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ABSTRACT 

The tumour suppressor gene TP53 is implicated in 
the majority of all human cancers, thus pivotal to 
genomic integrity. Even though over 72,000 PubMed 
publications are linked with the keyword p53 and this 
number is continuously increasing, due to the 
complexity of its interactions we are still far from fully 
elucidating p53’s role in tumorigenesis. Computational 
methodologies are novel tools to depict and dissect 
complex disease networks. The Boolean PKT206 
p53–DNA damage model has previously 
demonstrated good predictive capability for p53 wild-
type and null tumours in various in silico knockouts. 
Here, we have expanded PKT206 to generate a more 
clinically robust representation of p53 dynamics. The 
new PMH260 model incorporates 260 nodes 
representing genes, with 980 interactions between 
them representing inhibitions and activations. 
Additional biological outputs, including angiogenesis, 
cell cycle arrest and DNA repair were also 
amalgamated into the model. Three in silico knockouts 
of highly connected nodes (p53, MDM2 and FGF2) 
were generated and logical steady state analysis and 
dependency relationships determined. 71 % of 
predictions were considered true from superimposition 
of human osteosarcoma and HCT116 microarray 
profiles. In silico knockout analysis revealed 98 
potential novel predictions, of which 13 were validated 
by literature; 83 % of them were overlapping with 
PKT206. Thus the expanded Boolean PMH260 model 
offers a promising platform for clinical potential in 
targeted cancer therapeutics.  
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INTRODUCTION 

The important functions of the tumour suppressor 
gene TP53, involved in pathological states ranging 
from neurological to cardiovascular pathologies, 
underscores the requirement for elucidation of p53 
complex regulatory networks. In particular this is 
important for cancer, where p53 mutations are 
implicated in over 50 % of human malignancies, and 
defects within its pathways are linked to tumorigenesis 
[1]. Many of these perturbations are associated with 
aberrant levels of important anti-proliferative 

processes such as apoptosis [2] and angiogenesis [3] 
to which p53 has a well-defined role. Cancer at the 
cellular level is dynamic, involving both epigenetic and 
genetic alterations resulting in genomic instability and 
inducing malignant change [4]. Treating cancer 
patients is not effective mostly because different 
molecular perturbations and tumour signatures exist 
dependent on the individual patient.  

Even though over 72,000 PubMed publications are 
linked with the keyword p53 and this number is 
increasing, we are still far from understanding the 
molecular mechanisms of the p53 system, which 
contribute to the malignant phenotype. This myriad of 
information along with p53 network intricacy is 
challenging to amalgamate. Relevant information 
about p53 actions at the molecular and physiological 
level must be integrated with the cell environment that 
is pivotal to development of optimal individualized 
targeted therapies. In order to gain increased 
knowledge of how p53 transcriptional regulatory 
networks govern genomic aberrations and malignant 
transformation, a systematic approach is fundamental 
to assimilate the diverse information into a coherent 
and holistic framework.  

Cancer systems biology is a relatively novel, yet 
promising field that can utilize genome wide data to 
analyse intracellular network perturbations [5]. These 
integrative approaches can systematize and interpret 
experimental data of multiple dimensions to elucidate 
and predict molecular principles and deviations of the 
underlying cancer phenotype. These models may be 
manipulated in silico to mimic external signals and 
mutations observed in vivo. Predictive models can be 
of both clinical and pharmaceutical relevance for the 
development of novel effective therapies. Indeed, 
several computational studies of different 
mathematical complexities have already been 
developed in an effort to address this [6]. 

Concerning mathematical models, Boolean 
networks are a promising predictive framework and 
have been applied successfully to model various 
biological phenomena [7, 8 and 9].  Boolean logic 
states that a node is assigned discrete expression 
values which qualitatively predict the temporal 
evolution of the system, where at each time point a 
node state is determined by the state of other 
upstream nodes by transfer of a Boolean function. 
This contrasts with continuous ranges of kinetic 
models, which incorporate more parameters that can 
be difficult to measure [10]. Boolean states of ‘1’/’ON’ 
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or ’0’/’OFF’, referring to for example activation of 
transcription or not, can effectively recapitulate gene 
expression in silico. Furthermore, feedback loops 
which are frequent and important signalling processes 
may also be considered.  

The PKT206 Boolean model, comprising 206 
nodes with 738 interactions [8], has previously 
demonstrated predictive potential of p53 network 
dynamics, with 51-75 % correct predictions derived 
when compared to various microarray profiles. 
Furthermore, application of the novel signal 
transduction score flow algorithm to PKT206 resulted 
in greater predictive ratios (82 %) when compared to 
identical ‘omics’ data [11]. Both these qualitative 
(STSFA) [11], and quantitative (Boolean), algorithms 
[8] have demonstrated that PKT206 successfully 
predicts overall system properties. However, the p53 
network is extensive with a plethora of p53 responsive 
genes that govern multivariate pathways. 
Consideration of this is fundamental for a better 
molecular depiction of the p53 – cancer network. 
Therefore in this study we have expanded PKT206 to 
PMH260 (p53 Michelle Hussain, 260 nodes), which 
includes 260 nodes with 938 interactions between 
them of inhibition or activation. For clinical relevance 
additional biological outputs were also introduced into 
the model to include: apoptosis, angiogenesis, cell 
cycle arrest, cellular senescence and DNA repair. In 
order to test the predictive capability of the extended 
p53 model we superimposed ‘omics’ data to PMH260. 
Furthermore, three highly connected nodes of the 
network were subjected to in silico knockout tests of 
different p53 and DNA damage statuses to predict 
network perturbations.  

METHODS 

Generation of PMH260 

PKT206 generation was described in detail 
elsewhere [8]. Briefly, PKT206 considers 203 nodes 
representing genes / proteins, connected with 738 
interactions of inhibition or activation derived from the 
STRING database. These binary interactions were 
connected to two downstream outputs: apoptosis and 
cellular senescence, and one upstream DNA damage 
input. All nodes were connected to each other through 
direct interactions. The PKT206 model includes all 
direct interactions with p53 and all direct interactions 
between genes/proteins that interact with p53. The 
model was analysed using CellNetAnalyzer as 
described below [13].  

For construction of PMH260, interactions and 
nodes were derived from the STRING database (9.1), 
available at (http://string-db.org) [12]. Additional nodes 
(n = 54), and interactions between new and previous 
nodes (n = 242) from PKT206 were amalgamated into 
the new model. Interactions were filtered by a 
confidence score over 0.7, which is a threshold for 
high confidence assigned by STRING. Manual 
curation of these interactions was also undertaken by 
extensive scientific literature search in order to ensure 
model accuracy. 

Addition of biological outputs 

Three additional biological outputs of 
angiogenesis, cell cycle arrest and DNA repair were 

included into the PMH260 model. Dependent on the 
biological processes they regulate, nodes (excluding 
input and outputs) (n = 254) were connected to these 
outputs by edge functions of inhibition, activation, or 
ambivalent factor. These were initially selected using 
Gene Ontology (GO) terms and were additionally 
validated by literature to confirm the interactions. As 
the PKT206 model included only one input node (DNA 
damage) and two output nodes (apoptosis and cellular 
senescence), the additional biological outputs of 
angiogenesis, cell cycle arrest and DNA repair were 
added into PMH260. Then, relevant nodes 
downstream of p53 within the PKT206 model (n = 203) 
were also linked to the above mentioned three 
outputs. 

In silico analysis of PMH260 

CellNetAnalyzer (CNA) is an independent software 
platform designed for MATLAB enabling the user to 
run various algorithms for structural and functional 
analysis of biochemical, metabolic, and signalling 
networks [13]. The model is represented by an 
interaction hypergraph where nodes are connected by 
interactions of binary effects (activation or inhibition). 
Interactions can be combined by operators of: ‘AND’ 
(where a hyperarc connects several input nodes), ‘OR’ 
(several arcs connect to the same output node) and 
‘NOT’ (opposite state of the source node activates the 
target node). For in silico analysis the PMH260 
network was generated in CNA and two techniques 
were utilized: Dependency Matrix calculations and 
Logical Steady State Analysis (LSSA).  

Dependency relationships between species may 
be analysed with the construction of a dependency 
matrix (M) that displays all pair-wise node 
dependencies.  

These relationships are calculated by the shortest 
distance between node pairs, represented by six 
different values indicating relationships between nodes 
as defined by: 

 

i. If no negative or positive path exists between node 
i and node j, i has no effect on j. 

ii. If both a negative and positive path exist from node 
i to node j, i is an ambivalent factor of j. 

iii. If only negative paths exist from node i to node j 
with negative feedback loops present, i is a weak 
inhibitor of j. 

iv. If only positive paths exist from node i to node j 
with negative feedback loops present, i is a weak 
activator of j. 

v. If only negative paths exist from node i to node j 
with negative feedback loops absent, i is a strong 
inhibitor of j. 

vi. If only positive paths exist from node i to node j 
with negative feedback loops absent, i is a strong 
activator of j.  

http://string-db.org/
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Knock out analysis of highly connected 
nodes  

To investigate node dependency relationships in 
response to various in silico knockouts (KOs), the 
connectivity of all nodes was determined using 
CellNetAnalyzer (3.1) [13], and visualised in 
Cytoscape (2.8) [14], and the three most highly 
connected nodes in the network chosen. Selected 
nodes and corresponding edges were deleted from the 
model to represent in vivo KO or mutation. Depending 
on the effect of a particular node deletion, the 
relationships between remaining nodes within the 
network can be defined by the six above-mentioned 
values.  

Application of Logical Steady State Analysis  

Logical Steady State (LSS) analysis is a method 
for predictive input – output relationships in signalling 
networks [14]. A steady state is reached when the 
state of nodes is fully consistent with its Boolean 
function, and as such once a network has reached a 
LSS it will remain there over time. The state of some 
nodes may remain undetermined if multiple LSS 
solutions are possible for the same input conditions.  

Files listing proteins and interactions were 
generated for PMH260 in accordance with [14]. Four 
different scenarios were constructed which represent 
in vivo processes such as loss of p53 function due to 
mutation (mimicked in silico by removal of the p53 
node) in the presence and absence of DNA damage 
(Table 1).  

Deletion of p53 from the network was undertaken 
by removing the node and all associated edges to 
generate a p53 KO scenario. The DNA damage input 
was switched to ‘0’/‘OFF’ or ‘1’/‘ON’ depending on 
input required. 

Genome wide validation of PMH260  

Predictions that were derived from LSSA of the 
various in silico scenarios were compared to 
microarray data of human osteosarcoma U2OS (p53 
+/+) and SaOS2 (p53 -/-) cell lines exposed to 
etoposide-induced DNA damage and untreated 
conditions from [8]. To further test the model’s 
predictive power, ‘omics’ profiles of HCT116 p53 wild 
type and null human cell lines available from the Gene 
Expression Omnibus (Accession number GSE10795) 
were also investigated. This analysis was conducted in 
accordance with [8, 11] and is described below. The 
predicted state of a node, (i) for p53 wild-type and p53 
mutant were defined as S(i)wt and S(i)mu respectively. 
Both could take values of 0, 1 or NaN. A variable Emod 

represented the predicted change of gene state from 
p53 wild type to mutant where: 

Emod = 0, if S(i)wt = 1 and S(i)mu = 1 

Emod = 0, if S(i)wt = 0 and S(i)mu = 0 

Emod = 0, if S(i)wt = NaN and S(i)mu = NaN 

Emod = 1, if S(i)wt = 0 and S(i)mu = 1 

Emod = 1, if S(i)wt = 0 and S(i)mu = NaN 

Emod = 1, if S(i)wt = NaN and S(i)mu = 1 

Emod = -1, if S(i)wt = 1 and S(i)mu = 0 

Emod = -1, if S(i)wt = 1 and S(i)mu = NaN 

Emod = -1, if S(i)wt = NaN and S(i)mu = 0 

The expression level of a gene (i) derived from 
experimental validation was defined by the 
parameter Eexp where:  

If expression level of i was up-regulated, Eexp = 1 

If expression level of i was down-regulated, Eexp = -1 

If expression level of i was unchanged, Eexp = 0 

The fold change (FC) between experimental and 
simulated data was calculated for each gene, defined 
by the equation: 

FC =  =
𝑀1 (𝑖)

𝑀2(𝑖)
 

Where M1(i) is the median of expression values in 
the target condition and M2(i) is the median of 
expression values in the source condition. Threshold 
values (θ) were applied to normalise expression profile 
distributions, using (x) and (σ) of the log10 FC scores, 
of (θmax and θmin), defined as:  

θmax = x + σ 

θmin = x - σ. 

 
 
 

Scenario No. In silico comparative simulation 

I p53 wild type DNA damage ON vs. p53 knockout DNA damage ON 

II p53 wild type DNA damage OFF vs. p53 knockout DNA damage OFF 

III p53 wild type DNA damage OFF vs. p53 wild type DNA damage ON 

IV p53 knockout DNA damage OFF vs. p53 knockout DNA damage ON 

Table 1. Four in silico scenarios generated for LSSA of DNA damage ON/OFF in the presence / absence of p53. 
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Gene activity obtained from microarray data was 
further determined by the equation:  

log10 FC > x + σ: Up-regulated 

log10 FC < x - σ: Down-regulated 

x - σ <= log10 FC <= x + σ : No change 

Where x represents the mean and σ the standard 
deviation.  

For comparison of both datasets, we analysed 
changes in each gene response between experimental 
and in silico conditions. The predicted change of gene 
activity may be defined by a variable Emod of three 
states. Differences between model simulations (Emod) 
and experimental observations (Eexp) were defined as 
(Emod – Eexp) and could take on one of three values (0, 
1 or 2): a correct prediction corresponds to the value 
of 0, which means that both experimental and 
simulated outcomes were the same; a small error 
prediction corresponds to the value of 1, which means 
that one outcome was ‘no change’ and the other ‘up or 

down-regulated’; a large error prediction corresponds 
to the value of 2, which means that one outcome was 
‘up-regulated’ and the other was ‘down-regulated’ 

RESULTS 

PMH260 network topology  

The PMH260 network comprises 260 nodes in 
total with 980 interactions of inhibition or activation. 
The DNA damage input to the model serves as 
environmental stress of which 42 nodes are linked to. 
Of these, five are inhibited by DNA damage and the 
remaining activated. 34 feedback loops were identified 
to which p53 participated in over 50 % (n = 18). 117 
nodes were located upstream of p53, with 164 
downstream. Of the total 254 internal nodes, 27 nodes 
were considered as ambivalent and these were 
located both up and downstream of p53. Among the 
outputs, 28 nodes were linked to DNA repair, 62 to cell 
cycle arrest, 68 to cellular senescence, 42 to 
angiogenesis and 118 to apoptosis (Figure 1). 

 

 

 

Figure 1. The PMH260 p53–DNA damage model. Five layers are observed in accordance with node function; the input signal 
of DNA damage (green), upstream of p53 (yellow), the network hub, p53 contained within the crucial feedback loop with MDM2 
(red), downstream of p53 (turquoise) and five downstream outputs (orange). Red lines signify inhibition, blue activation. 
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PMH260 network analysis 

We investigated the LSS of the PMH260 model by 
considering four in silico comparative scenarios of 
different DNA damage and p53 status to identify 
network perturbations resulting from loss of p53. 
These scenarios are summarized in Table 1.  

204 node states out of 260 (78.5 %) were 
determined in p53 wild-type background with DNA 
damage OFF, meaning that 149 nodes were up-
regulated and 56 nodes were down-regulated (Figure 
2A, lanes 4 and 5). Thus, 55 nodes had undetermined 
states (‘NaN’), (Fig 2A, Lane 6). These undetermined 
states are obtained where several stable states may 
exist for the same input conditions. Similarly, 205 
states were determined out of 260 nodes (78.8%) in 
p53 wild-type background with DNA damage ON 
(Figure 2A, lanes 1 and 2). In comparison, reduced 
system stability was observed in p53 KO models with 
over half of all nodes undetermined from the total: 147 
(57 %) and 148 (57.1 %) for DNA damage ON and 
OFF respectively, when compared to p53 wild type 
(Figure 2A; lanes 9 and 12). All output signals 
remained active across all scenarios.  

In the presence of p53, a greater number of up-
regulated nodes were observed compared to p53 KO 

backgrounds: 164 (63 %) when DNA damage was ON 
in the presence of p53, compared to 101 (39 %) when 
p53 was deleted with DNA damage ON (Figure 2A; 
compare lanes 1 and 7).  

Nearly a 4-fold increase was observed in the 
number of down-regulated nodes in the presence of 
DNA damage in p53 wild type background, 41 
(15.7 %), when comparing to p53 KO, 11 (4 %), 
(Figure 2A, compare lanes 2 and 8). Only a 2-fold 
increase in the number of down-regulated nodes was 
seen when DNA damage was OFF in the presence of 
p53, 56 (21.5 %), compared to when DNA damage 
was OFF in p53 KO background, 30 (11.6 %), (Figure 
2A; compare lanes 5 and 11). 

LSSA of angiogenic and apoptotic node 
states 

As both angiogenesis and apoptosis are pivotal to 
tumour formation and progression, we focused on 
investigating the effect of their node state changes in 
response to the four in silico comparative scenarios 
presented in Table 1. The Gene Ontology database 
was used to annotate biological processes involved in 
angiogenesis and apoptosis for each node.  

 

 

 

Figure 2. Distribution of all PMH260 nodes under LSSA. A) All nodes in each condition. B) Nodes regulating angiogenesis 
under LSSA. C) Nodes regulating apoptosis under LSSA. DD: DNA damage, WT: Wild type. KO: Knockout. 
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Of the apoptotic nodes, 45 were anti-apoptotic and 
73 pro-apoptotic nodes, constituting 28 % and 17 % of 
the total network respectively (Figure 2C). Globally, 
increased up-regulation of pro-apoptotic nodes was 
observed in p53 wild type, compared to p53 KO 
backgrounds (Figure 2C; compare lanes 1 and 7 to 
lanes 13 and 19). Across all scenarios a greater shift 
of nodes to undetermined states was observed when 
p53 was removed from the network (Figure 2C; 
compare 6 and 12 to lanes 18 and 24). The numbers 
and percentages of expressed angiogenic and 
apoptotic nodes under these comparative conditions 
are summarized in Supplementary Table 2.  

Distribution of pro-angiogenic node states 

Increased pro-angiogenic node up-regulation (n = 
21) was observed in p53 wild type backgrounds 
compared to when p53 was deleted (n = 17) (Figure 
2B; compare lanes 1 and 13). This was regardless of 
DNA damage presence as it was also noted in 
scenario II (Table 1 for p53 wild type with DNA 
damage OFF, with p53 knockout with DNA damage 
OFF having 21 and 16 nodes up-regulated 
respectively (Figure 2B; compare lanes 7 and 19).  

When DNA damage was ON, only a single node 
(STMN1) was down-regulated in the p53 KO scenario. 
This was compared to 4 (14.8 %). when p53 was 
present. (Figure 2B; compare lanes 14 and 2). The 
growth factor PDGFRB was up-regulated when p53 
was deleted from the network when DNA damage was 
ON.  

Some nodes were considered DNA damage 
dependent. For example, the oncoprotein STMN1 was 
exclusively up-regulated in the absence of DNA 
damage and down-regulated in its presence. In fact, 
STMN1 down-regulation was observed across all 
scenarios regardless of p53 status. Similarly, the proto 
oncogene JUN was repressed only when DNA 
damage was OFF and enhanced in its presence.  

Four pro-angiogenic nodes (14.8 %) were down 
regulated in p53 wild-type backgrounds regardless of 
DNA damage (BDKRB1, EPHB4, IGF1R and 
PDGFRB). Up-regulation of nodes ELAVL1 and 
PDGFRB along with JUN was observed in response to 
DNA damage, but they were repressed in its absence 
in p53 KO backgrounds. The ambivalent factor FGF2 
was down-regulated in p53 KO background in 
response to DNA damage (see Supplementary 
Document 1). 

Distribution of anti-angiogenic node states  

There were no major differences in anti–
angiogenic node state changes across all comparative 
scenarios. No down-regulation of nodes was observed 
in the presence of p53 (Figure 2B; see lanes 5 and 
11). Two anti-angiogenic nodes were down-regulated 
(tumour suppressors PML and ELAVL1) when DNA 
damage was OFF in the absence of p53 (Figure 2B, 
lane 23). The number (n=11) (73.3 %) and particular 
nodes up-regulated remained identical in p53 wild type 
backgrounds, regardless of DNA damage input, 
(Figure 2B; lanes 4 and 10). Anti–angiogenic node up-
regulation was slightly increased in the p53 KO 
background (n = 6) (40 %) when DNA damage was 
ON to 4 (27 %) when DNA damage was OFF (Figure 
2B; compare lanes 16 and 22). The only differentially 

up-regulated node across all scenarios was the 
tumour suppressor ING5 which was enhanced only in 
p53 KO backgrounds in response to DNA damage 

LSSA of apoptotic node states caused by 
changes in p53 and DNA damage  

The majority of pro-apoptotic nodes were up-
regulated when p53 was present compared to p53 
deletion backgrounds. In fact, nearly a 3–fold increase 
of up-regulated pro-apoptotic nodes (n = 53) (72.6 %), 
was seen in the presence of p53, compared to when 
p53 was deleted from the network (n = 20) (27.4 %), 
(Figure 2C; compare lanes 1 and 7 to lanes 13 and 
19). This was observed in both scenarios I and II 
(Table 1, compare columns 1 and 2). Thus, this was 
regardless of DNA damage input. Some nodes were 
exclusively repressed when p53 was deleted and only 
enhanced in its presence, such as the DNA damage 
response gene GADD45A. 

Investigating the effects of DNA damage OFF and 
ON in the presence of p53 (scenario II of Table 1), the 
majority of pro-apoptotic nodes exhibited no change; 
the number of up-regulated nodes for DNA damage 
ON was 56 (77 %), and 53 (72.6 %) for DNA damage 
OFF (Figure 2C, see lanes 1 and 7). The majority of 
up-regulated nodes were identical in both conditions 
(Supplementary Document 1). 

Distribution of anti-apoptotic node states 

Interestingly, a greater number of anti-apoptotic 
nodes were up-regulated in the presence of p53 than 
in p53 KO backgrounds. This was regardless of DNA 
damage. However, over 50 % of these anti-apoptotic 
up-regulated nodes are also pro-apoptotic including: 
DAXX, DDIT4, DUSP2, DUSP4, EGFR, ESR1, FHL2, 
and PRKCA. In addition, several of these nodes also 
have roles in angiogenesis, and include: EGFR, 
PRKCA and PTGS2 (Supplementary Document 1). 

Comparing up-regulation of anti-apoptotic to pro- 
apoptotic nodes, nearly a 2-fold increase among pro-
apoptotic nodes is observed when p53 is present 
(Figure 2C; compare lanes 1 and 7 to lanes 4 and 10). 
Of the 31 anti–apoptotic nodes up-regulated in p53 
wild type scenario, the majority were also considered 
pro–apoptotic, with additional roles in angiogenesis. 

Down-regulation of anti-apoptotic nodes was 
greater in p53 wild-type backgrounds compared to p53 
deletion backgrounds (Figure 2C; compare lanes 5 
and 11 to lanes 17 and 23): 7 (15.5 %) in p53 wild type 
with DNA OFF, and 5 (11 %) in p53 WT with DNA 
damage ON, compared to 2 (4.4 %), and 4 (8.8 %), for 
DNA damage ON and DNA damage OFF respectively 
in p53 deletion backgrounds. Of these in p53 WT 
backgrounds, the majority of nodes were identical 
apart from the proto oncogene BCL3 and the growth 
factor regulated gene EPHB4, which were down-
regulated in the presence of p53 (Supplementary 
Document 1). Some nodes were up-regulated across 
all conditions such as the anti-apoptotic factor BCL2. 

Comparing the effect of DNA damage ON and OFF 
in p53 wild type backgrounds (scenario III of Table 1), 
the number of up-regulated nodes was similar across 
both conditions: 32 (71 %) in response to DNA 
damage and 31 (68 %) in its absence (Figure 2C; see 
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lanes 4 and 10). Of these, the majority of nodes were 
identical (Supplementary Document 1). 

Dependency changes in response to in silico 
removal of highly connected nodes 

The most highly connected three nodes within the 
model, being p53, MDM2 and FGF2, were chosen for 
in silico KO analysis to investigate network 
perturbations in their absence, mimicking in vivo loss 
of function mutations. The effect of a particular node 
deletion can result in relationship changes within the 
network, as defined by the six values given in the 
methods section. These changes are presented in 
Table 2.  

The total number of dependencies (n = 67,600) 
(260×260) represents elements in the dependency 
matrix of the p53 wild-type model. Of these, 40653 
correspond to interactions with no effect, 20988 are 
ambivalent factors, 2761 are weak inhibitors, 3048 are 
weak activators, 48 are strong inhibitors and 102 
strong activators. For any knockout (KO) scenario the 
total number (n = 67,081) represents the elements 
within the network after a particular node deletion 
(259x259). We focused on changes in strong 
activators or strong inhibitors as these have the 
greatest effect on the cell. p53 KO had the strongest 
effect when compared to the wild-type interactome. 
When p53 was deleted from the network, the number 
of strong inhibitors nearly doubled from 48 in p53 wild 
type to 71 in p53 knockout, (Table 2). The p53s 
negative regulator MDM2, which is contained within an 
intricate feedback loop with p53, induced only two 
changes when deleted.  

The majority of the dependency changes in p53 
KO scenario were altered to strong activators (n = 65) 
and strong inhibitors (n = 23), from ambivalent factors 
in PMH260 wild type. As noted in Supplementary 
Table 1, two changes from weak activators in wild type 
to strong activator in p53 KO were noted, being 
DYRK2 and MAPK1WA. Interestingly, several nodes 
changed from having no influence on angiogenesis in 
the wild type scenario to having a strong inhibitory 
(COL181A, PPARG and PML), or activating 
(MAPK1WA, MMP2, MMP13, NTN1, S100B, SGK, 
PRAK and STMN1) angiogenic effect in the absence 
of p53.  

Similarly, TFDP1, GTSP1 and EZH2 had no 
influence on cell cycle arrest in the presence of p53, 

however when p53 was excluded from the network all 
three became positive regulators of cell cycle arrest. 
Only one weak inhibiting interaction to strong activator 
was observed in p53 wild type to KO, namely for 
PPMID targeting CHK1. For MDM2 KO, one 
dependency change was observed within the whole 
network, namely for ATM to DYRK2. These 
relationship changes are summarized in 
Supplementary Table 1. 

Genome wide validation of PMH260 

The PMH260 model has derived potential novel 
predictions during in silico analyses of LSSA and 
dependency changes. Some of these predictions were 
confirmed either by previous literature or verified in the 
laboratory. Even so, only a minority of predictions 
could be experimentally verified. To investigate the 
predictive efficiency of PMH260, microarray profiles of 
etoposide treated and untreated osteosarcoma SaOS2 
(p53 -/-) and U20S p53 (p53 +/+) were compared 
against LSSA data. For further investigation, 
microarray profiles of HCT116 colon cancer cell lines, 
(p53 null and wild type) were also compared.  

The fold change and expression profiles of both 
microarray and in silico datasets were calculated 
according to the formula described in [8, 10 and 25]. 
Genes classified as ‘small error’ or ‘large error’ (see 
methods) were ranked based upon the number of 
times their response was incorrectly predicted. A 
‘small error prediction’, was assigned a score of 1, a 
‘large error prediction’ a score of 2. Incorrect gene 
scores for all predictions across all simulations were 
added to produce a total score. For example, if a gene 
was given a large error prediction in three conditions, 
and a small error prediction in one condition, its total 
score would be 3*2 + 1 = 7. A score of 4 was defined 
as the threshold to consider that the response of a 
gene was consistently incorrectly predicted by the 
network. To achieve this score, a gene must receive a 
small error prediction in over half of the simulations, or 
a large error prediction more than once, or a large 
error prediction and two small error predictions.  

The true prediction percentage ranged from 55 to 
71 % with an average of 61.2 % across all simulations 
when compared to microarray data. Large errors were 
in the minority, corresponding to less than 5 % of the 
total predictions, with a mean of 2.9 %. Small errors 
comprised 35 % for all simulations (Table 3).  

 

 In silico scenario 

 p53 wild type p53 KO MDM2 KO FGF2 KO 

Total Number 67600 67081 67081 67081 

No effect 40653 59864 40607 40462 

Ambivalent factor 20988 6862 20359 20722 

Weak inhibitor 2761 38 2847 2725 

Weak activator 3048 79 3116 3022 

Strong inhibitor 48 71 48 48 

Strong activator 102 167 104 102 

Table 2. Distribution of changes in dependency matrix elements in response to three in silico KO tests. A greater effect 
on the network was observed in the absence of p53 than other KOs. Of the 6 defined relationships, the majority of changes 
were from ambivalent to strong activators. 
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   Percentage (%) 

Experimental 
Source 

Experimental Target Model LSSA in silico simulation Correct 
Small 
error 

Large 
error 

U2OS cells 
with DNA 
damage 

SaOS2 cells with 
DNA damage 

p53 wild type DNA damage ON vs. 
p53 KO DNA damage ON 

55 40 4.5 

U2OS cells no 
DNA damage 

SaOS2 cells no DNA 
damage 

p53 wild type DNA damage OFF vs. 
p53 KO DNA damage OFF 

58 37 5 

U2OS cells no 
DNA damage 

U2OS cells with DNA 
damage 

 p53 wild type DNA damage OFF 
vs. p53 wild type DNA  damage ON 

71 29 1 

SaOS2 cells no 
DNA damage 

SaOS2 cells with 
DNA damage 

 p53 KO DNA damage OFF vs. p53 
KO DNA damage ON 

68 31 1 

HCT116 p53 
+/+ no DNA 
damage 

HCT116 p53 -/- no 
DNA damage 

 HCT116 p53 wild type vs.       
HCT116 p53 null  

55 42 3 

Table 3. Percentage of all predictions from comparison of in silico data to microarray profiles. Correct predictions were in 
the majority across all simulations with large errors occupying a small percentage of results when comparing osteosarcoma and 
colon cancer ’omics’ profiles to in silico data under LSSA. The expected correct prediction rate for a random model is 33 % 
since there are three possible prediction outcomes (up, down or unchanged) with equal probability in a random model. 

DISCUSSION 

The tumour suppressor p53 maintains genomic 
integrity [27]. Dissecting the role of p53 and its 
regulatory networks is pivotal to a greater 
understanding and subsequent implementation of 
successful therapies. Systems biology teamed with 
traditional reductionist approaches are novel, yet 
promising tools to describe the complexity of diseased 
systems such as cancer [5].  

PKT206 has demonstrated good predictive 
capability for p53 – DNA damage pathways. Even so, 
the p53 network is extensive, with over 1000 p53 
responsive genes described [28]. To capture these, a 
larger model is necessitated. Extensive models allow 
for a global system overview and thus better 
representation of biological phenomena, which can 
effectively capture sub networks and mutation drivers. 
For correct representation, models must incorporate 
and depict the heterogeneity of diseased states and 
the processes that govern them. Angiogenesis and 
apoptosis for example are pivotal properties to the 
tumour environment. These processes are involved in 
cell signalling and thus consideration of these is 
crucial to capture tumour dynamics [5]. Here we have 
incorporated an additional three outputs allowing for 
the many processes involved in p53 governed 
tumorigenesis to be modelled and analysed 
systematically. Thus, the expanded PMH260 model 
should have better clinical relevance. 

To mimic in vivo mutations and elucidate the role 
of deleted nodes on PMH260 network dynamics, three 
in silico KO tests of highly connected nodes were 
performed. The greatest effect was observed when 
p53 was removed from the network deriving 98 
predictions. In comparison, deletion of the p53 
negative regulator MDM2, resulted in two changes into 
strong activator dependency changes, whereas no 
change in strong dependencies occurred for FG2 
removal; numerous changes in other dependencies 
occurred across all knockouts. This is due to the fact 

that p53 is the most highly connected ‘hub’ node of the 
model and participates in the majority of feedback 
loops. The majority of dependency changes are 
potential novel predictions. 13 of these 98 predictions 
were confirmed by literature search or experimentally 
verified [8, 15-19 and 21-26]. Of the 24 dependency 
changes described in PKT206 for p53 deletion, 22 
(83 %) in PMH260 were in agreement. This highlights 
the accuracy and reproducibility of the p53 
interactome. Most of the prediction differences derived 
from dependency simulations were from new nodes 
introduced into PMH260. Several nodes were altered 
from no angiogenic effect to having a positive 
influence on angiogenesis, similarly two nodes 
changed from no influence in the wild type to positive 
cell cycle regulators in the p53 mutant. This indicates 
the role of p53 in maintaining the stability of the whole 
network, highlighting its well defined role as a tumour 
suppressor, and offers therapeutic potential for p53 
null and wild type tumours.  

As apoptosis and angiogenesis are clinically 
significant, we investigated the effects of both pro and 
anti-apoptotic and angiogenic changes in response to 
different p53 and DNA damage statuses using LSSA.  

Increased up-regulation of pro-apoptotic nodes 
were observed compared to anti-apoptotic in p53 wild 
type backgrounds. This suggests that in the presence 
of p53 there would be a favourable apoptotic increase. 
Many of these up-regulated anti-apoptotic nodes are 
ambivalent factors towards apoptosis: for example, 
over 50 % of up-regulated anti-apoptotic nodes were 
also pro-apoptotic. PMH260 at present is a global 
cancer model and thus differential expression for a 
particular gene may be cell / tissue specific. Indeed, 
p53 is known to transcriptionally regulate target genes 
in a context specific manner [29]. This however 
provides a window of therapeutic opportunity by 
inhibiting anti-apoptotic nodes of specific tumour 
phenotypes. Those anti-apoptotic plus pro-angiogenic 
nodes are ideal candidates for targeted inhibition. For 
example, SGK, TGFA, TPT1, and VEGFA display 
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such activity. Indeed several anti VEGFA drugs have 
been described with clinical trials undertaken [30]. 

As PMH260 revealed both important established 
and novel predictions that could be of therapeutic 
interest, investigation of its predictive accuracy was 
needed. Thus we superimposed and compared 
osteosarcoma and HCT116 expression profiles to the 
p53 interactome. Good prediction ratios were derived 
with 58-71 % of correct predictions across all 
simulations, which significantly exceeds an expected 
probability of 33 % for a random model which has 
three possible prediction outcomes with equal 
probability. Importantly, combining true predictions and 
small errors resulted in over 90 % of successful 
predictions. 

Predictive ratios here are similar to those obtained 
from PKT206. This is promising, as the model 
increases so does network complexity, which is often 
difficult to simulate and analyse. Comparing differential 
expression profiles of apoptotic and angiogenic factors 
in silico to ‘omics’ p53 wild type and null profiles has 
derived several important predictions of therapeutic 
relevance. For example, pro apoptotic GADD45A was 
down-regulated only in p53 KO (SaOS2) backgrounds. 
Whilst anti-apoptotic JUN and ambivalent factor DAXX 
were DNA damage responsive and up-regulated in 
both p53 wild type and KO backgrounds. In parallel 
with [8], growth factors were also uncovered as 
contributing factors to osteosarcoma; the pro-
angiogenic and apoptotic ambivalent factor FGF2 was 
down-regulated in SaOS2 cells under DNA damage, 
whilst anti-apoptotic PDFGRB and IGF1R, along with 
growth factor regulated genes EPHB4 and PTGS2, 
were up-regulated in SaOS2 cells under DNA damage 
and HCT116 cells, suggesting cell specific regulation. 
Furthermore, several novel predictions were obtained 
which may be of relevance contributing to the p53 null 
tumour phenotype, For example, TFDP1, GSTP1 and 
EZH2 altered to positive cell cycle regulators upon p53 
deletion. Similarly, 8 genes changed to pro-angiogenic 
factors in p53 KO scenario.  

In summary, the PMH260 model provides 
increased coverage of potential expression changes in 
cancer. Validation of its predictive power through 
comparison to microarray profiles showed good 
results. This highlights the predictive performance of 
large-scale Boolean models for the investigation of 
DNA damage inducible pathways. Several important 
prospective predictions have been reported here, 
which offer putative anti-cancer therapies for the 
inhibition or enhancement of target genes or perturbed 
pathways in both p53 null and wild type tumours in 
osteosarcoma and colon cancers. This offers a 
promising platform for personalized targeted therapies 
where individual ‘omics’ patient’s profiles may be 
superimposed for single or multiple mutations.  
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