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Abstract 21 

Bacteriophages are viruses that infect bacteria. There are an estimated 10
31

 phage on the 22 

planet, making them the most abundant form of life. We are rapidly approaching the 23 

centenary of their identification, and yet still have only a limited understanding of their role 24 

in the ecology and evolution of bacterial populations. Temperate prophage carriage is often 25 

associated with increased bacterial virulence. The rise in use of technologies, such as genome 26 

sequencing and transcriptomics have highlighted more subtle ways in which prophages 27 

contribute to pathogenicity.  This review discusses the current knowledge of the multifaceted 28 

effects that phage can exert on their hosts and how this may contribute to bacterial adaptation 29 

during infection. 30 

 31 

Introduction: Lifestyle Choices: A good work-life balance 32 

Bacteriophages (phage) are viruses that infect and replicate within bacterial hosts and 33 

are ubiquitous and abundant in every niche studied so far on the planet (Roux et al., 2015). 34 

They are broadly divided into two categories. Virulent phage follow a strictly productive lytic 35 

lifecycle whereas temperate phage switch between dormant and productive states. All phage 36 

infect the host bacterium by binding to specific surface receptors and injecting their genome 37 

into the cytoplasm. Virulent (lytic) phage infection immediately commandeers the bacterial 38 

replicative machinery for multiplication. Phage genes encode structural head and tail proteins 39 

and lytic enzymes that cause bacterial cell lyses, releasing lytic phage progeny into the 40 

environment. The characteristics of lytic phage offer an attractive alternative to antibiotics. 41 

Phage therapy has been widely used in the former Soviet Union (Hraiech et al., 2015) and 42 
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rapid spread of multi-drug-resistant infections has prompted renewed interest in phage-based 43 

therapies worldwide. 44 

Temperate (lysogenic) phage follow an alternative life cycle involving integration of 45 

their genome into the host chromosome to become a prophage. In this state the phage DNA 46 

replicates along with the host cell (lysogen) and is maintained in the bacterial population.  47 

Lysogenic phage can switch to a lytic lifecycle, particularly in response to environmental 48 

stresses (Figure 1). Lambdoid phage employ repressor genes such as cI, which act as a 49 

genetic switch to control the balance between lysis and lysogeny (Ptashne, 2004). Expression 50 

of these repressors prevents the lytic pathway and maintains the prophage state. The CI 51 

repressor also inhibits integration of any incoming phage genomes conferring immunity to 52 

super-infection. There are a wide range of other phage-resistance mechanisms (reviewed in 53 

(Labrie et al., 2010). 54 

The balance between lytic and lysogenic states is thought to be largely dependent on 55 

the metabolic condition of the bacterial host cell (Lieb, 1953). Temperate phage infection 56 

tends towards lysogeny in starving cells and this is thought to be a phage survival tactic 57 

during periods of resource limitation (Stewart & Levin, 1984). Integration into the 58 

chromosome is facilitated by integrase and transposase enzymes that can act at specific sites 59 

or randomly. This means that lysogenic phage can drive bacterial diversity by introducing 60 

mutations with each integration event. Active prophage retain the ability to switch to a lytic 61 

cycle of productive replication. This occurs spontaneously in a proportion of cells within a 62 

population of lysogenic bacteria. Induction of lambdoid phages into the lytic cycle has been 63 

well characterised and often linked to the SOS response triggered by DNA damage. Prophage 64 

induction is thought to be another survival strategy to aid phage escape from a host cell at 65 

risk of death (Refardt & Rainey, 2010). Potent inducers of DNA damage and phage induction 66 
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include physical and chemical mutagens such as UV, mitomycin C and reactive oxygen 67 

species (Aanaes et al., 2011). Several antibiotics have also been shown to trigger the lytic 68 

cycle, particularly those that target DNA replication (fluoroquinolones such as norfloxacin 69 

and ciprofloxacin) (Matsushiro et al., 1999, James et al., 2001; Fothergill et al., 2011; 70 

Meessen-Pinard et al., 2012; López et al., 2014).  71 

During lysogeny, mutations commonly lead to the formation of a defective (cryptic) 72 

phage, locking the once mobile element in to the host chromosome (Fischer-Fantuzzi and 73 

Calef., 1964; Bobay et al., 2014). The frequency of defective (domesticated) prophage may 74 

be grossly underestimated. They can be hard to identify as genome degradation often results 75 

in deletion of recognisable phage genes (Mizutani et al., 1999, Bobay et al., 2014). 76 

  77 

Prophage contribution to infection 78 

Lysogenic infection and subsequent expression by the host of phage encoded genes is 79 

termed lysogenic conversion, and can have profound effects on bacterial phenotype. 80 

Prophages often encode “morons” that are not directly involved in viral replication and can 81 

confer a benefit to their bacterial host. Such genes are independent transcriptional units of 82 

DNA that are expressed whilst the phage is in the prophage state (Juhala et al., 2000). 83 

Morons can include genes that enhance the virulence of their bacterial host, either directly 84 

(e.g. phage-encoded toxins), or indirectly, by enhancing the ecological fitness of bacteria 85 

during infection (Hacker & Carniel, 2001). The role of temperate phage in disease situations 86 

is thus becoming increasingly recognised.  87 

The recent growth in whole bacterial genome sequencing has revealed high numbers 88 

of integrated prophage (Hayashi et al., 2001, Winstanley et al., 2009, Wang et al., 2010, 89 

Matos et al., 2013). Pathogenic strains have been shown to carry a greater proportion of 90 
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phage-related genes than non-pathogenic strains (Busby et al., 2013), many maintaining 91 

multiple prophages in the same chromosome (Hayashi et al., 2001, Winstanley et al., 2009). 92 

For example, the majority of the genetic difference between avirulent and virulent strains of 93 

Escherichia coli is due to mobile genetic elements, notably phages (Hayashi et al., 2001, 94 

Ohnishi et al., 2002). Table 1 summarises some of the major phage-encoded bacterial 95 

virulence factors that have been identified. 96 

Exotoxins: The concept of lysogenic conversion was first introduced in 1927 when it 97 

was demonstrated that a filterable agent (later identified as a bacteriophage) could convert 98 

previously non-toxigenic Streptococci into toxin producers (Frobisher & Brown, 1927). It 99 

wasn’t until the 1950s that phage transduction was shown to be responsible for toxigenic 100 

conversion of avirulent Corynebacterium diptheriae to produce a potent exotoxin and 101 

become highly pathogenic to the animal host (Groman, 1953, Groman, 1955). Since then 102 

there have been numerous reports of phage-encoded exotoxins that enhance the virulence of 103 

their bacterial hosts, including Vibrio cholera, Staphylococcus aureus, Clostridium botulinum 104 

and E. coli (reviewed in (Casas & Maloy, 2011)). Shiga toxins (Stx), major virulence factors 105 

of Shigatoxigenic E. coli (STEC) are produced by a group of temperate Stx phages. The stx2 106 

genes are located in the phage late gene region and are expressed when the prophage is 107 

triggered into the lytic cycle (Wagner et al., 2002).  108 

Phage-encoded exotoxins are likely to contribute to bacterial fitness, but the exact 109 

mechanism remains unclear (for a review on the evolution of bacterial virulence, see (Levin 110 

& Svanborg Eden, 1990)). Phage-encoded exotoxins are well characterised as they often have 111 

a large impact on bacterial virulence. However, prophage can have more subtle effects on 112 

host phenotype, conferring a benefit to the host bacterium by enhancing colonisation or 113 

competitiveness in an animal host (Fortier & Sekulovic, 2013).    114 
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Adhesion and Invasion: One of the crucial first stages of bacterial infection is 115 

attachment to cells. Some phage-encoded shiga-toxins provide extra virulence by facilitating 116 

adherence of STEC to gut epithelial cells in a murine model of infection (Robinson et al., 117 

2006). Several stx phages (e.g. 933W isolated from E. coli O157:H7) also possess a lom gene 118 

homologue that encodes an outer membrane protein necessary for adhesion to human 119 

epithelial cells (Vica Pacheco et al., 1997). The prophage-encoded PblA and PblB platelet 120 

binding proteins of Streptococcus mitis strain SF100 play an important role in the 121 

pathogenesis, causing endocarditis (Bensing et al., 2001) and homologs with similar 122 

functions have been identified in prophage of Enterococcus faecalis (Matos et al., 2013).  123 

Bacterial type III secretion systems (TTSS) are associated with attachment and 124 

invasion by secreting effectors directly into target host cells. There are many examples of 125 

prophages that contribute to these systems in several intestinal pathogens. A cryptic 126 

prophage, CP-933C, has been reported to positively regulate a TTSS in E. coli (Flockhart et 127 

al., 2012). Deletion mutants of the cryptic phage displayed reduced colonisation and 128 

persistence in an ovine model, through a reduced ability to adhere to epithelial cells 129 

(Flockhart et al., 2012). The Salmonella typhimurium prophage-encoded SopE is an effector 130 

protein secreted via the TTSS into intestinal epithelial cells to promote invasion (Mirold et 131 

al., 1999). Likewise the CJIE1-like prophage, carried by some isolates of Campylobacter 132 

jejuni, confers increased adherence and invasion in vitro (Clark et al., 2012). This phage has 133 

also been shown to alter host protein expression in the presence of bile salts (Clark et al., 134 

2012). 135 

Contributions to fitness in vivo: Once bacteria have successfully colonised a host, 136 

they must reproduce and evade the host immune system.  Biofilms are a key feature of many 137 

bacterial infections and can be described as complex microbial communities, protected by a 138 
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secreted matrix of exopolysaccharides, proteins and DNA. Biofilm-associated bacteria 139 

exhibit increased resistance to immune attack and antibiotic treatment. Both active and 140 

cryptic prophage have been suggested to play a role in biofilm development of several 141 

pathogens, including S. pneumoniae (Carrolo et al., 2010), Bacillus anthracis (Schuch & 142 

Fischetti, 2009) and E. coli (Wang et al., 2010). Homologs of the filamentous phage Pf4, are 143 

widespread in clinical P. aeruginosa isolates, and play a crucial role in several stages of 144 

biofilm maturation. In particular Pf4 switches to a super-infective form within mature 145 

biofilms, aiding dispersal. This has been associated with increased virulence in a mouse 146 

model of infection (Rice et al., 2009).  147 

Enhanced growth rate upon lysogenic conversion is a common phenomenon (Bondy-148 

Denomy & Davidson, 2014). The prophage SMP increases both growth rate and resistance to 149 

lysozyme resulting in enhanced virulence of its Streptococcus suis host (SS2) in a zebrafish 150 

model of infection (Tang et al., 2013).  A reduced rate of growth has been observed when 151 

cryptic prophages are deleted from E. coli K12 compared to wild-type (Wang et al., 2010). 152 

Mutational studies of the Liverpool Epidemic Strain (LES) of P. aeruginosa (isolated from 153 

the lungs of patients with cystic fibrosis (CF)), revealed a significant association of prophage 154 

genes with competitiveness in a rat model of chronic lung infection (Winstanley et al., 2009). 155 

Mutations in several prophage genes exhibited up to 1000 fold reduced ability to establish 156 

infection and modified the expression of multiple virulence genes, including key factors 157 

associated with chronic infection (Lemieux et al., 2015). These studies suggest that temperate 158 

phage influence multiple stages of infection and alter the fitness of phage-carrying bacteria in 159 

the host environment.  160 

Immune modulation and antimicrobial resistance: Some prophage confer bacterial 161 

traits that are capable of actively modulating the immune system. Shiga toxin, produced by E. 162 
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coli Stx-phage, is capable of inhibiting the innate immune response of human enterocytes by 163 

inhibiting the PI3K/Akt/NF-B signalling pathway. This leads to a subsequent decrease in 164 

chemokines CCL20 and interleukin-8, which are linked with the innate immune response 165 

(Gobert et al., 2007). Several temperate phage of P. aeruginosa have been shown to convert 166 

non-mucoid strains to mucoidy, a phenotype characterised by the overproduction of the 167 

polysaccharide alginate (Miller & Renta Rubero, 1984). This phenotype provides bacteria 168 

with a physical protectant that helps them to be refractory to both the immune system (Cabral 169 

et al., 1987) and to antibiotic treatment (Hentzer et al., 2001). 170 

Antimicrobial resistance (AMR) genes have been identified on phage isolated from 171 

water (Colomer-Lluch et al., 2011), activated sludge (Parsley et al., 2010), faecal samples 172 

(Quirós et al., 2014), and the lungs of individuals with CF (Fancello et al., 2011). These 173 

genes can be transduced, changing the antimicrobial susceptibility profile of their host 174 

(Zhang & LeJeune, 2008, Mazaheri Nezhad Fard et al., 2011). An important example of this 175 

includes the transfer of the Staphylococcal cassette chromosome mec (SCCmec), a defining 176 

feature of Methicillin Resistance S. aureus (MRSA). This pathogenicity island can harbour 177 

several AMR determinants that are transferable by phage (Maslanova et al., 2013). Phage of 178 

bovine Salmonellae have been shown to transduce the blaCMY-2 gene, encoding resistance to 179 

third-generation cephalosporins (Zhang & LeJeune, 2008) and the Staphylococcal phage, 180 

TEM123 (isolated from food), was shown to confer beta-lactam resistance via a metallo-β-181 

lactamase gene (Lee and Park, 2015).  In this way, phage have been described as “vehicles of 182 

the resistome” and metagenomic analysis of DNA from the respiratory tract of CF patients 183 

has revealed the presence of phage-associated AMR genes (Rolain et al., 2011). Modi et al., 184 

(2013) observed an increase in phage-associated AMR genes in vivo following antibiotic 185 

treatment of mice. Interestingly, they detected enrichment of disparate mechanisms to resist 186 
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both the administered drug and un-related antibiotics. Furthermore, the evolved phage were 187 

shown to transfer AMR to naïve cultures from mouse microbiota. These findings suggest that 188 

phages play an important role in driving the evolution and spread of resistance and should be 189 

considered in control measures.  190 

 191 

Phage abundance in the human environment 192 

A phenomenal diversity of phage has been described in the natural environment, in 193 

the region of 50 viral species per litre of sea water, and up to 1 million species in 1 kg of 194 

marine sediment (Rohwer & Thurber, 2009). Prophages have been identified in ~ 60% of 195 

sequenced bacterial genomes (Roux et al 2015). The influence of bacteriophages on the life 196 

histories and evolution of their hosts in these environments is multi-faceted.  In addition to 197 

the selective pressures of predation, horizontal transfer of important genes (e.g. those 198 

involved in stress response, chemotaxis and metabolic pathways) aid niche adaptation 199 

(Rohwer & Thurber, 2009). There is less known about the density of natural bacteriophage 200 

populations in vivo, and particularly during bacterial infections. Phage virions have been 201 

detected in human sputa and faeces by electron microscopy (Ojeniyi et al., 1991) and isolated 202 

using plaque assays (Furuse et al., 1983, Fothergill et al., 2011). These studies report E. coli 203 

phage (coliphage) titres of up to 10
5
 p.f.u. g

-1
 human faeces (Dhillon et al., 1976) and an 204 

association has been identified between high coliphage densities (>1 x 10
5
 p.f.u. g

-1
) and 205 

disease (Furuse et al., 1983). Others have observed a shift from predominantly temperate, to 206 

virulent phages associated with human diarrhoeal disease; a reflection of modified intestinal 207 

microflora. 208 
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Metagenomic studies have begun to describe the human virome and have indicated 209 

that phage far out-weigh eukaryotic viruses both in number and diversity (Willner et al., 210 

2011, Reyes et al., 2012). Sequencing techniques are not dependent on plaque assays to 211 

detect phages and can thus enumerate total phage abundance without the need for a 212 

susceptible bacterial host. An estimated 10
8
–10

9 
bacteriophage particles per gram of human 213 

faeces (Kim et al., 2011), and approximately 10
3
 virotypes (mainly temperate) have been 214 

identified (Breitbart et al., 2003). 236 and 175 viral species have been identified in the oral 215 

cavity and the respiratory tract respectively (Willner et al., 2009, Willner et al., 2011). 216 

Temporal, spatial and inter-individual variation in virome diversity has been observed in the 217 

gastro-intestinal tract (Kim et al., 2011), oral cavity (Pride et al., 2012) and respiratory tract 218 

(Willner et al., 2009). However, there is little known about the balance between active phage 219 

virion densities and prophages in vivo. The development of new bio-informatic tools, such as 220 

VirSorter (Roux et al., 2015) that can assemble viral genomes from metagenomic and single-221 

cell amplified genome data, hold promise for the elucidation of this dynamic phage-host 222 

relationship in complex communities. 223 

Effects of antibiotic treatment: It is well established that some antibiotics can 224 

trigger the switch between lysogenic and lytic phage lifecycles; particularly the 225 

fluoroquinolones, that affect DNA replication. Production of Clostridium difficile phages, 226 

isolated from human faeces, has been shown to increase by 4-5 logs in response to 227 

fluoroquinolone treatment (Meessen-Pinard et al., 2012).  Ciprofloxacin has been 228 

demonstrated to trigger the V583 phage lytic cycle in E. faecalis This antibiotic is routinely 229 

used in therapeutic regimes including in the management of P. aeruginosa infection in (CF) 230 

(Fothergill et al., 2011, Matos et al., 2013).  This has been linked with both upregulation of 231 

phage-related genes (Cirz et al., 2006) and increased production of phage virions (Fothergill 232 

et al., 2011). Free P. aeruginosa phage have been detected at high levels in CF patient sputa, 233 
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most likely as a result of induction by antibiotics and oxidative stress (James et al., 2012, 234 

James et al., 2015). Norfloxacin is a well-known inducer of stx-phage from STEC, resulting 235 

in increased toxin production (Matsushiro et al., 1999). Clinicians are therefore advised to 236 

avoid treatment of suspected STEC infection with fluoroquinolones (Nassar et al., 2013).  237 

Long-term antibiotic treatment is likely to play a crucial role in the dynamics between 238 

prophage and their hosts in vivo.  A longitudinal study of CF patient sputa tracked the density 239 

of six P. aeruginosa phage that are all maintained as active prophages in the same LES 240 

chromosome. A consistently high density of DNA from LES phage virions (10
4
 – 241 

10
9 

copies µl−1) was observed
 
that correlated positively with LES host numbers over a 2 year 242 

period. Free-phage density exceeded specific bacterial host density (11-90-fold), consistent 243 

with ongoing lytic activity. This was expected as CF patients are often treated with high 244 

doses of intravenous antibiotics during exacerbation of symptoms. Surprisingly, there was no 245 

correlation between LES phage density and treatment of exacerbated symptoms. These 246 

patients were subject to variable cocktails of different antibiotic classes over several years 247 

irrespective of exacerbations (James et al., 2015). Not all antibiotics induce the phage lytic 248 

cycle; in fact some are known to supress lytic activity (Fothergill et al., 2011). As next 249 

generation sequencing technologies advance, the interaction between antibiotics, phage and 250 

their hosts during chronic infections can be teased apart in further longitudinal studies. 251 

 252 

Role of phage in bacterial adaptation 253 

It is no surprise that phage can be intimately involved in the adaptation and evolution 254 

of their bacterial hosts to drive bacterial diversification through numerous mechanisms. Lytic 255 

bacteriophages obligately kill their hosts placing a strong antagonistic selective pressure on 256 
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bacteria to avoid infection. The “kill the winner” hypothesis posits that the competition 257 

specialists in a bacterial population become targets of bacteriophages. The subsequent 258 

reduction in the “winners” selects for diversity in the population (Winter et al., 2010). The 259 

obvious effects of lysogenic conversion of bacterial hosts have been well documented. The 260 

carriage of additional genes during lysogeny can increase bacterial population diversity 261 

through a less antagonistic selection pressure than lytic infection. However, the more subtle 262 

effects of temperate phage on the adaptation of bacterial populations require further 263 

exploration. Temperate bacteriophages can also drive host genome evolution through gene 264 

disruption, duplication, transduction or by acting as anchor points for major chromosomal 265 

rearrangements. 266 

Gene Disruption frequently occurs through insertional inactivation. As an example 267 

of negative lysogenic conversion, Staphylococcal phage L54a has been shown to integrate 268 

into the lipase-encoding gene (geh) resulting in a loss of phenotype (Lee & Iandolo, 1986). 269 

Another S. aureus phage, φ13, has integrated into the 5' end of the hlb gene, causing a loss of 270 

beta-toxin expression (Coleman et al., 1991). E. coli phage Mu (mutator) was the first 271 

identified example of a bacteriophage causing mutations in the host chromosome. Mu 272 

lysogens were observed to display differences in their nutritional requirements through 273 

phage-mediated disruption of gene function (Taylor, 1963). Phage Mu is transposable, 274 

meaning it can integrate into random sites of the host chromosome (Bukhari & Zipser, 1972) 275 

unlike many other phage, including λ and φ13 which only integrate at specific sites. 276 

Transposable P. aeruginosa phage are commonplace, and include D3112 (Wang et al., 2004) 277 

B3 (Braid et al., 2004) and LES φ4 (Winstanley et al., 2009). D3112 has been shown to 278 

cause mutations in PAO1 through insertional inactivation (Rehmat & Shapiro, 1983). 279 
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However, the true extent of the impact of phage-mediated gene disruption on bacterial 280 

evolution remains poorly understood. 281 

Transduction: Horizontal transfer of genetic material between bacterial genomes by 282 

a bacteriophage can occur by two different mechanisms. Both virulent and temperate phage 283 

types are capable of generalised transduction, which occurs during the lytic cycle of 284 

infection. Prior to cell lysis, phage heads are packaged with newly replicated phage genomes, 285 

but bacterial DNA can be mistakenly incorporated in place of the phage nucleic acid. Upon 286 

infection of another cell, the DNA is released into the cell cytoplasm and can potentially 287 

recombine with the host chromosome. 90% of temperate phage of the S. Typhimurium 288 

complex have been shown to perform generalised transduction in host bacterial populations 289 

(Ebel-Tsipis et al., 1972, Schicklmaier & Schmieger, 1995). Generalised transduction of 290 

AMR genes has been observed during induction of a multi-drug resistant strain of S. 291 

Typhimurium using the veterinary antibiotic, carbadox (Bearson et al., 2014). The recently 292 

characterised P. aeruginosa phage φPA3, originally isolated from sewage, is capable of 293 

infecting clinical CF isolates. It has been shown to transduce mutations in quorum sensing 294 

genes (las and rhl) in cultures of the lab strain PAO1 (Monson et al., 2011).  295 

Specialised transduction is mediated only by temperate phage, and occurs during 296 

imprecise excision of prophage from the bacterial genome, taking with it adjacent bacterial 297 

gene(s), which are transferred to another bacterial host upon lysogenic infection. Specialised 298 

transducing λ phage have been shown to transduce several important genes (Kirschbaum & 299 

Konrad, 1973, Jaskunas et al., 1975, McEntee & Epstein, 1977, Hansen & von Meyenburg, 300 

1979). Other examples of specialised transduction have been identified in S. Typhimurium  301 

(Chan et al., 1972), Bacillus subtilis (Zahler et al., 1977) and P. aeruginosa (Cavenagh & 302 

Miller, 1986). 303 
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Anchors for Chromosomal Rearrangements: Prophage can act as anchor points for 304 

chromosomal inversions and other major genomic rearrangements. Sequencing of a 305 

pathogenic S. pyogenes isolate identified two major chromosomal inversions, one of which 306 

was caused by homologous recombination between two related prophages, and the other was 307 

suggested to occur after a phage integration event which caused an “unbalancing” of the 308 

genome (Nakagawa et al., 2003). There is evidence of a prophage-mediated chromosomal 309 

inversion in E. faecium, but despite the notion that major chromosomal rearrangements would 310 

have a negative impact on fitness, no such effect was detected (Lam et al., 2012). 311 

 312 

Polylysogeny 313 

Polylysogeny, the carriage of multiple prophages, is a common feature of bacterial 314 

pathogens. The genomes of a wide range of C. difficile strains are highly plastic; carrying 315 

multiple prophages (Hargreaves et al., 2015). Similarly, 18 co-existing prophages and 6 316 

prophage-like elements have been identified in the chromosome of E. coli O157:H7 strain 317 

RIMD0509952 (Hayashi et al., 2001). STEC are known to harbour several stx-encoding 318 

phage in the same chromosome, some of which exist in multiple copies, going against the 319 

classic lambdoid mechanisms of phage immunity. In this way, the expression of phage-320 

encoded genes can be enhanced. For example multiple isogenic infections of E. coli by stx-321 

phages have been shown to have a cumulative effect on the expression of Shiga toxin (Fogg 322 

et al., 2012). There are several reports of polylysogenic E. faecalis that have been isolated 323 

from clinical samples. Strain V583 harbours seven different prophage-like elements, six of 324 

which constitute fully active, inducible, prophages that encode clear virulence traits and 325 

interact with each-other (Matos et al., 2013). Similarly, the infection dynamics of multiple 326 

active LES prophages of P. aeruginosa have been described (Table 2). As with other 327 
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polylysogenic systems, the LES prophage sequences are mosaic in nature; LESφ3 is largely a 328 

hybrid of LESφ2 and LESφ5 (Figure 2). Of five active prophages, three exhibit productive 329 

infection of other P. aeruginosa strains. There is an interesting relationship between these 330 

prophages as LESφ2 confers immunity to infection by LESφ3 and LESφ4, which do not 331 

prevent infection by LESφ2. The LES prophages are also inducible with fluoroquinolone 332 

antibiotics and exhibit a hierarchical nature, with LESφ2 density being consistently higher 333 

than the other LES phage in vivo and in vitro (James et al., 2012).  334 

Experimental evolution experiments have begun to explore the cost/benefits of 335 

polylysogeny and the interactions between co-habiting prophages. Carriage of two LES 336 

prophages has been shown to confer a competitive advantage over single lysogens during 337 

mixed infection in wax moth larvae (Burns et al., 2015). Within host competition of 11 338 

different E. coli prophages has also suggested a hierarchical relationship during stressful 339 

conditions. In these experiments, double lysogens were exposed to the potent inducing agent, 340 

mitomycin C. In most cases, the prophage with the fastest response to induce the lytic cycle 341 

showed a competitive advantage (Refardt, 2011). These studies suggest that interactions 342 

between prophages and diversity in phage immunity mechanisms can also alter the course of 343 

bacterial adaptation. 344 

CRISPR Immunity to temperate phage 345 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are widespread 346 

in bacterial genomes and act as an active defence mechanism to protect against bacteriophage 347 

infection (Barrangou et al., 2007). This mechanism of protection against virulent phage has 348 

been well documented. However, the relationship between CRISPR and temperate phage is 349 

less clear. Several reports suggest that CRISPR systems are negatively correlated with 350 
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lysogeny and there is evidence that E. coli CRISPRs prevent both lysogenic infection and 351 

induction of prophages (Fogg et al., 2010). Others have demonstrated an interaction between 352 

CRISPR and the prophage DMS3. The presence of both together has been shown to inhibit 353 

biofilm formation and swarming in P. aeruginosa (Zegans et al., 2009). CRISPR spacers 354 

with 100% identity to temperate phage sequences are widespread amongst clinical isolates of 355 

P. aeruginosa, including the LES (Cady et al., 2011). The overall effects of CRISPR 356 

evolution, in response to temperate bacteriophages, on bacterial adaptation require further 357 

exploration.  358 

 359 

Outlook 360 

The contribution of prophage to the success of their bacterial hosts during infection 361 

has been under studied, especially in the case of prophage that do not contribute a clear 362 

phenotype such as toxin production. A wealth of readily available whole-genome sequence 363 

data has now enabled the identification of previously un-discovered prophages and cryptic 364 

prophage elements, revealing their abundance in an array of different environments. 365 

However, biological understanding of the roles of the many “unknown” proteins harboured 366 

by the prophages remains some way behind the generation of these sequence data. In addition 367 

to this, there is a lack of functional studies into the mechanistic contributions of these phage 368 

to the host. Since temperate phage can switch between lysis and lysogeny, they are 369 

particularly important in the evolutionary dynamics of bacterial populations, leading to a 370 

complex interplay between symbiotic and competitive relationships of multiple interacting 371 

phage and their hosts. The additional influence of lysis-inducing antibiotic treatments can 372 

potentially change the trajectory of bacterial adaptation in the host environment. An 373 
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understanding of these infection dynamics in vivo is needed to develop novel strategies for 374 

managing chronic bacterial infection. 375 

 376 
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Figures and Tables 

 

 

 

 

 

Figure 1. The temperate phage lifecycle.  

A: Lysogeny occurs when the phage DNA integrates into the bacterial genome. Here it is 

described as a prophage. Prophages replicate along with the bacterial cell. Cell stress such as 

DNA damage can result in the prophage entering the lytic cycle leading to phage replication 

and release following bacterial cell lysis. B: Scanning electron microscope image of an E coli 

cell under-going lysis triggered by the stx-phage Ф24B (James C. E. un-published). 
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Table 1: Prophage associated-genes involved in bacterial virulence. 

Bacteria Phage  Phage-encoded virulence gene(s) Reference 

C. 

diptheriae 

Beta  Diptheria toxin (tox) Cytotoxin  (Holmes and Barksdale 

1969) 

E. coli Stx 

 

Shiga toxin (stx1, stx2), cytotoxins 

stk - Affects signal transduction  

TTSS Effectors cif, espI/nleA, espI, 

espK, espEU/tccP, nleI 

(Wagner et al. 2001)  

(Plunkett et al. 1999)  

(Lavigne and Blanc-Potard 

2008) 

λ 

 

lom - binding to epithelial cells  

bor - Outer membrane protein that 

aids bacterial immune evasion.  

(Vica Pacheco et al. 1997)  

(Barondess and Beckwith 

1995) 

CP-933C  Cryptic phage regulates TTSS (Flockhart et al. 2012)  

S. enterica φSopE TTSS effector (sopE) promotes 

invasion of epithelial cells. 

(Mirold et al. 1999)  

Gifsy-1  gipA, gogB - survival and growth in 

Peyer’s patches. 

(Stanley et al. 2000) 

Gifsy-2  sodC1, SseI - survival in 

macrophages 

(Figueroa-Bossi et al. 2001) 

Gifsy-3 sspHI - TTSS effector  (Ehrbar and Hardt 2005)  

P. 

aeruginosa 

D3  Altered outer membrane properties 

reduces phagocytosis 

(Holloway and Cooper 1962)  

S. mitis SM1 pblA and pblB - Platelet binding  (Bensing et al. 2001) 

C. jejuni CJIE1  Increased adherence and  invasion  (Clark et al. 2012) 

V. cholerae CTX  ctx - Cytotoxin (Faruque et al. 1998) 
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Table 2. Characteristics of LES prophage 

LES 

prophage 

Characteristics N
o
 of 

genes 

Related 

phages in 

reference 

strain PAO1 

Known 

related 

phages 

Interaction 

with other 

LES phages 

φ1 Defective prophage, 

predicted to encode 

pyocin R2 

19 Defective 

prophage 

gene cluster 

encoding 

pyocin R2 

Pyocin gene 

clusters 

predicted to 

have evolved 

from phage 

tail genes 

Unknown 

φ2 Active inducible 

prophage, encodes 

integrase for site-specific 

integration 

44 None None Confers 

resistance to 

infection by 

φ3 and φ4 

φ3 Active inducible 

prophage, encodes 

integrase for site-specific 

integration 

53 None Homologous 

regions in 

LESφ2 and 

LESφ5 

Shares same 

cI gene 

region as φ2 

φ4 Active inducible 

prophage, encodes 

transposase. Capable of 

random integration. 

48 None D3112 Present in 

100% LES 

isolates 

φ5 Active inducible 

prophage, encodes 

integrase 

65 None D3 Present in 

only a small 

proportion of 

LES isolates 

φ6 Active inducible 

prophage, encodes 

integrase 

12 Pf4 

filamentous 

phage 

implicated in 

biofilm 

dispersal 

Filamentous 

phage Pf1 

(Family 

Inoviridae) 

Unknown 
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Figure 2. Mosaicism of LES prophages. 

 

 

 

Circos map (Krzywinski et al. 2009) depicting an alignment of five prophage sequences from 

the Liverpool Epidemic Strain of Pseudomonas aeruginosa (EMBL accession number 

FM209186) using the Artemis Comparison Tool (Carver et al. 2005). Each coloured segment 

of the circumference represents a LES prophage genome. Ribbons that link prophage regions 

show regions of sequence homology. 
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