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Abstract 
Purpose: Mammographic density has been demonstrated to predict breast cancer risk. It has 

been proposed that it could be used for stratifying screening pathways and recommending 35 
additional imaging. Volumetric density tools use the recorded compressed breast thickness 

(CBT) of the breast measured at the x-ray unit in their calculation, however the accuracy of 

the recorded thickness can vary. The aim of this study was to investigate whether inaccuracies 

in recorded CBT impact upon volumetric density classification and to examine whether the 

current quality control (QC) standard is sufficient for assessing mammographic density.  40 
Methods: Raw data from 52 digital screening mammograms were included in the study. For 

each image, the clinically recorded CBT was artificially increased and decreased to simulate 

measurement error. Increments of 1mm were used up to ±15% error of recorded CBT was 

achieved. New images were created for each 1mm step in thickness resulting in a total of 974 

images which then had Volpara Density Grade (VDG) and volumetric density percentage 45 

assigned.  

Results: A change in VDG was recorded in 38.5% (n= 20) of mammograms when applying 

±15% error to the recorded CBT and 11.5 % (n= 6) were within the QC standard prescribed 

error of ±5mm. 

Conclusion: The current QC standard of ±5mm error in recorded CBT creates the potential 50 

for error in mammographic density measurement. This may lead to inaccurate classification 

of mammographic density. The current QC standard for assessing mammographic density 

should be reconsidered.   
 

Key words: paddle, error, mammogram, QC   55 
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I. INTRODUCTION 
Mammographic density (MD) is the radiographic density of the breast on a mammogram 

determined by the composition of breast tissue, the amount of radiodense (parenchymal and 

connective tissue) and radiolucent tissue (fat).1,2 MD is a strong risk factor for breast cancer, 

where the risk of developing breast cancer is three to six times greater for women with 60 
extremely high density compared to those with fatty breast.1-5 Measurement of MD is 

important for breast cancer risk prediction and might be used for imaging pathway or 

screening interval recommendations. The masking effect from increased MD also reduces the 

mammography screening sensitivity.3 Women with high MD might benefit from additional 

imaging, such as ultrasound (US) or magnetic resonance imaging (MRI), or more frequent 65 
screening compared with women with low MD.4-7   

 

There are several methods to measure MD8-13, the most common of which is visual 

assessment by radiologists using the Breast Imaging Reporting and Data System (BIRADS) 

scale.8 This system is prone to inter and intra-reader variability14, 15 and thus several 70 
computer-assisted methods have been developed including Cumulus9 and Madena10. These 

methods all rely on human interpreters/readers to set the threshold for dense tissue. However, 

these methods have shown reduced subjectivity compared to the visual techniques.16 

Automation of this process removes human variability. Several automated systems exist, 

including AutoDensity11, Quantra12 and Volpara13. The latter two use volumetric breast 75 

density assessment and has been cleared by the Food and Drug Administrative (FDA) as 

adjunctive supporting tools.17 VolparaDensity software (Matakina Technology Limited., 

Wellington, New Zealand)13 uses the raw image and meta data from digital mammograms to 

calculate average volumetric breast density percentage (VBD%).13,18,19 Volpara estimates 

VBD% by dividing the volume of fibroglandular tissue by the total volume of the breast, as 80 
follows; 
 

𝑉𝐷𝐵% =
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑖𝑏𝑟𝑜𝑔𝑙𝑎𝑛𝑑𝑢𝑙𝑎𝑟 𝑡𝑖𝑠𝑠𝑢𝑒

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑟𝑒𝑎𝑠𝑡 (𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑟𝑒𝑎𝑠𝑡 𝑥 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑏𝑟𝑒𝑎𝑠𝑡 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
 

 

The total volume of the breast is found by multiplying the area of the breast with the recorded 85 

thickness of the compressed breast, with correction for the uncompressed breast edge region. 

The recorded CBT is used to calculate the volume of fibroglandular tissue, but much more 

explicitly used in the calculation of breast volume. The accuracy of CBT specified by 

manufacturers ranges between ±5-10 mm20, and any error inherent in the measurement will 

result in inaccuracies in VBD%. Errors in recorded CBT from mammography machines are 90 

expected to be the largest contributing factor for the MD algorithm’s inaccuracies.16  

 

A typical quality control (QC) tolerance level is up to ±5mm difference between recorded and 

measured CBT.21 In a previous study our group investigated the accuracy of recorded CBT 

for a range of screen film mammography and full-field digital mammography (FFDM) units 95 

using a deformable phantom.20 The recorded CBT varied up to 14.3% (5.6mm) and 26.4% 

(10.5mm) from measured thickness for non-flexible and flexible (rigid) paddles respectively 

when applying 100 Newton (N) compression force.20 We noted that techniques exist to detect 

and correct for compression plate slant.22 However, the described error in recorded CBT may 

lead to inaccurate estimates of VBD%. This could lead to incorrect classification of women 100 

into specific MD groups, and being assigned to an incorrect imaging pathway or screening 

interval. Accurate CBT measurement in mammography is also important in order to calculate 

mean glandular dose (MGD).23,24 The aim of this study was to investigate the impact of errors 
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in recorded CBT on VBD classification and examine whether the current QC standard is 

sufficient for assessing mammographic density.  105 
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II. METHODS AND MATERIAL 
The study was approved as Service Evaluation at the Countess of Chester Hospital, Chester, 

UK (Reference number: ID 3763). Raw data from 52 digital breast screening mammograms 

(Hologic Selenia Dimensions Mammography machine) were included in the study. For each 

image, the simulated thickness was increased and decreased in increments of 1mm until ±15% 110 
from the recorded CBT was reached. 15% change in recorded CBT was used as this was the 

previously reported error in recorded CBT for non-flexible paddles.20 New images were 

created for each mm step in CBT resulting in a total of 974 images. All images were then 

assessed for MD using Volpara v1.5.0 software (Matakina International Ltd, Wellington, NZ).  

 115 

II.A. Selection of images: 

The 52 mammograms used in the study were chosen from a selection of 300 mammograms 

from 300 women aged 50-69 years participating in the NHS Breast Screening Programme 

(NHSBSP) during 2014. One mammogram of each woman was available and there was a mix 

of left/right breast and cranial-caudal (CC)/ mediolateral oblique (MLO) views (n=26 CC-120 
images and 26 MLO-images). Two experienced mammography image readers reviewed the 

images individually and independently on 5 megapixel (MP) monitors (Hologic 

SecureViewDX Diagnostic Workstation) under standard reporting conditions for technical 

quality, positioning, artefacts, pathology and blur. Blur was assessed by confirming that breast 

anatomical structures had distinct/sharp edges.25,26 None of the images included known 125 

pathology at time of reading. Images also had passed routine clinical processes for technical 

quality of breast screening within the UK.27 A total of 100 images met the inclusion criteria. 

52 of these were chosen based on a consensus meeting between the readers as representing an 

equal distribution of breast sizes and the BI-RADS density classification grades.8  

 130 

II.B. Changing the recorded CBT in the Digital Imaging and Communications in 

Medicine (DICOM) header 

The recorded CBT in the DICOM file header was used as a baseline from which the thickness 

was adjusted by ±15% in 1mm steps. The thickness was adjusted using a software known as 

DVTk DICOM Editor Tool 3.2.6.28 The adjusted CBT was rounded off to the closest whole 135 
mm. This created between 10 and 24 new image datasets for each original image resulting in 

974 images. The thickness of the baseline compressed breast determined how many images 

that were created for each image; thicker breasts resulted in more images. 

 

II.C. Mammographic density classification 140 
Raw data from the 974 image datasets was then processed using VolparaDensity v1.5.0 

software to estimate average MD percentages (VBD%) and Volpara Density Grades (VDG). 

VDG is a BIRADS 4th Edition Density Category, and is obtained by simply thresholding the 

average volumetric density for the study: VDG 1 = 0-4.5%VBD%, VGD2 = 4.5-7.5% 

VBD%, VDG3 = 7.5-15.5% VBD%, and VDG4 >15.5% VBD%.29 The range and mean of 145 
change in VBD% were calculated for all mammograms. To investigate how percentage error 

in recorded CBT affected the VBD%, the changes in thickness (mm) were calculated as a 

percentage; a 1mm step on a 60mm breast was calculated as a 2% error in recorded CBT 

(1mm/60mm x100=1,667=2%). The maximum error in recorded CBT was 15% in all cases.  

 150 
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II.D. Statistics 

Statistical analyses were conducted using the statistical package R (R for Mac OS, version 

3.0.2 GUI 1.62 Snow Leopard build (6558)).30 Data were grouped by patient, recorded CBT, 

change in recorded CBT (±mm), total breast volume, total volume of fibroglandular tissue, 155 

VBD% and VDG. To investigate how the estimated density varied with the recorded breast 

thickness, breast volume and fibroglandular volume, density (D) was modelled as:  

1. a function of CBT (t) 

2. a function of CBT and breast volume (VB)  

3. a function of CBT and fibroglandular volume (Vf) 160 

4. a function of CBT, breast volume and fibroglandular volume 
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III. RESULTS 
Total breast volume and volume of fibroglandular tissue increased while VBD% decreased 

with increasing recorded thickness. The correlation r2 between image parameters and 165 
estimated MD was strongest for estimated MD as a function of CBT, breast volume and 

fibroglandular volume (0.81). 

The correlation was 0.68, 0.33 and 0.30 for MD as a function of CBT and fibroglandular 

volume, MD as a function of CBT and breast volume and MD as a function of CBT, 

respectively.  170 
 

III.A. Changes in VBD% when applying error to the recorded CBT breast thickness 

The changes in VBD% were greater when decreasing compared to increasing the recorded 

CBT. There was no difference in mean change in VBD% by CC or MLO view; the values 

were the same as for the views combined. The largest change in VBD% was 2.5 and 3.1 for 175 

5mm and 15% respectively when decreasing the recorded CBT (Table 1).  

 

Table 1: The mean and largest changes in Volumetric breast density (VBD%) when applying 

5mm and 15% error in recorded compressed breast thickness (CBT). 

Changes in VBD% by error in 

compressed breast thickness (CBT) 

  

5 mm 15 % 

Mean change  0.5 0.8 

Mean change when decreasing 0.5 0.9 

Largest change when decreasing 2.5 3.1 

Mean change when increasing -0.4 -0.7 

Largest change when increasing -2.0 -2.3 

 180 

III.B. Volpara density grade 

There were 13 mammograms classified with VDG 1, 22 with VDG 2, 14 with VDG 3, and 3 

with VDG 4. The changes in VBD% increased with increasing original VDG (Figure 1). 

Mean change in VBD was 0.2 and 0.4 at 5mm and 15% error in compressed breast thickness 

for VDG1 while it was 2.0 and 2.3 at 5mm and 15% error for VDG4 (Table 2).  185 
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Figure 1: Changes in volumetric breast density (VBD%) for each original image by Volpara 

density grade (VDG1-4) when increasing and decreasing the recorded compressed breast 

thickness (CBT) by 1mm up to 15% error from the recorded CBT.  190 

 

Table 2: The mean and largest changes in Volumetric breast density (VBD%) when applying 

5mm and 15% error in recorded compressed breast thickness (CBT) for the different Volpara 

density grades (VDG1-4). 

Changes in VBD% by error in 

compressed breast thickness 

(CBT) 

VDG1 VDG2 VDG3 VDG4 

5 mm 15 % 5 mm 15 % 5 mm 15 % 5 mm 15 % 

Mean change 0.2 0.4 0.3 0.6 0.7 1.2 2.0 2.3 

Largest change when decreasing 0.3 1.0 0.6 1.0 1.3 2.0 2.5 3.1 

Largest change when increasing -0.2 -0.4 -0.5 -0.7 -0.9 -2.0 -2.0 -2.3 

 195 
 

In total 20 out of 52 mammograms changed their density grade when a 15% error was applied 

to the recorded CBT (Table 3). Fifteen mammograms increased one density group when 

reducing the CBT 15% and five decreased one density group when increasing the CBT 15%. 

Most changes were from VDG 2 to 3 (n=8). Six changes in VDG occurred within the 5mm 200 
QC guidelines. For the different projections (CC/MLO), twelve changes in VDG were in CC 

and eight changes were in MLO.   
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Table 3: Changes in Volpara Density Grade (VDG) when applying 15% and 5mm error in 205 
recorded CBT. Left column shows changes in VDG. The two following columns show 

number of mammograms with changes in VDG and average change in VBD% and standard 

deviation for 5mm change in recorded CBT. The two columns on the right includes the 

number of mammograms with changes in VDG with average change in VBD% and standard 

deviation for 15% change in recorded CBT. 210 

Change in VDG         
5mm error in compressed 

breast thickness (CBT)  

15% error in compressed 

breast thickness (CBT)  

  (n=6) 
Average change 

in VBD% (SD) 
(n=20) 

Average change 

in VBD% (SD) 

from 1 to 2 1 0.3 (N/A) 4 0.5 (0.27) 

from 2 to 1 - - 2 0.3 (0.01) 

from 2 to 3 2 0.4 (0.28) 8 0.6 (0.23) 

from 3 to 2 1 0.3 (N/A) 3 0.5 (0.19) 

from 3 to 4 2 0.8 (0.2) 3 0.9 (0.17) 

from 4 to 3 - - - - 
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IV. DISCUSSION 
Our study identified that error in CBT had an impact on the estimated volumetric breast 

density. 38.5% of the mammograms had a change in VDG when applying ±15% error to the 

recorded CBT and 11.5 % (n= 6) had a change in VDG within the QC standard prescribed 215 
error of ±5mm. There were larger changes in VBD% for the mammograms with the highest 

original VDG.  

 

We identified a high correlation between MD and a combination of CBT, breast volume and 

fibroglandular volume (r2=0.81). The image parameters (CBT, breast volume and 220 
fibroglandular volume) had limited effect on the estimated density alone. The findings are as 

expected, as the software estimates VBD% by dividing the volume of fibroglandular tissue by 

the total volume of the breast, found by multiplying the area of the breast by the recorded 

compressed breast thickness. 

 225 
QC guidelines indicate all under- and over-estimated measures of CBT outside ±5mm of the 

recorded CBT are considered equal faults. However, our data indicated that underestimation 

of CBT has a greater impact on the estimated MD than overestimation (mean change in VBD 

was 0.5 and 0.9 for 5mm and 15% when decreasing the CBT compared to -0.4 and 0.7 when 

increasing). This may be due to the total volume of the breast being directly affected by the 230 
CBT whereas the volume of fibroglandular tissue is not as affected by the change in CBT.  

 

In 2005, Blot & Zwiggelaar31 demonstrated that estimations of MD using the h_int model 

relied heavily on accurate measurements, in particular recorded CBT. They state that the CBT 

must be estimated within 0.5mm to obtain an error in MD smaller than 5%. Tyson et al.32 235 

stated that a mean accuracy of less than 1 mm is required to make good estimates for the 

VBD. In our study, the largest change in VBD% was 2.5 for 5mm and 3.1 for 15% error 

related to recorded CBT. This might indicate that newer volumetric methods for estimating 

density are more robust than older.  

 240 

Where errors in CBT occur in a clinical setting, the technical factors to form the mammogram 

(tube voltage [kVp], target material and filter material) might change due to the use of 

automatic exposure control (AEC)33, and this in turn would affect the VBD34. Feng et al.33 

found the tube voltage to change with approximately 1kVp per cm in CBT and a shift from 

Rhodium to Silver filter from 6 cm to 7 cm CBT.33 If the CBT is lower than actual thickness, 245 

the AEC would choose a lower kVp, and thus the estimated VBD would be overestimated 

(increased volume of fibroglandular tissue due to lower kVp in the numerator and decreased 

volume of breast tissue due to decreased thickness in denominator). In contrast, if the CBT is 

higher than actual thickness, the AEC would choose a higher kVp, and thus the estimated 

VBD would be underestimated. Lau et al 34 investigated how errors in the recorded imaging 250 

physics parameters affected the VBD, by changing the recorded CBT, kVp, exposure (mAs), 

target material, filter material and filter thickness, in addition to simulating changes in 

detector gain and offset by adjusting pixel values.34 They found the exposure, detector gain 

and filter thickness to have a negligible or no impact on the VBD, while simulated errors in 

tube voltage, target material, filter material, detector offset and compressed breast thickness 255 

had a significant impact on the VBD.34 From this point it is safe to anticipate that in a clinical 

setting the AEC would affect our results.   
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The use of MD information has not yet been standardized. The ACRIN 6666 trial confirms 

the utility of using ultrasound35 and MRI35 for women with densest breasts, and additional 260 
imaging for women with high MD and higher risk of developing cancer has been 

suggested.36,37 Women with lower familial risk, no genetic markers and lower mammographic 

density could benefit from less frequent imaging and no additional imaging outside the 

standard mammographic screening program.38,39 Additional imaging and/or less/more 

frequent screening obviously is associated with higher costs and potential for increase false-265 
positive results, and future screening regimes need to consider this when considering stratified 

screening programs.35,36,40 

 

Although changes in VBD% are important, they become more so with clinical use of MD 

groups. All changes in VDG of our study occurred within 10mm (15%) error in recorded 270 
CBT. A ±5 mm error in recorded CBT is considered acceptable in clinical practice as ±5 mm 

is the QC standard in UK21; this level of inaccuracy in VBD% is likely to already be 

occurring. It is possible that the problem is worse than that, as CBT accuracy specified by 

manufacturers ranges between ±5-10 mm20. With MD category systems, it is important to 

place a woman in the appropriate density group if the groups are assigned different imaging 275 
pathways. Previous studies comparing annually and biennially breast cancer screening 

intervals found higher probability of false-positive recalls and/or biopsy recommendations for 

women being screened annually to biennially.41,42 If a woman is misplaced from low density 

to a high density group, this might lead to anxiety for the woman, possibly increased cases of 

false positive results and increased possibility of unnecessary tests and potentially 280 

overtreatment. This might also lead to false sense of security and loss of confidence in the 

screening program. Equally, if she moves from high density to low density group then a 

cancer might be missed by not performing supplemental screening.  

 

In our study, changing the read out thickness had little impact on the VBD% for VDG1 and 285 
VDG2. The change in VBD% was highest for VDG4, which means that these women are at 

highest risk of receiving an inaccurate MD group assignment. Mean change in density for all 

mammograms was 0.8 VBD% at ±15% error which might lead to a change in density group if 

the VBD% is close to the boundary of a VDG. This number was reduced to 0.5 VBD% when 

having ±5mm (the QC standard) as the maximum error. The use of density categories rather 290 

than a continuous scale means that women who are placed in between two groups could 

move, relatively easily, between categories when errors in recorded CBT occur. It might be 

better to use a continuous measure of MD in the future than using a category approach, both 

because risk is continuous, but also because it removes the error from arbitrary categorization. 

 295 
Our study was solely based on the results of the Volpara software. Both Volpara13,18,19 and 

Quantra12,43 calculates VBD% by comparing each pixel’s attenuation to the attenuation of 

pixels that are labeled as entirely fatty tissue (pixels with the lowest attenuation), and then 

divides the volume of fibroglandular tissue by the total breast volume44. However, the 

systems have some differences such as internal calibration14 and correction for compression 300 
paddle height and tilt45. Studies have reported moderate to excellent correlations (Pearson’s 

correlation coefficient [r2] = 0.78-0.99, Intra class correlation [ICC] = 0.64-0.96) of Volpara 

and Quantra.45-47 Quantra has shown higher values of total volume of fibroglandular tissue 

and VBD44,45, while Volpara has shown higher total breast volume44,47. As the automated 

systems have different algorithms, the outcome would probably differ. However, we assume 305 

that all density assessment algorithms including the CBT is affected by incorrect thickness 

information; although the size of the effect is difficult to predict. 
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Previous work by our group has shown that the recorded CBT was different to the actual CBT 

and varied by up to 26.4% from measured CBT for flexible paddles.20 Although Volpara and 310 
other density measurement systems determine and correct for tilt, this level of variation in 

measured CBT will result in variation in VBD% and can result in misclassification of MD 

groups. In this study, a 15% change in CBT resulted in a change in CBT between 5 mm and 

12mm, showing that the current QC standard of 5mm might not be complied in clinical 

practice. This further raises questions whether the QC standard of ±5mm can be achieved by 315 
flexible paddles, which again raises important questions about accuracy when assessing MD 

with equipment with flexible paddles. There is an increasing frequency of clinical questions 

around flexible paddles22,48 and it would appear that moving forward, the QC around paddles 

has to be improved in order to obtain higher quality MD measurements. As the CBT is of 

importance both for MD estimations, and for the estimation of MGD, there is a lot to gain in 320 
the accuracy of these estimates by tightening the QC standard. Currently, flexible paddles 

should only be used with the caveat that this can result in an inaccurate measurement of MD.  

 

Our study included 52 mammograms. Sample size estimation demonstrated that in order to 

detect an effect size of 8mm with a power of 0.8, 503 mammograms would be needed. A 325 
further limitation to the study is that we based the estimation of error to the recorded CBT by 

changing the recorded thickness in the DICOM header only. In a clinical situation, differences 

in compression on the same breast are likely to have a greater effect on the height and area of 

the breast. These effects are operator dependent and more difficult to control. Further studies 

might include increasing and decreasing the kVp to see the effect on MD, repeating the study 330 

with a larger data set and include a larger interval of errors up to 25% to include error from 

flexible paddles.   
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V. CONCLUSION 
Variations in recorded CBT impact upon the accuracy of MD estimations. As flexible paddles 

can have variations of 25% in CBT, these paddles should be used with care when subsequent 335 
assessment of MD is likely. The current QC standard of ±5mm error in recorded CBT creates 

the potential for error in mammographic density measurement. This may lead to inaccurate 

classification of mammographic density. The current QC standard of ±5mm for assessing 

mammographic density should be reconsidered.    
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