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Abstract Parallel mechanisms, in general, have a

rigid base and a moving platform connected by several

limbs. For achieving higher mobility and dexterity,

more degrees of freedom are introduced to the limbs.

However, very few researchers focus on changing the

design of the rigid base and making it foldable and

reconfigurable to improve the performance of the

mechanism. Inspired by manipulating an object with a

metamorphic robotic hand, this paper presents for the

first time a parallel mechanism with a reconfigurable

base. This novel spherical-base integrated parallel

mechanism has an enlarged workspace compared with

traditional parallel manipulators. Evolution and struc-

ture of the proposed parallel mechanism is introduced

and the geometric constraint of the mechanism is

investigated based on mechanism decomposition.

Further, kinematics of the proposed mechanism is

reduced to the solution of a univariate polynomial of

degree 8. Moreover, screw theory based Jacobian is

presented followed by the velocity analysis of the

mechanism.

Keywords Parallel mechanism � Reconfigurable
base �Metamorphic hand �Kinematics � Screw theory �
Jacobian

1 Introduction

A typical parallel mechanism consists of a moving

platform that is connected to a fixed base by several (at

least two) limbs or legs. In general, the moving

platform of parallel mechanisms has both rotational

and translational motion [1, 2]. However, in order to

reduce the complexity and cater some specific appli-

cations, the low-mobility parallel mechanisms [3–6]

have drawn numerous interests from researchers in

mechanism and machine design. In particular, Chablat

andWenger [7] proposed a 3-DOF parallel mechanism

to realise three axes rapid machining applications.

Zhao et al. [8, 9] investigated three and four DOFs

parallel mechanisms relying on equivalent screw

groups. Kong and Gosselin [10] presented several

parallel mechanisms relying on screw theory based

type synthesis method. Similarly, Xu and Li [11]

applied screw theory to analyse the mobility and

stiffness of an over-constrained 3-PRC parallel mech-

anism and converted it into a non-over-constrained

3-CTC parallel mechanism of the same mobility and

kinematic properties. Huda and Takeda [12] invented

a 3-URU parallel mechanism with three dimensional

rotations. Such parallel mechanisms were widely

adopted to achieve wrist-like motion, such as Argos,
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proposed by Vischer and Clavel [13] and the 3-RUU

mechanism, proposed by Gregorio [14]. Gan and Dai

[15] studied constraint screw systems of a 3-PUP

parallel mechanism and revealed the influence

between them and limb arrangements. Zhang et al.

[16] discussed the constraint singularity and analysed

the bifurcated motion of a 3-PUP parallel mechanism

and the conversion between two bifurcated motion

branches. In addition, some redundant parallel mech-

anisms [17, 18] were put forward to avoid singularities

and obtain better kinematic properties.

The parallel mechanism mentioned above are all

composed of rigid base and non-reconfigurable mov-

ing platform. In other words, their base or moving

platform is a component with zero DOF rather than a

mechanism with additional moving capability.

Recently, the parallel mechanisms with reconfigurable

features have been capturing attentions from the

researchers in the fields of mechanisms and robotics.

Based on the concept reconfigurability and principle

of metamorphosis [19], Gan et al. [20] proposed a

reconfigurable Hooke (rT) joint and presented a new

metamorphic parallel mechanism that was capable of

changing mobility and topological configurations.

Zhang et al. [21] identified an axis-variable (vA) joint

based on origami fold [22] leading to the development

of a metamorphic parallel mechanism that had the

capability of changing its mobility from 3 to 6 DOF.

Wei and Dai [23] proposed a variable revolute (vR)

joint with application to the constructure of a family of

reconfigurable and deployable Platonic mechsnisms.

In addition, there is another kind of metamorphic

parallel mechanisms that can reconfigure themselves

through changing the configurations of their moving

platform. Yi et al. [24] presented a flexible folded

parallel gripper tomeet the requests of both grasping and

positioning objects with irregular shape and size.

Mohamed andGosselin [25] presented a kind of parallel

mechanismswith reconfigurable platforms and analysed

redundancy of proposed parallel mechanisms. Lambert

[26] presented and analysed mobility and kinematics of

a PentaG robot, which is a parallel mechanism with a

flexible planar platform providing 5 DOFs in total.

In contrast to the above flexible-platform parallel

mechanisms, the concept of parallel mechanisms with

a foldable/reconfigurable base can be brought up but

no literature shows the relevant investigation. Inspired

by the grasp and manipulation of an object with a

metamorphic hand containing a reconfigurable palm

(Fig. 1) [27–31], in this paper, a parallel mechanism

with a reconfigurable base is for the first time

proposed. The base of this parallel mechanism is

formed by a spherical five-bar linkage, which provides

augmented motion for each limb. Structure design of

the proposed spherical-base integrated parallel mech-

anism is introduced, and geometry and kinematics of

the mechanism are investigated leading to closed-form

solutions. Screw theory [32] based Jacobian is then

presented followed by the velocity analysis.

2 A spherical-base integrated parallel mechanism

2.1 From manipulation with a metamorphic hand

to a parallel mechanism with a reconfigurable

base

Figure 1 illustrates a three-fingered metamorphic

robotic hand grasping and manipulating a disk. The

metamorphic robotic hand (Metahand) contains a

reconfigurable palm and three two-phalanx fingers.

The reconfigurable palm is formed by a spherical five-

bar linkage, with link AE as a grounded link, and the

other four links are symmetrically arranged with

respect to link AE such that links AB and ED are of the

same length and so do links BC and DC. The three

fingers are respectively mounted on link AE at point

A1, on link DC at point A2 and on link BC at point A3.

When the palm is in a configuration that all the links

are in a same plane, the three points A1, A2 and A3 are

Fig. 1 Object manipulated by a three-fingered metamorphic

hand
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evenly distributed about point O, i.e. centre of the

spherical five-bar linkage. The 2-DOF reconfigurable

palm changes configuration of the whole hand, and

increases workspace, dexterity and manipulability of

the hand [30, 31]. The idea of equivalence about

considering the multi-fingered hand with a grasped

object as a parallel mechanism was put forward by

Borras-Sol and Dollar [33, 34]. When the hand is used

to grasp and manipulate an object such as a disk as

shown in Fig. 1, if the contact points between the

object and the fingertips are thought of as spherical

joints, an equivalent parallel mechanism with a

reconfigurable base can be intuitively generated as

illustrated in Fig. 2. This parallel mechanism is coined

in this paper spherical-base integrated parallel

mechanism.

2.2 Structure of the spherical-base integrated

parallel mechanism

As shown in Fig. 2, the spherical-base integrated

parallel mechanism is composed of a spherical recon-

figurable base, a moving platform and three identical

revolute–revolute-spherical chain connecting them.

The reconfigurable base consists of five links which

connect to each other forming a spherical five-bar

linkage. In this design, link AE is fixed and joints A

and E are assumed to be active joints to change the

configurations of the base, and joints B, C and D are

passive joints. The axes of these five joints always

intersect at point O. The angles covered by links AB,

BC, CD, DE and EA are denoted as u1 throughout

u5 separately, and the sum of which satisfies

u1 ? u2 ? u3 ? u4 ? u5 = 2p. There are three

identical limbs mounted at point Ai (i = 1, 2 and 3),

and the angles between OA1 and OA, OB and OA2,

OA3 and OD are indicated as d1, d2 and d3. The angle
between any two limbs is 120� in the initial configu-

ration of the mechanism when the five links of the

reconfigurable base are located in a same horizontal

plane. However, one has to clarify that this initial state

of the mechanism as a singular configuration is

suitable for theoretical computations rather than a

starting configuration for practical applications. Each

limb is made up of two linkages coupled by a revolute

joint Bi (i = 1, 2 and 3). The limbs are connected to the

reconfigurable base by revolute jointsAi (i = 1, 2 and 3)

and the moving platform by spherical joints Ci (i = 1, 2

and 3). The length of link AiBi is denoted as li1, while

that of link BiCi is denoted as li2 (i = 1, 2 and 3).

3 Mechanism decomposition and geometric

constraints of the spherical-base integrated

parallel mechanism

The spherical-base integrated parallel mechanism, as

the combination of a five-bar spherical base and a

typical three-limb parallel mechanism, is a hybrid

mechanism and it is complicated to analyse its

kinematics directly. Therefore, using mechanism

decomposition, analysis of the geometry constraint

of the mechanism can be separated as that of the

reconfigurable base and that of the normal parallel

mechanism first and then combine them together.

3.1 Constraint equations of the reconfigurable

base

As shown inFig. 2, a global coordinate systemF{O-xyz}

is attached to the reconfigurable base with point O as

the origin and its y-axis directed towards the upper

platform and perpendicular to the plane formed by the

axes of joints A and E. The z-axis of the coordinate

system lies along OA1. The radius of the spherical base

is set at 1 for simplifying the calculation. For solving

the geometric relationship of the reconfigurable base,
Fig. 2 Structure of the spherical-base integrated parallel

mechanism
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local coordinate systems Mi {O-xiyizi (i = 1 to 5)} are

created at point O with the zi-axis aligned the joint axis

(joint A, B, C, D and E respectively) and the yi-axis

perpendicular to zi 9 zi?1 (if i = 5, zi?1-axis repre-

sents z1-axis). The coordinate systemM5 {O-x5y5z5} is

taken as an example indicated in Fig. 3. In this local

coordinate system, the position vectors of point A, B,

C, D and E can be calculated as

PA ¼ Rðy5;u5Þ PE ¼
su5

0

cu5

2
4

3
5 ¼

xA
yA
zA

2
4

3
5; ð1Þ

PB ¼ Rðy5;u5ÞRðz1; h1ÞRðy1;u1ÞPE

¼
cu1su5 þ su1cu5ch1
su1sh1
cu1cu5 � su1su5ch1

2
4

3
5 ¼

xB
yB
zB

2
4

3
5; ð2Þ

PC ¼ Rðz5;�h5ÞRðy4;�u4ÞRðz4;�h4ÞRðy3;�u3ÞPE

¼
su3 sh4sh5 � cu4ch4ch5ð Þ � cu3su4ch5
cu3su4sh5 þ su3 sh4ch5 þ cu4ch4sh5ð Þ
cu3cu4 � su3su4ch4

2
64

3
75

¼
xC

yC

zC

2
64

3
75;

ð3Þ

PD ¼ Rðz5;�h5ÞRðy4;�u4ÞPE ¼
�su4ch5
su4sh5
cu4

2
4

3
5

¼
xD
yD
zD

2
4

3
5; ð4Þ

where s and c denote the sine and cosine functions, h1
to h5 are the rotation angles of joints A to E, and

PE ¼ ð0; 0; 1ÞT.
Due to the geometric constraints of the spherical

base, the position vectors of its joints have to satisfy

the following equations,

PT
C � PB ¼ cu2; ð5Þ

PT
C � PD ¼ cu3; ð6Þ

PT
C � PC ¼ 1: ð7Þ

Substituting Eqs. (2), (3) and (4) into Eqs. (5) and

(6) leads to the coordinates of xC and yC represented in

terms of zC as

xC ¼ Pþ QzC; ð8Þ

yC ¼ M þ NzC; ð9Þ

where

P ¼ yDcu2 � yBcu3

xByD � yBxD
; Q ¼ yBzD � zByD

xByD � yBxD
;

M ¼ xBcu3 � xDcu2

xByD � yBxD
; N ¼ zBxD � xBzD

xByD � yBxD
:

Substituting Eqs. (8) and (9) into Eq. (7) results in a

quadratic equation as

S1z
2
C þ S2zC þ S3 ¼ 0; ð10Þ

where S1 = Q2 ? N2 ? 1, S2 = 2 (PQ ? MN) and

S3 = P2 ? M2 - 1.

Solving Eq. (10), the coordinate of zC can be

obtained as

zC ¼ �S2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S22 � 4S1S3

p
2S1

: ð11Þ

Thus, the value of joint angle h4 is obtained by

substituting Eq. (11) into zC of Eq. (3) as

h4 ¼ �arcc cotu3 cotu4 � zC=su3su4ð Þ: ð12Þ

The two possible values of zC result in two joint

angle h4, leading to two configurations of DBCD, one
of which represents the case that the triangle vertex C

appears above BD and the other indicates the case

when vertex C is below BD.

Apart from Eq. (3), the position vector of point C

can be expressed in another form as

Fig. 3 The reconfigurable base of the spherical-base integrated

parallel mechanism
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PC ¼ Rðy5;u5ÞRðz1; h1ÞRðy1;u1ÞRðz2; h2ÞRðy2;u2ÞPE;

ð13Þ

which leads to another expression of zC as

zC ¼ cu2 cu1cu5 � su1su5ch1ð Þ
� su2 su1cu5 þ cu1su5ch1ð Þch2 � su5sh1sh2ð Þ;

ð14Þ

Substituting Eq. (14) into Eq. (11) and rearranging

the equation yields

T1ch2 þ T2sh2 � T3 ¼ 0; ð15Þ

where,

T1 ¼ su2 su1cu5 � cu1su5ch1ð Þ;
T2 ¼ su2su5sh1 and T3 ¼ cu5ðcu1cu5 þ su1su5ch1Þ

þ S2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S22 � 4S1S3

q� ��
2S1:

Solving Eq. (15) gives the joint angle h2 as

h2 ¼ arctan
T2

T1
� arccot

T3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
1 þ T2

2

p
 !

: ð16Þ

The above equation indicates two solutions for h2,
one of which implies the triangle vertex B locates

below AC, and the other represents vertex B above

AC. Because the reconfigurable base is a closed chain,

the joint value h1 and h5 are not totally independent.

When assigning the value of angle h5, the spherical

five-bar linkage mechanism degenerates to a spherical

four-bar linkage mechanism. At that time, rotating

joint A will make the spherical four-bar linkage

mechanism reach its limited positions when point B, C

and D lie in the same plane, thus it has,

PD � ðPB � PCÞ ¼ 0, ð17Þ

PB � ðPD � PCÞ ¼ 0: ð18Þ

The mechanism has two limited position as the link

AD can rotate on both side with respect to link DC.

Thus, the value h5 decides the range of that of h1, the
relation between the two angles can be obtained as

PT
B � PA ¼ cu1; ð19Þ

PT
B � PD ¼ cðu2 þ u3Þ; ð20Þ

PT
B � PB ¼ 1: ð21Þ

Substituting Eqs. (1), (2) and (3) into Eqs. (19)

throughout (21) and solving the latter gives the two

limited values of angle h1 as

hl lim ¼ arct
U2

U1

� �
� arcc

�U3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1 þ U2
2

p
 !

; ð22Þ

where U1 ¼ �su4ch5cu5su1 � su1cu4su5; U2 ¼
su1su4sh5 and U3 ¼ c u2 þ u3ð Þ � cu1cu4ch5 þ su4

cu1ch5su5:

Hence the range of h1 with respect to h5 is

V1 � hl �V2; ð23Þ

where

V1 ¼ arct
U2

U1

� �
� arcs

�U2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1 þ U2
2

p
 !

and

V2 ¼ arct
U2

U1

� �
þ arcc

�U3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1 þ U2
2

p
 !

Based on the above analysis, it can be found that

given a pair of h1 and h5, there are four groups of

solution for h2, h3 and h4 resulting in four different

configurations of the base. Motion planning is needed

when controlling this mechanism because the config-

uration of spherical base is considered by the order of

its inputs.

3.2 Position of the 3-RRS parallel mechanism

in a particular configuration

of the reconfigurable base

A local coordinate system M0{O0-x0y0z0} is attached to
the upper moving platform with the origin O0

coincided with the centroid of the equilateral triangle

DC1C2C3 and the z0-axis directed to point C1. The

coordinates of Ai (i = 1, 2 and 3) in the global

coordinate system are given by,

FPA1
¼ 0 0 1½ �T; ð24Þ

FPA2
¼ R(y, d1)R(z1, h1)R(y1, u1)R(z2, h2)R(y2, d2)

FPA1
;

ð25Þ

FPA3
¼ R(y;�d1)R(z5;�h5)R(y4;�u4)

R(z4;�h4)R(y3;�d3)
FPA1

;
ð26Þ

The coordinates of Ci in the coordinate system M0

can be obtained as
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M0
PC1

¼ 0 0 r½ �T; ð27Þ

M0
PC2

¼
ffiffiffi
3

p

2
r 0 � r

2

� �T
; ð28Þ

M0
PC3

¼ �
ffiffiffi
3

p

2
r 0 � r

2

� �T
; ð29Þ

The upper moving platform C1C2C3 is an equilat-

eral triangle as |O0C1| = |O0C2| = |O0C3| = 3r2. The

position vector FPCi of Ci (i = 1, 2 and 3) with respect

to global coordinate frame F is given by the transfor-

mation as follows,

FPCi ¼ FPOO0 þ FRM0
M0
PCi; i ¼ 1; 2 and 3ð Þ; ð30Þ

where FPOO0 is the position vector of O0 expressed in

the global coordinate frame F and FRM0 is the

rotation matrix indicating the rotation of coordinates

from coordinate frame M0 to the global coordinate

frame F.

3.3 Forward kinematics of the spherical-base

integrated parallel mechanism

The sequence of calculating the forward kinematics

of the spherical-base integrated mechanism is to take

the configuration of the base into consideration

primarily as a way to degenerate the whole mech-

anism into a 3-RRS mechanism with a confirmed

base configuration, then apply the way to formulat-

ing forward kinematics of a parallel mechanism to

this simplified parallel mechanism, which is well

presented in the Ref. [35–37]. For each limb in this

proposed mechanism, the local limb coordinate

system Ki {O-xKiyKizKi} (i = 1, 2 and 3) is estab-

lished with the origin O, zKi-axis directed to point Ai

and yKi-axis perpendicular to the plane formed by

the linkage of the reconfigurable base. In terms of

Fig. 4, the yK2-axis is perpendicular to the plane

constructed by DCOD.
The position vector of point Ci in the global

coordinate frame can be described as

ki ¼ RKi

0

lisai
1� licai

2
4

3
5; i ¼ 1; 2; 3; ð31Þ

where ki is the position vector of point Ci expressed in

the local coordinate system M5 {O-x5y5z5}, RKi

describes the transformation from the local limb coor-

dinate system to the coordinate system M5 {O-x5y5z5}

as

RKi ¼

uxi vxi wxi

uyi vyi wyi

uzi vzi wzi

2
664

3
775

¼
R(y, d1); i ¼ 1

R(y, u5)R(z, h1)R(y, u1)R(z, h2)R(y, d2), i ¼ 2

R(z;�h5)R(y;�u4) R(z;�h4)R(y;�d3); i ¼ 3

8><
>:

;

i ¼ 1; 2 and 3

ð32Þ

The values of h2 and h4 can be obtained through

Eqs. (16) and (12) according to the geometry con-

straints of the reconfigurable base. So ki is computed

by substituting h2 and h4 together with Eq. (32) into

Eq. (31) as

k1 ¼
1� l1ca1ð Þsd1

l1sa1
1� l1ca1ð Þcd1

2
4

3
5; ki

¼
wxið1� licaiÞ þ livxisai
wyið1� licaiÞ þ livyisai
wzið1� licaiÞ þ livzisai

2
64

3
75;

i ¼ 2 and 3:

ð33Þ

Fig. 4 Kinematic analysis for limb 2 of the spherical-base

integrated parallel mechanism
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For calculating the forward kinematics, the angle

value of joint Bi is given, hence the length between

point Ai and Ci is introduced by the following

equation,

li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2i1 þ l2i2 � 2li1li2cbi

q
; i ¼ 1; 2 and 3: ð34Þ

Thus, the upper moving platform, which is con-

nected to the limbs by spatial joints, restricts the

position of point Ci; that is

ki � kiþ1ð ÞT ki � kiþ1ð Þ ¼ 3r2; i ¼ 1; 2 and 3:

ð35Þ

Equation (35) describes the geometrical relation

between the endpoints of any two limbs. So if i = 3,

then i ? 1 is equal to 1. By utilizing the way to

calculating forward kinematics of the parallel mech-

anism introduced by Merlet [36], we can see that there

are up to 16 solutions for the fixed-base parallel

mechanism. However, in this spherical-base inte-

grated mechanism, the number doubles as the recon-

figurable base provides two configurations for given

inputs investigated in Sect. 3.1. Path planning is

necessary to get a desired configuration of the base

and the moving platform.

The workspace of the spherical-base integrated

parallel mechanism proposed in this paper is larger

than that of the 3-RRS parallel mechanism with same

limb and platform constructions and parameters. To

make the comparison fairly, the base of the 3-RRS

parallel mechanism is designed as the same of the

initial configuration of the proposed mechanism

(stated in Sect. 2.2) Under this definition, the work-

space of this proposed mechanism is enlarged com-

pared with the 3-RRS fixed-base parallel mechanism.

By locking the base of this proposed mechanism in its

initial state, it shares the same workspace of the 3-RRS

parallel mechanism. When the joints of the base are

released, it will contribute to a larger workspace as you

can always lock the base during its motion in where the

mechanism degenerates to a 3-RRS mechanism as a

consequence. In other words, the workspace of the

spherical-base integrated parallel mechanism is the

sum of the workspaces of its degenerated 3-RRS

parallel mechanisms with all possible base

configurations.

4 Inverse kinematics of the spherical-base

integrated parallel mechanism

The inverse kinematic problem can be described as

giving the position and orientation of the upper

moving platform to acquire the rotation angle of each

active joint. For simplifying themodel, we assume that

point Ai (i = 1, 2 and 3) is on the links of the

reconfigurable base. By decomposing the hybrid

mechanism into a spherical five-bar linkage and a

3-RRS parallel mechanism where its three limbs are

mounted on the former, the inverse kinematics of each

linkage is investigated and then integrated through the

instinct geometry when connecting them. As the

configurations of the reconfigurable five-bar base

plays a vital role in deciding the position and

orientation of the platform, it has to be primarily

considered. In this case, the procedures of obtaining

the inverse kinematics of this mechanism are divided

into the following two steps:

1. Find all possible configurations of the base relying

on its geometric constraints with the platform

when the position and orientation of the latter is

given.

2. For considering the mechanism as a whole after

decouple, the length of each limb has to be

achievable which it lies in the certain

boundary.

For every possible configuration of the spherical

base, it has to satisfy the geometric condition that the

plane constructed by DOAiBi (i = 1, 2 or 3) is

perpendicular to its corresponding plane constructed

by the linkage of the reconfigurable base. As shown in

Fig. 4,DOA2B2 is orthogonal toDOBC. Denote C0
i the

intersection between OCi and the surface of the sphere

constructed by the spherical mechanism. In this way,

the coordinates of C0
3 can be written as,

P
C
0
3
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2C3
þ y2C3

þ z2C3

q xC3
yC3

zC3
½ �T

¼ xC0
3

yC0
3

zC0
3

h iT

The coordinates of C0
3 can be acquired in another

way by multiplying the rotation matrices from the

point E as,
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As there are only three unknowns h4, h5 and r3 in

Eq. (36), the standard trigonometric substitutions are

adopted to estimate these unknown variables,

sc3 ¼
2u1

1þ u21
; ccr ¼

1� u21
1þ u21

sh4 ¼
2u2

1þ u22
; ch4 ¼

1� u21
1þ u21

sh5 ¼
2u3

1þ u23
; ch5 ¼

1� u23
1þ u23

8>>>>>>><
>>>>>>>:

: ð37Þ

In order to estimate u2, substituting Eq. (38) into

the equations in Eq. (37) results in three quadratic

equations in u2

E1u
2
2 þ E2u2 þ E3 ¼ 0; ð38Þ

F1u
2
2 þ F2u2 þ F3 ¼ 0; ð39Þ

G1u
2
2 þ G2u2 þ G3 ¼ 0; ð40Þ

where Ei and Fi are second-degree polynomials in u3
and u1 and Gi (i = 1, 2, 3) is the second-degree

polynomials in u1, shown in Appendix 1. Sylvester

Dialytic Elimination Method [38] can be utilized here

to estimate u2 from these equations. Taking

Eq. (38) 9 G1 - Eq. (40) 9 E1 and Eq. (38) 9

G3 - Eq. (40) 9 E3 respectively, the two linear

equation in u3 are obtained as

E1G2 � E2G1ð Þu2 þ E1G3 � E3G1ð Þ ¼ 0 ð41Þ

E3G1 � E1G3ð Þu2 þ E3G2 � E2G3ð Þ ¼ 0 ð42Þ

Combining Eqs. (41) and (42) to estimate u2, we

obtain,

E1G3 � E3G1ð Þ2þ E1G2 � E2G1ð Þ E3G2 � E2G3ð Þ ¼ 0

ð43Þ

A fourth-degree polynomial in u3 can be derived

from substituting Ei and Gi (i = 1, 2, 3) into Eq. (43);

that is,

J1u
4
3 þ J2u

3
3 þ J3u

2
3 þ J4u3 þ J5 ¼ 0 ð44Þ

where Ji (i = 1 to 5) is eighth-degree polynomials in

u1. Taking the same method for Eqs. (39) and (40),

and writing it in the similar form with Eq. (44) as,

H1u
4
3 þ H2u

3
3 þ H3u

2
3 þ H4u3 þ H5 ¼ 0 ð45Þ

where Hi (i = 1 to 3) is eighth-degree polynomials in

u1. For estimating the term u3
4, we multiply Eq. (44) by

H1 and Eq. (45) by J1, and then take the subtraction of

the two to obtain the a third-degree polynomial in u3,

as follows,

H2J1 � H1J2ð Þu33 þ H3J1 � H1J3ð Þu23
þ H4J1 � H1J4ð Þu3 þ H5J1 � H1J5ð Þ ¼ 0

ð46Þ

Another equation of u3 can be derived from

multiplying Eq. (44) by H2 and Eq. (45) by J2, and

subtracting, which yields,

H2J1 � H1J2ð Þu43 þ H2J3 � H3J2ð Þu23
þ H2J4 � H4J2ð Þu3 þ H2J5 � H5J2ð Þ ¼ 0

ð47Þ

Multiplying Eq. (45) by u3 leads to

H2J1 � H1J2ð Þu43 þ H3J1 � H1J3ð Þu33
þ H4J1 � H1J4ð Þu23 þ H5J1 � H1J5ð Þu3 ¼ 0

ð48Þ

We write Eqs. (44) throughout (48) in matrix form

as

M � u43; u
3
3; u

2
3; u3; 1

� 	T¼ 0 ð49Þ

where

PC ¼ Rðz5;�h5ÞRðy4;�u4ÞRðz4;�h4ÞRðy3;�d3ÞRðx3;�c3ÞPE

¼
cc3ðsd3ðsh4sh5 � cu4ch4ch5Þ � cd3ch5su4Þ þ sc3ðch4sh5 þ cu4ch5sh4Þ
cc3ðsd3ðsh4ch5 þ cu4ch4sh5Þ þ cd3sh5su4Þ þ sc3ðch4ch5 � cu4sh4sh5Þ

cc3ðcd3cu4 � sd3ch4su4Þ þ sc3su4sh4

2
64

3
75 ¼

x
C
0
3

y
C
0
3

z
C
0
3

2
64

3
75 ð36Þ
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Equation (49) is valid if and only if the determinant

ofM is equal to zero, which results in a thirty-second-

degree polynomial in the square of u1, as follow,

X64
i¼ 0

Niu
i
1 ¼ 0 ð50Þ

In Eq. (50), Ni is only decided by the structure of

the hybrid mechanism. Solving Eq. (50) will obtain at

most 32 pairs of solutions for u1, with each pair

containing one positive and one negative solution. The

other two parameters u2 and u3 can be calculated by

substituting u1 into Eqs. (45) and (40) separately, which

overall results in 64 groups of solution for u2 and u3.

Thus, h4, h5 and r3 are solved in the Eq. (38) by

substituting the above parameter into these trigonomet-

ric functions. Once h4 and h5 are obtained, the config-
uration of the spherical base is confirmed. The next step

is to solve the configuration for the limbs based on the

known base configuration and moving platform.

With explicit expressions of PAi and ki (i = 1, 2 or

3), we can move forward to obtain the length of each

limb so as to get the value of bi (i = 1, 2 or 3) in the

DAiBiCi and complete to solve the inverse kinematics,

by the following equation,

cbi ¼ l2i1 þ l2i2 � l2i

 ��

2li1li2; i ¼ 1; 2 and 3: ð51Þ

Two solutions of bi (i = 1, 2 or 3) exist for non-

singular configurations of each limb that contribute to 8

possible states for a specific base configuration, which

leads to at most 512 different configurations for the

whole mechanism theoretically. The amount of possi-

ble configurations is much smaller that the theoretical

number because the solutions of the spherical base only

consider the geometrical constraint of limb 3, and these

solutions need to be verified to satisfy the correspond-

ing geometrical constraint of limb 2, which will

significantly decrease the number of solutions.

5 Screw theory based Jacobian analysis

As aforementioned, since the parallel mechanism

consists of three limbs mounted on a reconfigurable

base, structure decomposition of the mechanism can

be applied to analysing the Jacobian matrix of the

whole mechanism, the Jacobian analysis of the

reconfigurable base can be completed first followed

by that of the parallel mechanism.

5.1 Jacobian analysis for the reconfigurable base

The velocity of point C can be expressed as a linear

combination of angular velocity of axis OA and OB or

the other linear combination of angular velocity of axis

OE and OD,

vC ¼ _h1ðPA � PCÞ þ _h2ðPB � PCÞ; ð52Þ

vC ¼ _h5ðPE � PCÞ þ _h4ðPD � PCÞ: ð53Þ

Since vC is a passive variable, it should be estimated

from Eqs. (52) and (53). Thus we take right inner

product on both side of Eqs. (52) and (53) with PD, it

has

PD � vC ¼ _h1PD � ðPA � PCÞ þ _h2PD � ðPB � PCÞ;
ð54Þ

PD � vC ¼ _h5PD � ðPE � PCÞ: ð55Þ

Substituting Eq. (55) into Eq. (54) yields,

_h2 ¼ �PD � ðPA � PCÞ
PD � ðPB � PCÞ

_h1 þ
PD � ðPE � PCÞ
PD � ðPB � PCÞ

_h5:

ð56Þ

Similarly, the angular velocity _h4 can be obtained

and expressed as,

M ¼

H1 H2 H3 H4 H5

J1 J2 J3 J4 J5
H2J1 � H1J2 H3J1 � H1J3 H4J1 � H1J4 H5J1 � H1J5 0

H2J1 � H1J2 0 H2J3 � H3J2 H2J4 � H4J2 H2J5 � H5J2
0 H2J1 � H1J2 H3J1 � H1J3 H4J1 � H1J4 H5J1 � H1J5

2
66664

3
77775
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_h4 ¼
PB � ðPA � PCÞ
PB � ðPD � PCÞ

_h1 �
PB � ðPE � PCÞ
PB � ðPD � PCÞ

_h5: ð57Þ

The Eqs. (56) and (57) can be expressed in matrix

form as,

_h2
_h4

" #
¼ Ju

_h1
_h5

" #

¼
�PD � ðPA � PCÞ
PD � ðPB � PCÞ

PD � ðPE � PCÞ
PD � ðPB � PCÞ

PB � ðPA � PCÞ
PB � ðPD � PCÞ

� PB � ðPE � PCÞ
PB � ðPD � PCÞ

2
664

3
775

_h1
_h5

" #
:

ð58Þ

Thus the angular velocity of passive joints B and D

is calculated through that of active joints A and E

based on the geometric constraints of the spherical

mechanism.

5.2 Jacobian analysis for the spherical-base

integrated parallel mechanism

The screw algebra is introduced in this section for

analysing the velocity of the spherical-base integrated

parallel mechanism. A screw S is a six-dimensional

vector representing instantaneous kinematic proper-

ties of a rigid body, commonly expressed as,

S ¼ s
s0

� �
¼ s

r� sþ hs

� �
¼ sx; sy; sz; sx0; sy0; sz0
� 	T

:

ð59Þ

The first three components consist of a unit vector

s directing along the screw axis, as well as the joint

axis when describing a rotation. The last elements

constitute s0 representing the moment of the vector

s about the origin of the reference frame, and

h expresses the screw pitch, which is equal to 0 for

revolute joints and ? for prismatic joints, r is the

position vector from the origin of the reference

coordinate system to an arbitrary point on the screw

axis s.

The whole mechanism Jacobian can be derived

from the twist of the mechanism based on screw

system notation. Figure 5a illustrates motion screws

of the spherical-base integrated parallel mechanism.

We can assume each limb as an open-loop chain

connecting the end-effector to the base, as shown in

Fig. 5b. Defining Sp as the instantaneous motion of the

moving platform, the twist Sp can be derived from the

linear combination of each joint’s twist within the

loop. Referring to Fig. 5a, twist Sp can be obtained in

terms of limb 1, 2 and 3 separately as

Sp ¼
X5
i¼1

_h1iS1i; ð60Þ

Sp ¼ _h1Sa þ _h2Sb þ
X5
i¼1

_h2iS2i; ð61Þ

Sp ¼ _h4Sd þ _h5Se þ
X5
i¼1

_h3iS3i: ð62Þ

Substituting Eqs. (56) and (57) into Eqs. (61) and

(62) respectively leads to,

Sp ¼ _h1 Sa � m1Sbð Þ þ m2
_h5Sb þ

X5
i¼1

_h2iS2i; ð63Þ

Sp ¼ m3
_h1Sd þ _h5 Se � m4Sdð Þ þ

X5
i¼1

_h2iS2i; ð64Þ

where

m1 ¼
PD � ðPA � PCÞ
PD � ðPB � PCÞ

; m2 ¼
PD � ðPE � PCÞ
PD � ðPB � PCÞ

;

m3 ¼
PB � ðPA � PCÞ
PB � ðPD � PCÞ

and m4 ¼
PB � ðPE � PCÞ
PB � ðPD � PCÞ

:

According to [34], we know that the revolute-spherical

screws dyad locate in a four-dimensional vector space.

So the reciprocal screws form a two-system with zero

pitch. Let Sri1 and Sri2 i ¼ 1; 2 and 3ð Þ denote a two-
system of screws that is reciprocal to the four-system

of screws Si2 to Si5 (i = 1, 2 and 3) of the ith limb.

Performing the reciprocal product of both sides of

Eqs. (60), (63) and (64) with reciprocal screw

Sri1 and Sri2 gives six linear equations, which can be

expressed in matrix form as,

JTqDSp ¼ Jh _ha; ð65Þ

where

_ha ¼ _h1 ; _h5 ; _h11 ; _h21 ; _h31
h iT

JTq ¼

SrT11
SrT12

..

.

SrT32

2
6664

3
7775; Jh ¼

Jh1

Jh2

Jh3

2
64

3
75
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and D denotes the reciprocal operator expressed as

D ¼ 0 I
I 0

� �
:

The term Jhi is derived in detail in the Appendix 2,

and JTq , in general, is a 6 9 6 nonsingular matrix.

Thus, multiplying both sides of Eq. (65) by the inverse

of JTq gives the twist of the moving platform as,

DSp ¼ JTq

h i�1

Jh _ha; ð66Þ

where DSp is the twist of the moving platform with

interchange of its primary part and secondary part

comparing to Sp. The left-hand side and right-hand

side of Eq. (65) gives the power of the platform and

the actuated joints respectively, which provides back-

ground for dynamic analysis of the proposed parallel

mechanism based on the concept of kinetic energy.

5.3 Velocity of the spherical-base integrated

parallel mechanism

The spherical-base integrated parallel mechanism can

be decomposed as three closed-loop mechanisms

between any two of three limbs and an additional

closed-loop of the five-bar reconfigurable base. The

instantaneous motion of each link can be described as

its instantaneous twist, and all the links’ motion in a

closed-loop form a linear combination of all the

instantaneous twists within the loop. Let twist Sij
denote the instantaneous motion along the jth joint in

the ith limb and twist Sa, Sb, Sc, Sd and Se denote that

along the joints of the reconfigurable base. Define

variable _hij and _hk as the velocity of the jth joint in the
ith limb and the velocity of kth joint in the reconfig-

urable base. Based on the notations introduced above,

twists of three closed-loop-mechanisms are expressed

as separately as follows.

For the closed-loop composed of limb 1 and 2,

shown in Fig. 6a, the closed-loop-twist is

_h1Saþ _h2Sb þ
X5
i¼1

_h1iS1i�
X5
i¼1

_h2iS2i ¼ 0: ð67Þ

For limb 2 and 3, the closed-loop-twist is

_h3Sc þ
X5
i¼1

_h2iS2i�
X5
i¼1

_h3iS3i ¼ 0: ð68Þ

And for limb 3 and 1, the closed-loop-twist is

Fig. 5 Motion screw of the spherical-base integrated parallel mechanism
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_h4Sdþ _h5Se þ
X5
i¼1

_h3iS3i�
X5
i¼1

_h1iS1i ¼ 0: ð69Þ

Further, the closed-loop-twist of the reconfigurable

base, shown in Fig. 6(b) is

_h1Sa þ _h2Sb þ _h3Sc þ _h4Sd þ _h5Se ¼ 0: ð70Þ

In each decomposed closed-loop-mechanism, only

part of all the joints are active, which can be separated

from the rest passive joints in the twists given in

Eqs. (67) throughout (70) as,

_h1Sa þ _h11S11 � _h21S21 ¼ � _h2Sb �
X5
i¼2

_h1iS1i þ
X5
i¼2

_h2iS2i;

ð71Þ

_h21S21 � _h31S31 ¼ � _h3Sc �
X5
i¼2

_h2iS2i þ
X5
i¼2

_h3iS3i; ð72Þ

_h5Se þ _h31S31 � _h11S11 ¼ � _h4Sd �
X5
i¼2

_h3iS3i

þ
X5
i¼2

_h1iS1i; ð73Þ

_h1Sa þ _h5Se ¼ � _h2Sb � _h3Sc � _h4Sd: ð74Þ

The Eqs. (71)–(74) can be expressed in a matrix

form that indicates the relationship between velocity

of the active joints and that passive joints as,

Ja _ha ¼ Jp _hp; ð75Þ

where _ha and _hp denote the velocity vectors of active

joints and passive joints as, _hP ¼ _h2; _h3; _h4; _h12;
h

_h13; _h14; _h15; . . . ; _h35�T, Ja and Jp denote the

active-Jacobian matrix and passive-Jacobian matrix

respectively as

Fig. 6 Motion screw of closed-loop mechanism decomposed from the parallel mechanism
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where Jpi ¼ Si2 Si3 Si4 Si5½ �; i ¼ 1 ; 2 and 3.

The above Jacobian matrixes can be used for

singularity and dexterity analysis of the proposed

integrated parallel mechanism.

6 Conclusions

In this paper, a parallel mechanism with a reconfig-

urable base was for the first time presented based on

the manipulation of rigid objects using a metamorphic

hand. Structure of the proposed mechanism was

presented followed by the geometric constraint anal-

ysis. Structure equations of the spherical-base inte-

grated parallel mechanism were then derived and

kinematics of the mechanism was investigated, as well

as the solutions for forward and inverse kinematics.

The screw-based Jacobian was established relation-

ship between active joints and passive joints. This

novel spherical-base integrated parallel manipulator

has an enlarged workspace compared with traditional

parallel mechanisms.
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Appendix 1

E1 ¼ e1u
2
1u

2
3 þ e2u

2
1 þ e3u

2
3 þ e6u1u3 þ e9

E2 ¼ e5u
2
1u3 þ e7u1u

2
3 þ e11u1 þ e13u3

E3 ¼ e4u
2
1u

2
3 þ e8u

2
1 þ e10u

2
3 þ e12u1u3 þ e14

F1 ¼ f1u
2
1u

2
3 þ f2u

2
3u1 þ f4u

2
1u3 þ f5u

2
1 þ f6u

2
3 þ f11u3

þ f12u1 þ f16

F2 ¼ f3u
2
1u

2
3 þ f8u

2
1 þ f9u

2
3 þ f14u1u3 þ f18


 �

F3 ¼ f7u
2
1u

2
3 þ f10u

2
1u3 þ f13u

2
3u1 þ f15u

2
1 þ f17u

2
3

þ f19u3 þ f20u1 þ f21

G1 ¼ g1u
2
1 þ g3

G2 ¼ g4u1

G3 ¼ g2u
2
1 þ g5

e1 ¼ sd3cu4 � cd3su4 � xC0
3

e2 ¼ �sd3cu4 þ cd3su4 � xC0
3

e3 ¼ �sd3cu4 þ cd3su4 � xC0
3

e4 ¼ �sd3cu4 � cd3su4 � xC0
3

e5 ¼ �4sd3
e6 ¼ �2

e7 ¼ �4cu4

e8 ¼ sd3cu4 þ cd3su4 � xC0
3

e9 ¼ sd3cu4 � cd3su4 � xC0
3

e10 ¼ sd3cu4 þ cd3su4 � xC0
3

e11 ¼ 4cu4

e12 ¼ 4

e13 ¼ 4sd3
e14 ¼ �sd3cu4 � cd3su4 � xC0

3

f2 ¼ 2

f3 ¼ 2sd3
f4 ¼ 2sd3cu4 � 2cd3su4

f5 ¼ �yC0
3

f6 ¼ �yC0
3

f7 ¼ �yC0
3

f8 ¼ �2sd3
f9 ¼ �2sd3
f10 ¼ �2sd3cu4 � 2cd3su4

f11 ¼ �2sd3cu4 þ 2cd3su4

f12 ¼ �2

f13 ¼ �2

f14 ¼ �8cu4

f15 ¼ �yC0
3

f16 ¼ �yC0
3

f17 ¼ �yC0
3

f18 ¼ 2sd3
f19 ¼ 2sd3cu4 þ 2cd3su4

f20 ¼ 2

f21 ¼ �yC0
3
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g1 ¼ �cd3cu4 � sd3su4 � zC0
3

g2 ¼ �cd3cu4 þ sd3su4 � zC0
3

g3 ¼ cd3cu4 þ sd3su4 � zC0
3

g4 ¼ 4su4

g5 ¼ cd3cu4 � sd3su4 � zC0
3

Appendix 2

Jh1 ¼ 0 0 SrT11DS11 0 0
0 0 SrT12DS11 0 0

� �

Jh2 ¼ SrT21D Sa � aSbð Þ bSrT21DSb 0 SrT21DS21 0
SrT22D Sa � aSbð Þ bSrT22DSb 0 SrT22DS21 0

� �

Jh3 ¼ cSrT31DSd bSrT31D Se � dSdð Þ 0 0 SrT31DS31
cSrT32DSd bSrT32D Se � dSdð Þ 0 0 SrT32DS31

� �
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