.3. 
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Figs. 4: Influence of slip parameter () on velocity evolution for Case III (Poiseuille channel 

flow) with Qo=-1, M =t =0.5, o=0.1 and  =0.3. 


