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Abstract. This paper proposes a novel strategy, Case-Based Reasoning Us-
ing Association Rules (CBRAR) to improve the performance of the Similarity 
base Retrieval SBR, classed frequent pattern trees FP-CAR algorithm, in order 
to disambiguate wrongly retrieved cases in Case-Based Reasoning (CBR). 
CBRAR use class association rules (CARs) to generate an optimum FP-tree 
which holds a value of each node. The possible advantage offered is that more 
efficient results can be gained when SBR returns uncertain answers. We com-
pare the CBR Query as a pattern with FP-CAR patterns to identify the longest 
length of the voted class. If the patterns are matched, the proposed strategy can 
select not just the most similar case but the correct one. Our experimental eval-
uation on real data from the UCI repository indicates that the proposed CBRAR 
is a better approach when compared to the accuracy of the CBR systems used in 
our experiments. 

Keywords: class association rules, frequent pattern trees, case-based reasoning, retriev-
al, P-trees. 

1 Introduction 

The basic premise of case-based reasoning (CBR) is that experience in the form of 
previous cases can be influenced to solve new problems [1]. An individual experience 
is named a case, and its collection is stored in a case base [2]. Basically, each case is 
defined by a problem description and its corresponding solution description. Among 
the four main phases, retrieval is a key stage, with success being heavily reliant on its 
performance [3]. Its aim is to retrieve similar or useful cases that can be successfully 
used to solve a target problem. This is of particular importance because if the re-
trieved cases are not useful, CBR systems may not ultimately produce a suitable solu-
tion to the problem [2]. 
Fundamentally, retrieval is performed through a specific strategy of leveraging simi-
larity knowledge (SK) referred to as ‘similarity-based retrieval.’ (SBR) [3]. In SBR, 
SK is utilized to determine the benefit of stored cases with regards to a target prob-
lem. SK is typically encoded via similarity measures between the problem and stored 
cases. In SBR, the measures are used to identify cases ranked by their similarities to 
the problem. Their solutions are then used to solve the problem. 
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Association rules mining (ARM) is an important technique in the field of data min-
ing (DM). ARM is used to extract interesting correlations, associations or casual 
structures among a set of items in a transaction database or other data repositories. It 
is used in various application areas, such as banking, products relationships and fre-
quent patterns. The class association rule (CAR) technique was first proposed by [4]. 
It generates classification rules based on association rules (ARs). Other techniques for 
mining CARs have been suggested in recent years. They include GARC [5], ECR-
CARM [6], CBC [7], CAR-Miner [8], CHISC-AC [9] and developed d2O [10]. The 
methods of classification based on CARs were demonstrated to be more accurate than 
the classic methods e.g. C4.5 [11]and ILA [12, 13] in their practical results [4]. 

Frequent pattern mining (FPM) plays a major role in ARM. On its own FPM is 
concerned with finding frequent patterns (frequently co-occurring sub-sets of attrib-
utes) in data. A number of FPM algorithms have been proposed for instance Apriori 
[14]. With respect to pattern matching the majority of these have been integrated with 
ARM algorithms. Of these, the best known, and most frequently cited, is the FP-
Growth algorithm [15]. FP-growth is constructed on a set enumeration tree structure 
called the FP-tree. It takes a totally different approach to discovering frequent item-
sets. Unlike Apriori, it does not generate and test the paradigm. Instead, FP-growth 
compacts the data set structure using FP-tree and extracts the frequent pattern directly 
from this structure [16]. FP-tree is a compressed representation of the input data. It is 
built by reading the dataset transaction and allocating each transaction to a path in the 
FP-tree. As various transactions can have many items in common, their paths might 
overlap. The more the paths overlap with one another, the more can be achieved by 
using the FP-tree structure. The performance of this process will depend on the 
amount of memory available on the system being used. If the FP-tree can be held 
entirely within the available memory, the extraction of frequent itemsets will be faster 
as it will be possible to avoid repeated passes over stored data. 

In this paper, we propose CBRAR a new strategy for enhancing the performance of 
CBR by using a new more efficient algorithm (FP-CAR) for mining all CARs with 
FP-tree values for a CBR query Q. The proposed algorithm uses an optimum tree 
derived from the FP-tree and optimized by P-tree concepts to produce a super-pattern 
that matches the new CBR case. Our initial experimental results show that the 
CBRAR strategy is able to disambiguate the answers of the retrieval phase compared 
to those obtained when using Jcolibri [17] and FreeCBR [18] systems for example. 

2 Literature Review of CBR and other Types of Knowledge 

CBR is a well-studied area in machine learning. In the past decades several research-
ers have studied CBR methods in real world applications, such as medical diagnosis 
[19], [20], product recommendation [21] and personal rostering decisions [22]. CBR 
is a cyclic and integrated process of solving a problem and learning from the experi-
ence of experts, which is used to build a knowledge domain which is then recorded to 
be used to help solve future problems. It can be defined as “to solve a problem, re-
member a similar problem you have solved in the past and adopt the old solution to 



solve the new problem” [23]. CBR methods are composed of four steps: retrieve-find 
the best matching of previous cases, reuse-find what can be reused from old cases, 
revise-check if the proposed solution may be correct, and retain-learn from the prob-
lem solving experience. This decomposition of CBR phases is based on [1] and illus-
trated in Fig. 1. 
 
 
 
 
 
 
 
 

 

 

 

 
 
 
 
 

Fig. 1. CBR Cycle [1] 

2.1 Machine Learning and Retrieval 

The development of machine learning has resulted in retrieval approaches that SBR 
merges with rule-induction (RI) approaches to enhance SBR. RI systems often learn 
domain-particular knowledge and represent it as IF–THEN rules. It is suggested that 
such rules can be utilized for determining the weights of case features in SBR [24]. 
[25] shows that decision tree algorithms can be used to discover domain-specific rules 
from a specific case base. From such rules, users select useful rules according to the 
thresholds set up by experts. The extracted rules are then used to point a target prob-
lem to its most similar case set and to calculate the weights of the case features. Such 
knowledge is finally used to retrieve the most similar case from the case base. A re-
trieval paradigm in [26] chooses between SBR or a RI method (using decision trees) 
for the target problem, considering the similarities of cases in a case base. 
The CBRAR approach is different from these approaches in that Association 
Knowledge (AK) is not used to measure the weights of case features, but to refine the 
cases retrieved by SBR and guide more specific rules to the target problem. 
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2.2 Data Mining and CBR 

Over time, techniques of integrating data mining (DM) and K nearest neighbor 
(KNN) have often been implemented in CBR research to improve KNN through three 
main platforms. First, to integrate feature weighting (FW) and feature selection (FS) 
into KNN. In this framework, FW is used to estimate the optimal weights of the origi-
nal features of cases [27], [28] , and FS is employed when choosing relevant features 
of cases [20], [22], or their aggregation is used to leverage their usefulness [19]. Sec-
ond, to merge data clustering with KNN, where the structure of clustered cases is 
leveraged to lead to more relevant cases [29], [30]. For case retrieval, the similarity 
between a target problem and each case is combined with the relevance of the clus-
tered group containing the case considered [31]. Third, to apply both DM and SBR 
techniques together to discover cases related to the target problem. For instance, [32] 
displays how to integrate DM with SBR to improve liver diagnosis. Given a target 
problem, once a DM method (a back-propagation neural network) is applied on the 
case base, some cases thought to be relevant to the problem are retrieved. These cases 
are then tested to verify whether these are adequately similar to the target problem 
through SBR. Similar cases are merely used as a retrieval result for the problem. Un-
like this scheme, our approach is based mainly on the use of AK built via CARs. 

2.3 Retrieval and CAR 

Basically, retrieval is achieved by employing two methods: (AK) and (SK). The re-
trieval is normally achieved utilizing SBR which is a technique based on SK. In SBR, 
SK is utilized for estimating the retrieval of similar cases to the target problem. The 
similarity measure is used between the various cases available and the problem to find 
those cases that can be selected to solve the target. Nevertheless, defining the SK can 
be considered as a main disadvantage of SBR because it is reliant on domain experts 
and is a time consuming process [33]. The similarity standard defined for one domain 
differs for numerous domains that are helpful for some problems and not for others. 
Therefore, the performance of SBR varies from problem to problem even within the 
same domain [26]. 

Association rules (ARs) aim to find interesting relationships (associations) in a 
transaction database [14]. The focus is usually on discovering a set of highly co-
occurring features shared by a large number of transactions in a database. It is an 
implication of the form X→Y, where X and Y are nonintersecting sets of items. For 
example, {milk, eggs}→{bread} is an association rule that says that when milk and 
eggs are purchased, bread is likely to be purchased. In the context of CBR, ARs can 
be employed to determine interesting relationships from a given case base. Further-
more, the transaction of the item can be considered as a case and an attribute as a 
value pair, respectively. The most traditional algorithm is Apriori [34] which has been 
used to evaluate and rank a large number of extracted ARs that have support and con-
fidence which is not less than that specified by a user [35]. CAR is a specific subset of 
ARs whose consequents are restricted to one target class. In the context of CBR, a 
CAR is considered as an AR whose consequent holds the item formed as a pair of a 



solution attributes and its value [36]. In a given case base library, AK is encoded to 
show how a specific problem’s features are associated with a certain solution. 

3 Related Work 

3.1 Soft Matching of ARM (SARM)  

A limitation of traditional ARM algorithms for rule X→Y e.g. Apriori [34] is that 
items X and Y are discovered based on the relation of equality. Basically, these algo-
rithms perform poorly when dealing with similar items. For instance, Apriori cannot 
find rules like 70% of the customers who buy products similar to yogurt (e.g. milk) 
and products similar to mayonnaise (e.g. egg) also buy baguettes. Soft matching was 
suggested to address this [37], where the consequents and antecedent of ARs are dis-
covered by similarity valuation. The SARM standard is used to find all rules from 
X→Y, where minimum support and minimum confidence of each rule are not less than 
soft support and soft confidence, respectively. Support and confidence are used to 
generalize the definition of soft support and soft confidence.  

This generalization is performed by allowing elements to match, so long as their 
similarity exceeds minimum similarity (minsim) as specified by the user. The soft-
matching criteria can be employed to model better relationships among features of 
cases instead of the equality relation, by using the concept of similarity. 

3.2 Soft - CAR Algorithm 

This algorithm calculates the soft support and finds the frequency of each item soft 
matching CARs. It also discovers the seed set of rules found in every pass in the cor-
responding class. For every rule item, the seed set of rules are utilized to generate new 
rule items known as candidate rule items. The soft support is computed through the 
set of different cases.  

It produces SCARs rules in the last pass after it finds the candidate rule items 
which are frequent from those frequent items [38]. However, experts are required for 
calculating and defining the SK domain, making this a time consuming and difficult 
process. 

3.3 USIMCAR Algorithm 

This algorithm is an expansion of the retrieval phase to improve the performance of 
the SBR. It encodes the AK in Soft-CARs together with SK to improve the perfor-
mance of CBR [38]. USIMCAR is used to enhance the usefulness of cases, retrieved 
through the SK [36], with regard to a new case Q in addition to including the SCAR, 
thus meaningfully utilizing the cases with their usefulness [36]. In addition, it lever-
ages the AK by searching and finding those SCARs whose usefulness is greater than 
others concerning Q, therefore valuably using them with their usefulness. Patel [39] 
also developed the USIMCAR strategy for hierarchical cases which combines the 



support-count bit from multilevel and soft-matching criteria (SC-BF) algorithm for 
the SCARs. Patel also applied the unified knowledge of the AK and similarity to en-
hance the performance of the SBR. Both strategies [38] and [39] are a simulation of 
the retrieval phase by providing  a percentage value but do not involve providing a 
CBR system with feedback inputs as part of the original cycle. 

In this paper, we propose the FP-CAR algorithm to generate an optimum tree using 
CARs and FP-tree. The tree is optimized by utilizing various types of association 
knowledge i.e. P-trees and an equivalence table of implications. FP-CAR is also a part 
of the suggested CBRAR technique which is an expansion to the SBR. The novel 
CBRAR is used to disambiguate the wrong retrieved answers as feedback to the CBR. 

4 Proposed Algorithm FP-CAR 

The FP-CAR (frequent pattern class association rules algorithm) is based on two 
steps. First, it generates a FP-tree from a set of CARs [40]. Second, the tree is opti-
mized by utilizing the P-tree [41] concepts and equivalence table of implication. 
These two steps are combined to gain an optimum tree that can be compared with a 
new case Q of the CBR as a super-pattern to improve the performance of the SBR. 
The start of the observation is where the options of CARs have been selected as fol-
lows (lower support ξ = 0.1 and confidence = 0.9, delta = 0.05, number of rules = 
Maximum), then the existence of rule X → c is a subset should make it necessary to 
consider it as an antecedent of a superset X,Y → c. Practically, however, we may still 
find a rule Y → c, say, where Y is another subset of the same class, where both X and 
Y form a Superset-Pattern X,Y → c. In the first case scenario, logical equivalences 
concepts are utilized to prove the theory behind gaining the equivalence of ((X→c) ∨ 
(Y→c)) ≡ (X∧Y) → c. In other words if X implies c or Y implies c, it is equivalent to 
X and Y both implying c. 

The second case scenario uses the acute inflammation dataset from UCI (see Table 
1, Table 2, Fig. 2 and Fig. 3). In this case, as in Coenen [42] we take advantage of the 
P-tree to gain a superset. We consider the partial total accumulated at ABCD which 
makes a contribution for all the subsets of ABCD. In other words, the contribution in 
respect of the subsets of ABC is already included in the interim total for ABCD, there-
fore, when considering the superset ABCD, we need to examine only those subsets 
which include the attribute D [43]. 

In this paper we suggest an alternative explanatory method: If we can identify a 
generic rule X → c which meets the required support and confidence thresholds, then 
it is necessary to look for other rules whose antecedent is a superset combined with 
(X^Y) and whose consequent is c which distinguishes our algorithm compared to [40]. 
The objective of the FP-CAR algorithm is to continue to look for rules that select 
other classes in order to reduce the risk of overfitting and the number of the consid-
ered candidate rules. 

FP-CAR uses the concepts of classification based on association and the Total 
From Partial Classification (TFPC) algorithm [40]. It builds a set-enumeration tree 
structure of the CARs, where the FP-tree contains an incomplete summation of sup-



port-counts for relevant sets and patterns. Using the FP-tree structure to represent all 
patterns of the CARs, the T-tree [41] concept is used to build an optimum tree that 
finally contains all the frequent patterns sets (i.e. those that can be compared to the 
pattern of the CBR query). The FP-CAR is built level by level, the first level compris-
ing all the subsets that contain a value of the attribute under consideration. It com-
presses the subsets into a prefix tree, where the root c holds all frequent items accord-
ing to their frequency. In the second pass, the unnecessary subsets are removed, from 
the tree. Candidate-subsets then form a superset from the remaining sets considering 
the pattern of the CBR. The process continues, with the voting of a length in each 
class label, until no more candidate sets can be generated. The patterns of subsets will 
contain a value of each node which can be compared with a CBR query Q. 

Fig. 2 shows the form of a FP-CAR, for the subsets {{A,B,C,D},{A,E,F},L,c1}}, 
{{A,B,C},L,c2} where L is a length identifier, c1 and c2 are class identifiers, each node 
of a subset holds a value i.e. A={yes ,no}. This tree includes all possible related super-
sets that are not resolved by SBR, except for those including both c1 and c2 which we 
will assume were pruned. The target of FP-CAR is to find a CBR case problem that 
caused uncertain answers i.e. {{A=yes, B=yes, C=yes, D=yes, E=no, F=40, L=6}. 
FP-CAR nodes include a value of each node for a superset Q i.e. A= {yes, no}. Practi-
cally, an actual FP-tree would contain all those nodes representing the frequent sub-
sets where FP-CAR includes the voting length and values. For instance, if the set 
{A,B,C},L} fails to reach the required support threshold, and length identifier e.g. 4 to 
conform to the case problem pattern, then the class of the subset {A,B,C} would be 
ignored, and the superset would not be created. All the candidates that contain the 
class-identifier c1 with required length can be found in the subtree rooted at c1 ,starts 
with A node descended by {B,C,D,E,F} frequency as shown in Table 1. FP-Tree 
Hash Table Therefore, all the rules that classify to c1 can be derived from the root A 
(and also for c2) whereas those subsets which start with other roots will be removed to 
gain a super-pattern. 

Table 1. FP-Tree Hash Table 

 
  
 
 
 
 
 
 

 
The algorithm used to build the FP-CAR tree in Fig. 2 is a modification of the 

original FP-Tree approach using TFPC concepts. As each pass is concluded, we ig-
nore from the tree all those subsets that fail to meet the target pattern to form a super-
set. The remaining (frequent) sets that are included within the class-identifier subtrees 
of (c1), define a possible partial superset if one matches the voted length and other 
one is a complement. For example, the set {ABCDc1} is a partial one where X → c1 

Item Frequency Priority 
B 58 2 
A 62 1 
C 50 3 
D 49 4 
E 44 5 
F 26 6 

Ordered-Subsets Length Class 
A,B,C 3 c1 
A,C 2 c1 
A,B 2 c2 

A,B,C 3 c2 
A 1 c2 

A,B,C,D 4 c1 



of L=4 and AEFc1 is a complement that corresponds to rule Y → c1. We now build 
the supersets of all such sets that match the new case Q = {yes, yes, yes, yes, no and 
40.0}. If the threshold of L of the subsets is greater than or equal to the voted class c1, 
we add the subset to our target set considering the nodes values, and ignore the corre-
sponding subset from the tree that occurs in c2. The complement of the superset will 
then be completed from the same cluster of c1 i.e. {X ^ Y} → c1≡ Q → c1 as shown in 
Fig. 2. Connecting the tree below to the results in Table 2, proves the theory behind 
the proposed algorithm. 

 
 

 
 
 
 
 
 
 
 
 

Fig. 2. FP-CAR Algorithm Tree 

5 New Strategy CBRAR to Enhance the Performance of SBR 

This section presents the proposed new technique CBRAR of integrating CARs into 
CBR. Basically, there is a possible problem in CBR which is retrieving unrelated 
cases that cause an incorrect solution. To overcome this problem, CAR is utilized to 
find the relationship between the case library and a target case. Normally, to achieve 
the retrieval phase, CBR systems execute similarity SBR. However, SBR tends to 
depend on similarity knowledge, ignoring other types of knowledge that can benefit 
and improve retrieval performance. In this research, the challenge is how to retrieve 
not just the most similar case in CBR but the correct one. Some studies which apply 
ARs into CBR, for example [38], are much dependent on the experts domain for find-
ing SK. [39] focused on the case representation hierarchically by combining SK and 
AK depending on the Apriori algorithm when a number of passes are needed to gen-
erate new candidates. Both strategies [38], [39] are a simulation of the retrieval phase 
by providing a percentage value of related cases but do not involve providing a CBR 
system with feedback, which is part of the original cycle. The new approach CBRAR 
produces a correct case pattern not just a similar one. It also enables a correct case to 
be returned back into the retrieval phase to disambiguate any wrong answer produced 
by CBR. 

As shown in Fig. 3, we start to remove one case from the case based library of the 
CBR until the system retrieves two different classes with the same similarity. The 
new method adapts the CARs to produce the FP-tree considering a class label, length 
of subsets and support. This is because in mining association rule algorithms, any 
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associated method does not consider class clusters and length in the process of pro-
ducing frequent patterns of a specific class. Thus, in experiments to date an attempt 
has been made to develop a FP-tree to make the frequent rules more effective to one 
class by using a parent root of each class label. As a consequence of that, every fre-
quent rule will belong to its class. In the experiments, the first step of the FP-tree 
algorithm is changed to classify subsets according to its frequency before the rules are 
produced. Hence, considering the new case as a pattern to be compared with the con-
structed FP-tree will provide a correct match based on the new case built from the 
new tree. In other words, if a new case arrives to CBR, SBR may retrieve unrelated 
cases from the case library with same similarity measures as shown Fig. 3 in the re-
trieved cases field. This ambiguous result can make it difficult for the CBR user to 
take the right decision. Following that, we produce CARs from the same case library 
in order to gain the FP-CAR tree. The new case will then be compared to the formed 
tree to find a match which may belong to class root. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. CBRAR Model 

The proposed strategy is compared to existing CBR tools in the following steps: 

• Splitting: the new algorithm splits rules into different classes, where each rule rep-
resents a subset which belongs to a particular class. 

• Comparing: the new algorithm compares a CBR query as a pattern which actually 
represents a new case; it should match exactly a frequent path FP-tree. 
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• Voting: the process of voting is performed by considering the longest length of the 
nodes considering values of the modified FP-tree in terms of finding a partial 
match. 

• P-trees: a P-trees procedure is invoked to complete any missing nodes in the tree if 
needed to form an equivalent pattern to the CBR query. 

In the final step, the result obtained by our new model is compared with the outcomes 
of the retrieval phase to select a correct answer. We compare the solved case with the 
result of the retrieved cases to remove unrelated answers as shown in Fig. 3. It can be 
seen that two different labels i.e. class (yes and no) are retrieved by CBR in the re-
trieved cases field. By returning the solved case into the retrieved cases phase, the 
ambiguity of the SBR outcomes was removed. 

6 Experimental Results 

To investigate the accuracy of CBRAR, we conducted experiments using a dataset 
taken from the UCI Machine Learning Repository. The implementation of CBRAR 
used a Java platform Eclipse (4.5.0), and for comparison purposes we have used the 
Jcolibri framework [17] and FreeCBR [18] as powerful CBR tools. WEKA 3.6 is used 
as an open source in order to generate the CARs. In the set of experiments, we have 
removed one case from the CBR case library to be considered as a new case in each 
run of both Jcolibri and FreeCBR. We used the acute inflammations dataset as the 
same source to measure the CBR and CBRAR accuracy. By default, SBR returns the 
5 most similar answers when using Jcolibri when a new case is applied. However, the 
pre-determined cases 73,76,85,88 have registered an ambiguity that misleads the deci-
sion maker as all retrieved cases have the same percentage of similarity with different 
labels i.e. (yes, no). When using FreeCBR, more potential cases were identified in 
addition to those found by Jcolibri. 

The results are shown in Table 2; vertically, the first column refers to the new case 
Q followed by the cases retrieved by the CBR tools i.e. NewCase73 followed by cases 
(71, 72, 76, 77 and 79, for Jcolibri) and cases (71, 72, 77 until 107 for FreeCBR). The 
“Attributes” columns start with a temperature attribute F followed by 5 additional 
attributes A,B,C,D and E. The class label column indicates a diagnosis of Inflamma-
tion of the urinary bladder with values (yes and no). The “Accuracy” columns show  
the comparison between Jcolibri, FreeCBR and CBRAR. In the table, we use symbols 
TP, TN, FP and FN as follows True Positive, True Negative, False Positive and False 
Negative. The assumption is made to indicate the four probabilities on the confusion 
matrix. Table 2 shows that, for each new case applied to CBR, 5 different cases are 
retrieved by Jcolibri with the same similarity ratio i.e. 0.912. In the first experiment, a 
NewCase73 applied to the CBR, Jcolibri retrieved 3 TP and 2 FP cases with the same 
similarity ratio, and this is equal to 60% of accuracy, whereas FreeCBR retrieved 9 
TP and 2 FP, and this is equal to 81% of accuracy. CBRAR retrieved 1 TP case from 
new model. In the second experiment, a NewCase76 applied to the CBR, Jcolibri 
retrieved 4 TN and 1 FN with same similarity and this is equal to 80% of accuracy, 
whereas FreeCBR retrieved 6 TN and 1 FN and this is equal to 86% of accuracy. 



Table 2. Results of Wrong Retrieved Cases 

Cases 
Attributes Accuracy 

F A B C D E Class  Jcolibri FreeCBR CBRAR 

NewCase73 40.0 yes yes yes yes no yes 0.912 59.1751 TP 

Case71 40.0 yes yes yes yes yes yes TP TP  

Case72 40.0 yes yes yes yes yes yes TP TP 

Case76 40.0 yes yes no yes no no FP FP 

Case77 40.0 yes yes no yes no no FP FP 

Case79 40.1 yes yes yes yes no yes TP TP 

Case85 40.4 yes yes yes yes no yes 

 

TP 

Case86 40.4 yes yes yes yes no yes TP 

Case89 40.5 yes yes yes yes no yes TP 

Case94 40.7 yes yes yes yes no yes TP 

Case100 40.9 yes yes yes yes no yes TP 

Case107 41.1 yes yes yes yes no yes TP 

NewCase76 40.0 yes yes no yes no no 0.912 59.1751 TN 

Case73 40.0 yes yes yes yes no yes FN FN  

Case82 40.2 yes yes no yes no no TN TN 

Case88 40.4 yes yes no yes no no TN TN 

Case92 40.6 yes yes no yes no no TN TN 

Case96 40.7 yes yes no yes no no TN TN 

Case104 41.0 yes yes no yes no no 
 

TN 

Case109 41.1 yes yes no yes no no TN 

NewCase85 40.4 yes yes yes yes no yes 0.912 55.278 TP 

Case73 40.0 yes yes yes yes no yes TP TP  

Case79 40.1 yes yes yes yes no yes TP TP 

Case84 40.4 yes yes yes yes yes yes TP TP 

Case88 40.4 yes yes no yes no no FP FP 

Case89 40.5 yes yes yes yes no yes TP TP 

Case94 40.7 yes yes yes yes no yes 

 

TP 

Case100 40.9 yes yes yes yes no yes TP 

Case107 41.1 yes yes yes yes no yes TP 

NewCase88 40.4 yes yes no yes no no 0.912 55.276 FN 

Case76 40.0 yes yes no yes no no TN TN  

Case77 40.0 yes yes no yes no no TN TN 

Case82 40.2 yes yes no yes no no TN TN 

Case85 40.4 yes yes yes yes no yes FN FN 

Case86 40.4 yes yes yes yes no yes FN FN 

Case92 40.6 yes yes yes yes no yes 

 

TN 

Case96 40.7 yes yes yes yes no yes TN 

Case104 41.0 yes yes yes yes no yes TN 

Case109 41.1 yes yes yes yes no yes TN 

Average 70 83 75 
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CBRAR retrieved 1 TN case from the suggested algorithm. When NewCase85 is 
applied to the CBR in the third experiment, Jcolibri retrieved 4 TP and 1 FP cases 
with the same similarity percentage, and this is equal to 80% accuracy whilst 
FreeCBR retrieved 7 TP and 1 FP and this is equal to 88% of accuracy. CBRAR re-
trieved 1 TP case from FP-CAR tree. In the fourth experiment, a NewCase88 applied 
using Jcolibri again retrieved 5 cases with 3 TN and 2 FN with same similarity and 
this is equal to 60% accuracy. FreeCBR retrieved 9 cases with 7 TN and 2 FN. 
CBRAR incorrectly retrieved 1 FN as a wrong case. 

The results show that 14 out of the 20 Jcolibri retrieved cases are classified as TP 
and TN giving 70% accuracy. By comparison, 29 of the 35 cases retrieved by 
FreeCBR are classified as TP and TN giving 83% accuracy. However, both Jcolibri 
and FreeCBR deliver “confusing” results. Our CBRAR strategy demonstrates ad-
vantages over both Jcolibri and FreeCBR by resolving 3 out of 4 cases with 75% ac-
curacy and no confusion. The accuracy of CBRAR was better compared to Jcolibri 
and FreeCBR. CBRAR resolved the ambiguity of the FP and FN cases without confu-
sion. Cases 73, 76 and 85 in Table 2 can be reworked in Fig. 2 to prove that CBRAR 
identifies a correct case using a frequent classed tree. 
 

Fig. 4. Error Rate and Accuracy 

The bar chart in Fig. 4 illustrates the error rate and accuracy of Jcolibri, FreeCBR and 
CBRAR. From the chart, it is clear that in Case73, CBRAR registered 0 error rate, 
which is the lowest among the rates (40, 19) when compared to Jcolibri and FreeCBR. 
The results also show that the error rate of CBRAR is the lowest on Case76 and 
Case85 thus giving the highest accuracy, when compared to the other CBR tools used. 
CBRAR also correctly resolved 3 out of 4 cases. In Case88, it noticeable that the (40, 
19) % error rate of Jcolibri and FreeCBR was considerably lower than CBRAR. 



However, whilst CBRAR did not resolve Case88 neither of the other CBR tools of-
fered any advantage when compared to the new model. In conclusion, we have shown 
that the other CBR tools used inherit the same problem of error rates, whereas 
CBRAR has shown a better performance in overall error rate. 

7 Conclusion 

This paper has presented a new approach, CBRAR, to improve the performance of 
SBR. The CBRAR approach includes a new algorithm FP-CAR which produces far 
fewer frequent classed subsets than would be produced from a generic FP-tree. It uses 
a new method of length voting compared to the TFPC algorithm where a value of 
nodes is considered whilst building the tree. Moreover, the subsets left on the tree that 
meet the support, confidence and longest length of pattern can be used to classify 
subsets when sorted in a hash table. A superset could be derived; to be compared with 
other new CBR cases when compared with the CBR tools Jcolibri and FreeCBR, the 
CBRAR strategy achieves a better accuracy level with the lowest error rate. Moreo-
ver, the experimental results have shown the advantages of CBRAR over Jcolibri and 
FreeCBR in terms of uncertain answers which are retrieved with same similarity.  The 
next phase of our work will extend our experimental results by implementing CBRAR 
on different datasets and comparing the results with the other CBR tools used for our 
experiments to date. 

References 

1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, 
methodological variations, and system approaches. AI Commun. 7, 39–59 
(1994). 

2. Perner, P.: Introduction to Case-Based Reasoning for Signals and Images. In 
Perner, P. (Ed). Case-Based Reasoning on Signals and Images, 1-24 (2008). 

3. Lopez De Mantaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., 
Craw, S., Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., Keane, M., 
Aamodt, A., Watson, I.: Retrieval, reuse, revision and retention in case-based 
reasoning. Knowl. Eng. Rev. 20, 215–240 (2005). 

4. Ma, B., Liu, W., Hsu, Y.: Integrating classification and association rule 
mining. In: Proceedings of the 4th Knowledge Discovery and Data Mining 
(1998). 

5. Chen, G., Liu, H., Yu, L., Wei, Q., Zhang, X.: A new approach to 
classification based on association rule mining. Decis. Support Syst. 42, 674–
689 (2006). 

6. Vo, B., Le, B.: A novel classification algorithm based on association rules 
mining. In: Richards, D. and Kang, B.-H. (eds.) Knowledge Acquisition: 
Approaches, Algorithms and Applications. pp. 61–75. Springer (2009). 

7. Deng, H., Runger, G., Tuv, E., Bannister, W.: CBC: An associative classifier 
with a small number of rules. Decis. Support Syst. 59, 163–170 (2014). 



8. Nguyen, L.T.T., Vo, B., Hong, T.-P., Thanh, H.C.: CAR-Miner: An efficient 
algorithm for mining class-association rules. Expert Syst. Appl. 40, 2305–
2311 (2013). 

9. Ibrahim, S.P.S., Chandran, K.R., Kanthasamy, C.J.K.: CHISC-AC: Compact 
Highest Subset Confidence-Based Associative Classification1. Data Sci. J. 13, 
127–137 (2014). 

10. Nguyen, L.T.T., Nguyen, N.T.: An improved algorithm for mining class 
association rules using the difference of Obidsets. Expert Syst. Appl. 42, 
4361–4369 (2015). 

11. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann, San 
Mateo, Calif (1993). 

12. Tolun, M.R., Abu-Soud, S.M.: ILA: an inductive learning algorithm for rule 
extraction. Expert Syst. Appl. 14, 361–370 (1998). 

13. Tolun, M.R., Sever, H., Uludag, M., Abu-Soud, S.M.: ILA-2: An inductive 
learning algorithm for knowledge discovery. Cybern. Syst. 30, 609–628 
(1999). 

14. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: 
Proc. 20th int. conf. very large data bases, VLDB. pp. 487–499 (1994). 

15. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate 
generation. In: ACM SIGMOD Record. pp. 1–12. ACM (2000). 

16. Cagliero, L., Garza, P.: Infrequent weighted itemset mining using frequent 
pattern growth. Knowl. Data Eng. IEEE Trans. 26, 903–915 (2014). 

17. jCOLIBRI | GAIA – Group of Artificial Intelligence Applications, 
http://gaia.fdi.ucm.es/research/colibri/jcolibri. 

18. FreeCBR, http://freecbr.sourceforge.net/index.shtml. 
19. Ahn, H., Kim, K.: Global optimization of case-based reasoning for breast 

cytology diagnosis. Expert Syst. Appl. 36, 724–734 (2009). 
20. Pandey, B., Mishra, R.B.: Case-based reasoning and data mining integrated 

method for the diagnosis of some neuromuscular disease. Int. J. Med. Eng. 
Inform. 3, 1–15 (2011). 

21. Lorenzi, F., Ricci, F.: Case-based recommender systems: a unifying view. In: 
Mobasher, B. and Anand, S.S. (eds.) Intelligent Techniques for Web 
Personalization. pp. 89–113. Springer, Berlin (2005). 

22. Beddoe, G.R., Petrovic, S.: Selecting and weighting features using a genetic 
algorithm in a case-based reasoning approach to personnel rostering. Eur. J. 
Oper. Res. 175, 649–671 (2006). 

23. Althof, K.-D., Auriol, E., Barlette, R., Manago, M.: A Review of Industrial 
Case Based Reasoning. AI Intelligence, Oxford (1995). 

24. Cercone, N., An, A., Chan, C.: Rule-induction and case-based reasoning: 
hybrid architectures appear advantageous. IEEE Trans. Knowl. Data Eng. 11, 
166–174 (1999). 

25. Huang, M.-J., Chen, M.-Y., Lee, S.-C.: Integrating data mining with case-
based reasoning for chronic diseases prognosis and diagnosis. Expert Syst. 
Appl. 32, 856–867 (2007). 

26. Park, Y.-J., Choi, E., Park, S.-H.: Two-step filtering datamining method 



integrating case-based reasoning and rule induction. Expert Syst. Appl. 36, 
861–871 (2009). 

27. Bradley, K., Smyth, B.: Personalized information ordering: a case study in 
online recruitment. Knowledge-Based Syst. 16, 269–275 (2003). 

28. Vong, C.M., Wong, P.K., Ip, W.F.: Case-based classification system with 
clustering for automotive engine spark ignition diagnosis. In: Computer and 
Information Science (ICIS), 2010 IEEE/ACIS 9th International Conference 
on. pp. 17–22. IEEE (2010). 

29. Azuaje, F., Dubitzky, W., Black, N., Adamson, K.: Discovering relevance 
knowledge in data: a growing cell structures approach. Syst. Man, Cybern. 
Part B Cybern. IEEE Trans. 30, 448–460 (2000). 

30. Zhuang, Z.Y., Churilov, L., Burstein, F., Sikaris, K.: Combining data mining 
and case-based reasoning for intelligent decision support for pathology 
ordering by general practitioners. Eur. J. Oper. Res. 195, 662–675 (2009). 

31. P. Perner, Prototype-based classification, App. Intell., 28(3), pp. 238–246, 
(2008). 

32. Chuang, C.-L.: Case-based reasoning support for liver disease diagnosis. 
Artif. Intell. Med. 53, 15–23 (2011). 

33. Guo, Y., Hu, J., Peng, Y.: Research on CBR system based on data mining. 
Appl. Soft Comput. 11, 5006–5014 (2011). 

34. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets 
of items in large databases. In: ACM SIGMOD Record. pp. 207–216. ACM 
(1993). 

35. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: A survey. 
ACM Comput. Surv. 38, 9 (2006). 

36. Aparna, V./, Ingle, M.: Enriching Retrieval Process for Case Based Reasoning 
by using Vertical Association Knowledge with Correlation. Int. J. Recent 
Innov. Trends Comput. Commun. 2, 4114 – 4117 (2014). 

37. Nahm, U.Y., Mooney, R.J.: Using soft-matching mined rules to improve 
information extraction. Language (Baltim). 11, 50 (2004). 

38. Kang, Y.-B., Krishnaswamy, S., Zaslavsky, A.: A Retrieval Strategy for 
Case-Based Reasoning Using Similarity and Association Knowledge. IEEE 
Trans. Cybern. 44, 473–487 (2014). 

39. Patel, D.: A Retrieval Strategy for Case-Based Reasoning using USIMSCAR 
for Hierarchical Case. Int. J. Adv. Eng. Res. Technol. 2, 65–69 (2014). 

40. TFPC Classification Association Rule Mining (CARM) Software, 
https://cgi.csc.liv.ac.uk/~frans/KDD/Software/Apriori-TFPC/Version2/apriori 
TFPC.html. 

41. Coenen, F., Leng, P., Ahmed, S.: Data structure for association rule mining: 
T-trees and P-trees. IEEE Trans. Knowl. Data Eng. 774–778 (2004). 

42. Goulbourne, G., Coenen, F., Leng, P.: Algorithms for computing association 
rules using a partial-support tree. Knowledge-Based Syst. 13, 141–149 
(2000). 

43. Coenen, F., Goulbourne, G., Leng, P.: Tree structures for mining association 
rules. Data Min. Knowl. Discov. 8, 25–51 (2004). 


	1 Introduction
	2 Literature Review of CBR and other Types of Knowledge
	2.1 Machine Learning and Retrieval
	2.2 Data Mining and CBR
	2.3 Retrieval and CAR

	3 Related Work
	3.1 Soft Matching of ARM (SARM)
	3.2 Soft - CAR Algorithm
	3.3 USIMCAR Algorithm

	4 Proposed Algorithm FP-CAR
	5 New Strategy CBRAR to Enhance the Performance of SBR
	6 Experimental Results
	7 Conclusion
	References

