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Abstract 

Introduction - Exercise, and in particular balance and coordination related activities such as dance, 

appear to have positive effects on cognitive function, as well as neurodegenerative conditions such as 

dementia and Parkinson’s disease. Quadrupedal gait training is a movement system requiring 

coordination of all four limbs that has previously been associated with cognitive development in 

children. There is currently little research into the effect of complex QDP movements on cognitive 

function in adults. 

Purpose - To determine the effects of a novel four-week quadrupedal gait training programme on 

markers of cognitive function and joint reposition sense in healthy adults. 

Methods - Twenty-two physically active sports science students (15 male and 7 female) were divided 

into two groups: a training group (TG) and a control group (CG). All participants completed the 

Wisconsin Card Sorting Task (WCST) and were tested for joint reposition sense before and after a 

four-week intervention, during which time the TG completed a series of progressive and challenging 

quadrupedal movement training sessions. 

Results - Participants in the TG showed significant improvements in the WCST, with improvements 

in perseverative errors, non-perseverative errors, and conceptual level response. This improvement 

was not found in the CG. Joint reposition sense also improved for the TG, but only at 20 degrees of 

shoulder flexion.  
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Conclusions - Performance of a novel, progressive, and challenging task, requiring the coordination 

of all 4 limbs, has a beneficial impact on cognitive flexibility, and in joint reposition sense, although 

only at the specific joint angle directly targeted by the training. The findings are consistent with other 

studies showing improvements in executive function and joint reposition sense following physical 

activity.  

 

 

1 Introduction 

 

There is a growing body of research supporting the role of physical activity in improving the quality 

and longevity of human life. Improvements have been found in areas such as innate immunity and a 

decrease in vascular inflammation (Ford, 2002; Gleeson et al., 1995; Hoffinan‐ Goetz, 1998; 

Venkatraman & Fernandes, 1997; Woods, Vieira, & Keylock, 2009), as well as autonomy and 

independence in the elderly (Lamb, Jørstad‐ Stein, Hauer, & Becker, 2005; Pahor, 2006).  Recent 

evidence also suggests that physical activity (especially aerobic exercise) may have a positive impact 

on cognition (Hillman et al., 2006), attenuate age related cognitive decline (Hamer & Chider, 2009; 

Paillard, 2015), and reduce the risk of Alzheimer’s disease and dementia (Buchman et al., 2012; 

Daly, McMinn, & Allan, 2015; Voelcker-Rehage & Niemann, 2013;). More specifically, in cognitive 

tasks such as reasoning, working memory, and vigilance, performance of populations that exercise 

regularly exceeds those that do not engage in regular exercise (Bunce, Barrowclough, & Morris, 

1996; Cook, Albert, Berkman, Blazer, Taylor, & Hennekens, 1995; Erikson et al., 2011). 

Likely mechanisms for the association between cardiovascular physical activity and 

improved cognitive performance include increased cerebral blood flow, particularly to frontal and 

parietal regions (Colcombe et al., 2004), changes in neurotransmitter release, structural changes in 

the central nervous system, and altered arousal levels (Gligoroska & Manchevska, 2012). Exercise 
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programs have also been associated with changes in central markers of improved brain function, 

such as brain derived neurotrophic factor (Voss, Kramer, Basak. Prakesh, & Roberts, 2010). 

Balance and coordination related activities such as dance, also appear to have positive effects 

on measures of cognitive wellbeing as well as neurodegenerative conditions such as dementia and 

Parkinson’s Disease (Ahlskog, Geda, Graff-Radford, & Peterson, 2011; Firth, Cotter, Elliott, French, 

& Yung, 2015; Hamer & Chida, 2009; Hui, Chui, & Woo, 2009; Kattenstroth, Kalisch, Holt, 

Tegenthoff, & Dinse, 2013; Kullberg-Turtiainen, 2012; Ravelin, Isola, & Kylmä, 2013; Scherder, 

Bogen, Eggermont, Hamers, & Swaab, 2010; Sehm, Weinstein, Ghent, Meyer, & Teuber, 2014; 

Tanaka, de Quadros, Sanots, Stella, Gobbi, & Gobbi, 2009). For instance, patients show more 

efficient patterns of brain activity, especially in frontal and parietal cortical areas, related to motor 

control and learning, following coordinative activity (Monno, Temprado, Zanone, & Laurent, 2002; 

Voelcker-Rehage & Niemann, 2013).  It is likely that the perceptual demands and attention required 

to coordinate these complex movements (as opposed to the more repetitive and automated 

movements typical of aerobic exercise) stimulate adaptations to information processing that improve 

both attention and the ability to process visual and spatial information (Monno et al., 2002; 

Voelcker-Rehage & Niemann, 2013).  

The changes induced by coordinative exercise appear different to, and independent of those 

induced by cardiovascular activity, and are similar to those found following exposure to enriched and 

stimulating environments for elderly or untrained individuals (Voelcker-Rehage, Godde, & 

Staudinger, 2011; Kattenstroth et al., 2013). Dance, in particular, in addition to its purely physical 

challenges such as balance and physical activity, involves rhythmic motor coordination, emotions, 

social interaction, and acoustic stimulation (Kattenstroth et al., 2013). Yet even the performance of 

automated exercise such as walking can provide sufficient coordination challenges to induce these 

changes (Voelcker-Rehage & Niemann, 2013). Coordinative activity, specifically the learning of 

complex whole body tasks such as balancing and juggling, has also been associated with increased 
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grey matter volume in the frontal and parietal regions (Draganski, Gaser, Busch, Schuierer, Bogdahn, 

& May, 2004; Taubert et al., 2010). These regions are associated with cognitive functions such as 

attentional selection, task switching, inhibitory control, and working memory (Casey et al., 2000; 

Kim, Cilles, Johnson, & Gold, 2012; Lie, Specht, Marshall, & Fink, 2006). 

There also appears to be a relationship between early motor development (particularly in 

gross motor skills) and later cognitive function in aspects such as working memory and processing 

speed (Piek, Dawson, Smith, & Gasson, 2008). In particular, quadrupedal (QDP) gait movement, a 

form of locomotion used by most quadrupeds and human infants when crawling (Kondo, 1985), not 

only benefits joint reposition sense and coordination, but is also linked to the rehabilitation of 

patients with movement disorders (Dietz, 2011) and cognitive improvements observed in developing 

children (Herbert, Gross, & Hayne, 2007; Patrick, Noah, & Yang, 2009; Shah et al., 2013). As 

crawling is one of the first movements that cognitively challenges an infant, it is argued to be a 

contributor to a child’s cognitive development (Bell & Fox, 1996; Herbert et al., 2007) with an 

association observed between the onset of crawling and the appearance of cortical organisation (Bell 

& Fox, 1996). Research also shows that crawling aids early motor control development such as eye-

hand coordination, proprioception, tactile input, and spatial awareness (Clearfield, 2004; Herbert et 

al., 2007; Mcewan, Dihoff, & Brosvic, 1991). For example, hands-and-knees crawlers exhibit more 

improvements in these areas than belly crawlers (Freedland & Bertenthal, 1994; Kermoian & 

Campos, 1988). This bilateral coordination requires two opposite limbs to move simultaneously, and 

appears to drive cognitive development in infants by stimulating cortical organisation, particularly 

during the more novel, or unfamiliar, stages of the task (Bell & Fox 1996). Nuernberger, Rogers, & 

Mckenna (2010) speculated that exercises requiring coordination across the midline stimulate the 

brain to organise itself, forcing both hemispheres of the brain to communicate with to each other.  

Although there is a clear link between QDP and cognitive development in children, there is little 

research into the effect of complex QDP movements on cognitive function in adults. There exists, 
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however, a growing body of research highlighting the positive effects of other complex movements, 

such as dancing, on cognition in general and in slowing cognitive decline (Hui et al., 2009; Kullberg-

Turtiainen, 2012; Ravelin et al., 2013; Verghese et al., 2003). It is possible, therefore, that a complex 

and novel exercise that requires the coordination of all four limbs, may have similar benefits to other 

complex movements.  

Studies that investigate the importance of physical activity on cognitive ability show that 

engaging in exercise can have a positive impact on a range of cognitive functions. For example, 

Hillman et al. (2006) found that individuals who reported participating in more exercise were better 

able to inhibit task-irrelevant information in a flanker task, and McAuliffe (2004) found that athletes 

can maintain a top-down attentional set more effectively in a spatial cuing task than non-athletes. A 

review by Mann, Williams, Ward, and Janelle (2007) also concludes that increased expertise in sport 

is associated with improved visual search (requiring selective visual attention; the ability to identify 

and focus on task-relevant information, and inhibit task-irrelevant information). Whilst these 

findings show improvements across different cognitive abilities, they all fall under the category of 

‘executive functions’ (Hillman, Erickson, & Kramer, 2008). This is supported by meta-analyses 

showing that taking part in physical activity has specific benefits on executive control (Colcombe & 

Kramer, 2003; Voss, et al., 2010).  

Executive functions allow an individual to allocate cognitive resources on the basis of task 

demands; focusing on relevant information and ignoring irrelevant information. They develop during 

adolescence and are critical in supporting the intentional allocation of cognitive resources (Anderson, 

2008). Diamond (2013) summarises three key executive functions; inhibition, cognitive flexibility, 

and working memory. Working memory enables an individual to hold information in their mind and 

manipulate it (link it to new incoming information and existing knowledge from long-term memory), 

flexibility relates to the ability to adapt to changing circumstances, and inhibition allows an 

individual to focus on a task and ignore distracting information. Improved executive function (also 
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termed executive control or cognitive control; Diamond, 2013) is associated with better 

concentration and performance in a task, which then has an impact on physical and emotional 

wellbeing.  

Daly, et al. (2015) have given a clear explanation of why physical activity can support 

executive function (and vice versa) by mapping the key aspects of exercise onto the core executive 

functions. They propose that the goal of taking part in physical activity is intentional, it requires 

planning, focus, careful monitoring of performance, and inhibition of any competing activities. This 

is supported by research showing that individuals who perform better on tests of executive control 

are more likely to engage in regular exercise (e.g., McAuley et al., 2011). Furthermore, impairments 

in executive control are associated with damage to the pre-frontal cortex (e.g., Owen, Roberts, 

Hodges, Summers, Polkey, & Robbins, 1993), an area also implicated in the relationship between 

exercise and cognition (e.g., Hillman et al., 2008). 

Improved executive functioning is linked to increased activity in the frontal lobe and this is 

one area of the brain that continues to develop beyond puberty (e.g. Zalazo, Craik, & Booth, 2004). 

Consequently, engaging in activities designed to facilitate executive functioning could have long-

lasting benefits to cognitive ability. Findings support this suggestion, showing that cognitive 

plasticity is possible in older adults following training in tasks designed to test attentional control 

(Bherer, Kramer, Peterson, Colcombe, Erickson, & Becic, 2006). 

Given the evidence for a relationship between increased physical activity and improvements 

in executive functioning the current study measured the impact of QDP gait training on executive 

control. The task used to assess this was the Wisconsin Card Sorting Task (WCST; Berg, 1948). 

Findings show increased activation in the pre-frontal cortex during completion of the WCST, 

consistent with this being a measure of executive functioning (e.g. Buchsbaum, Greer, Chang, & 

Berman, 2005; Lie et al., 2006; Monchi, Petrides, Petre, Worsley, & Dagher, 2001). In the task 

participants are presented with cards and asked to sort each card according to one of several rules. 
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Initially they must use trial and error to find the correct rule, however once this is found they must 

continue to sort subsequent cards according to this rule. At random intervals the rule changes, 

requiring the adoption of a new rule and the inhibition of the old rule. Whilst there is some argument 

regarding which aspects of executive functioning the WCST measures, the task is an established 

measure of cognitive control and flexibility. An individual must “maintain” the correct attentional set 

to sort the cards accurately, however when the rule changes they must “flexibly” switch to a new set 

and inhibit the old (previously relevant) set. A number of measures can be taken from the WCST, 

one of the most important being perseverative errors (these occur when individuals continue to use 

the previously-relevant set and reflect the inability to flexibly change set and inhibit the old set).  

The aim of this research study is to investigate the effects of QDP gait movement training on 

both joint repositioning and cognition in a healthy adult population. It was predicted that QDP 

training would improve performance in cognitive flexibility in the training group as determined by 

reduced perseverative errors in the WCST. It was further predicted that QDP training would result in 

improvements in joint reposition sense. 

 

 

2 Methodology 

 

2.1 Participants 

Twenty-two healthy and physically active physical education students (15 male, 7 female) 

participated in this study and were randomly allocated into a training group (TG; n=11; Age 23 ± 3.4 

years; Body Mass 75 ± 18.7 Kg; Height 173.3.3 ± 10cm) and a control group (CG; n=11; Age 21.1 ± 

1.9 years; Body Mass 69.1 ± 10.9 kg; Height 172 ±7.8). Participants were all degree level students, 

and had no shoulder or recent injuries that could interfere with the intervention. They also needed to 
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take part in physical activity at least three times per week. Ethical approval was sought and gained 

from the College Ethical Approval Panel (Approval number 1314-258). 

 

2.2 Study design 

This was an independent measures study design where a control group (CG) and an experimental 

training group (TG) completed tests for cognitive control and joint reposition sense before and after a 

four-week intervention.  

Executive control was measured using a computerised version of the WCST available 

through the Psychology Experiment Building Language (PEBL; Mueller, 2014; Mueller & Piper, 

2014).  The whole test took approximately 15-20 minutes to complete. The programme provides 

several performance measures, however in the current study the measures used were conceptual level 

response (to provide an overall measure of success in the task; CLR), perseverative errors (PE), and 

non-perseverative errors (NPE).  

To test joint repositioning, the participants were blindfolded and told to position their 

shoulder in 90-degree flexion, with their arm held immediately in front of them, parallel to the 

ground. From this starting position participants were moved a further 20 degrees into shoulder 

flexion (20F), where they held this for three seconds before being returned to the starting position. 

They were then instructed to actively reposition their shoulders to the 20F position.  A goniometer 

was used to determine the angles. Once they had completed this, the process was repeated for 30-

degrees of extension (30E) (Rogol, Ernst, & Perrin, 1998). Tests were repeated a further two times 

for each angle.  The error was defined as the difference between the original angle (20F or 30E) and 

the angle achieved on repositioning the limb. Once all three errors had been calculated for each 

angle, the mean was determined for analysis. 

During the four-week study period, the TG underwent a QDP training regimen three times a 

week, where they were taught a variety of closed chain support exercises involving forwards, 
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backwards and sideway movements (Figure 1). Training sessions took place once a week for four 

consecutive weeks, with two additional sessions to complete at home. Instructed sessions lasted for 

an hour. The first 10 minutes of the session consisted of warming up and mobilising the participants. 

Then the next 50 minutes were used for teaching the basic movements and series of QDP locomotive 

sequences. During the four-week study period, both groups continued to engage in their normal 

physical activity levels (exercising at least three times per week).  

 

(Figure 1 here) 

 

2.3 Data analysis 

Statistical analyses were carried out using Statistical Package for the Social Sciences (SPSS) version 

20.0. To analyse performance in the WCST three dependent variables were selected. Percentage 

conceptual level response (CLR) was used to measure success and accuracy in the task, 

perseverative errors (PE) were used to measure an inability to switch set, and non-perseverative 

errors (NPE) were used to measure inaccurate responses not due to perseveration. Each variable was 

analysed using a 2 (group) x 2 (time) mixed measures ANOVA and partial eta squared was used to 

provide a measure of effect size. Three participants were removed on the basis that their scores were 

more than 2 standard deviations from the mean.  

Although the main focus of the research was to explore the impact of a challenging, 

quadrupedal gait training movement system on cognition, it was important to assess any effects of 

training on joint reposition. To analyse this, the mean angle error made in repositioning a limb was 

calculated at 20F and 30E. Errors were compared for each group (training and control) between the 

first test and the final test using a paired samples t-test.   
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3 Results 

 

3.1 Cognitive Control 

For CLR there was a significant effect of time, F (1, 17) = 34.509, MSE = 17.929, p < .001, η2= .670, 

with performance improving over time (means of 74.15% in the pre-test and 82.83% in the post-test). 

However, a significant interaction between time and group revealed that this improvement was only 

found for the TG (70.25% vs. 85.65%) and not for the CG (78.05% vs. 80.01%), F (1, 17) = 20.675, 

MSE = 17.929, p < .001, η2= .549 (see figure 2). There was a non-significant effect of group, F (1, 

17) = 0.373, MSE = 25.522, p = .549, η2= .021. 

 

(Figure 2 here) 

 

Analysis of PE also showed a significant effect of time, F (1, 17) = 9.291, MSE = 11.839, p < 

.01, η2= .353, with a reduction in errors from pre-test to post-test (15.22 vs. 11.56). There was also a 

significant time by group interaction, F (1, 17) = 8.527, MSE = 11.839, η2= .334, p < .05. This 

showed that whilst the number of PE reduced for the TG (16.83 vs. 9.67) the same benefit was not 

shown by the CG (13.62 vs. 13.46), see figure 3). The overall difference between the control and 

training groups was non-significant, F (1, 17) = 0.052, MSE = 13.248, p = .823, η2= .003. 

 

(Figure 3 here) 

 

Finally, analysis of NPE showed a similar pattern of performance. There was a significant 

effect of time, F (1, 17) = 16.536, MSE = 8.110, p < .01, η2= .493, and a significant interaction 

between time and group, F (1, 17) = 4.558, MSE = 8.110, p < .05, η2= .211. The number of NPE 

errors reduced from the first test to the second (8.81 vs. 4.77), however whilst there was a large 
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reduction in errors following training for the TG (10.17 vs. 4.00) the difference between the first and 

second test was marginal for the CG (7.46 vs. 5.54), see figure 4. As above, there was no significant 

difference between the two groups for overall NPE in the task, F (1, 17) = 0.265, MSE = 10.554, p = 

.614, η2= .015. 

 

(Figure 4 here) 

 

3.2 Joint Repositioning 

For the TG, participants showed a significant improvement at 20F following the gait training 

programme, t (7) = 2.366, p = .05 (mean errors of 4.13 and 2.13 for pre and post-training), see figure 

5. There was no significant difference in errors at 30E (5.13 vs. 4.50). For the CG, performance did 

not vary across the time period for both 20F (5.29 vs. 5.29) and 30E (5.21 vs. 5.50). 

 

(Figure 5 here) 

 

 

4 Discussion 

 

The aim of the study was to explore the influence of a novel, QDP gait training programme on 

cognitive control. Participants were randomly allocated to two groups, a control group and a training 

group. All participants completed the WCST (a measure of cognitive control) at the beginning of the 

study and then four weeks later. Joint repositioning sense for 20F and 30E was also assessed at these 

two time points. During the four-week period the training group also took part in the QDP gait 

training programme, consisting of a one hour supervised session and two at-home sessions per week. 

Following the introduction of a four-week QDP gait-training programme, the training group showed 
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improved performance in the WCST, an effect that was not found for the control group. The WCST 

is a cognitive test designed to measure executive functions. The current findings show that the QDP 

training programme resulted in reduced perseverative errors suggesting that participants were better 

able to switch set when required. The training programme also led to a decrease in non-perseverative 

errors and an increase in the number of consecutive correct responses, showing that participants were 

better able to maintain a set. It can therefore be concluded that the training programme has had a 

short-term beneficial impact on cognitive control.  

With regard to joint repositioning performance, the results provided support for the 

hypothesis that QDP will have a positive impact on errors in reposition sense. It is interesting that the 

study group showed improvements at 20F and not at 30E. This could be due to the specificity of 

adaptation to the common joint positions found in QDP, namely that 20 degrees of shoulder flexion 

represents the typical joint angle experienced when reaching forwards just prior to load bearing 

during QDP. This is consistent with previous findings (Rogol et al., 1998). 

The significant improvements observed in the training group in the WCST raise some 

interesting issues. One possible explanation is that the training of the novel, complex, challenging 

task requires a degree of attentional discipline that improves over time and is then transferrable to 

other cognitive tasks. It is also possible that ‘experience-induced brain plasticity’ (Markham & 

Greenough, 2004), the concept that animals placed in a complex learning environment will 

cognitively adjust as a result of the learning experience, also partially explains the findings. The fact 

that the control group, who also exercised at least three-times per week, failed to show significant 

improvements, may indicate that the observed changes are due to the type of exercise carried out, not 

the presence of exercise itself. In this case the training group undertook a novel, complex, 

challenging, and progressive training programme that, in many ways, mimics the dance interventions 

previously associated with positive cognitive outcomes (Hui et al., 2009; Kullberg-Turtiainen, 2012; 

Ravelin et al., 2013; Verghese et al., 2003). It should however be noted that whilst the QDP gait 
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training programme shares similarities with dance and other coordination related activities, there are 

also key differences. In particular, the current training occurs without the presence of music and is 

less rhythmic. Some of the improvements in cognitive performance related to dance could be 

attributed to the fact that music may also be a motivator and may help to enhance positive emotions 

associated with neurological rehabilitation (Kattenstroth et al. 2013). This shows that improvements 

in cognitive function can still occur without the presence of music and without a focus on rhythmic 

movements. It also suggests that if the training programme were to include these aspects the 

cognitive benefits could be enhanced.  

The quadrupedal movement undertaken by the training group required a great deal of route 

planning and remembrance of patterns, and the region of the brain that mediates these functions is 

the frontal lobe. Other frontal lobe functions include problem solving, working memory, cognitive 

flexibility, planning, movement initiation, and spatial orientation (Milner, 1964; Semmes et al., 

1963). Whilst the WCST may not be exclusively dependent upon, and specific to, the frontal lobe, 

with prefrontal, frontal, temporal, parieto-temporal, and parieto-occipital cortical regions all 

activated during various stages of WCST performance (Monchi et al., 2001; Nyhus & Braceló, 

2009), it does appear that the frontal lobe plays a major role in cognitive control (Berman et al., 

1995; Cabeza & Nyberg, 2000; Konishi et al., 1998). The frontal lobe (specifically the premotor 

cortex) and the caudate nucleus are also responsible for accurate limb positioning. It is conceivable, 

therefore, that the challenge of learning a novel and challenging new motor skill such as QDP 

stimulates the same brain regions responsible for the areas of executive function that are directly 

involved when completing the WCST. 

In the current study, it is unknown exactly when the benefits of the training occurred. In 

particular, whether improvements were larger during the initial, more novel and unfamiliar stages of 

the task (Bell & Fox 1996) and then tailed off, or whether the progressive nature of the training 

resulted in a more consistent improvement throughout.  Previous studies investigating the effect of 

http://en.wikipedia.org/wiki/Working_memory
http://en.wikipedia.org/wiki/Cognitive_flexibility
http://en.wikipedia.org/wiki/Cognitive_flexibility
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motor learning training have reported both rapid changes in brain structure, especially in parietal and 

motor areas, within the first 7-14 days, but also more consistent improvements over a longer period 

(Driemeyer, Boyke, Gaser, Buschel, & May, 2008; Taubert et al., 2010). It is also unknown how 

persistent or reversible these changes may be. Past studies have observed changes lasting for 4 weeks 

(Scholz, Klein, Behrens, & Johansen-Berg, 2009), but also indications that such changes may be 

susceptible to reversal after 8-16 weeks (Draganski et al., 2004; Driemeyer et al., 2008). The authors 

recognise that at present we do not know whether any improvements may be long lasting. Further 

research is necessary to measure the exact benefits of QDP over time. 

Future research would also be beneficial to establish the different constraints on any 

cognitive improvements. The current findings showed an interesting pattern of results across the 

three measures of the WCST with performance on the initial test lower for the TG compared to the 

CG. For instance, with perseverative errors, performance at pre-training for the TG was 16.83% and 

performance at pre-training for the CG was 13.62%. It may be proposed that when performance on 

the task is poor initially there may be more scope for improvement, potentially suggesting that the 

improvement may not be entirely dependent upon the training. This could only be explored using a 

larger sample size and controlling for a number of factors that have been shown to influence 

executive function such as age (e.g. Rhodes, 2004). However, a recent study by Nouchi, et al. (2013) 

that investigated the effects of brain training games on a variety of cognitive measures found 

significant improvements in the WCST when pre-training performance was comparable to the 

current CG group (reported percentage of perseverative errors was 13.69% and 14.60% in two brain 

training groups). It may therefore be argued that the QDP training can have a beneficial impact on 

executive function regardless of initial cognitive ability.   

With the significant results observed in a young, cognitively healthy population, the 

possibility exists that a similar intervention may have beneficial effects in other populations, such as 

an elderly population showing cognitive decline. It appears that dementia responds well to other 
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interventions, with positive cognitive changes in dementia patients associated with physical exercise, 

particularly activities that prompt creativity (Hokkanen, Rantala, Remes, Harkonen, Viramo, & 

Winblad, 2008; Hui et al., 2009; Kullberg-Turtiainen, 2012; Ravelin et al., 2013). It would be 

interesting to explore whether the same benefits can come from a QDP training programme and how 

these compare to those attributed to other forms of physical activity.  

 

 

5 Conclusion 

 

This is one of the first studies investigating the effects of QDP locomotion on cognition and joint 

repositioning. Results indicate that a novel and challenging quadrupedal gait training programme 

produced significant improvements to both joint reposition sense and cognitive control within a four-

week time frame. More investigation is required to determine how the benefits of QDP vary over 

time, yet it offers a further method for improving cognitive performance. 
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