
http://mc.manuscriptcentral.com/fems

The Role of Temperate Bacteriophages in Bacterial Infection

Journal:	FEMS Microbiology Letters
Manuscript ID	FEMSLE-15-11-0981.R1
Manuscript Type:	Minireview
Date Submitted by the Author:	n/a
Complete List of Authors:	Davies, Emily; University of Liverpool, Institute of Infection and Global Health Winstanley, Craig; University of Liverpool, Institute of Infection and Global Health Fothergill, Joanne; University of Liverpool, Institute of Infection and Global Health James, Chloe; University of Salford, School of Environment and Life Sciences
Keywords:	Temperate Bacteriophage, Bacterial Pathogens, Infection, Adaptation
All articles in FEMS Microbiology Letters are published under one of eight subject sections. Please select the most appropriate subject category for your submission from the drop down list:	Pathogens & Pathogenicity (Editor: Arnoud van Vliet)

SCHOLARONE[™] Manuscripts

623x472mm (29 x 26 DPI)

1	The Role of Temperate Bacteriophages in Bacterial Infection
2	Emily V. Davies ¹ , Craig Winstanley ¹ , Joanne L. Fothergill ^{1*} and Chloe E. James ^{2*}
3	¹ Institute of Infection and Global Health, University of Liverpool, UK
4	² School of Environment and Life Sciences, University of Salford, UK
5	
6	*These authors contributed equally to this manuscript.
7	
8	Corresponding Author: Chloe E. James
9	Address: School of Environment and Life Sciences, G28 Peel Building, University of
10	Salford, Manchester M5 4WT
11	Email: <u>c.james@salford.ac.uk</u>
12	Tel: 0161 295 2171
13	
14	
15	Key words: Temperate Bacteriophage; Bacterial Pathogens; Infection; Adaptation
16	
17	
18	
19	
20	
	1
	l

21 Abstract

Bacteriophages are viruses that infect bacteria. There are an estimated 10^{31} phage on the planet, making them the most abundant form of life. We are rapidly approaching the centenary of their identification, and yet still have only a limited understanding of their role in the ecology and evolution of bacterial populations. Temperate prophage carriage is often associated with increased bacterial virulence. The rise in use of technologies, such as genome sequencing and transcriptomics have highlighted more subtle ways in which prophages contribute to pathogenicity. This review discusses the current knowledge of the multifaceted effects that phage can exert on their hosts and how this may contribute to bacterial adaptation during infection.

32 Introduction: Lifestyle Choices: A good work-life balance

Bacteriophages (phage) are viruses that infect and replicate within bacterial hosts and are ubiquitous and abundant in every niche studied so far on the planet (Roux *et al.*, 2015). They are broadly divided into two categories. Virulent phage follow a strictly productive lytic lifecycle whereas temperate phage switch between dormant and productive states. All phage infect the host bacterium by binding to specific surface receptors and injecting their genome into the cytoplasm. Virulent (lytic) phage infection immediately commandeers the bacterial replicative machinery for multiplication. Phage genes encode structural head and tail proteins and lytic enzymes that cause bacterial cell lyses, releasing lytic phage progeny into the environment. The characteristics of lytic phage offer an attractive alternative to antibiotics. Phage therapy has been widely used in the former Soviet Union (Hraiech et al., 2015) and

rapid spread of multi-drug-resistant infections has prompted renewed interest in phage-based
therapies worldwide.

Temperate (lysogenic) phage follow an alternative life cycle involving integration of their genome into the host chromosome to become a prophage. In this state the phage DNA replicates along with the host cell (lysogen) and is maintained in the bacterial population. Lysogenic phage can switch to a lytic lifecycle, particularly in response to environmental stresses (Figure 1). Lambdoid phage employ repressor genes such as cI, which act as a genetic switch to control the balance between lysis and lysogeny (Ptashne, 2004). Expression of these repressors prevents the lytic pathway and maintains the prophage state. The CI repressor also inhibits integration of any incoming phage genomes conferring immunity to super-infection. There are a wide range of other phage-resistance mechanisms (reviewed in (Labrie et al., 2010).

The balance between lytic and lysogenic states is thought to be largely dependent on the metabolic condition of the bacterial host cell (Lieb, 1953). Temperate phage infection tends towards lysogeny in starving cells and this is thought to be a phage survival tactic during periods of resource limitation (Stewart & Levin, 1984). Integration into the chromosome is facilitated by integrase and transposase enzymes that can act at specific sites or randomly. This means that lysogenic phage can drive bacterial diversity by introducing mutations with each integration event. Active prophage retain the ability to switch to a lytic cycle of productive replication. This occurs spontaneously in a proportion of cells within a population of lysogenic bacteria. Induction of lambdoid phages into the lytic cycle has been well characterised and often linked to the SOS response triggered by DNA damage. Prophage induction is thought to be another survival strategy to aid phage escape from a host cell at risk of death (Refardt & Rainey, 2010). Potent inducers of DNA damage and phage induction

FEMS Microbiology Letters

2	
J ⊿	
4	
5	
3 4 5 6 7	
7	
8	
9	
10	
11	
40	
12	
13	
14	
15	
16	
17	
18	
10	
o 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22	
20	
21	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
27	
31	
38	
39	
22 23 24 25 26 27 28 29 30 31 22 33 34 35 36 37 38 39 40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
52	
53	
54	
54 55	
56	
57	
58	
59	
60	

67 include physical and chemical mutagens such as UV, mitomycin C and reactive oxygen 68 species (Aanaes *et al.*, 2011). Several antibiotics have also been shown to trigger the lytic 69 cycle, particularly those that target DNA replication (fluoroquinolones such as norfloxacin 70 and ciprofloxacin) (Matsushiro et al., 1999, James et al., 2001; Fothergill et al., 2011; Meessen-Pinard et al., 2012; López et al., 2014). 71 72 During lysogeny, mutations commonly lead to the formation of a defective (cryptic) 73 phage, locking the once mobile element in to the host chromosome (Fischer-Fantuzzi and 74 Calef., 1964; Bobay et al., 2014). The frequency of defective (domesticated) prophage may be grossly underestimated. They can be hard to identify as genome degradation often results 75 76 in deletion of recognisable phage genes (Mizutani et al., 1999, Bobay et al., 2014). 77 78 Prophage contribution to infection 79 Lysogenic infection and subsequent expression by the host of phage encoded genes is termed lysogenic conversion, and can have profound effects on bacterial phenotype. 80 81 Prophages often encode "morons" that are not directly involved in viral replication and can 82 confer a benefit to their bacterial host. Such genes are independent transcriptional units of 83 DNA that are expressed whilst the phage is in the prophage state (Juhala *et al.*, 2000). 84 Morons can include genes that enhance the virulence of their bacterial host, either directly 85 (e.g. phage-encoded toxins), or indirectly, by enhancing the ecological fitness of bacteria 86 during infection (Hacker & Carniel, 2001). The role of temperate phage in disease situations 87 is thus becoming increasingly recognised.

The recent growth in whole bacterial genome sequencing has revealed high numbers of integrated prophage (Hayashi *et al.*, 2001, Winstanley *et al.*, 2009, Wang *et al.*, 2010, Matos *et al.*, 2013). Pathogenic strains have been shown to carry a greater proportion of

phage-related genes than non-pathogenic strains (Busby *et al.*, 2013), many maintaining
multiple prophages in the same chromosome (Hayashi *et al.*, 2001, Winstanley *et al.*, 2009).
For example, the majority of the genetic difference between avirulent and virulent strains of *Escherichia coli* is due to mobile genetic elements, notably phages (Hayashi *et al.*, 2001,
Ohnishi *et al.*, 2002). Table 1 summarises some of the major phage-encoded bacterial
virulence factors that have been identified.

Exotoxins: The concept of lysogenic conversion was first introduced in 1927 when it was demonstrated that a filterable agent (later identified as a bacteriophage) could convert previously non-toxigenic Streptococci into toxin producers (Frobisher & Brown, 1927). It wasn't until the 1950s that phage transduction was shown to be responsible for toxigenic conversion of avirulent Corvnebacterium diptheriae to produce a potent exotoxin and become highly pathogenic to the animal host (Groman, 1953, Groman, 1955). Since then there have been numerous reports of phage-encoded exotoxins that enhance the virulence of their bacterial hosts, including Vibrio cholera, Staphylococcus aureus, Clostridium botulinum and E. coli (reviewed in (Casas & Maloy, 2011)). Shiga toxins (Stx), major virulence factors of Shigatoxigenic E. coli (STEC) are produced by a group of temperate Stx phages. The stx₂ genes are located in the phage late gene region and are expressed when the prophage is triggered into the lytic cycle (Wagner et al., 2002).

Phage-encoded exotoxins are likely to contribute to bacterial fitness, but the exact mechanism remains unclear (for a review on the evolution of bacterial virulence, see (Levin & Svanborg Eden, 1990)). Phage-encoded exotoxins are well characterised as they often have a large impact on bacterial virulence. However, prophage can have more subtle effects on host phenotype, conferring a benefit to the host bacterium by enhancing colonisation or competitiveness in an animal host (Fortier & Sekulovic, 2013).

Page 7 of 39

1

60

FEMS Microbiology Letters

2 3		
3 4	115	Adhesion and Invasion: One of the crucial first stages of bacterial infection is
4 5 6 7	116	attachment to cells. Some phage-encoded shiga-toxins provide extra virulence by facilitating
8	117	adherence of STEC to gut epithelial cells in a murine model of infection (Robinson et al.,
9 10	118	2006). Several stx phages (e.g. 933W isolated from <i>E. coli</i> O157:H7) also possess a <i>lom</i> gene
11 12	119	homologue that encodes an outer membrane protein necessary for adhesion to human
13 14 15	120	epithelial cells (Vica Pacheco et al., 1997). The prophage-encoded PbIA and PbIB platelet
16 17	121	binding proteins of Streptococcus mitis strain SF100 play an important role in the
18 19	122	pathogenesis, causing endocarditis (Bensing et al., 2001) and homologs with similar
20 21 22	123	functions have been identified in prophage of <i>Enterococcus faecalis</i> (Matos et al., 2013).
23 24	124	Bacterial type III secretion systems (TTSS) are associated with attachment and
25 26 27	125	invasion by secreting effectors directly into target host cells. There are many examples of
28 29	126	prophages that contribute to these systems in several intestinal pathogens. A cryptic
30 31	127	prophage, CP-933C, has been reported to positively regulate a TTSS in E. coli (Flockhart et
32 33	128	al., 2012). Deletion mutants of the cryptic phage displayed reduced colonisation and
34 35 36	129	persistence in an ovine model, through a reduced ability to adhere to epithelial cells
37 38	130	(Flockhart et al., 2012). The Salmonella typhimurium prophage-encoded SopE is an effector
39 40	131	protein secreted via the TTSS into intestinal epithelial cells to promote invasion (Mirold et
41 42	132	al., 1999). Likewise the CJIE1-like prophage, carried by some isolates of Campylobacter
43 44	133	jejuni, confers increased adherence and invasion in vitro (Clark et al., 2012). This phage has
45 46 47	134	also been shown to alter host protein expression in the presence of bile salts (Clark et al.,
48 49	135	2012).
50 51	136	Contributions to fitness in vivo: Once bacteria have successfully colonised a host,
52 53	137	they must reproduce and evade the host immune system. Biofilms are a key feature of many
54 55	138	bacterial infections and can be described as complex microbial communities, protected by a
56 57 58		6
59 60		

secreted matrix of exopolysaccharides, proteins and DNA. Biofilm-associated bacteria exhibit increased resistance to immune attack and antibiotic treatment. Both active and cryptic prophage have been suggested to play a role in biofilm development of several pathogens, including S. pneumoniae (Carrolo et al., 2010), Bacillus anthracis (Schuch & Fischetti, 2009) and E. coli (Wang et al., 2010). Homologs of the filamentous phage Pf4, are widespread in clinical *P. aeruginosa* isolates, and play a crucial role in several stages of biofilm maturation. In particular Pf4 switches to a super-infective form within mature biofilms, aiding dispersal. This has been associated with increased virulence in a mouse model of infection (Rice et al., 2009). Enhanced growth rate upon lysogenic conversion is a common phenomenon (Bondy-Denomy & Davidson, 2014). The prophage SMP increases both growth rate and resistance to lysozyme resulting in enhanced virulence of its *Streptococcus suis* host (SS2) in a zebrafish model of infection (Tang et al., 2013). A reduced rate of growth has been observed when cryptic prophages are deleted from *E. coli* K12 compared to wild-type (Wang *et al.*, 2010). Mutational studies of the Liverpool Epidemic Strain (LES) of *P. aeruginosa* (isolated from the lungs of patients with cystic fibrosis (CF)), revealed a significant association of prophage genes with competitiveness in a rat model of chronic lung infection (Winstanley et al., 2009). Mutations in several prophage genes exhibited up to 1000 fold reduced ability to establish infection and modified the expression of multiple virulence genes, including key factors associated with chronic infection (Lemieux et al., 2015). These studies suggest that temperate phage influence multiple stages of infection and alter the fitness of phage-carrying bacteria in the host environment.

161 Immune modulation and antimicrobial resistance: Some prophage confer bacterial
162 traits that are capable of actively modulating the immune system. Shiga toxin, produced by *E*.

FEMS Microbiology Letters

163	<i>coli</i> Stx-phage, is capable of inhibiting the innate immune response of human enterocytes by
164	inhibiting the PI3K/Akt/NF-B signalling pathway. This leads to a subsequent decrease in
165	chemokines CCL20 and interleukin-8, which are linked with the innate immune response
166	(Gobert et al., 2007). Several temperate phage of P. aeruginosa have been shown to convert
167	non-mucoid strains to mucoidy, a phenotype characterised by the overproduction of the
168	polysaccharide alginate (Miller & Renta Rubero, 1984). This phenotype provides bacteria
169	with a physical protectant that helps them to be refractory to both the immune system (Cabral
170	et al., 1987) and to antibiotic treatment (Hentzer et al., 2001).
171	Antimicrobial resistance (AMR) genes have been identified on phage isolated from
172	water (Colomer-Lluch et al., 2011), activated sludge (Parsley et al., 2010), faecal samples
173	(Quirós et al., 2014), and the lungs of individuals with CF (Fancello et al., 2011). These
174	genes can be transduced, changing the antimicrobial susceptibility profile of their host
175	(Zhang & LeJeune, 2008, Mazaheri Nezhad Fard et al., 2011). An important example of this
176	includes the transfer of the Staphylococcal cassette chromosome mec (SCCmec), a defining
177	feature of Methicillin Resistance S. aureus (MRSA). This pathogenicity island can harbour
178	several AMR determinants that are transferable by phage (Maslanova et al., 2013). Phage of
179	bovine Salmonellae have been shown to transduce the bla_{CMY-2} gene, encoding resistance to
180	third-generation cephalosporins (Zhang & LeJeune, 2008) and the Staphylococcal phage,
181	TEM123 (isolated from food), was shown to confer beta-lactam resistance via a metallo- β -
182	lactamase gene (Lee and Park, 2015). In this way, phage have been described as "vehicles of
183	the resistome" and metagenomic analysis of DNA from the respiratory tract of CF patients
184	has revealed the presence of phage-associated AMR genes (Rolain et al., 2011). Modi et al.,
185	(2013) observed an increase in phage-associated AMR genes in vivo following antibiotic
186	treatment of mice. Interestingly, they detected enrichment of disparate mechanisms to resist

2	
3	
4	
5	
6	
7	
<i>'</i>	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
$\begin{array}{c} -3\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\$	
20	
∠∪ 24	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
24	
34	
30	
32 33 34 35 36 37 38 39	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
49 50	
00 54	
51	
52	
53 54 55	
54	
55	
56	
57	
58	
59	
-	

1

both the administered drug and un-related antibiotics. Furthermore, the evolved phage were
shown to transfer AMR to naïve cultures from mouse microbiota. These findings suggest that
phages play an important role in driving the evolution and spread of resistance and should be
considered in control measures.

191

192 Phage abundance in the human environment

193 A phenomenal diversity of phage has been described in the natural environment, in 194 the region of 50 viral species per litre of sea water, and up to 1 million species in 1 kg of 195 marine sediment (Rohwer & Thurber, 2009). Prophages have been identified in $\sim 60\%$ of sequenced bacterial genomes (Roux et al 2015). The influence of bacteriophages on the life 196 197 histories and evolution of their hosts in these environments is multi-faceted. In addition to 198 the selective pressures of predation, horizontal transfer of important genes (e.g. those 199 involved in stress response, chemotaxis and metabolic pathways) aid niche adaptation 200 (Rohwer & Thurber, 2009). There is less known about the density of natural bacteriophage populations in vivo, and particularly during bacterial infections. Phage virions have been 201 202 detected in human sputa and faeces by electron microscopy (Ojeniyi et al., 1991) and isolated using plaque assays (Furuse *et al.*, 1983, Fothergill *et al.*, 2011). These studies report *E. coli* 203 phage (coliphage) titres of up to 10^5 p.f.u. g⁻¹ human faeces (Dhillon *et al.*, 1976) and an 204 association has been identified between high coliphage densities (>1 x 10⁵ p.f.u. g⁻¹) and 205 206 disease (Furuse *et al.*, 1983). Others have observed a shift from predominantly temperate, to 207 virulent phages associated with human diarrhoeal disease; a reflection of modified intestinal 208 microflora.

FEMS Microbiology Letters

209	Metagenomic studies have begun to describe the human virome and have indicated
210	that phage far out-weigh eukaryotic viruses both in number and diversity (Willner <i>et al.</i> ,
21:	2011, Reyes et al., 2012). Sequencing techniques are not dependent on plaque assays to
212	detect phages and can thus enumerate total phage abundance without the need for a
21	susceptible bacterial host. An estimated 10^8 – 10^9 bacteriophage particles per gram of human
214	faeces (Kim <i>et al.</i> , 2011), and approximately 10^3 virotypes (mainly temperate) have been
21	identified (Breitbart <i>et al.</i> , 2003). 236 and 175 viral species have been identified in the oral
21	cavity and the respiratory tract respectively (Willner <i>et al.</i> , 2009, Willner <i>et al.</i> , 2011).
21	Temporal, spatial and inter-individual variation in virome diversity has been observed in the
218	gastro-intestinal tract (Kim et al., 2011), oral cavity (Pride et al., 2012) and respiratory tract
21	(Willner <i>et al.</i> , 2009). However, there is little known about the balance between active phage
. 220	virion densities and prophages <i>in vivo</i> . The development of new bio-informatic tools, such as
22:	VirSorter (Roux et al., 2015) that can assemble viral genomes from metagenomic and single-
22	cell amplified genome data, hold promise for the elucidation of this dynamic phage-host
22: 22:	
6	relationship in complex communities.
223	 relationship in complex communities. Effects of antibiotic treatment: It is well established that some antibiotics can
22: 224	 relationship in complex communities. Effects of antibiotic treatment: It is well established that some antibiotics can trigger the switch between lysogenic and lytic phage lifecycles; particularly the
22: 22: 22:	 relationship in complex communities. Effects of antibiotic treatment: It is well established that some antibiotics can trigger the switch between lysogenic and lytic phage lifecycles; particularly the fluoroquinolones, that affect DNA replication. Production of <i>Clostridium difficile</i> phages,
22: 22: 22: 22:	 relationship in complex communities. Effects of antibiotic treatment: It is well established that some antibiotics can trigger the switch between lysogenic and lytic phage lifecycles; particularly the fluoroquinolones, that affect DNA replication. Production of <i>Clostridium difficile</i> phages, isolated from human faeces, has been shown to increase by 4-5 logs in response to
22: 224 224 225 226 226	 relationship in complex communities. Effects of antibiotic treatment: It is well established that some antibiotics can trigger the switch between lysogenic and lytic phage lifecycles; particularly the fluoroquinolones, that affect DNA replication. Production of <i>Clostridium difficile</i> phages, isolated from human faeces, has been shown to increase by 4-5 logs in response to fluoroquinolone treatment (Meessen-Pinard <i>et al.</i>, 2012). Ciprofloxacin has been
22: 22: 22: 22: 22: 22: 22:	 relationship in complex communities. Effects of antibiotic treatment: It is well established that some antibiotics can trigger the switch between lysogenic and lytic phage lifecycles; particularly the fluoroquinolones, that affect DNA replication. Production of <i>Clostridium difficile</i> phages, isolated from human faeces, has been shown to increase by 4-5 logs in response to fluoroquinolone treatment (Meessen-Pinard <i>et al.</i>, 2012). Ciprofloxacin has been demonstrated to trigger the V583 phage lytic cycle in <i>E. faecalis</i> This antibiotic is routinely
22: 224 22: 220 220 22: 222 22: 22:	 relationship in complex communities. Effects of antibiotic treatment: It is well established that some antibiotics can trigger the switch between lysogenic and lytic phage lifecycles; particularly the fluoroquinolones, that affect DNA replication. Production of <i>Clostridium difficile</i> phages, isolated from human faeces, has been shown to increase by 4-5 logs in response to fluoroquinolone treatment (Meessen-Pinard <i>et al.</i>, 2012). Ciprofloxacin has been demonstrated to trigger the V583 phage lytic cycle in <i>E. faecalis</i> This antibiotic is routinely used in therapeutic regimes including in the management of <i>P. aeruginosa</i> infection in (CF)
22: 22: 22: 22: 22: 22: 22: 22: 22: 22:	 relationship in complex communities. Effects of antibiotic treatment: It is well established that some antibiotics can trigger the switch between lysogenic and lytic phage lifecycles; particularly the fluoroquinolones, that affect DNA replication. Production of <i>Clostridium difficile</i> phages, isolated from human faeces, has been shown to increase by 4-5 logs in response to fluoroquinolone treatment (Meessen-Pinard <i>et al.</i>, 2012). Ciprofloxacin has been demonstrated to trigger the V583 phage lytic cycle in <i>E. faecalis</i> This antibiotic is routinely used in therapeutic regimes including in the management of <i>P. aeruginosa</i> infection in (CF) (Fothergill <i>et al.</i>, 2011, Matos <i>et al.</i>, 2013). This has been linked with both upregulation of
22: 22: 22: 22: 22: 22: 22: 22: 22: 22:	 relationship in complex communities. Effects of antibiotic treatment: It is well established that some antibiotics can trigger the switch between lysogenic and lytic phage lifecycles; particularly the fluoroquinolones, that affect DNA replication. Production of <i>Clostridium difficile</i> phages, isolated from human faeces, has been shown to increase by 4-5 logs in response to fluoroquinolone treatment (Meessen-Pinard <i>et al.</i>, 2012). Ciprofloxacin has been demonstrated to trigger the V583 phage lytic cycle in <i>E. faecalis</i> This antibiotic is routinely used in therapeutic regimes including in the management of <i>P. aeruginosa</i> infection in (CF) (Fothergill <i>et al.</i>, 2011, Matos <i>et al.</i>, 2013). This has been linked with both upregulation of phage-related genes (Cirz <i>et al.</i>, 2006) and increased production of phage virions (Fothergill

1 2 3 4 5 6	
7 8 9 10	
11 12 13 14 15 16 17 18	
19 20 21 22 23 24	
24 25 26 27 28 29 30 31	
32 33 34 35 36 37	
38 39 40 41 42 43	
44 45 46 47 48 49	
50 51 52 53 54 55	
56 57 58 59 60	

234	most likely as a result of induction by antibiotics and oxidative stress (James et al., 2012,
235	James et al., 2015). Norfloxacin is a well-known inducer of stx-phage from STEC, resulting
236	in increased toxin production (Matsushiro et al., 1999). Clinicians are therefore advised to
237	avoid treatment of suspected STEC infection with fluoroquinolones (Nassar et al., 2013).
238	Long-term antibiotic treatment is likely to play a crucial role in the dynamics between
239	prophage and their hosts in vivo. A longitudinal study of CF patient sputa tracked the density
240	of six <i>P. aeruginosa</i> phage that are all maintained as active prophages in the same LES
241	chromosome. A consistently high density of DNA from LES phage virions $(10^4 -$
242	10^9 copies µl-1) was observed that correlated positively with LES host numbers over a 2 year
243	period. Free-phage density exceeded specific bacterial host density (11-90-fold), consistent
244	with ongoing lytic activity. This was expected as CF patients are often treated with high
245	doses of intravenous antibiotics during exacerbation of symptoms. Surprisingly, there was no
246	correlation between LES phage density and treatment of exacerbated symptoms. These
247	patients were subject to variable cocktails of different antibiotic classes over several years
248	irrespective of exacerbations (James et al., 2015). Not all antibiotics induce the phage lytic
249	cycle; in fact some are known to supress lytic activity (Fothergill et al., 2011). As next
250	generation sequencing technologies advance, the interaction between antibiotics, phage and
251	their hosts during chronic infections can be teased apart in further longitudinal studies.

252

253 Role of phage in bacterial adaptation

It is no surprise that phage can be intimately involved in the adaptation and evolution of their bacterial hosts to drive bacterial diversification through numerous mechanisms. Lytic bacteriophages obligately kill their hosts placing a strong antagonistic selective pressure on

FEMS Microbiology Letters

bacteria to avoid infection. The "kill the winner" hypothesis posits that the competition specialists in a bacterial population become targets of bacteriophages. The subsequent reduction in the "winners" selects for diversity in the population (Winter *et al.*, 2010). The obvious effects of lysogenic conversion of bacterial hosts have been well documented. The carriage of additional genes during lysogeny can increase bacterial population diversity through a less antagonistic selection pressure than lytic infection. However, the more subtle effects of temperate phage on the adaptation of bacterial populations require further exploration. Temperate bacteriophages can also drive host genome evolution through gene disruption, duplication, transduction or by acting as anchor points for major chromosomal rearrangements.

Gene Disruption frequently occurs through insertional inactivation. As an example of negative lysogenic conversion, Staphylococcal phage L54a has been shown to integrate into the lipase-encoding gene (geh) resulting in a loss of phenotype (Lee & Iandolo, 1986). Another S. aureus phage, φ_{13} , has integrated into the 5' end of the *hlb* gene, causing a loss of beta-toxin expression (Coleman et al., 1991). E. coli phage Mu (mutator) was the first identified example of a bacteriophage causing mutations in the host chromosome. Mu lysogens were observed to display differences in their nutritional requirements through phage-mediated disruption of gene function (Taylor, 1963). Phage Mu is transposable, meaning it can integrate into random sites of the host chromosome (Bukhari & Zipser, 1972) unlike many other phage, including λ and φ 13 which only integrate at specific sites. Transposable *P. aeruginosa* phage are commonplace, and include D3112 (Wang et al., 2004) B3 (Braid *et al.*, 2004) and LES φ 4 (Winstanley *et al.*, 2009). D3112 has been shown to cause mutations in PAO1 through insertional inactivation (Rehmat & Shapiro, 1983).

However, the true extent of the impact of phage-mediated gene disruption on bacterialevolution remains poorly understood.

Transduction: Horizontal transfer of genetic material between bacterial genomes by a bacteriophage can occur by two different mechanisms. Both virulent and temperate phage types are capable of generalised transduction, which occurs during the lytic cycle of infection. Prior to cell lysis, phage heads are packaged with newly replicated phage genomes, but bacterial DNA can be mistakenly incorporated in place of the phage nucleic acid. Upon infection of another cell, the DNA is released into the cell cytoplasm and can potentially recombine with the host chromosome. 90% of temperate phage of the S. Typhimurium complex have been shown to perform generalised transduction in host bacterial populations (Ebel-Tsipis et al., 1972, Schicklmaier & Schmieger, 1995). Generalised transduction of AMR genes has been observed during induction of a multi-drug resistant strain of S. Typhimurium using the veterinary antibiotic, carbadox (Bearson et al., 2014). The recently characterised *P. aeruginosa* phage φ PA3, originally isolated from sewage, is capable of infecting clinical CF isolates. It has been shown to transduce mutations in quorum sensing genes (las and rhl) in cultures of the lab strain PAO1 (Monson et al., 2011).

Specialised transduction is mediated only by temperate phage, and occurs during imprecise excision of prophage from the bacterial genome, taking with it adjacent bacterial gene(s), which are transferred to another bacterial host upon lysogenic infection. Specialised transducing λ phage have been shown to transduce several important genes (Kirschbaum & Konrad, 1973, Jaskunas et al., 1975, McEntee & Epstein, 1977, Hansen & von Meyenburg, 1979). Other examples of specialised transduction have been identified in S. Typhimurium (Chan et al., 1972), Bacillus subtilis (Zahler et al., 1977) and P. aeruginosa (Cavenagh & Miller, 1986).

FEMS Microbiology Letters

Anchors for Chromosomal Rearrangements: Prophage can act as anchor points for chromosomal inversions and other major genomic rearrangements. Sequencing of a pathogenic S. pyogenes isolate identified two major chromosomal inversions, one of which was caused by homologous recombination between two related prophages, and the other was suggested to occur after a phage integration event which caused an "unbalancing" of the genome (Nakagawa et al., 2003). There is evidence of a prophage-mediated chromosomal inversion in *E. faecium*, but despite the notion that major chromosomal rearrangements would have a negative impact on fitness, no such effect was detected (Lam *et al.*, 2012).

313 Polylysogeny

Polylysogeny, the carriage of multiple prophages, is a common feature of bacterial pathogens. The genomes of a wide range of C. difficile strains are highly plastic; carrying multiple prophages (Hargreaves *et al.*, 2015). Similarly, 18 co-existing prophages and 6 prophage-like elements have been identified in the chromosome of *E. coli* O157:H7 strain RIMD0509952 (Hayashi et al., 2001). STEC are known to harbour several stx-encoding phage in the same chromosome, some of which exist in multiple copies, going against the classic lambdoid mechanisms of phage immunity. In this way, the expression of phage-encoded genes can be enhanced. For example multiple isogenic infections of *E. coli* by stxphages have been shown to have a cumulative effect on the expression of Shiga toxin (Fogg et al., 2012). There are several reports of polylysogenic E. faecalis that have been isolated from clinical samples. Strain V583 harbours seven different prophage-like elements, six of which constitute fully active, inducible, prophages that encode clear virulence traits and interact with each-other (Matos *et al.*, 2013). Similarly, the infection dynamics of multiple active LES prophages of *P. aeruginosa* have been described (Table 2). As with other

polylysogenic systems, the LES prophage sequences are mosaic in nature; LES\$\$3 is largely a
hybrid of LES\$2 and LES\$5 (Figure 2). Of five active prophages, three exhibit productive
infection of other *P. aeruginosa* strains. There is an interesting relationship between these
prophages as LES\$\$2 confers immunity to infection by LES\$\$3 and LES\$\$4, which do not
prevent infection by LES\$\$2. The LES prophages are also inducible with fluoroquinolone
antibiotics and exhibit a hierarchical nature, with LES\$\$2 density being consistently higher
than the other LES phage *in vivo* and *in vitro* (James *et al.*, 2012).

Experimental evolution experiments have begun to explore the cost/benefits of polylysogeny and the interactions between co-habiting prophages. Carriage of two LES prophages has been shown to confer a competitive advantage over single lysogens during mixed infection in wax moth larvae (Burns et al., 2015). Within host competition of 11 different E. coli prophages has also suggested a hierarchical relationship during stressful conditions. In these experiments, double lysogens were exposed to the potent inducing agent, mitomycin C. In most cases, the prophage with the fastest response to induce the lytic cycle showed a competitive advantage (Refardt, 2011). These studies suggest that interactions between prophages and diversity in phage immunity mechanisms can also alter the course of bacterial adaptation.

345 CRISPR Immunity to temperate phage

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) are widespread in bacterial genomes and act as an active defence mechanism to protect against bacteriophage infection (Barrangou *et al.*, 2007). This mechanism of protection against virulent phage has been well documented. However, the relationship between CRISPR and temperate phage is less clear. Several reports suggest that CRISPR systems are negatively correlated with

FEMS Microbiology Letters

lysogeny and there is evidence that *E. coli* CRISPRs prevent both lysogenic infection and induction of prophages (Fogg *et al.*, 2010). Others have demonstrated an interaction between CRISPR and the prophage DMS3. The presence of both together has been shown to inhibit biofilm formation and swarming in P. aeruginosa (Zegans et al., 2009). CRISPR spacers with 100% identity to temperate phage sequences are widespread amongst clinical isolates of P. aeruginosa, including the LES (Cady et al., 2011). The overall effects of CRISPR evolution, in response to temperate bacteriophages, on bacterial adaptation require further exploration. Outlook The contribution of prophage to the success of their bacterial hosts during infection has been under studied, especially in the case of prophage that do not contribute a clear phenotype such as toxin production. A wealth of readily available whole-genome sequence data has now enabled the identification of previously un-discovered prophages and cryptic prophage elements, revealing their abundance in an array of different environments. However, biological understanding of the roles of the many "unknown" proteins harboured by the prophages remains some way behind the generation of these sequence data. In addition to this, there is a lack of functional studies into the mechanistic contributions of these phage

to the host. Since temperate phage can switch between lysis and lysogeny, they are

370 particularly important in the evolutionary dynamics of bacterial populations, leading to a

371 complex interplay between symbiotic and competitive relationships of multiple interacting

372 phage and their hosts. The additional influence of lysis-inducing antibiotic treatments can

373 potentially change the trajectory of bacterial adaptation in the host environment. An

	374	understanding of these infection dynamics in vivo is needed to develop novel strategies for
	375	managing chronic bacterial infection.
	376	
) 1 2	377	Funding
3 4	378	This work was supported by the Wellcome Trust (CEJ, CW) [grant number 089215/Z/09/Z]
5 6 7	379	and an Early Career Fellowship from the Leverhulme Trust (JLF).
, 8 9 0	380	
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 5 7 8 9 0 1 1 2 3 4 5 7 8 9 0 1 1 2 3 4 5 7 8 9 0 1 1 2 3 4 5 7 8 9 0 1 1 2 3 4 5 7 8 9 0 1 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 5 7 8 9 0 1 2 3 4 5 7 8 8 9 0 1 2 3 8 7 8 9 1 1 2 3 8 1 8 7 8 9 1 1 2 3 8 1 8 7 8 9 1 1 2 3 8 1 8 1 8 9 1 1 2 8 1 8 9 1 8 1 8 9 1 1 8 8 9 1 8 1 8 1 8	381	References
4 5	382	Aanaes K, Rickelt LF, Johansen HK, et al. (2011) Decreased mucosal oxygen tension in the
o 7 8	383	maxillary sinuses in patients with cystic fibrosis. J. Cystic Fibrosis 10: 114-20.
9	384	
1 2	385	Barondess JJ & Beckwith J (1995) bor gene of phage lambda, involved in serum resistance,
3 4 5	386	encodes a widely conserved outer membrane lipoprotein. J. Bacteriology 177: 1247-53.
o 7	387	
9	388	Barrangou R, Fremaux C, Deveau H, et al. (2007) CRISPR provides acquired resistance
1	389	against viruses in prokaryotes. <i>Science</i> 315 : 1709-12.
2 3	390	
4 5	391	Bearson BL, Allen HK, Brunelle BW, et al. (2014) The agricultural antibiotic carbadox
o 7 8	392	induces phage-mediated gene transfer in Salmonella. Frontiers in Microbiol. 5.
9	393	
1 2	394	Bensing BA, Siboo IR & Sullam PM (2001) Proteins PbIA and PbIB of Streptococcus mitis,
3 4	395	which promote binding to human platelets, are encoded within a lysogenic bacteriophage.
5	396	Infect. Immun. 69: 6186-92.
2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0		17

FEMS Microbiology Letters

2 3	397	
4 5 6	398	Bobay LM, Touchon M & Rocha EP (2014) Pervasive domestication of defective prophages
7 8	399	by bacteria. PROC. NATL. ACAD. SCI. U.S.A. 111: 12127-32.
9 10	400	
11 12 13	401	Bondy-Denomy J & Davidson AR (2014) When a virus is not a parasite: the beneficial
14 15	402	effects of prophages on bacterial fitness. J. Microbiol. 52: 235-42.
16 17	403	
18 19 20	404	Braid MD, Silhavy JL, Kitts CL, Cano RJ & Howe MM (2004) Complete genomic sequence
20 21 22	405	of bacteriophage B3, a Mu-like phage of Pseudomonas aeruginosa. J. Bacteriol 186: 6560-
23 24	406	74.
25 26	407	
27 28	408	Breitbart M, Hewson I, Felts B, et al. (2003) Metagenomic analyses of an uncultured viral
29 30 31	409	community from human feces. J. Bacteriol. 185: 6220-3.
32 33	410	
34 35	411	Bukhari A & Zipser D (1972) Random insertion of Mu-1 DNA within a single gene. <i>Nature</i>
36 37	412	236 : 240-3.
38 39 40	413	
40 41 42	414	Burns N, James CE & Harrison E (2015) Polylysogeny magnifies competitiveness of a
43 44	415	bacterial pathogen in vivo. Evolutionary Applications 8: 346-51.
45 46	416	
47 48	417	Busby B, Kristensen DM & Koonin EV (2013) Contribution of phage-derived genomic
49 50 51	418	islands to the virulence of facultative bacterial pathogens. <i>Environ. Microbiol.</i> 15 : 307-12.
52 53	419	
54 55	420	Cabral DA, Loh BA & Speert DP (1987) Mucoid Pseudomonas aeruginosa resists
56 57 58 59 60	421	nonopsonic phagocytosis by human neutrophils and macrophages. <i>Pediatric Res.</i> 22: 429-31. 18

422	
423	Cady KC, White AS, Hammond JH, et al. (2011) Prevalence, conservation and functional
424	analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa
425	isolates. Microbiol. 157: 430-7.
426	
427	Carrolo M, Frias MJ, Pinto FR, et al. (2010) Prophage spontaneous activation promotes
428	DNA release enhancing biofilm formation in <i>Streptococcus pneumoniae</i> . <i>PloSONE</i> 5 :
429	e15678.
430	
431	Carver TJ, Rutherford KM, Berriman M, et al. (2005) ACT: the Artemis Comparison Tool.
432	Bioinformatics 21: 3422-3.
433	
434	Casas V & Maloy S (2011) Role of bacteriophage-encoded exotoxins in the evolution of
435	bacterial pathogens. Future Microbiol. 6: 1461-73.
436	
437	Cavenagh MM & Miller RV (1986) Specialized transduction of Pseudomonas aeruginosa
438	PAO by bacteriophage D3. J. Bacteriol. 165: 448-52.
439	
440	Chan RK, Botstein D, Watanabe T & Ogata Y (1972) Specialized transduction of tetracycline
441	resistance by phage P22 in Salmonella typhimurium: II. Properties of a high-frequency-
442	transducing lysate. Virology 50: 883-98.
443	
444	Cirz RT, O'Neill BM, Hammond JA, et al. (2006) Defining the Pseudomonas aeruginosa
445	SOS response and its role in the global response to the antibiotic ciprofloxacin. J. Bacteriol.
446	188 : 7101-10.
	19

FEMS Microbiology Letters

2 3	447	
4 5 6	448	Clark CG, Grant CC, Pollari F, et al. (2012) Effects of the Campylobacter jejuni CJIE1
7 8	449	prophage homologs on adherence and invasion in culture, patient symptoms, and source of
9 10	450	infection. BMC microbiology 12: 269.
11 12 13	451	
14 15	452	Coleman D, Knights J, Russell R, et al. (1991) Insertional inactivation of the Staphylococcus
16 17	453	aureus β -toxin by bacteriophage φ 13 occurs by site-and orientation-specific integration of the
18 19	454	φ 13 genome. <i>Mol. Microbiol.</i> 5 : 933-39.
20 21 22	455	
22 23 24	456	Colomer-Lluch M, Jofre J & Muniesa M (2011) Antibiotic resistance genes in the
25 26	457	bacteriophage DNA fraction of environmental samples. PLoSONE 6.
27 28	458	
29 30	459	Dhillon TS, Dhillon EK, Chau HC, et al. (1976) Studies on bacteriophage distribution:
31 32 33	460	virulent and temperate bacteriophage content of mammalian feces. Appl. Environ. Microbiol
34 35	461	32: 68-74.
36 37	462	
38 39	463	Ebel-Tsipis J, Botstein D & Fox MS (1972) Generalized transduction by phage P22 in
40 41 42	464	Salmonella typhimurium: I. Molecular origin of transducing DNA. J. Mol. Biol. 71: 433-48.
43 44	465	
45 46	466	Ehrbar K & Hardt WD (2005) Bacteriophage-encoded type III effectors in Salmonella
47 48	467	enterica subspecies 1 serovar Typhimurium. Infection, genetics and evolution : J. Mol.
49 50	468	Epidemiol. and Evol. Gen. Infect. Dis. 5: 1-9.
51 52 53 54	469	
55 56		
57 58		20

470	Fancello L, Desnues C, Raoult D & Rolain JM (2011) Bacteriophages and diffusion of genes
471	encoding antimicrobial resistance in cystic fibrosis sputum microbiota. J. Antimicrob.
472	<i>Chemother</i> . 66 : 2448-54.
473	
474	Faruque SM, Asadulghani, Alim AR, et al. (1998) Induction of the lysogenic phage encoding
475	cholera toxin in naturally occurring strains of toxigenic Vibrio cholerae O1 and O139. Infect.
476	<i>Immun.</i> 66 : 3752-7.
477	
478	Fischer-Fantuzzi, L., and Calef, E. (1964) A type of A prophage unable to confer immunity.
479	Virology 23 : 209-216.
480	
481	Figueroa-Bossi N, Uzzau S, Maloriol D & Bossi L (2001) Variable assortment of prophages
482	provides a transferable repertoire of pathogenic determinants in Salmonella. Mol. Microbiol.
483	39 : 260-71.
484	
485	Flockhart AF, Tree JJ, Xu X, et al. (2012) Identification of a novel prophage regulator in
486	<i>Escherichia coli</i> controlling the expression of type III secretion. <i>Mol. Microbiol.</i> 83 : 208-23.
487	
488	Fogg PC, Allison HE, Saunders JR & McCarthy AJ (2010) Bacteriophage lambda: a
489	paradigm revisited. J. Virol. 84: 6876-9.
490	
491	Fogg PC, Saunders JR, McCarthy AJ & Allison HE (2012) Cumulative effect of prophage
492	burden on Shiga toxin production in <i>Escherichia coli</i> . Microbiol. 158 : 488-97.
493	
	21

FEMS Microbiology Letters

494	Fortier LC & Sekulovic O (2013) Importance of prophages to evolution and virulence of
495	bacterial pathogens. Virulence 4: 354-65.
496	
497	Fothergill JL, Mowat E, Walshaw MJ, et al. (2011) Effect of antibiotic treatment on
498	bacteriophage production by a cystic fibrosis epidemic strain of <i>Pseudomonas aeruginosa</i> .
499	Antimicrob. Gen. Chemother. 55: 426-8.
500	
501	Frobisher M & Brown JH (1927) Transmissible toxigenicity of streptococci. Bull Johns
502	<i>Hopkins Hosp</i> 41 : 167-73.
503	
504	Furuse K, Osawa S, Kawashiro J, et al. (1983) Bacteriophage distribution in human faeces:
505	continuous survey of healthy subjects and patients with internal and leukaemic diseases. J.
506	Gen. Virol. 64: 2039-43.
507	
508	Gobert AP, Vareille M, Glasser A-L, et al. (2007) Shiga Toxin Produced by
509	Enterohemorrhagic Escherichia coli Inhibits PI3K/NF-KB Signaling Pathway in
510	Globotriaosylceramide-3-Negative Human Intestinal Epithelial Cells. J. Immunol. 178: 8168-
511	74.
512	
513	Groman NB (1953) Evidence for the induced nature of the change from nontoxigenicity to
514	toxigenicity in Corynebacterium diphtheriae as a result of exposure to specific bacteriophage.
515	<i>J. Bacteriol.</i> 66 : 184-91.
516	
517	Groman NB (1955) Evidence for the active role of bacteriophage in the conversion of
518	nontoxigenic Corynebacterium diphtheriae to toxin production. J. Bacteriol. 69: 9.
	22

	FEMS Microbiology Letters
510	
519	
520	Hacker J & Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity
521	<i>EMBO Reports</i> 2 : 376-81.
522	
523	Hansen FG & von Meyenburg K (1979) Characterization of the <i>dnaA</i> , <i>gyrB</i> and other genes
524	in the <i>dnaA</i> region of the <i>Escherichia coli</i> chromosome on specialized transducing phages
525	λtna. <i>Mol. Gen. Genetics</i> 175: 135-44.
526	
527	Hargreaves, K. R., Otieno, J. R., Thanki, A., et al., (2015). As Clear as Mud? Determining
528	the Diversity and Prevalence of Prophages in the Draft Genomes of Estuarine Isolates
529	of Clostridium difficile. Genome Biol. and Evol. 7: 1842–55.
530	
531	Hayashi T, Makino K, Ohnishi M, et al. (2001) Complete genome sequence of
532	enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory
533	strain K-12. DNA Res. 8: 11-22.
534	
535	Hentzer M, Teitzel GM, Balzer GJ, et al. (2001) Alginate overproduction affects
536	Pseudomonas aeruginosa biofilm structure and function. J. Bacteriol. 183: 5395-5401.
537	
538	Holloway BW & Cooper GN (1962) Lysogenic conversion in Pseudomonas aeruginosa. J.
539	Bacteriol. 84: 1321-4.
540	
541	Holmes RK & Barksdale L (1969) Genetic analysis of tox+ and tox- bacteriophages of
542	Corynebacterium diphtheriae. J. Virol. 3: 586-98.
543	
	23
	ScholarOne Support 1-434/964-4100

FEMS Microbiology Letters

2 3	544	Hraiech S, Bregeon F & Rolain JM (2015) Bacteriophage-based therapy in cystic fibrosis-
4 5 6	545	associated Pseudomonas aeruginosa infections: rationale and current status. Drug Design,
7 8	546	Development and Therapy 9: 3653-63.
9 10	547	
11 12 13	548	James CE, Stanley KN, Allison HE, Flint HJ, Stewart CS, Sharp RJ, Saunders JR
14 15	549	and McCarthy AJ (2001) Lytic and lysogenic infection of diverse Escherichia coli and
16 17	550	Shigella strains with a verocytotoxigenic bacteriophage. Appl. Environ. Microbiol. 67: 4335-
18 19 20	551	7
21 22	552	
23 24	553	James CE, Fothergill JL, Kalwij H, et al. (2012) Differential infection properties of three
25 26 27	554	inducible prophages from an epidemic strain of Pseudomonas aeruginosa. BMC Microbiol.
28 29	555	12 : 216.
30 31	556	
32 33	557	James CE, Davies EV, Fothergill JL, et al. (2015) Lytic activity by temperate phages of
34 35 36	558	Pseudomonas aeruginosa in long-term cystic fibrosis chronic lung infections. ISME J. 9:
37 38	559	1391-8.
39 40	560	
41 42	561	Jaskunas SR, Lindahl L & Nomura M (1975) Specialized transducing phages for ribosomal
43 44 45	562	protein genes of Escherichia coli. PROC. NATL. ACAD. SCI. U.S.A. 72: 6-10.
46 47	563	
48 49	564	Juhala RJ, Ford ME, Duda RL, et al. (2000) Genomic sequences of bacteriophages HK97 and
50 51	565	HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol 299: 27-
52 53	566	51.
54 55 56	567	
57 58 59 60		24

568	Kim MS, Park EJ, Roh SW & Bae JW (2011) Diversity and abundance of single-stranded
569	DNA viruses in human feces. Appl Environ Microbiol 77: 8062-8070.
570	
571	Kirschbaum JB & Konrad EB (1973) Isolation of a specialized lambda transducing
572	bacteriophage carrying the beta subunit gene for Escherichia coli ribonucleic acid
573	polymerase. J. Bacteriol. 116: 517-26.
574	
575	Krzywinski M, Schein J, Birol I, et al. (2009) Circos: an information aesthetic for
576	comparative genomics. Genome Res. 19: 1639-45.
577	
578	Labrie SJ, Samson JE & Moineau S (2010) Bacteriophage resistance mechanisms. Nat. Rev.
579	Microbiol. 8: 317-27.
580	
581	Lam MM, Seemann T, Bulach DM, et al. (2012) Comparative analysis of the first complete
582	Enterococcus faecium genome. J. Bacteriol. 194: 2334-41.
583	
584	Lavigne JP & Blanc-Potard AB (2008) Molecular evolution of Salmonella enterica serovar
585	Typhimurium and pathogenic Escherichia coli: from pathogenesis to therapeutics. Infection,
586	genetics and evolution: J. Mol. Epidemiol. Evol. Gen. Infect. Dis. 8: 217-26.
587	
588	Lee C & Iandolo J (1986) Lysogenic conversion of staphylococcal lipase is caused by
589	insertion of the bacteriophage L54a genome into the lipase structural gene. J. Bacteriol. 166:
590	385-91.
591	
	25

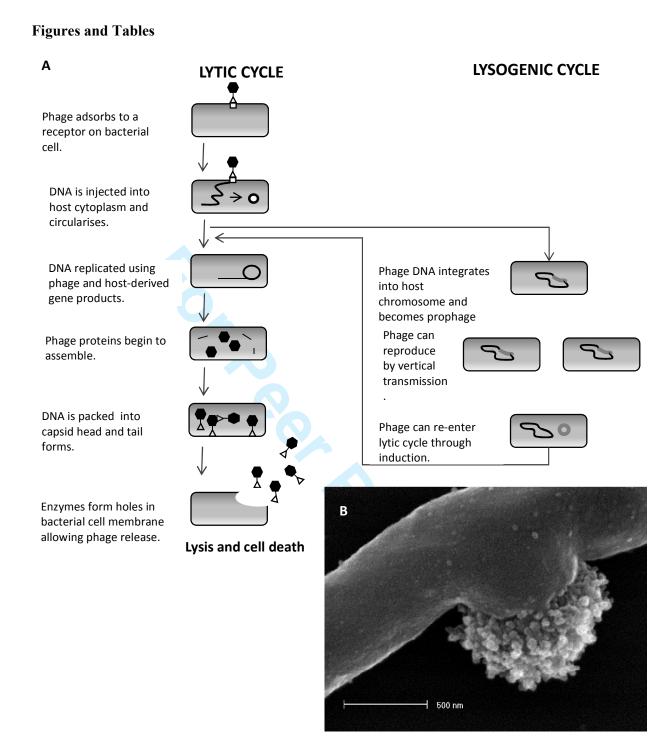
592	Lee, Y-D and Park, J-H (2015) Phage Conversion for β -lactam Antibiotics Resistance of
593	Staphylococcus aureus from Foods. J. Microbiol and Biotech. 25: (9)
594	
595	Lemieux AA, Jeukens J, Kukavica-Ibrulj I, et al. (2015) Genes Required for Free Phage
596	Production are Essential for Pseudomonas aeruginosa Chronic Lung Infections. J. Infect.
597	Dis.
598	
599	Levin BR & Svanborg Eden C (1990) Selection and evolution of virulence in bacteria: An
600	ecumenical excursion and modest suggestion. Parasitol. 100: S103-S115.
601	
602	Lieb M (1953) The establishment of lysogenicity in Escherichia coli. J. Bacteriol. 65: 642-
603	51.
604	
605	López E, Domenech A, Ferrándiz MJ, et al de la Campa AG (2014) Induction of prophages
605 606	López E, Domenech A, Ferrándiz MJ, <i>et al</i> de la Campa AG (2014) Induction of prophages by fluoroquinolones in <i>Streptococcus pneumoniae</i> : implications for emergence of resistance
606	by fluoroquinolones in Streptococcus pneumoniae: implications for emergence of resistance
606 607	by fluoroquinolones in Streptococcus pneumoniae: implications for emergence of resistance
606 607 608	by fluoroquinolones in <i>Streptococcus pneumoniae</i> : implications for emergence of resistance in genetically-related clones. PLoSONE. 9: e94358
606 607 608 609	by fluoroquinolones in <i>Streptococcus pneumoniae</i> : implications for emergence of resistance in genetically-related clones. PLoSONE. 9: e94358 Maslanova I, Doskar J, Varga M, <i>et al.</i> (2013) Bacteriophages of <i>Staphylococcus aureus</i>
606 607 608 609 610	by fluoroquinolones in <i>Streptococcus pneumoniae</i> : implications for emergence of resistance in genetically-related clones. PLoSONE. 9: e94358 Maslanova I, Doskar J, Varga M, <i>et al.</i> (2013) Bacteriophages of <i>Staphylococcus aureus</i> efficiently package various bacterial genes and mobile genetic elements including SCCmec
606 607 608 609 610 611	by fluoroquinolones in <i>Streptococcus pneumoniae</i> : implications for emergence of resistance in genetically-related clones. PLoSONE. 9: e94358 Maslanova I, Doskar J, Varga M, <i>et al.</i> (2013) Bacteriophages of <i>Staphylococcus aureus</i> efficiently package various bacterial genes and mobile genetic elements including SCCmec
606 607 608 609 610 611 612	by fluoroquinolones in <i>Streptococcus pneumoniae</i> : implications for emergence of resistance in genetically-related clones. PLoSONE. 9: e94358 Maslanova I, Doskar J, Varga M, <i>et al.</i> (2013) Bacteriophages of <i>Staphylococcus aureus</i> efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. <i>Environ. Microbiol. Rep.</i> 5 : 66-73.
606 607 608 609 610 611 612 613	by fluoroquinolones in <i>Streptococcus pneumoniae</i> : implications for emergence of resistance in genetically-related clones. PLoSONE. 9: e94358 Maslanova I, Doskar J, Varga M, <i>et al.</i> (2013) Bacteriophages of <i>Staphylococcus aureus</i> efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. <i>Environ. Microbiol. Rep.</i> 5 : 66-73. Matos RC, Lapaque N, Rigottier-Gois L, <i>et al.</i> (2013) <i>Enterococcus faecalis</i> Prophage

616	Matsushiro A, Sato K, Miyamoto H, et al. (1999) Induction of prophages of
617	enterohemorrhagic Escherichia coli O157:H7 with norfloxacin. J. Bacteriol. 181: 2257-60.
618	
619	Mazaheri Nezhad Fard R, Barton MD & Heuzenroeder MW (2011) Bacteriophage-mediated
620	transduction of antibiotic resistance in enterococci. Lett. Appl. Microbiol. 52: 559-64.
621	
622	McEntee K & Epstein W (1977) Isolation and characterization of specialized transducing
623	bacteriophages for the recA gene of Escherichia coli. Virology 77: 306-18.
624	
625	Meessen-Pinard M, Sekulovic O & Fortier LC (2012) Evidence of <i>in vivo</i> prophage induction
626	during Clostridium difficile infection. Appl. Environ. Microbiol. 78: 7662-70.
627	
628	Miller RV & Renta Rubero VJ (1984) Mucoid conversion by phages of Pseudomonas
629	aeruginosa strains from patients with cystic fibrosis. J. Clin. Microbiol 19: 717-719.
630	
631	Mirold S, Rabsch W, Rohde M, et al. (1999) Isolation of a temperate bacteriophage encoding
632	the type III effector protein SopE from an epidemic Salmonella typhimurium strain. PROC.
633	NATL. ACAD. SCI. U.S.A. 96: 9845-9850.
634	
635	Mizutani S, Nakazono N & Sugino Y (1999) The so-called chromosomal verotoxin genes are
636	actually carried by defective prophages. DNA Res. 6: 141-3.
637	
638	Modi, S. R., Lee, H. H., Spina, C. S., & Collins, J. J. (2013). Antibiotic Treatment Expands
639	the Resistance Reservoir and Ecological Network of the Phage Metagenome. Nature 499:
640	219–222.
	27

FEMS Microbiology Letters

641	
642	Monson R, Foulds I, Foweraker J, et al. (2011) The Pseudomonas aeruginosa generalized
643	transducing phage ϕ PA3 is a new member of the ϕ KZ-like group of 'jumbo'phages, and
644	infects model laboratory strains and clinical isolates from cystic fibrosis patients. Microbiol.
645	157 : 859-867.
646	
647	Nakagawa I, Kurokawa K, Yamashita A, et al. (2003) Genome sequence of an M3 strain of
648	Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and
649	new insights into phage evolution. Genome Res 13: 1042-55.
650	
651	Nassar FJ, Rahal EA, Sabra A & Matar GM (2013) Effects of subinhibitory concentrations of
652	antimicrobial agents on Escherichia coli O157:H7 Shiga toxin release and role of the SOS
653	response. Foodborne Pathogens and Disease 10: 805-12.
654	
655	Ohnishi M, Terajima J, Kurokawa K, et al. (2002) Genomic diversity of enterohemorrhagic
656	Escherichia coli O157 revealed by whole genome PCR scanning. PROC. NATL. ACAD. SCI.
657	<i>U.S.A.</i> 99 : 17043-8.
658	
659	Ojeniyi B, Birch-Andersen A, Mansa B, et al. (1991) Morphology of Pseudomonas
660	aeruginosa phages from the sputum of cystic fibrosis patients and from the phage typing set.
661	An electron microscopy study. APMIS 99: 925-30.
662	
663	Parsley, L. C., Consuegra, E. J., Kakirde, K. S., et al. (2010) Identification of Diverse
664	Antimicrobial Resistance Determinants Carried on Bacterial, Plasmid, or Viral Metagenomes
665	from an Activated Sludge Microbial Assemblage. Appl. Environ. Microbiol. 7: 3753-7
	28

666	
667	Plunkett G, 3rd, Rose DJ, Durfee TJ & Blattner FR (1999) Sequence of Shiga toxin 2 phage
668	933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol
669	181 : 1767-78.
670	
671	Pride DT, Salzman J, Haynes M, et al. (2012) Evidence of a robust resident bacteriophage
672	population revealed through analysis of the human salivary virome. ISME J 6: 915-26.
673	
674	Ptashne M (2004) Two "what if" experiments. Cell 116: S71-72
675	
676	Quirós P, Colomer-Lluch M, Martínez-Castillo A, et al. (2014) Antibiotic Resistance Genes
677	in the Bacteriophage DNA Fraction of Human Fecal Samples. Antimicrob. Agents
678	Chemother. 58: 606-9.
679	
680	Refardt D (2011) Within-host competition determines reproductive success of temperate
681	bacteriophages. ISME J 5: 1451-60.
682	
683	Refardt D & Rainey PB (2010) Tuning a genetic switch: experimental evolution and natural
684	variation of prophage induction. Evolution 64: 1086-97.
685	
686	Rehmat S & Shapiro JA (1983) Insertion and replication of the Pseudomonas aeruginosa
687	mutator phage D3112. Mol. Gen. Genetics 192: 416-23.
688	
689	Reyes A, Semenkovich NP, Whiteson K, et al. (2012) Going viral: next-generation
690	sequencing applied to phage populations in the human gut. <i>Nat. Rev. Microbiol.</i> 10 : 607-17. 29


2 3	691	
4 5	692	Rice SA, Tan CH, Mikkelsen PJ, et al. (2009) The biofilm life cycle and virulence of
6 7	693	Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J. 3: 271-82.
8 9	694	
10 11	094	
12 13	695	Robinson CM, Sinclair JF, Smith MJ & O'Brien AD (2006) Shiga toxin of enterohemorrhagic
14 15	696	Escherichia coli type O157:H7 promotes intestinal colonization. PROC. NATL. ACAD. SCI.
16 17	697	<i>U.S.A.</i> 103 : 9667-72.
18 19	698	
20 21	699	Rohwer F & Thurber RV (2009) Viruses manipulate the marine environment. <i>Nature</i> 459 :
22 23 24	700	207-12.
25 26	701	
27 28	702	Rolain JM, Fancello L, Desnues C & Raoult D (2011) Bacteriophages as vehicles of the
29 30	703	resistome in cystic fibrosis. J. Antimicrob. Chemother. 66: 2444-7.
31 32	704	
33 34 25	705	Roux, S., Enault, F., Hurwitz, B. L., & Sullivan, M. B. (2015). VirSorter: mining viral signal
35 36 37	706	from microbial genomic data. PeerJ, 3, e985
38	707	
39 40	, 0,	
41	708	Schicklmaier P & Schmieger H (1995) Frequency of generalized transducing phages in
42 43	709	natural isolates of the Salmonella typhimurium complex. Appl. Environ. Microbiol. 61: 1637-
44 45 46	710	40.
47 48	711	
49 50	712	Schuch R & Fischetti VA (2009) The secret life of the anthrax agent Bacillus anthracis:
51 52	713	bacteriophage-mediated ecological adaptations. PloS ONE 4: e6532.
53 54	714	
55 56		
57 58 59		30
59 60		

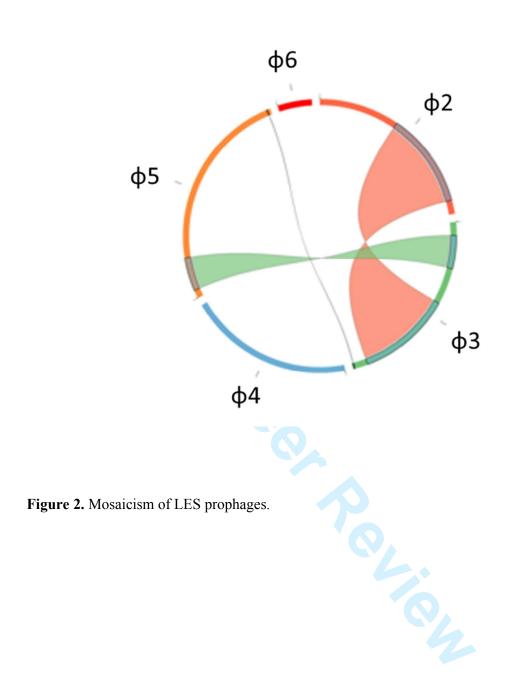
	FEMS Microbiology Letters
715	Stanley TL, Ellermeier CD & Slauch JM (2000) Tissue-specific gene expression identifies a
716	gene in the lysogenic phage Gifsy-1 that affects <i>Salmonella enterica</i> serovar typhimurium
717	survival in Peyer's patches. <i>J. Bacteriol.</i> 182 : 4406-13.
718	survival in reyci s patenes. J. Bacteriol. 162. 4400-15.
718	Stewart FM & Levin BR (1984) The population biology of bacterial viruses: why be
720 721	temperate. <i>Theoretical Population Biology</i> 26 : 93-117.
	Torre F. Zhang W. & Let C. (2012) Lange and Structure and Lashets SS2 A Containing
722	Tang F, Zhang W & Lu C (2013) Lysogenic <i>Streptococcus suis</i> Isolate SS2-4 Containing
723	Prophage SMP Showed Increased Mortality in Zebra Fish Compared to the Wild-Type
724	Isolate. PLoS ONE 8.
725	
726	Taylor AL (1963) Bacteriophage-induced mutation in <i>Escherichia coli</i> . <i>PROC. NATL.</i>
727	ACAD. SCI. U.S.A. 50 : 1043.
728	
729	Vica Pacheco S, Garcia Gonzalez O & Paniagua Contreras GL (1997) The <i>lom</i> gene of
730	bacteriophage lambda is involved in <i>Escherichia coli</i> K12 adhesion to human buccal
731	epithelial cells. FEMS Microbiol. Lett. 156: 129-32.
732	
733	Wagner PL, Neely MN, Zhang X, et al. (2001) Role for a phage promoter in Shiga toxin 2
734	expression from a pathogenic Escherichia coli strain. J. Bacteriol. 183: 2081-5.
735	
736	Wagner PL, Livny J, Neely MN, (2002) Bacteriophage control of Shiga toxin 1 production
737	and release by Escherichia coli. Mol. Microbiol 44: 957-70.
738	
	31
	ScholarOne Support 1-434/964-4100

FEMS Microbiology Letters

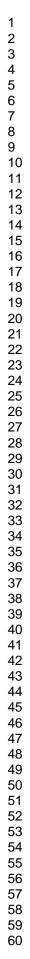
739	Wang PW, Chu L & Guttman DS (2004) Complete sequence and evolutionary genomic
740	analysis of the Pseudomonas aeruginosa transposable bacteriophage D3112. J. Bacteriol.
741	186 : 400-10.
742	
743	Wang X, Kim Y, Ma Q, et al. (2010) Cryptic prophages help bacteria cope with adverse
744	environments. Nature Communications 1: 147.
745	
746	Willner D, Furlan M, Haynes M, et al. (2009) Metagenomic analysis of respiratory tract
747	DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. <i>PLoS ONE</i> 4 :
748	e7370.
749	Willner D, Furlan M, Schmieder R, et al. (2011) Metagenomic detection of phage-encoded
750	platelet-binding factors in the human oral cavity. Proc. Natl. Acad. Sci. U.S.A. 108 S1: 4547-
751	4553.
752	
753	Winstanley C, Langille MG, Fothergill JL, et al. (2009) Newly introduced genomic prophage
754	islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain
755	of Pseudomonas aeruginosa. Genome Res 19: 12-23.
756	
757	Winter C, Bouvier T, Weinbauer MG & Thingstad TF (2010) Trade-offs between
758	competition and defense specialists among unicellular planktonic organisms: the "killing the
759	winner" hypothesis revisited. Microbiol. and Mol. Biol. Rev. 74: 42-57.
760	
761	Zahler S, Korman R, Rosenthal R & Hemphill H (1977) Bacillus subtilis bacteriophage
762	SPbeta: localization of the prophage attachment site, and specialized transduction. J.
763	Bacteriol. 129: 556-8.
	32

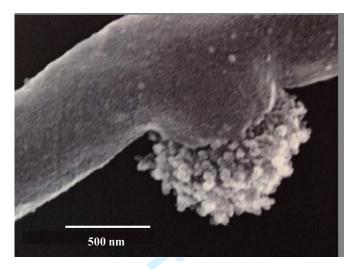
2 3	764	
4 5 6	765	Zegans ME, Wagner JC, Cady KC, et al. (2009) Interaction between bacteriophage DMS3
7 8	766	and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa. J. Bacteriol.
9 10	767	191 : 210-19.
11 12 13	768	
13 14 15	769	Zhang Y & LeJeune JT (2008) Transduction of bla(CMY-2), tet(A), and tet(B) from
16 17	770	Salmonella enterica subspecies enterica serovar Heidelberg to S. Typhimurium. Vet.
18 19	771	<i>Microbiol.</i> 129 : 418-25.
20 21 22 23	772	Microbiol. 129: 418-25.
24 25		
26 27 28		
29 30		
31 32		
33 34 35		
36 37		
38 39		
40 41		
42 43 44		
45 46		
47 48		
49 50 51		
52 53		
54 55		
56 57		
58 59 60		33
00		ScholarOne Support 1-434/964-4100

Figure 1. The temperate phage lifecycle.


A: Lysogeny occurs when the phage DNA integrates into the bacterial genome. Here it is described as a prophage. Prophages replicate along with the bacterial cell. Cell stress such as DNA damage can result in the prophage entering the lytic cycle leading to phage replication and release following bacterial cell lysis. **B:** Scanning electron microscope image of an *E coli* cell under-going lysis triggered by the stx-phage Φ 24B (*James C. E.* un-published).

1 2 3	
2 3 4 5 6 7 8	
9 10	
11 12 13 14 15 16 17	
15 16 17 18	
18 19 20 21 22	
20 21 22 23 24 25 26	
26 27 28 29	
30 31 32 33	
31 32 33 34 35 36 37 38	
38 39 40 41	
42 43 44 45	
46 47 48 49	
50 51 52	
53 54 55 56	
57 58 59 60	


Bacteria Phage		Phage-encoded virulence gene(s)	Reference	
C. Beta diptheriae		Diptheria toxin (<i>tox</i>) Cytotoxin	(Holmes and Barksdale 1969)	
E. coli	Stx	Shiga toxin (stx_1 , stx_2), cytotoxins	(Wagner et al. 2001)	
		stk - Affects signal transduction	(Plunkett et al. 1999)	
		TTSS Effectors cif, espl/nleA, espl,	(Lavigne and Blanc-Potard	
		espK, espEU/tccP, nleI	2008)	
	λ	<i>lom</i> - binding to epithelial cells	(Vica Pacheco et al. 1997)	
		<i>bor</i> - Outer membrane protein that	(Barondess and Beckwith	
		aids bacterial immune evasion.	1995)	
	CP-933C	Cryptic phage regulates TTSS	(Flockhart et al. 2012)	
S. enterica	φSopE	TTSS effector (<i>sopE</i>) promotes invasion of epithelial cells.	(Mirold et al. 1999)	
	Gifsy-1	<i>gipA</i> , <i>gogB</i> - survival and growth in Peyer's patches.	(Stanley et al. 2000)	
	Gifsy-2	<i>sodC1, SseI</i> - survival in macrophages	(Figueroa-Bossi et al. 2001)	
	Gifsy-3	sspHI - TTSS effector	(Ehrbar and Hardt 2005)	
Р.	D3	Altered outer membrane properties	(Holloway and Cooper 1962)	
aeruginosa		reduces phagocytosis		
S. mitis	SM1	<i>pblA</i> and <i>pblB</i> - Platelet binding	(Bensing et al. 2001)	
C. jejuni	CJIE1	Increased adherence and invasion	(Clark et al. 2012)	
V. cholerae	СТХ	<i>ctx</i> - Cytotoxin	(Faruque et al. 1998)	


Table 2. Characteristics of LES prophage

LES prophage	Characteristics	N ^o of genes	Related phages in	Known related	Interaction with other
			reference strain PAO1	phages	LES phages
φ1	Defective prophage, predicted to encode pyocin R2	19	Defective prophage gene cluster encoding pyocin R2	Pyocin gene clusters predicted to have evolved from phage tail genes	Unknown
φ2	Active inducible prophage, encodes integrase for site-specific integration	44	None	None	Confers resistance to infection by \$\overline{4}\$ and \$\overline{4}\$
φ3	Active inducible prophage, encodes integrase for site-specific integration	53	None	Homologous regions in LES¢2 and LES¢5	Shares same cI gene region as $\phi 2$
φ4	Active inducible prophage, encodes transposase. Capable of random integration.	48	None	D3112	Present in 100% LES isolates
φ5	Active inducible prophage, encodes integrase	65	None	D3	Present in only a small proportion of LES isolates
φ6	Active inducible prophage, encodes integrase	12	Pf4 filamentous phage implicated in biofilm dispersal	Filamentous phage Pf1 (Family <i>Inoviridae</i>)	Unknown

Circos map (Krzywinski et al. 2009) depicting an alignment of five prophage sequences from the Liverpool Epidemic Strain of *Pseudomonas aeruginosa* (EMBL accession number FM209186) using the Artemis Comparison Tool (Carver et al. 2005). Each coloured segment of the circumference represents a LES prophage genome. Ribbons that link prophage regions show regions of sequence homology.

The Role of Temperate Bacteriophages in Bacterial Infection Temperate bacterial viruses

can lyse bacterial cells (shown) or incorporate into their genomes, often providing key adaptations that are important for infection.

500 mm