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Abstract:  

The hydrodynamic dispersion of a solute in peristaltic flow of a reactive incompressible 

micropolar biofluid is studied as a model of chyme transport in the human intestinal system with 

wall effects. The long wavelength approximation, Taylor's limiting condition and dynamic 

boundary conditions at the flexible walls are used to obtain the average effective dispersion 

coefficient in the presence of combined homogeneous and heterogeneous chemical reactions. 

The effects of various pertinent parameters on the effective dispersion coefficient are discussed. 

It is observed that average effective dispersion coefficient increases with amplitude ratio which 

implies that dispersion is enhanced in the presence of peristalsis. Furthermore average effective 

dispersion coefficient is also elevated with the micropolar rheological and wall parameters. 

Conversely dispersion is found to decrease with cross viscosity coefficient, homogeneous and 

heterogeneous chemical reaction rates. The present simulations provide an important benchmark 

for future chemo-fluid-structure interaction computational models. 
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1. Introduction 

Although frequently neglected in mathematical studies of peristaltic flows in the intestine, 

chemical reactions [1] bear an important influence on this complex physiological process. At all 

stages of the digestive journey, reactions take place. These commence with the mastication in the 

mouth, which triggers production of the enzyme, ptyalin, by the salivary glands, and this serves 

to chemically break down starches into dextrose and maltose (glucose types) by hydrogenation. 

Further in the digestive system, chyme is produced which is semi-fluid mass of partly digested 

food that is expelled from the stomach into the duodenum and migrates via intestines. Chyme is 

manufactured via the mechanical and chemical breakdown of a bolus and consists of partially-

digested food, water, hydrochloric acid, and various digestive enzymes. The mechanism of 

propulsion is peristalsis and this involves rhythmic expansions and contractions of the conduit 

walls which serve to propel chyme slowly. Chyme is a thick creamy liquid and exhibits 

significant non-Newtonian characteristics [2-4]. Simulation of chyme dynamics in the intestinal 

tract therefore requires models which can simulate fluid-structure interaction, rheology and 

chemical reaction (which extracts nutrients also) in addition to hydrodynamics dispersion.  

Since the classical work of Taylor [5], the dispersion of a substance that is miscible with a 

fluid flowing through a tube or channel has been extensively studied, both theoretically and 

experimentally. Hydrodynamic dispersion [6] is a mechanism that enhances the rate of 

broadening of a solute cloud in flow through a tube or channel, and can therefore be utilized as 

an effective means to accomplish dilution or mixing. Dispersion plays a central role in chyme 

transport and also in other applications as diverse as chromatographic separations in chemical 

engineering, pollutant transport in the environment, the mixing and transport of drugs or toxins 

in physiological systems, and so on (Ng [7]). Dispersion of a solute in a viscous fluid under 
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different conditions has been studied by Aris [8], Padma and Ramana Rao [9], Gupta and Gupta 

[10], Ramana Rao and Padma [11]. Subsequently, Chandra and Agarwal [12], Philip and 

Chandra [13], Alemayehu and Radhakrishnamacharya [14, 15] extended the analysis of Taylor to 

non-Newtonian fluids. 

Peristalsis, as elaborated earlier, is known to be one of the main mechanisms for fluid 

transport in biological systems. From the point of view of fluid mechanics, peristaltic pumping is 

characterized by dynamic interaction of fluid flow with the movement of flexible boundaries. In 

this context it falls in the realm of “moving boundary problems” in applied mathematics [16] or 

“fluid-structure interaction (FSI) problems” in engineering sciences [17]. A number of 

biomedical instruments including blood pumps in dialysis and the heart lung machine use this 

principle. Peristaltic pumps are also found in the bio-chemical industry where they provide safer 

and more efficient transport of toxic wastes. A further application is the roller/finger pump 

employed to pump slurries and corrosive fluids. Several investigators have analyzed the 

peristaltic motion of both Newtonian and non-Newtonian fluids in mechanical as well as 

physiological systems. Representative studies in this regard are Fung and Yih [18], Shehawey 

and Sebaei [19], Takagi and Balmforth [20], Radhakrishnamacharya [21], Ramachandra Rao and 

Mishra [22], Tripathi and Bég [23] and Bég et al. [24]. 

The peristaltic rheological models alluded to in [21-24] have generally used viscoelastic and 

simpler rheological formulations to represent the shear-stress strain relationships of biophysical 

suspensions, of which chyme is an example. However it has been established for some time that 

physiological fluids possess a micro-structure owing to the presence of for example proteins, 

enzymes, cells and other constituents within the carrier fluid. Micro-continuum fluid dynamics 
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was introduced by Eringen in the 1960s [25] to address these aspects and succinctly accounts for 

the microscopic effects arising from the local structure of micro-motions of the fluid elements.  

A special case of Eringen’s general micro-morphic fluid model is the micropolar model [26], 

which restricts the form of the gyration tensor and this robust theory accurately simulates fluids 

consisting of a suspension of small, rigid elements. These substructure particles can sustain 

rotary motions (micro-rotation) and support surface and body couples. Micropolar fluid theory 

[27] effectively accounts for the rotation of fluid particles by means of an independent kinematic 

vector termed the micro-rotation vector. Micropolar theory has been proven to correlate well 

with clinical findings, as elaborated for example by Tozeren and Skalak [28] and Bhargava et al. 

[29]. Furthermore micropolar theory shows great promise in analyzing a wide range of other 

complex fluids including lubricants, colloidal suspensions, polymeric fluids, liquid crystals and 

geophysical slurries. Several studies of peristaltic micropolar flows have been communicated in 

the biomechanics literature. For example, Muthu et al. [30], Sankad et al. [31] have investigated 

the influence of wall properties on the peristaltic motion of micropolar fluid under different 

conditions. Abd-Alla et al. [32] have studied the effect of rotation and magnetic field on 

peristaltic transport of a micropolar fluid through a porous medium.  

Motivated by addressing more accurately the physics of chime transport in intestines, the 

present study analyzes the combined effects of homogeneous and heterogeneous chemical 

reactions in the peristaltic flow and hydrodynamic dispersion of solute in a micropolar fluid with 

wall effects. Such a study has thusfar not appeared in the literature.  It is envisaged that 

peristalsis may have significant effects on the dispersion of a solute in the fluid flow and this 

may lead to better understanding of the actual multi-physical mechanisms inherent to chime 

dynamics, and indeed other physiological systems. Using the long wavelength approximation 
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and Taylor’s approach, analytical expressions have been obtained for the average effective 

dispersion coefficient, in the presence of combined homogeneous and heterogeneous irreversible 

chemical reactions. Mathematica software has been employed to compute solutions in order to 

study the effects of various biophysical and geometric parameters on flow characteristics. 

 

2. Mathematical Model  

Consider the hydrodynamic dispersion of a solute in peristaltic flow of a micropolar fluid 

(chyme) in an infinite uniform channel of width 2d and with flexible walls on which are imposed 

traveling sinusoidal waves of long wavelength. A Cartesian coordinate system (x, y) is chosen 

wherein the x-axis aligned with the center line of the channel. The traveling waves are 

represented by the relationship: 

 
2

siny h d a x ct




 
      

 
                          (1) 

where a  is the amplitude, c  is the speed and   is the wavelength of the peristaltic wave. 

The regime studied is illustrated in Fig.1. The governing equation of motion of the flexible wall 

may be expressed as (Mittra and Prasad [33]) 

0( )L h p p                                    (2) 

where L is an operator which is used to represent the motion of stretched membrane with 

damping forces such that  

 
2 2

2 2
L T m

x t t

  
   

  
C                                                         (3) 

 Here T  is the tension in the membrane, m  is the mass per unit area and C  is the coefficient 

of viscous damping force. This approach simulates the deformability of the conduit wall 

allowing for fluid-structure interaction in the peristaltic flow. 
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The governing equations for mass and momentum conservation for two-dimensional, unsteady 

flow of an incompressible micropolar fluid for the present regime, take the form (Muthu et al. 

[34]) : 

0
u v

x y

 
 

 
                                     (4) 

2 2

2 2

2

2

u u u p u u g
u v

t x y x yx y

 
 

          
          

         
                (5) 

2 2

2 2

2

2

v v v p v v g
u v

t x y y xx y

 
 

          
          

         
                   (6) 

2 2

2 2
2

g g g g g v u
J u v g

t x y x yx y
   

          
           

         
                   (7) 

where u and v  are the velocity components in the x and y directions respectively, g  is the 

microrotation component,   is the density, p  is the pressure, J  is the microinertia constant, 

 is the coefficient of viscosity ,   and   are the viscosity coefficients for the micropolar fluid. 

Under the long wavelength approximation and neglecting inertial effects (which are dominated 

by viscous effects), the governing equations for the present problem reduce to, 

0
u v

x y

 
 

 
                                 (8) 

2

2

2
0

2

p u g

x yy

 


    
    
  

                                      (9) 

0
p

y


 


                                  (10) 

 
2

2
2 0

g u
g

yy
  

 
   


                                          (11) 
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It is assumed that 
0 0p   and the channel walls are inextensible so that only lateral motion takes 

place and the horizontal displacement of the wall is zero. The no-slip boundary conditions for the 

velocity and microrotation are given by 

0, 0 atu g y h                            (12) 

The dynamic boundary conditions at the flexible walls (Mittra and Prasad [33]) can be written 

as: 

2

2

2
( ) at

2

u g
L h y h

x yy

 


    
    

  
  

where 
3 3 2

3 2
( )

p h h h
L h T m

x x x x t x t

    
    

      
C                     (13) 

 

Solving equations (9) to (11) under the boundary conditions (12) and (13), we get 

   2 2' 2 1
( ) cosh( ) cosh( )

2 (2 ) sinh( )

P h
u y h y by bh

b bh



  

 
     

 
          (14) 

 where 
3 3 2

3 2
'

h h h
P T m

x x t x t

  
   

    
C   and  

4

(2 )
b



  



                 (15) 

 Further, the mean velocity is defined as 

1
( )

2

h

h

u u y dy
h



                          (16) 

 Substituting equation (14) in equation (16), we get 

2' 1 cosh( )

3 (2 ) sinh( )

P h h bh
u

b b bh



  

  
     

   
                     (17) 
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If we now consider convection across a plane moving with the mean speed of the flow, then 

relative to this plane, the fluid velocity is given by (Gupta and Gupta [10], Alemayehu and 

Radhakrishnamacharya [14, 15]) 

xu u u                           (18) 

Substituting equations (14) and (17) in equation (18), we arrive at: 

2 2' cosh( ) 1

6 2 (2 ) sinh( )
x

P h y h by
u

b bh b



  

    
        

    
                   (19) 

 

2.1 Diffusion with Combined Homogeneous and Heterogeneous Chemical Reactions 

 Following Taylor [5] and Gupta and Gupta [10], the equation for the concentration C of the 

solute (representing for example gastric juice in chyme) for the present problem under isothermal 

conditions is given by: 

2

12

C C C
u D k C

t x y

  
  

  
                      (20) 

where D is the molecular diffusion coefficient (species diffusivity) and 1k  is the first order 

reaction rate constant. For typical values of physiologically relevant parameters of this problem, 

it is assumed that  u c  (Alemayehu and Radhakrishnamacharya [14, 15]). Using this condition, 

it is pertinent to make use of the following dimensionless quantities, 

2

, , , , , '
t y x ut h d

t H P P
d d ct u


  

 


                        (21) 

Equation (15) thereby reduces to : 

   3 2

1 2 3(2 ) cos(2 ) (2 ) sin(2 )P E E E          .                  (22) 
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Here 
a

d

 
 
 

 is the amplitude ratio, 
3

1 3

Td
E

c 

 
  
 

 is the wall rigidity, 
3

2 3

mcd
E

 

 
 
 

 is the 

stiffness and 
3

3 2

d
E



 
 
 

C
 is the viscous damping force in the wall.  

Further, equations (19) and (20) reduce to 

2 2
2 cosh( )1 1

2 3 sinh( )
x

H MNd H N
u P

M MNH MN






      
          

     
               (23) 

22 2

1

2 x

k dC d C
C u

D D 

 
 


                       (24) 

where 

1/2

2M d




 
  

 
 is the micropolar parameter, 

1/2

1

12
N





 
  

 
 is the coupling parameter,  

1





  is the cross viscosity coefficient  and  

MN
b

d
 . It is assumed that a first order 

irreversible chemical reaction takes place both in the bulk of the fluid (homogeneous) as well as 

at the walls (heterogeneous) of the channel which are assumed to be catalytic to chemical 

reaction. Thus, the corresponding boundary conditions at the walls (Philip and Chandra [13]) are 

given by 

 
2

0 at sin
C

fC y h d a x ct
y





  
        

                   (25) 

 
2

0 at sin
C

fC y h d a x ct
y





  
          

                (26) 

 If we introduce the dimensionless variables (21), the boundary conditions become 

 0 at 1 sin(2 )
C

C H   



    


                 (27) 

 0 at 1 sin(2 )
C

C H   



      


                 (28) 
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 where fd   is the heterogeneous reaction rate parameter corresponding to catalytic 

reaction at the walls. 

 

 The solution of the equation (24) under the boundary conditions (27) and (28) is 

4 2
2

2 2

2 2 2 2

1 2
( ) cosh( )

32

cosh( ) 1

sinh( )

d C A H
C P

D L

N H MN

M MNHM N MN

  
   



 

    
        

    

 
  

 

             (29) 

 where 
2 2

2 2 2 2 2 2 2 2 2 2

1 1
coth( )

3

H N H H N H
A MNH

M N M M N MN

 

     

    
            

 

and   

1/2
2

1k d

D


 
  
 

 

The volumetric rate Q  at which the solute is transported across a section of the channel of unit 

breadth is defined by: 

H

x

H

Q C u d


                        (30) 

Substituting (23) and (29) in (30), we get the volumetric rate Q  as: 

6

1 2 3 12
2 ( , , , , , , , , )

d C
Q G E E E M

D
    




 


                   (31) 

 

 where 
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       

     

1 2 3 1

2 3

1 4 1 5 2 4 1 6 1 7 3 4

5

2 5 3 6 2 2 2

2 6
3 7

( , , , , , , , , )

2 2sinh( ) 2sinh( )
2

2 3

2 2
cosh( ) sinh( ) cosh( ) sinh( )

5

sinh(2 )
( )

2

G E E E M

P H H MNH
H l l l l l l l l l l l l

MN

H
l l l l MN H MNH MNH H

M N

l lMNH
l l H

MN

    





  




  
       

  

   
     

  

 
  

 


 

2 2

3

2 2 2

3 5 2 7 3 3

4 cosh( ) 2(2 ) sinh( )

1
4 cosh( ) 2(2 ) sinh( )

H H H H

l l l l MNH MNH M N H MNH
M N

   


 
     

 


     



 

                   (32) 

 where 

 
2

1 2

1

6

H
l

M
  ,     2

1

2
l


 ,     

3
sinh( )

HN
l

M MNH
 ,     

2

4 2 2

1 1 1

6

H
l

MN 

 
   

 
,     

5 2

1

2
l


 ,     6

A
l

L


      and     7 2 2 2

1

sinh( )

N H
l

M MNHM N 



 

Now comparing the equation (31) with Fick’s first law of diffusion, the effective dispersion 

coefficient *D  with which the solute disperses relative to a plane moving with the mean speed of 

the flow, is obtained as, 

6
*

1 2 3 12
2 ( , , , , , , , , )

d
D G E E E M

D
    


                      (33) 

Let the average of G  be G , which is defined by 

1

1 2 3 1

0

( , , , , , , , , )G G E E E M d                   (34) 

 

3. Numerical Results and Discussion 

 Equation (34) gives the equivalent dispersion coefficient *D  through the function G , which 

has been computed numerically using MATHEMATICA software and the results are presented 
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graphically. The key dimensionless quantities emerging are: the amplitude ratio  , the 

homogeneous reaction rate  , the heterogeneous reaction rate  , the cross viscosity coefficient 

1 , the micropolar parameter M and the wall (fluid-structure interaction) parameters 1 2 3, ,E E E . 

Further, from the equations (13) and (22) we may note that 1 2 3, andE E E  cannot be taken as 

zero simultaneously.  

 The effect of the rigidity parameter ( 1E ) on the effective dispersion coefficient is shown in 

Figs. 2 – 4.  It is observed that the dispersion increases with the rigidity parameter in the cases of 

(i) no stiffness in the wall ( 2 0E  ) and a perfectly elastic channel wall ( 3 0E  ) (Fig. 2); (ii) 

stiffness in the wall ( 2 0E  ) and perfectly elastic wall ( 3 0E  ) (Fig. 3); (iii) no stiffness in the 

wall ( 2 0E  ) and dissipative wall ( 3 0E  ) (Fig. 4). However the horizontal axes on these 

graphs represent a different parameter. With increasing rigidity parameter in the case of (i) no 

stiffness in the wall ( 2 0E  ) i.e. fig. 2, the dispersion coefficient values are plateau-profiles and 

remain at consistent distances from one another, as the heterogeneous reaction rate   parameter 

increases from unity to 10. In fig. 3, the x-axis represents amplitude ratio  , and profiles ascend 

monotonically for any value of rigidity parameter, commencing at zero for minimum amplitude 

ratio (origin) and peaking at the maximum value of amplitude ratio.  

A nonlinear and positive influence of amplitude ratio on dispersion coefficient is therefore 

evident in fig. 3. In fig. 4, dispersion coefficient, G  clearly descends as the homogeneous 

reaction rate,  , increases, demonstrating an inverse relationship. The rate of descent of the 

profiles is accentuated with greater values of the rigidity parameter ( 1E ). Maximum dispersion 

coefficient corresponds to the minimum homogenous reaction rate and the maximum rigidity 

parameter scenario. This clearly demonstrates that both parameters exert a non-trivial effect on 
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hydrodynamic dispersion in peristaltic flow and has implications for the effectiveness of chyme 

dispersion phenomena [35].  

Figs. 5 – 7 show that the dispersion coefficient increases as the stiffness in the wall ( 2E ) 

increases for both the cases of perfectly elastic wall (
3 0E  ) (Fig. 5) and dissipative wall 

(
3 0E  ) (Figs. 6 and 7). Dispersion coefficient values are largely invariant with alteration in the 

heterogeneous chemical reaction rate   (fig. 5). The response to a change in amplitude ratio (fig. 

6, 7) and homogeneous reaction rate, is similar to that observed in figs. 3, 4- namely dispersion 

coefficient sharply ascends with an increase in the former, whereas it decays approximately 

linearly with a rise in the latter. 

 Figs. 8 – 10 demonstrate that the average effective dispersion coefficient increases with 

viscous damping force ( 3E ). Distinct from earlier graphs, however we observe that a sharp 

monotonic decay in hydrodynamic dispersion coefficient (fig. 8) accompanies an increase in 

heterogenous chemical reaction rate   whereas in figs 2, 5 the profiles remain largely constant 

with greater values of  . Fig. 9 illustrates that significantly greater magnitudes of dispersion 

coefficient are achieved with an increase in amplitude ratio as viscous damping force parameter ( 

E3) is increased, compared with figs. 3 and 6 where rigidity parameter ( 1E ) and wall stiffness are 

increased (E2). Fig. 10 indicates that the effect of greater homogeneous reaction rate,  , is also 

less pronounced less for any value of E3, compared with distributions in figs. 4 and 7, although 

the over-riding effect is that of depleting hydrodynamic dispersion coefficient. 

Figs. 11 and 12 reveal that the effective dispersion coefficient G  increases with micropolar 

parameter M whereas it decreases with cross viscosity coefficient 1 (Figs. 13 and 14). These are 

true for the cases of (i) stiffness in the wall ( 2 0E  ) and perfectly elastic wall ( 3 0E  ) (Figs. 11 
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and 13); (ii) no stiffness in the wall (
2 0E  ) and dissipative wall (

3 0E  ) (Figs. 12 and 14) but 

the variation in case (ii) is not significant. With greater values of M, the gyration viscosity is 

lessened and spin of micro-elements in the biofluid is enhanced. This promotes hydrodynamic 

dispersion and elevates values of G . 

Figs. 3, 6, 9, 12 and 14 show that the average effective dispersion coefficient increases with 

amplitude ratio  . This implies that peristalsis enhances dispersion of a solute in fluid flow. This 

result agrees with that of Alemayehu and Radhakrishnamacharya [14, 15]. Furthermore, as 

elaborated earlier, the dispersion coefficient decreases with homogeneous chemical reaction rate 

parameter   (Figs. 4, 7 and 10) and heterogeneous chemical reaction rate   (Figs. 2, 5, 8, 11 

and 13), whereas dispersion decreasing with   is less significant. This result agrees with that of 

Padma and Ramana Rao [9], Gupta and Gupta [10], Ramana Rao and Padma [11]. This result is 

expected since increase in   leads to an increase in number of moles of solute undergoing 

chemical reaction, and this effectively counter-acts hydrodynamic dispersion. 

 

4. Conclusions 

 The effect of combined homogeneous and heterogeneous chemical reactions on peristaltic 

flow and hydrodynamic dispersion in a micropolar biofluid with wall effects has been studied 

analytically under the long wavelength approximation and Taylor's limiting condition. The 

model developed is relevant to chyme transport in the human digestive system. Mathematica 

software computations have shown that peristaltic motion enhances dispersion and 

hydrodynamic dispersion decreases with micropolar cross viscosity coefficient. It is also 

observed that the effective dispersion coefficient increases with micropolar parameter and the 

wall parameters i.e.  rigidity, stiffness, and viscous damping. Furthermore, it is found that 
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average dispersion coefficient decreases with increasing homogeneous and heterogeneous 

reaction rates. The present analytical study should serve to provide a useful benchmark for more 

sophisticated 3-D FSI chemo-peristaltic flow simulations with multi-physics software. 
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FIGURES  

 

 

Fig. 1: Geometry of chyme dynamics in an idealized intestinal geometry 

 

 

Fig. 2 : Effect of E1 on G  

( 0.2  , 0.5  , 0.02E  , 0.03E  , 

0.041  , 10M  ) 

 

Fig. 3 : Effect of E1 on G  

( 0.5  , 5  , 4.02E  , 0.03E  ,  

0.041  , 10M  ) 
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Fig. 4 : Effect of E1 on G   

( 0.2  , 5  , 0.02E  , 0.063E  , 

0.041  , 10M  ) 

 

Fig. 5 : Effect of E2 on G  

    ( 0.2  , 0.5  , 1 0.1E  , 0.03E  , 

0.041  , 10M  ) 

 

Fig. 6 : Effect of E2 on G   

( 5  , 0.5  , 0.11E  , 0.063E   

10M  , 0.041  )  

 

Fig. 7 : Effect of E2 on G   

( 0.2  , 5  , 0.11E  , 0.063E  , 

10M  , 0.041  ) 

 

Fig. 8 : Effect of E3 on G   

( 0.2  , 0.5  , 0.11E  , 4.02E  ,  

10M  , 0.041  ) 

 

Fig. 9 : Effect of E3 on G   

( 5  , 0.5  , 0.11E  , 0.02E  ,  

10M  , 0.041  ) 
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Fig. 10 : Effect of E3 on G   

( 0.2  , 5  , 0.11E  , 4.02E  , 

 10M  , 0.041  ) 

 

Fig. 11 : Effect of M on G   

( 0.2  , 0.5  , 0.11E  , 4.02E  , 

0.03E  , 0.021  ) 

 

 

Fig. 12 : Effect of M on G   

( 5  , 0.5  , 0.11E  , 0.02E  , 0.063E  , 

0.41  ) 

 

Fig. 13 : Effect of 1 on G  with    

( 0.2  , 0.5  , 0.11E  , 4.02E  ,  

0.03E  , 10M  ) 

 

 

Fig. 14 : Effect of 1 on G  ( 5, 0.5, 0.1, 0.0, 0.06, 101 2 3E E E M       ) 

 


