INTRODUCTION

- Sacks et al. (2010), stated the interactions between Building Information Modelling (BIM) and Lean, arguing that to achieve the full improvements in construction projects both concepts of BIM and Lean should be adopted together.
- BIM Implementation demands changes in existing process and procedures for design and construction, representing a technology change, but also a process change. Technology should fit organizational structure and reinforce business process, making the company leaner.
- In the UK, the Government Construction Strategy (2011) mandates the use of BIM in all centrally procured projects by 2016, reinforcing the need of supply chain integration in order to accomplish reliability and better value for money, encouraging the use of offsite fabrication of building and components.
- In addition, there is a vision of the use of Building Information Modelling (BIM) to allow design to feed direct into machines, connecting design and manufacture, and discarding unnecessary intermediaries (Cabinet Office & BIS, 2011).
- BIM adoption and awareness is growing in the UK construction sector. There is an influence of the "push-pull" Government Strategy for BIM, and a 'feeling' of BIM being a new standard for project information, which is transforming the construction industry landscape.

METHODOLOGY

- The research adopts a case study methodology, including focus groups and interviews, on a BIM Implementation for Design for Manufacture and Assembly (DfMA) at Links , a design, manufacture and fit-out company based in the UK.
- The project is a Knowledge Transfer Partnership (KTP) between the University of Salford and Links. KTP is a program partly funded by Innovate UK, which aim is to support business wanting to increment their performance and competitiveness with innovative solutions by accessing universities knowledge and expertise.
- The project objective is to implement BIM within Links ensuring that the company has the expertise needed to operate in a BIM environment from design to manufacture and installation, integrating these three company areas.
- The project begun in February 2014 and has 30 months duration, divided in 5 stages, as illustrate in Figure 1:
 - **1. BENCHMARKING: Establish and consolidate best practice** knowledge in BIM;
 - 2. DIAGNOSIS: Detailed review and analysis of the organization's current situation;
 - 3. ACTION PLANNING: Develop BIM-based collaborative strategy; the current stage on May 2015
 - 4. TAKING ACTION: Pilot implementation of BIM-based collaborative strategy for DfMA;
 - 5. EVALUATE: Project review, evaluation, and dissemination.

ON ARAYICI, Y., EGBU C. AND COATES P. (2012)

Implementing BIM to Streamline a Design, Manufacture and Fitting Workflow

RESULTS CURRENT PROCESS

Figure 2 represents the Design process including interfaces with Customer and Manufacture.

- Design Preparation ideas for the space sketched by hand.
- Design Concept 2D layouts and elevations using (dwg), specification sheet (doc), and 3D visu-

RESULTS TARGET PROCESS

- plication.
- Part of the project is to develop standard component libraries with parametric models that are going to be used in concept design, and send direct to manufacture after design approval.
- The use of Component based design would speed up design process, reduce errors and increase manufacture efficiency.
- Figure 3 illustrates the input of component library on concept design process, which output is the 3D BIM model. From the 3D BIM Model, it is possible to generate 2D Drawings for Layouts and Elevations automatically, and the 3D Model is a base model for rendering (CGI).
- Table 3 compares the current process with the target process, estimating the time savings.

CONCLUSION

- So far, the project demonstrates that the combination of Lean for Process Improvement and BIM can bring efficiencies for the company.
- In the next steps, the chosen software, KPIs and target process are going to be tested on a pilot project, followed by an evaluation and review stage.

MARINA MACHADO, JASON UNDERWOOD, ANDREW FLEMING

School of Built Environment, University of Salford, Greater Manchester m.machado@salford.ac.uk

alizations (CGIs) on 3DMax.

- Once the client approves design, design outputs are sent to manufacturer sister company.
- The manufacture develop detail furniture drawings (dwg) and send to Links for approval
- After drawings sign off, 3D models (CAD) with all manufacture information are developed
- 3D models are next input into CNC Machines for production.
- Information is shared in pdf, non-editable files.

IMPROVEMENT GAIN ANALYSES

- During a set of interviews and workshops, Links staff shared their vision for improving each process, as well as, details of how to measure their performance.
- Table 1 summarize the issues founded, relating each one with Lean defined wastes, and suggestions for improvement.
- The analyses highlighted the information duplication on design-to-manufacture process: copying the same information in multiple file formats, not interoperable, with a lack of the "single version of the truth" in design projects. Duplication of information is considered a waste; moreover, duplication can cause errors and excess of inventory.

	C		Wests	Vision	Deleted Action	КРІ		Objectives	KPI	Measures	Targets % increase	
rocess	Con	nmon issue	vvaste	VISION	Related Action		Satisfy Shareholders	Increase Customers numbers		Number of Customers		
General	•	Design need to freeze in a certain point to avoid defects			Management			Increase Design Turnover		Average Sale	% increase	
	•	Lack of knowledge of fabrication process and fitting process to be able to develop new products	Skills	Integration of company departments knowledge though workshops	DfMA Training	х		Increase Conversion rate	Percentage calculated by Projects proposal/ projects			
	•	Lack of training on software	Skills		BIM Training	х	Delight Customers	Increase Customer Satisfaction	Questionnaire for Client Satisfaction Overall including service, specification, timely and accurate provision of information and personnel	Customer Satisfaction	% increase	
Concept	•	Areas of improvement: Information about the products better organized to speed up design and specification process	Over processing	BIM: Design Software, Component Library with Links products, Researchable database of	BIM Software	Х			Compare before and after BIM			
Jesign				suppliers			Effective Processes	Reduce Cycle or Lead Time	Capture time from baseline project and measure against pilot BIM Project	Cycle Time	% reduction	
	•	Cost of Design is calculated at the end of the design concept process, by other department	Motion Re-work	Implement a BIM 5D tool to have the capability of cost in early design stages	BIM Software	x		Reduce Changes	Requirements captured (EIR) Capture Number of changes to measure how	Number of Changes	% reduction	
	•	Small amendments asked by the client after the amendment period make the project finish difficult to be establish	Unclear communication	Clarify on contract the kind of amendments that are included or not in the proposal.	Management				accurate EIR are			
								Reduce changes after amendment period	Changes out of amendments period to be measured in separate	Number of changes	% reduction	
	•	Duplication of information in multiple formats Lack of a "single version of the truth"	Overproduction	BIM: Design Software interoperable with CNC	BIM Software	Х						
			Duplication					Increase Quality of information on internal handover	Provisional of Information Overall	Internal client satisfaction	% increase	
)esign Iandover	•	No formal handover to project management teams, lack of information for manufacture	Unclear communication	BIM: Common Data Environment for a better Information Management	BIM Software	х			How satisfied the internal client was with the timely and accurate provision of information by design team			
					Process change		Motivated & Prepared	Increase Core Skills	Measure employee satisfaction before and after training	Training	% increase	
					Ta	ble 1					Table 2	

• The BIM Strategy for DfMA, supported by appropriate software and considering interoperability of different software utilized from design into manufacture will eliminate the information du-

Title: Design to Manufacture Process				Date:					Title: Design to Manufacture Process - Re-engineered				Date: 06/05/15					
Step Flow				Chart Symbol									Chart Symbol					
		Flow	Time (min)					Step		Time (min)		-		▼				
				Operation	Move	Delay	Store	Inspect					Operation	Move	Delay	Store	Inspect	
1	Request Suppliers Quotation and Samples		2 days						1	Request Suppliers Quotation and Samples		2 days						
2	Spec Sheet Development		1 day						ź	Spec Sheet Development		1 day						
3	Send information to CAD/3D Visualizers		0,5 days						3	Using BIM Libraries, design model in 3D	\bigcirc	3 days						
4	Wait until CAD/3D Visualizers can allocate design		up to 7 days			>			2	Export and format Layout and Elevations	\bigcirc	1 day						
5	Prepare Layout and Elevations		2 days						5	Export and include light and finishes to final CGIs	\bigcirc	3 days						
6	Prepare CGIs		5 days						e	Prepare Mood Boards		2 days						
7	Prepare Mood Boards		2 days						-	Review CGIs and 2D Drawings		0,5 days					>	
8	Recieve and Review CGIs and 2D Drawings		0,5 days					\land	٤	Finalize Spec Sheet (paralel to CGI developement)	\bigcirc	0,5 days	\Box					
9	Finalize Spec Sheet		0,5 days						9	Handover to estimators with quantities		1 days						
10	Amend CGI		1 day						10	Wait until estimators allocate design		up to 3 days			>			
11	Handover to estimators		2 days						11	Send drawings for quotation		1 hour		\langle				
12	Wait until estimators allocate design		up to 3 days						12	Wait until Nordic can allocate quotation request		up to 4 days						
13	Send drawings for quotation		1 hour		\langle				13	Receive and review Cost plan		1 hour					>	
14	Wait until Nordic can allocate quotation request		up to 4 days		/				14	Prepare final presentation		0,5 days						
15	Receive and review Cost plan		1 hour					//										
16	Prepare final presentation		0,5 days								1	1						
	Total		17 days 2 h	14d	2.5d 1 h	14d		0.5 d 1 h		Total		14.5 days 2 h	13d	1d 1h	7d		0.5d 1h	
	Process at Nordic (manufacture)									Process at Nordic (manufacture)								
17	Send Quotation		1 day						15	Send Quotation		1 day						
18	Receive Purchase orders		1 hour						16	Receive Purchase orders		1 hour						
19	Produce furniture drawings for approval		2 days						17	Receive and Review Design for manufacture	O	2 days						
20	Send drawings for approval		1 hour						18	Send drawings for approval (*Links)		1 hour						
21	Review and sign Drawings (*Links)		0,5 day					>	19	Review and sign Furniture Detail Drawings		0,5 day					>	
22	Wait for drawings sign off		up to 7 days						20) Wait for drawings sign off		up to 7 days						
23	Design for manufacture		3 days							I	1		I		I			
	Total		6 days 1 h	6d 1h	1h	7d		0,5d		Total		3.5 days 1 h	3d 1h	1h	7d		0.5d	

As-Is Process

To-Be Process Process changes

MEASUREMENTS

- On the BIM Strategy Plan, a set of KPIs are proposed applying the Balanced Score Card methodology, that covers 4 areas of every organization: Customer, Internal Process, Financial and Learning and Growth (Kaplan & Norton, 1996). More than measuring the processes these are KPIs to control that the company is moving towards its strategic objectives. Furthermore, systematic measurements could stimulates a continuous improvement process.
- To get a comparison of the results of BIM Implementation, a baseline project is going to be measured. Next, KPIs are going to be captured on a BIM Pilot Project.
- Table 2 describe KPIs, its objectives and the proposed metrics.

Mood Board Figure 3

ACKNOWLEDGEMENTS

• The authors would like to express thanks to the Innovate UK, Links and University of Salford

Table 3