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Abstract 

Functionalisation with hydrogen could allow exploitation of the remarkable 

electronic properties of graphene by creating tuneable electronic band gaps as well as 

offering access to its incredibly high surface area-to-volume ratio for uses in advanced 

materials by opening pathways to conventional organic chemistry on the material. 

While partially-hydrogenated graphene is regularly produced and its properties 

studied, the current methods of producing the material – which typically employ 

bombarding graphene with atomised hydrogen – have not yet shown the potential to 

synthesise fully-hydrogenated graphene, termed graphane. 

This thesis describes an alternative method of hydrogenating graphene by 

heating the material in an atmosphere of molecular hydrogen under high pressure (2.6 

– 6.5 GPa) in a diamond anvil cell. The hydrogen content of functionalised samples can 

be estimated by observing the Raman spectrum and such analysis suggests that the 

diamond anvil cell method currently hydrogenates samples to an extent that is 

competitive with existing methods. By tailoring the sample architecture to allow 

hydrogen direct access to both sides of a graphene crystal, it is feasible that the 

diamond anvil cell method of hydrogenation could be used to synthesise the first 

graphane crystal. 

Also presented in this thesis is a series of experiments probing methane in the 

supercritical region of its pressure-temperature phase diagram, combining Raman 

spectroscopy and direct structural measurements through X-ray diffraction. At 298K, 

we observe discontinuous changes in the vibrational Raman spectrum of methane 

which are not accompanied by a change in density. This phenomena may be explained 

by a crossing of the recently-theorised Frenkel line or by critical point proximity effects 

described by Widom in the 1960s. The Raman discontinuity is not observed at 523 K, 

suggesting that alternative methods must be employed to conclusively determine the 

presence (or absence) of the Frenkel line.
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Chapter 1. Introduction 

1.1. Hydrogenation of graphene 

The recent discovery of graphene – a single layer of hexagonally(sp2)-bonded 

carbon atoms forming a large two-dimensional crystal – has attracted interest in the 

material both in the lab for its insight into fundamental quantum mechanics 

(Novoselov 2007, Nair 2008, Dean 2013) and in industry for its remarkable electronic 

and mechanical properties (Novoselov 2012, Lee 2008). The impact of graphene on 

21st century science is put into perspective by the awarding of the Nobel Prize in 

Physics to Kostya Novoselov and Andre Geim in 2010 for its discovery and by the 

announcement of the Graphene Flagship project to fund development of the material 

for science and technology, worth €1billion in funding directly from the European 

Union, in 2013 – both accolades occurring within a decade of the first measurements 

on the material in 2004 (Novoselov 2004). 

Graphene can be considered a basic building block for graphitic materials of 

all dimensionalities. From Figure 1.1, we can see that two-dimensional graphene 

sheets can be rolled to form one-dimensional carbon nanotubes or zero-dimensional 

buckminsterfullerene molecules, or they can be stacked to create three-dimensional 

graphite (Geim 2007). It is also expected to react with hydrogen to form hexagonally-

bonded monolayers of sp3 carbon, or graphane. 
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Figure 1.1: Graphene is a building block for carbon materials, it can be rolled into 

buckminsterfullerene molecules or carbon nanotubes, or it can be stacked to create 

graphite (Geim 2007). 

In order to modify its band structure, graphene has been partially 

hydrogenated (Elias 2009). Hydrogenated graphene becomes insulating at high 

hydrogen coverage, but the size of its band gap can be tailored by controlling the levels 

of hydrogenation (Balog 2010), demonstrating how the material could be useful for 

creating circuits directly onto the graphene lattice (Novoselov 2009). In spite of its 

calculated stability (Sofo 2007), a method to synthesise fully-hydrogenated graphene 

has not yet been developed, existing methods only achieve low levels of hydrogen 

coverage. 

Half a century prior to the discovery of graphene, high pressure and high 

temperature conditions were utilised in the enormous heated presses employed by 

20th century scientists at General Electric to aid the conversion of planar sp2 into 

tetrahedral sp3 carbon when they successfully synthesised man-made diamond for the 

first time from graphite seeds (Bovenkerk 1959). More recently, C60 molecules and 

glassy carbon have been converted to nanocrystalline diamond under high pressure 

(Regueiro 1992, Dubrovinsky 2012). By acknowledging these phenomena, it seems 
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reasonable to expect that compressing graphene to high pressures under high 

temperature in the presence of hydrogen should facilitate the conversion of purely sp2 

bonded graphene into its sp3 bonded counterpart graphane. 

The motivation of the work presented in this thesis is to design a method 

whereby graphene can be reacted with molecular hydrogen in a diamond anvil cell 

using a combination of high pressure and high temperature to form hydrogenated 

graphene. Unless stated otherwise, the term graphene throughout this thesis refers to 

pristine, monolayer graphene. Similarly, graphane refers only to fully-hydrogenated 

graphene with stoichiometry CH – i.e. a hydrogen atom attached to every carbon atom 

in the lattice. When discussing partially-hydrogenated graphene, graphone is 

sometimes used in the literature (Kvashin 2014), but hydrogenated graphene will be 

used throughout this thesis. 

1.2. The Frenkel line 

The accepted understanding of fluids has been challenged in recent years by a 

new model of liquids (Brazhkin 2012) based on groundwork by Soviet scientist Yakov 

Frenkel detailed in his textbook, “Kinetic Theory of Liquids” (Frenkel 1946). In 

particular, the Frenkel-inspired model predicts physical changes between two fluid 

states beyond the critical point. 

Liquids, gases and supercritical fluids are defined on the pressure-

temperature phase diagram (Figure 1.2a) through the van der Waals equation of state. 

In order to account for the potential energy between particles in a gas, 19th century 

scientist Johannes van der Waals made corrections to the existing ideal gas model, 

leading to the van der Waals equation of state: 

  
2

B

N
P a V Nb Nk T

V

  
    
   

  1.1 

Where N is the number of particles, kB is the Boltzmann constant and a,b are 

the van der Waals constants, specific to different materials (Baierlein 1999). The van 

der Waals equation predicts an oscillation in PV isotherms (Figure 1.2b), which 
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converges with increasing temperature until forming a critical point at some 

temperature TC. The oscillations in T < TC isotherms appear to predict three stable 

volumes and a negative compressibility over a range of pressures, which are not 

observed in a real system. Real materials instead follow the coexistence line as a result 

of corrections by Maxwell (Maxwell 1875), and an isothermal increase in pressure 

below TC exhibits a sudden decrease in volume, i.e. a first-order phase transition 

between liquid and gas which forms the boiling line (Figure 1.2b). 

 

Figure 1.2: (a) Example of a pressure-temperature phase diagram, with a critical 

point c.p. (b) Isotherms of the van der Waals equation of state. Red dot locates the 

critical point, red dashed line the spinodal line and black dashed line signifies 

coexistence between liquid and gas. 

Above TC, the oscillation disappears and no transition between liquid and gas 

is observed. Here, the material enters the supercritical fluid state, where classically 

there exists no distinction between liquid and gaseous states. However, the new 

Frenkel-based model considers particle motion in liquids to be a duality of solid-like 

and gas-like dynamics (Trachenko 2013), and predicts certain pressure and 

temperature conditions under which a liquid tends more towards “gas-like” or “solid-

like” behaviours, predicting a discontinuous crossover which is termed the Frenkel line 

(Brazhkin 2012). 
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Supercritical fluids find common use in science and technology. Supercritical 

methanol provides a catalyst-free method of esterifying vegetable oils into biodiesel 

for fuel engines (Fukuda 2001), while supercritical water allows pyrolysis of wet 

biofuels to extract hydrogen more effectively than traditional pyrolysis (Demirbas 

2007). Carbon dioxide has a critical temperature close to ambient temperature 

(Linstrom 2011), opening up the potential for supercritical CO2 to be used as a solvent 

in place of conventional chemistry lab solvents, already utilised in pharmaceutical 

processes (Subramaniam 1997), with a more favourable environmental impact 

(Beckman 2003). It is also supercritical carbon dioxide which makes up the majority 

of the atmosphere of our neighbour planet, Venus (Bolmatov 2014). A proper 

understanding of the supercritical fluid state – or states – is thus important for 

developing our collective understanding of planetary sciences and potentially useful in 

refining green technologies. 

To describe the two predicted liquid states at either side of the Frenkel line, 

far beyond the critical point, we adopt the terminologies “solid-like”/“gas-like” or 

rigid/non-rigid fluid. 

1.3. Thesis outline 

Including this introductory chapter, this thesis will comprise 7 chapters 

covering the use of a heated diamond anvil cell in both the initiation of the chemical 

reaction between graphene and hydrogen and the probing of methane in its 

supercritical region in search of the Frenkel line. 

Chapter 2 will provide an introduction to the properties of graphene which 

have been determined since its experimental discovery in 2004. In particular, § 2.2 will 

discuss the increased availability of graphene to researchers and technologists via the 

development of large-scale synthesis methods. § 2.3 will outline the potential uses of 

graphene derivatives – highlighting important experimental findings made since the 

discovery of graphene on its derivatives and their properties. 

Chapter 3 will discuss Raman spectroscopy and its usefulness in determining 

structure and bonding in graphene and derivatives. §§ 3.2 and 3.3 in particular hope 
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to give a detailed overview of how changes in the Raman spectrum of the material can 

be used to qualitatively judge changes due to functionalisation and begin to quantify 

the content of adatoms. 

An introduction to experimental techniques at high pressure and high 

temperature in a diamond anvil cell will be provided in Chapter 4. In particular, issues 

with measuring pressure at relatively low diamond anvil pressure and elevated 

temperatures using popular methods will be addressed and alternatives suggested in 

§ 4.2. 

Results from experiments on graphene and hydrogen at high pressure and 

high temperature will be presented in Chapter 5, detailing a proof of concept that 

hydrogenated graphene will form readily from graphene and molecular hydrogen at 

sufficient pressure and temperature and exploring the extent and rate of the reaction 

at various pressure-temperature combinations and the stability of the hydrogenated 

graphene samples produced. 

The results of high pressure experiments performed on supercritical methane 

will be presented in Chapter 6, following an introduction to the microscopic model 

behind the Frenkel line and its macroscopic predictions in § 6.1 and a brief discussion 

of the fluid X-ray diffraction capabilities of the European Synchrotron Radiation 

Facility in § 6.2. 

Chapter 7 will provide an overview of the conclusions that can be drawn from 

experiments on graphene under compression in hydrogen (§ 7.1) and discuss the 

necessary steps to be taken in order to further understand hydrogenated graphene 

samples prepared by this method and extend the hydrogen content towards synthesis 

of graphane. In § 7.2, the presented results of compression of methane above its critical 

temperature will be discussed and experiments proposed which could provide 

confirmation or contradiction of the Frenkel line theory.
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Chapter 2. Synthesis of graphene and 

functionalised graphene 

2.1. Realisation of graphene 

The graphite structure comprising stacked sheets of flat, hexagonally-bonded 

carbon has been known since the early 20th century (Bernal 1924), and models of the 

electronic structure of an individual layer of graphite have been formulated since the 

1940s (Wallace 1947, McClure 1957). In his derivation of the band structure of 

graphene, P R Wallace predicted that a single layer of graphite has semimetallic 

properties, with a linear dispersion relation close to the Fermi level that varies 

according to FvE k . Here, vF is the Fermi velocity (vF ≈ 106 ms-1) which is independent 

of energy and momentum – i.e. it acts as a “speed of light” for charge carriers in 

graphene (Wallace 1947, Castro Neto 2009). 

Single planes of graphitic carbon were successfully isolated from graphite by 

Novoselov and Geim in 2004 (Novoselov 2004) and given the name graphene, 

following naming conventions from organic chemistry (Boehm 1986). Novoselov et al. 

experimentally observed the semimetal or zero band-gap semiconductor nature of 

single- and few-layer graphene that had been predicted by Wallace and subsequent 

models (Castro Neto 2009) for the first time (Novoselov 2004). The group went on to 

confirm that charge carriers in graphene behave as massless Dirac fermions, such that 

their energy is proportional to their momentum as predicted, and made empirical 

measurements of the Fermi velocity (Novoselov 2005). The massless nature of its 

electrons and the chemical and physical stability of graphene – that allow it resistance 
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against defects – can result in ballistic carrier transport over distances up to 1 µm 

(Castro Neto 2009). 

 

Figure 2.1: (a) sp2 hybridised molecular orbitals, grey shaded orbitals are the 

unhybridised pz orbitals. (b) sp3 hybridised molecular orbitals. (c,d) Visualisations of 

ideal and real graphene landscapes. The nano- and microscopic corrugation of the 

graphene sheet allows freestanding regions to be stable even when samples are only 

partially supported by a substrate (Meyer 2007).  

Figure 2.1 shows two hybridised atomic orbitals which the electrons in carbon 

commonly occupy when forming bonds in organic molecules or in bulk carbon. sp2 

orbitals are formed by a combination of the 2s and two of the 2p atomic orbitals 

(nominally 2px and 2py), leaving the third p orbital (2pz) unchanged (grey orbital in 

Figure 2.1a) – resulting in a set of three sp2 orbitals forming a plane. Through 

overlapping of sp2 hybridised orbitals, carbon atoms form σ bonds to form hexagonal 

or pentagonal aromatic rings, as in the molecule benzene or its two-dimensional 

polymer graphene, while the overlapping of the pz orbitals creates a weaker π bond. In 

sp3 hybridisation, all of the 2p orbitals are hybridised, resulting in a tetrahedral 

distribution of orbitals which is seen in the bonding of methane molecule or the crystal 

structure of diamond. 

90°
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x y
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Atomic-scale observations made on graphene deposited onto silicon dioxide 

substrates using scanning tunnelling microscopy (STM) (Ishigami 2007) and on quasi-

freestanding graphene using transmission electron microscopy (TEM) coupled with 

electron diffraction measurements (Meyer 2007) showed that samples feature long-

range, smooth ripples. It is suggested that these ripples are an integral component of 

the crystal structure of graphene which allow it stability in spite of its atomic thickness 

(Fasolino 2007, Meyer 2007). Due to rippling effects in graphene (Figure 2.1d), it is 

convenient to consider the bonding of the material not as pure sp2, but to comprise a 

very small sp3 contribution. This can be written shorthand as sp2+η (0 ≤ η ≤ 1), where η 

represents the degree of curvature. This is seen already in carbon nanotubes or 

buckminsterfullerene molecules, which can be thought of as graphene “rolled up” 

(Figure 1.1) (Saito 2004). 

Mechanically, the Young’s modulus of graphene places it alongside other 

carbon allotropes such as graphite and carbon nanotubes as one of the strongest 

materials measured (Lee 2008), which has spurred research into graphene-based 

composite materials that benefit from the mechanical strength of monolayer graphene 

and nanographite (Potts 2011). Graphene has been subject to tensile uniaxial strain 

(Mohiuddin 2009), compressive biaxial strain in a diamond anvil cell (Proctor 2009, 

Filintoglou 2013) and both tensile and compressive biaxial strain on a soft substrate 

(Ding 2010), with all experiments in agreement that the Grüneisen parameters 

defining the frequency of Raman-active phonon modes in relation to lattice volume of 

graphene – and thus its elastic properties – closely resemble those for graphite. 

The unique ballistic electronic transport properties of graphene make it a 

highly attractive replacement for current electronic materials such as silicon, and 

when coupled with its optical transparency a desirable alternative to the fragile and 

expensive indium tin oxide which had previously dominated research into next-

generation photovoltaics (Mattevi 2010). A complete review of the potential uses of 

graphene that are currently being explored is not within the scope of this thesis, the 

most recent “roadmap” for graphene spans over 200 pages and features contributions 

from 64 authors from around the globe (Ferrari 2015), and discusses the need for a 

controllable band gap in graphene to properly access its electronic capabilities. At 

present band gaps in graphene are commonly opened by synthesising graphene 
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nanoribbons (Bai 2010), where the gap size can be tailored according to the width of 

the nanoribbon (Han 2007), but there is interest in controlled functionalisation as a 

method of opening tailored band gaps (Balog 2010, Haberer 2010). 

2.2. Synthesis of graphene 

The samples produced by Novoselov et al. for the first ever study of graphene 

were produced using repeated mechanical separation of high-quality graphite samples 

using adhesive tape and deposition onto a silicon substrate with a 300 nm silicon 

dioxide layer (Novoselov 2004 and supplementary information) – a process that has 

come to be known as micromechanical cleavage or the “scotch tape method”. This 

substrate choice is important as it allows thin graphite, few-layer or monolayer 

graphene samples to be identified though optical microscopy though interference 

colour changes caused by the reflection through the transparent SiO2 layer (Novoselov 

2005).   

 

Figure 2.2: Interference colour changes in reflected light from a Si-(300 nm)SiO2 

surface due to mechanically-cleaved graphite and graphene. Yellow regions show 

thicker graphite, while pale purple regions (top left) show thinner graphene 

(Novoselov 2004, supplementary information).  
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Figure 2.2 shows thin graphitic carbon deposited on a Si-SiO2 substrate using 

the scotch tape method and the effects of thickness on their colour. Optical microscopy 

can be supplemented with Raman spectroscopy measurements on thin regions to 

confirm monolayers. A discussion of the Raman spectrum of graphene and its changes 

with increasing layer number can be found in § 3.2. Since the first isolation of graphene 

via this method, significant advances have been made in the production of large-scale, 

high-quality monolayer graphene samples. While micromechanical cleavage is still a 

viable and utilised option to produce high-quality graphene (Ansell 2015), other 

synthesis methods are now viable. 

Epitaxial growth on silicon carbide has been implemented for growing thin 

graphite for decades (Berger 2004, de Heer 2007). Physically, the process occurs as the 

silicon in SiC sublimes at high temperature, and the remaining carbon is annealed into 

sp2 layers (“graphitisation”, see Figure 2.6, § 2.3). Whilst growing graphene on the 

carbon face of SiC and increasing the number of layers grown can see improvements 

in the electronic properties (de Heer 2007, Mattevi 2011), the structural quality of 

epitaxially-grown graphene as determined by Raman spectroscopy (§§ 3.2 and 3.3) 

does not match mechanically-cleaved graphene, especially after transfer to a different 

substrate (Ni 2008, Ferralis 2010). 

Synthesis techniques are still hotly researched (Geng 2015) in hopes of 

reproducibly creating large-scale single crystals of monolayer graphene and improving 

batch processing of polycrystalline graphene. Existing methods include growth on 

metal surfaces by segregation of carbon atoms from a metallic host and the 

graphitisation at high temperatures on the wafer-scale (Liu 2011), which can also be 

used to grow layered heterostructures of graphene with other two-dimensional 

materials (Zhang 2015), arc discharge of graphite electrodes (Subrahmanyam 2009, 

Levchenko 2010) and plasma “unzipping” of carbon nanotubes to create 

semiconducting nanoribbons of mono- and few-layer graphene (Jiao 2009). 

2.2.1. Chemical vapour deposition growth of graphene 

Of the alternatives to mechanical cleavage, chemical vapour deposition (CVD) 

of carbon onto catalytic metal substrates is the most wide-spread method of producing 
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large-scale samples of monolayer graphene. Samples grown on metal are able to be 

transferred in large areas by inexpensive and simple lithographic procedures and 

inexpensive metals such as copper or nickel are capable of catalysing the growth of 

graphene (Mattevi 2010), giving CVD a clear-cut advantage over epitaxial growth on 

expensive SiC, where sophisticated techniques are required to transfer samples and 

samples suffer damage (Unarunotai 2009). 

Recently, researchers from Sony Corporation have used chemical vapour 

deposition onto copper substrates to grow high-quality monolayer graphene at 

industrial proportions, demonstrating sheets of CVD-grown polycrystalline graphene 

transferred onto epoxy sheets 100 m in length (Kobayashi 2013). By allowing the 

natural oxide layer to remain on copper substrates to inhibit their catalytic activity – 

and thus the rate of formation of new nucleation sites – single crystal samples of 

graphene can reach areas of 16 mm2 (Figure 2.3a) (Zhou 2013). 

 

Figure 2.3: Microscope images of CVD-grown graphene on copper. (a) 5 mm 

graphene single crystal formed by CVD with severely limited nucleation sites, scale 

bar is 1 mm (Zhou 2013). (b) SEM image showing crystals of monolayer graphene 

roughly 100 µm in size covering a copper substrate after being grown by CVD using 

methane (Li 2009). 

Experiments detailed in this thesis were performed using monolayer 

graphene samples grown by CVD onto copper substrates using high temperature 

decomposition of methane (Li 2009, Mattevi 2010), provided by colleagues at 

a b 
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University of Manchester. Our samples resemble Figure 2.3b, with graphene crystals 

of the order of 100-500 µm completely covering both sides of an 8 µm thick substrate 

of copper foil. 

2.3. Functionalisation of graphene 

Graphene is remarkably chemically inert. Carbon atoms in pristine graphene 

will form bonds with oxygen (Pei 2012), chlorine (Li 2011), fluorine (Nair 2010) or 

hydrogen (Elias 2009). While oxygen bonds very readily with graphene, its two valence 

electrons form bonds with two carbon atoms in the lattice which causes structural 

damage, and can form double bonds with carbon with the creation of a dislocation in 

lattice, thus the quality of graphene oxide is poor (Eigler 2013). Halogens, especially 

fluorine, form bonds with graphene while preserving the hexagonal structure 

(Leenaerts 2010), but the bonds are too strong to be easily broken (Nair 2010). We 

turn our attention, then, to hydrogen. 

 

Figure 2.4: Atomic structures of (a) graphene, (b) boat graphane and (c) chair 

graphane, with unit cells marked by dashed lines (Flores 2009). 

The stability of fully-hydrogenated graphene, or graphane, was determined by 

Sofo et al., who suggested that individual hydrogen atoms can sit on alternating sides 

of the graphene sheet to form “boat” graphane or in pairs to form “chair” graphane – 

both formations were found to be stable (Sofo 2007). These studies have been 

reinforced since, with additional formations of graphane becoming more stable at high 

pressure (Wen 2011). 

a b c 
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Electronically, Sofo et al. predict that graphane is insulating (Sofo 2007). For 

lower levels of hydrogenation, however, numerous groups suggest smaller band gaps 

that depend on the hydrogen content – allowing the potential for synthesis of fine-

tuned band gaps by controlling the extent of hydrogenation (Balog 2010, Chandrachud 

2010, Haberer 2010, Gao 2011). An interesting result from calculations by Savini et al. 

suggests that, with subsequent doping, partially- and fully-hydrogenated graphene 

could become superconducting at liquid nitrogen temperatures (Savini 2010). 

 

Figure 2.5: Changes in electronic and structural properties in graphene upon partial 

hydrogenation. (a) Electric field effect in graphene develops a strong temperature 

dependence upon hydrogenation (middle blue curves, temperatures in K above 

curves) compared with pristine and dehydrogenated graphene (top red and bottom 

green curves respectively) (inset: architecture of graphene Hall bar device), (b,c) 

Lattice parameter changes upon hydrogenation, red lines represent the lattice 

parameter of pristine graphene, blue and green lines show measurements on 

hydrogenated graphene (Elias 2009). 

b 
a 

c 
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Evidence that graphane could be synthesised in the lab was first provided by 

Elias et al., who exposed graphene to hydrogen plasma and noted changes in its 

electronic and structural properties (Elias 2009). Figure 2.5a shows the electric field 

effect of pristine, hydrogenated and dehydrogenated graphene on a similar device to 

that used in the first study on graphene (Novoselov 2004) after exposure to hydrogen. 

The electric field effect, first measured by Novoselov et al., is temperature independent 

in pristine graphene, but develops a strong temperature dependence with 

hydrogenation – sheet resistance increases by a factor of 100 and charge carrier 

mobility was reported to decrease by four orders of magnitude when hydrogen is 

added (Elias 2009). The extent of the effect on sheet resistance is seen elsewhere to be 

a function of the extent of hydrogenation (Burgess 2011). 

Through electron diffraction, Elias et al. were able to measure the in-plane 

lattice parameters of their partially-hydrogenated samples when prepared as a 

membrane and hydrogenated from both sides (Figure 2.5b and c). In spite of 

predictions to the contrary (Sofo 2007, Leenaerts 2010) – indeed, even simple 

calculations based on known C-H and C-C bond lengths from other hydrocarbons 

suggest that the in-plane lattice parameter should grow – the measurements show an 

overall decrease. The only existing discussion of this phenomenon in the literature 

considers that the small number of expanded hydrogenated regions are collectively 

compressing the remaining pristine graphene, since the hydrogen coverage is 

incomplete (Bangert 2010). 

A crucial result of the study by Elias et al. is that it is possible to remove the 

hydrogen from partially-hydrogenated graphene using thermal annealing at 450°C, 

whereupon the electronic properties and structure of pristine graphene return (Elias 

2009), whereas structural annealing of pure carbon into sp2 layered sheets 

(graphitisation) does not commence until temperatures exceeding 500°C (Figure 2.6) 

(Saito 2004). Thus, the thermal removal of hydrogen from hydrogenated graphene acts 

as conclusive evidence that the changes in electronic and structural properties were 

due to hydrogen bonded to the graphene, and not due to other structural damage to 

the lattice. Thermal dehydrogenation of hydrogenated graphene is a widespread 

method of confirming hydrogenation, in some cases, hydrogen is seen to leave 

hydrogenated graphene at temperatures as low as 75°C (Luo 2009). 
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Figure 2.6: Stages of graphitisation of carbon – the structural rearrangement of 

carbon into sp2 layered sheets with temperature annealing (Saito 2004). 

Reports that the hydrogenated graphene can be decomposed by heating to 

such low temperatures contrasts with the conventional chemistry of the C-H bond, 

otherwise recognised as highly stable. In order to explain this, it is important to 

consider the environment surrounding the C-H bonds and the effects that this might 

have on the bond strength. For example, each of the sp3-s C-H bonds in methane is able 

to exist at its optimum length and angle since the carbon atom is bonded only to three 

other hydrogen atoms – the lightest atom. As a result, this bond is not seen to break 

completely until temperatures up to 1200 K (Lenz-Solomun 1994). In the case of 

hydrogen bonding to graphene, the hydrogen atoms bond to a tertiary carbon atom 

which is in turn bonded to three tertiary carbon atoms, ad infinitum, to form a large, 

rigid two-dimensional crystal or macromolecule. The stiff carbon skeleton of graphene 

is unlikely to deform perfectly to sp3 in order to facilitate the new C-H bonds, and the 

system will be under considerable strain. This discrepancy in bond angles compared 

with the perfect case (i.e. η < 1 rather than η = 1) likely leads to a severe reduction in 

the bond strength. 

A useful comparison to make is with the C-H bond in buckminsterfullerene 

hydrogenated to saturation (C60H60), where the C-H bond energy is reduced 
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considerably compared with methane (Bakowies 1992), though it is important to 

acknowledge that even C60H60 – an ordered molecule with constant η – is under less 

strain than we would expect in partially-hydrogenated graphene – where we have 

long- and short-range variations in η. 

The observations that the reaction between graphene and hydrogen is 

reversible also demonstrate the feasibility of carbon-based materials in solid-state 

hydrogen storage, where there is a need to reversibly bond hydrogen to the lightest 

element(s) possible to maximize hydrogen storage capacity by weight. Lithium is an 

unsuitable candidate since lithium hydride will not decompose until temperatures 

approaching 1000°C (Johnson 2002) and due to the volatility of pure lithium with 

water, while beryllium is both rare and toxic and boranes (BH3 and B2H6) are gaseous 

at ambient conditions. A proper understanding of, and ability to control, the reaction 

between pristine graphene and hydrogen will therefore be critical in the development 

of carbon-based solid state hydrogen storage materials – especially since fully-

hydrogenated graphane has not yet been synthesised, and the relationship between 

hydrogen content and reversibility is not known for higher hydrogen content. 

 

Figure 2.7: Atomic-scale STM images of graphene grown epitaxially on SiC and 

hydrogenated with atomised hydrogen. The hexagonal structure of pristine graphene 

is shown to reappear when hydrogen is removed from the surface using electronic 

field-stimulated desorption (Sessi 2009). 
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The reversibility has also been demonstrated by Sessi et al., accompanied by 

impressive scanning tunnelling microscope (STM) images (Figure 2.7). Samples could 

be selectively dehydrogenated by applying a bias between the STM tip and 

hydrogenated graphene with the precision to form nanometre-scale features, within 

which the electronic properties of pristine graphene are observed to return (Sessi 

2009). Selective dehydrogenation of hydrogenated graphene has also been performed 

by Wang et al., who developed a plasma-enhanced CVD method to grow hydrogenated 

graphene directly, and use thermal annealing or irradiation with a laser to create 

pristine graphene features on the micrometre scale (Wang 2010). The high levels of 

control over the dehydrogenation of insulating hydrogenated graphene presents an 

alternative method through which the functionalised material can be used to 

synthesise tailored band gaps – through patterning of graphene nanoribbons into 

hydrogenated regions. 

With further functionalisation of graphene by replacing hydrogen atoms with 

other functional groups, the effectively infinite surface area-to-volume ratio of 

graphene could be exploited for fast and effective drug molecule carriers in 

biomedicine (Yang 2013) and bio-sensors (Kuila 2011), and improvements in the 

bonding between graphene and host materials in composite materials could see 

improvements of their mechanical properties (Potts 2011). 

2.4. Functionalised nanographite 

A common approach to producing large batches of hydrogenated graphene is 

a top-down approach employing the wet chemistry method known as Birch reduction 

onto either graphite or graphite oxide. This process utilises an alkali metal (typically 

lithium or sodium (Yang 2012, Eng 2013)) which forms a salt in a solution of ammonia 

to act as an electron source, and an alcohol to act as a proton source (Birch 1944). The 

reaction then takes place over two stages, the salt provides the graphite with electrons 

to form local anionic sites, which draw protons from the alcohol to form hydrogenated 

groups on the lattice (Pumera 2013). 
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Figure 2.8: SEM images of hydrogenated graphene samples produced by Birch 

reduction of graphite oxide. Scale bars are 0.1, 1 and 10 µm in columns left to right 

(Eng 2013). 

Figure 2.8 shows the product of Birch reduction of graphite oxide: a powder 

comprising three-dimensional particles of graphitic carbon on the nanometre scale, 

with structural defects caused by damage to the sp2 sheets as a result of oxygen atoms 

bonding to the lattice in two locations during the oxidation stage. The presence of 

defects is well-known (Bagri 2010) and it is possible that a large proportion of the 

hydrogen content is bonded to existing defects and not pristine lattices. It is important 

to point out that monolayer graphene is unable to exist without at least partial support 

from a substrate at temperatures above 0 K without out-of-plane phonons causing it 

to “melt” into amorphous 3D carbon (Meyer 2007), making it possible to conclude that 

such suspensions do not contain monolayer graphene. While such samples are widely 

published as hydrogenated graphene or even graphane in the literature (Sofer 2015), 

their defective, three-dimensional nature does not qualify them for comparison with 

samples of functionalised monolayer graphene.



  3.1 Raman spectroscopy 

20 
 

Chapter 3. Raman spectroscopy 

3.1. Raman spectroscopy 

A small proportion of the light incident on a material is scattered inelastically 

in processes which either generate or annihilate vibrational and rotational modes in a 

molecule or phonons in a crystal. The processes are called Stokes and anti-Stokes 

Raman processes for generation and annihilation respectively, and – since energy is 

conserved – give rise to: 

 0 mscatteredE E E    3.1 

Classically, when light is incident on a material, its electric field component E 

creates an induced dipole moment µ, which depends on the polarisability of the 

material α via: 

  E   3.2 

Due to intrinsic motions m (i.e. vibrations, rotations or phonons) of the 

material, its polarisability oscillates and can be expressed in terms of a static 

polarizability α0 and a time-dependent term with magnitude αm and frequency νm as: 

  0 m mcos 2 t       

And 3.2 becomes: 

  0 m mcos 2 t    E E   3.3 

The electric field component of the incident light varies with a frequency ν0 

according to: 
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  0 0cos 2 tE E   3.4 

Combining equations 3.3 and 3.4, we have: 

      0 0 0 m 0 m 0cos 2 cos 2 cos 2t t t      E E   

By employing trigonometric identities, the induced dipole moment due to 

incident electromagnetic radiation can be rewritten as: 

      0 0 0 0 0 0 m 0 0 0 m

1 1

2 2
cos 2 cos 2 cos 2t t t                

   
 E E E   3.5 

The oscillating charge due to this induced dipole moment thus re-emits 

radiation at three frequencies according to each of the terms in equation 3.5. The first 

term relates to the elastic Rayleigh scattering process, where the scattered light has 

same frequency as the incident light. The second and third term correspond to inelastic 

Raman scattered light, where the frequency of the scattered light is altered when some 

of the incident energy is used to create (the second term – Stokes scattering) or 

annihilate (the third term – anti-Stokes scattering) a vibration in a molecule or a lattice 

phonon in a crystal (Moore 1983). 

A quantum mechanical treatment of Raman scattering processes is aided by 

the energy level diagram in Figure 3.1, a visual representation of equation 3.1 which 

shows the transitions into a virtual, unstable energy state due to the interaction with 

the incident photon and the re-emission of a photon due to Rayleigh and Raman 

processes. 
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Figure 3.1: Energy level representation of light scattering processes, displaying the 

excitation of a material into some virtual energy state by the incident photon, from 

which it decays to produce the scattered photon. 

Fermi’s golden rule from perturbation theory gives the probability of a 

transition occurring between two states, initial i and final f, with wavefunctions ψi,f 

(Moore 1983). The probability is expressed as the transition dipole moment p: 

 if p    

Through equation 3.2, the transition moment can be written in terms of the 

incident electric field and the polarisability of the material: 

 if  p E   3.6 

We can assume that the wavefunctions ψi,f are orthogonal, and as such, 

equation 3.6 acts as a selection rule for Raman scattering as it dictates that the 

transitions shown in Figure 3.1 lead to a non-zero induced dipole moment only when 

they create a change in the polarisability α of the material (Moore 1983, Hollas 1996). 

This selective property  makes Raman spectroscopy a powerful tool for observing the 

structural properties of a material, since only specific phonons and molecular 

vibrations are available to a lattice or molecule, based on its symmetry. It is also why 

we do not observe a Raman spectrum from metals, as the metallic bonding – where 
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valence electrons exist as a free gas surrounding a lattice of metal cations – means that 

the material is infinitely polarisable. 

Following equation 3.1, it is conventional that Raman spectra are displayed in 

units of wavenumbers relative to the excitation energy, allowing for a direct 

measurement of the energy of the phonons or molecular vibrations which give rise to 

features in the spectrum. 

3.2. Raman spectrum of graphene 

Raman spectroscopy has a long history in structural analysis of carbon 

materials, with different allotropes of carbon displaying the same sets of features 

between 1000 and 3000 cm-1, but their shapes, positions and relative intensities giving 

great insight into the material’s structure on the atomic level – Figure 3.2 gives a range 

of examples of Raman spectra of bulk carbon and carbon nanomaterials. 

The Raman spectrum of monolayer graphene was first measured by Ferrari et 

al. and its most prominent features are the sharp peak at ~1580 cm-1, termed the G 

peak, and the more intense peak at ~2700 cm-1, the 2D peak (Ferrari 2006), similar to 

the Raman spectrum of bulk graphite (Figure 3.2), which has been measured since the 

1970s (Tuinstra 1970, Tsu 1978). 
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Figure 3.2: Raman spectra of various macroscopic and nano-scale carbon materials, 

each exhibiting some combination of “D” and “G” peaks (Ferralis 2010). 

The G peak can be explained by standard group theory derivations of the 

normal modes for a single layer of graphene, which gives four normal modes (Tuinstra 

1970, Reich 2004), of which the E2g mode is the only Raman active mode. It is important 

to point out that the motion of the carbon atoms in the E2g vibrational mode (see Figure 

3.3) is a stretching motion between pairs of sp2-bonded carbon atoms and does not 

require presence of aromatic rings for its activation, explaining its presence in 

amorphous carbon and linear chain molecules (Ferrari 2000). 
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Figure 3.3: Visual representations of the motion of sp2 bonded carbon atoms due to 

the A1g and E2g phonon modes, responsible for the D and G bands respectively in 

carbon Raman spectra. 

The D peak in graphite was measured alongside the G peak in various graphitic 

materials by Tuinstra & Koenig, and the similarities between the D peak in defective 

graphite and the peak seen in diamond were immediately dispelled by noting 

discrepancies in the relative intensity and position of the peak (Tuinstra 1970). This is 

supported by the observation that the Raman scattering efficiency of sp3 carbon in 

diamond is some 55 times smaller than that of planar sp2 carbon, thus the small 

volumes of sp3 carbon to be expected in high-quality graphite would not lead to a 

sizeable Raman peak (Wada 1980). 

Instead, the D peak in pure graphite is explained by the finite particle size of 

graphite crystals caused by defects or edges. By considering the graphite crystallites 

as large but finite molecules, a new normal mode of vibration can be deduced, the A1g 

phonon (Figure 3.3) which is not Raman active in an infinite crystal (Tuinstra 1970). 

Further confirmation that the D band in graphitic carbon is due to non-sp2 defects can 

be sought by chemical modification of graphite, where reactants add defect sites to the 

lattice and the distance between defects becomes an effective crystallite size, Wang et 

al. showed that reactions with boron and oxygen produce a D peak identical to that 

observed near crystal edges (Wang 1990). 

A E1g 2g

D band G band
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Figure 3.4: Intra-valley double resonance Raman scattering processes in sp2 carbon 

which lead to (a) the D peak through defect scattering (Ferrari 2007) and (b) the 2D 

peak in pristine graphene and graphite (Ferrari 2006). 

Unusually, the D peak in carbon exhibits a dispersion with excitation energy 

which Thomsen & Reich explain to be a result of a double resonance process shown in 

Figure 3.4a, whereby electrons are scattered between the bands of the linear phonon 

dispersion near the K and Kʹ points of graphite and then elastically scattered by defects 

or edges (Thomsen 2000, Ferrari 2007). A similar, but intra-valley, scattering process 

can occur between the branches near the Γ point, giving rise to the Dʹ peak around 

1620 cm-1 in defective sp2 carbon (Ferrari 2007). By showing, alongside data from 

Vidano et al., that the 2D peak at ~2700 cm-1 – then often termed Gʹ – has a dispersion 

which is double that for the D peak, Wang et al. deduced that the 2D peak is the second 

overtone of the D peak (Vidano 1981, Wang 1990). 

It is interesting, then, that we are able to see a 2D peak in pristine graphene 

and graphite, without the defects which activate the D peak. Ferrari et al. attribute the 

2D peak to a double resonance process comprising two phonons at the K and Kʹ points 

with equal and opposite momentum – arrow q in Figure 3.4b (Ferrari 2006). This two-

a 

b 
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phonon process does not require defects, and thus the 2D peak is observed in pristine 

graphene and graphite (Ferrari 2013). 

Ferrari et al. describe the same double resonance process for bilayer 

graphene, where the electronic properties are changed due to interactions between 

the two layers, causing the π and π* branches of the electronic dispersion to split 

(Ferrari 2006, Piscanec 2007). This leads to a 2D peak in bilayer graphene comprising 

four components, visible in the fitting of the 2D peak in Figure 3.5b (Graf 2007). The 

evolution of the 2D peak with number of atomic layers of graphene (Figure 3.5) clearly 

distinguishes monolayer and bilayer graphene samples from thicker nanographites 

and bulk graphite. 

 

Figure 3.5: Change in the shape of the 2D peak of sp2 carbon with the number of 

layers, from a single sharp peak in monolayer graphene to a broad doublet in bulk 

graphite. (a) Note the shift in position and difference in shape of the 2D band with 

changing excitation frequency (Ferrari 2006), (b) Note the increased splitting of the 

components (numbers left) of the 2D peak with increasing layers (Graf 2007). 

a 

b 
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The drastic change in 2D peak shape shown in Figure 3.5 allows easy 

identification of monolayer graphene. This can be supported by a calibration of the G 

peak frequency ωG, which varies with the number of layers n according to: 

 
 

G 1.6

11
1581.6

1 n
  


  

Which gives an expected G peak position of 1588.1 cm-1 for monolayer 

graphene (Wang 2008). 

 

Figure 3.6: Representative Raman spectrum of graphene samples grown on copper 

substrates used throughout this work presented with fitted peaks from MagicPlot 

Student software. Confirmation that the samples are monolayer comes from the 

position of the G peak (Wang 2008) and the shape of the 2D peak (Ferrari 2006). 

An example of the Raman spectrum of graphene samples used throughout this 

thesis is shown in Figure 3.6 (details on spectrometer arrangement can be found in § 

3.5), with no indication of D peak activity suggesting defect-free sp2 carbon. The 2D 

peak is clearly symmetrical and can be fitted with a Gaussian peak, and the measured 

G peak frequency is within 0.4 cm-1 of the expected value from calculations, both 

confirming the monolayer nature of the samples. 
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Due to the small sample sizes and necessity of a substrate material for 

graphene, the accuracy of traditional methods for chemical analysis such as mass 

spectrometry or combustible element analysis is hindered. However, modification of 

graphene brings about important changes in its Raman spectrum due to the change in 

its structure – the most striking of which is the development of the D peak. 

The D peak, as discussed in § 3.2, is related to disorder in graphitic carbon. The 

relationship between its intensity and crystallite size in graphite has been known since 

the recording of the graphite Raman spectrum by Tuinstra & Koenig, who noted the 

intensity ratio ID/IG is linear with the inverse of the crystallite size LD (Tuinstra 1970). 

The relationship was more recently studied at a variety of wavelengths and with LD 

measured accurately, using both STM imaging and X-ray diffraction Scherrer 

broadening, on a range of samples by Cançado et al., who determine a general 

relationship between LD and ID/IG (Cançado 2006): 
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  3.7 

However, the Cançado study uses a minimum crystallite size of 20 nm. 

Expansion of the relationship below 20 nm has been performed by Lucchese et al., who 

show the evolution of the Raman spectrum of graphite upon deliberate generation of 

defects in the lattice caused by bombardment with Ar+ ions (Lucchese 2010). Atomic 

resolution STM images are used to determine defects per unit area, and thus their 

average spacing LD, which is plotted against the Raman intensity ratio ID/IG in Figure 

3.7 – which shows a peak in the relative D peak intensity at around LD = 4 nm. 
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Figure 3.7: Behaviour of D to G peak intensity ratio ID/IG as a function of reducing 

spacing LD between defects (λ = 514.5 nm) (Lucchese 2010). 

We expect an equivalent change in the Raman spectrum when modifying 

graphene through chemical reactions with adatoms, and increasing the concentration 

of adatoms is equivalent to reducing LD. The covalent bond formed between the carbon 

in the graphene lattice and the adatom will force the carbon atom to give up its π 

bonding with its nearest neighbours in place of an out-of-plane σ bond, ideally 

changing the bonding of that carbon atom from sp2 to sp3 – though more realistically, 

due to the stiffness of the graphene sheet, increasing the η value of the sp2+η bonding of 

the atom. These sp3-like, high η locations behave as defects on the otherwise sp2-like, 

low η lattice – effectively breaking the graphene into smaller domains with average 

size LD related to the density of defects. 

By exposing graphene to fluorine generated by decomposition of xenon 

difluoride (XeF2), Nair et al. have observed the synthesis and recorded electronic, 

structural and mechanical properties of partially-fluorinated graphene and fully-

fluorinated fluorographene (Nair 2010). Their spectra are displayed alongside the 

spectra by Lucchese et al. to demonstrate the similarities in Raman spectra of 

functionalised and disordered graphene in Figure 3.8. 
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Figure 3.8: Evolution of Raman spectrum of graphene with increasing defects or 

adatoms. (a) Changes in Raman spectrum of graphene from pristine graphene to 

highly disordered graphene after bombardment with ions, ion dose (Ar+/cm2) is 

shown above spectra (Lucchese 2010), (b) Changes in Raman spectrum of graphene 

upon gradual fluorination (exposure to XeF2 shown above spectra) (Nair 2010). 

Importantly, the spectra in Figure 3.8b also show the expectations for fully-

functionalised graphene – i.e. when bonding becomes completely sp3-like. In such 

cases, we expect an unobservable Raman spectrum at all frequencies, as the scattering 

cross-sections from sp3 carbon is sufficiently small as to only be measurable in bulk 

samples of sp3 carbon, such as diamond. 

Thus, by using the information made available from the studies on the 

deliberate destruction and the complete fluorination of monolayer graphene, shown in 

a 

b 
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Figure 3.8, it is possible to define three stages of functionalisation of monolayer 

graphene based on changes in its Raman spectrum: 

 Stage I – low levels of functionalisation 

o Introduction of disorder-related Raman peaks D, Dʹ, and D+Dʹ. 

o ID/IG increases with increasing functionalisation to a maximum value. 

o I2D/IG decreases. 

 Stage II – high levels of functionalisation 

o Raman peaks broaden and soften with decreasing LD. 

o ID/IG decreases to roughly 1. 

o 2D peak begins to disappear. 

 Stage III – fully-functionalised graphene 

o Complete disappearance of Raman spectrum at all frequencies. 

The nature of the G peak intensity, and thus ID/IG, to depend on excitation 

wavelength (Wang 1990, Cançado 2007) makes an absolute measurement of the 

average defect spacing LD determined using equation 3.7 alongside a visual inspection 

of the spectrum using the criteria above a complete measurement of modification 

extent in graphene samples (Cançado 2006).  

3.4. Experimental hydrogenated graphene 

As discussed in § 2.3, the first hydrogenation of monolayer graphene was 

achieved by Elias et al., who hydrogenated graphene with atomised hydrogen and 

recorded electronic properties of hydrogenated graphene and structural properties in 

the form of electron diffraction patterns and Raman spectra – shown in Figure 3.9 

(Elias 2009). Elias noted enhancement of the defect-activated D, Dʹ and D+Dʹ peaks 

with hydrogenation and were able to enhance them further by preparing samples as a 

membrane, allowing the hydrogen access to the lattice from both sides. Crucially, the 

D peak in hydrogenated samples was seen to disappear after a thermal annealing 

significantly below the graphitisation temperature of carbon – i.e. below temperatures 

required to structurally anneal graphene – to reproduce the Raman spectrum of 
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pristine graphene (green spectra in Figure 3.9), giving evidence that the changes in the 

Raman spectrum were due to hydrogen bonded to the lattice. 

 

Figure 3.9: Hydrogenation of graphene by Elias et al. (a) Single-sided hydrogenation 

of graphene shows D peak and related defect peaks begin to appear in the Raman 

spectrum. (b) Graphene samples prepared as a membrane (photograph in right inset) 

show higher levels of hydrogenation overall and (left inset) after one hour of 

simultaneous exposure. Blue spectra are graphene after hydrogenation, red and 

green spectra are pristine graphene before hydrogenation and after annealing 

respectively (Elias 2009). 

Following Elias et al., the use of atomised hydrogen to make samples of 

hydrogenated graphene has become widespread in plasma-enhanced CVD chambers 

(Luo 2009, Burgess 2011, Matis 2012, Balog 2013) or with atomising guns (Balog 2009, 

Sessi 2009, Balog 2013, Guillemette 2013, Guillemette 2014). A range of recorded 

hydrogenated graphene Raman spectra by exposure to atomic hydrogen are collected 

in Figure 3.10. 

a b 
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Figure 3.10: Raman spectra of hydrogenated graphene sample from the literature, 

prepared by (a,b,c) exposing graphene to hydrogen plasma in a plasma enhanced 

CVD chamber by (Luo 2009), (Matis 2012) and (Burgess 2011) respectively. (d,e) 

Hydrogenated graphene prepared by bombarding with hydrogen from an atomising 

gun (Guillemette 2014). 

a 
b 

c 

d e 
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It is striking that the spectra shown in Figure 3.10c at high substrate 

temperatures resemble very low-LD Stage II functionalised graphene (similar to 20 

hours spectrum in Figure 3.8b), and yet Burgess et al. dismiss them as damaged due to 

their experimental procedures and do not use them for electronic measurements – this 

conclusion was supported by an inability to thermally anneal away the D peak in a 

sample with a spectrum resembling high-LD Stage II (9 hour spectrum in in Figure 3.8b) 

(Burgess 2011). Their suggestion that above a measured ID/IG value of 2, the spectra 

resembles disordered graphene and not hydrogenated graphene allowed the 

conclusion that an ID/IG = 2 corresponds to a hydrogen coverage of ~10 at. %, based 

on calculations by Xiang et al. which suggest that single-sided hydrogenated graphene 

becomes unstable at 10 at. % coverage (Xiang 2010). Note that spectra in Figure 3.10d 

for longer exposures resemble high-LD Stage II hydrogenated graphene. These samples 

were not subject to any documented annealing attempt (Guillemette 2014). 

The attribution of Stage II-like appearance and subsequent inability to anneal 

away defects due to the physical damage to the graphene by high energy hydrogen 

atoms is also noted by Luo et al. (Luo 2009). The authors illustrate the sensitivity of 

their experimental procedure by showing hydrogenated and annealed Raman spectra 

for graphene subject to hydrogen plasma for 9 and 11 minutes on the same graph, 

where an 11 minute exposure lead to a defective spectra that was not reversible 

through annealing. 

The explanation offered by both Luo et al. and Burgess et al. is that hydrogen 

plasmas are able to etch a graphene lattice, which is supported by the observation of 

CH2 groups in the IR spectrum of single-walled carbon nanotubes using the same 

process (Zhang 2006) which form at the edges of etched sites. Both papers suggest a 

saturation in the hydrogenation extent, beyond which further treatment only causes 

physical defects, which suggests that hydrogenation by exposure to atomic hydrogen 

is not a strong candidate for synthesising fully-hydrogenated monolayer graphane. 

These points, alongside the observation by Nair et al. that higher-stage fluorinated 

graphene was not seen to be fully reversible by annealing in any case (Nair 2010), 

suggest that other analysis methods are necessary to gain conclusive insight on 

graphene functionalised to higher extents, such as direct imaging by STM (Sessi 2009). 
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3.5. In-house Raman spectroscopy 

At University of Salford, we use a Raman spectrometer in the backscattering 

configuration employing a HORIBA Jobin Yvon iHR320 spectrometer fitted with 300 

and 1200 lines/cm diffraction gratings, which images diffracted light onto a liquid 

nitrogen-cooled HORIBA Jobin Yvon Symphony CCD. Figure 3.11 shows the 

arrangement of optical components that comprise the spectrometer. 

 

Figure 3.11: Arrangement of Raman spectrometer. Dashed lines show the mirror 

(grey) and beam splitters (empty) which can be used to introduce white light to 

image samples and blue laser light to excite photoluminescent pressure markers. 

Light from a green solid state laser (532 nm, ~150 mW, Lasever Inc.) is 

directed through a beam expander comprising a short (f = 2.54 mm) focal length plano-

convex lens and a Swift DIN40 objective lens (f = 0.65 mm) to produce a wide, 

collimated beam. The beam is then directed through a Kaiser Optics holographic 

narrow bandpass filter cube, where 99% of the light at the designated wavelength is 

diffracted by 90°. An objective lens focuses the light onto the sample – long focal length 

lenses can be used to perform Raman spectroscopy inside a diamond anvil cell (DAC). 
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At the collection end, a Kaiser Optics holographic notch filter and Kaiser Optics 

holographic SuperNotch-Plus filter are used to remove Rayleigh scattered and 

reflected light from the signal that has passed through the narrow bandpass filter. A 

convex lens (f = 75 mm) focuses the signal onto the slit entry of the spectrometer 

(typically 50 or 100 µm). 

The dashed lines in Figure 3.11 show how white light can be introduced to 

allow the sample chamber of a diamond anvil cell to be imaged on a ThorLabs CMOS 

camera so that the laser can be navigated around the chamber, as well as how blue 

laser light can be introduced to excite fluorescent pressure markers (§ 4.2).
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Chapter 4. Experiments at high 

pressure and high temperature 

4.1. The heated diamond anvil high pressure cell 

The incredible mechanical strength and hardness of diamond makes it an ideal 

material for anvils used to subject other materials to high pressure and its remarkable 

transparency over a wide range of electromagnetic frequencies – ranging from hard X-

rays to infrared (Mildren 2013) – allows optical spectroscopy (Goncharov 2012) and 

X-ray diffraction (McMahon 2015) measurements to be made directly through the 

diamond anvil acting as a window. In combination with high temperature through 

resistive or laser heating (Gregoryanz 2004), diamond anvil cells are useful in 

experiments ranging from testing of materials’ mechanical properties (Hanfland 1989) 

and pressure-temperature phase diagrams (Errandonea 2004), the synthesis of 

materials at extreme conditions (Lacam 1980, Scheler 2013) and in simulating the 

internal conditions of astronomical objects (Benedetti 1999, Petitgirard 2015). 

During a DAC experiment, force applied externally to the cell is transferred to 

the wide back face (table) of the diamonds and then transformed down to the narrower 

front face (culet) to generate pressure. By the definition of pressure as force per unit 

area, it follows that diamonds with smaller culet faces are capable of reaching much 

higher pressures with only a small amount of external force applied. The practice of 

employing opposed anvils to reach high pressure was established long before the 

invention of the diamond anvil cell in the large tungsten carbide anvil presses used by 

P W Bridgman (Hazen 1999) to compress a monumental range of materials for the first 

time (Bridgman 1948), a technique which was later modified for the first synthesis of 
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manmade diamond (Bovenkerk 1959). With suitable tailoring of the geometry of the 

diamond anvils, DACs can be routinely use to achieve pressures in the Mbar range (Bell 

1984, Howie 2015) and the novel introduction of a smaller, secondary anvil made of 

hard, nano-crystalline diamond fixed on the culet has recently seen pressures 

exceeding 7.5 Mbar achieved in a diamond anvil cell (Dubrovinsky 2012, Dubrovinsky 

2015). For most experiments in this thesis, the diamonds employed were of a modified 

brilliant cut – designed to maximise the collection of backscattered light for optical 

spectroscopy measurements in situ through total internal reflection (Figure 4.1). 

 

Figure 4.1: A diamond anvil cell arrangement featuring a pair of diamonds applying 

pressure to a pre-indented metallic gasket with sample chamber drilled through the 

indentation.  

For the range of pressures of interest in this thesis, and thus the size of 

diamond culets required, sample chambers can be drilled using careful mechanical 

drilling or by spark erosion. The apparent ease of mechanical drilling is set back by 

both the tendency of finer drill bits to snap during drilling (often also at the expense of 

the gasket) and that even careful mechanical drilling leaves a burr – meaning that 

gaskets must be re-compressed and drilled numerous times to get a clean aperture. 

Spark erosion is performed on a spark eroder drill, which employs a micrometer barrel 

to move the gasket – submerged in paraffin oil – upwards towards a bit while applying 

Metallic gasket

Sample chamber

Force
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a large voltage between the two. As the bit approaches the gasket, the paraffin oil 

undergoes dielectric breakdown, causing sparks which remove material from the 

gasket. While slower, spark erosion has advantages over mechanical drilling in that 

positioning of the sample chamber is more accurate and the resulting aperture is 

cleaner. 

Figure 4.2 shows photographs of the diamond anvil cells used in the 

experiments presented in this thesis. The room temperature (TE) cell has four slots 

around its body which house M4 screws sprung with Belleville washers for sensitive 

control over the pressure inside the cell. The high temperature (HT) cell has holes in 

the piston and cylinder that allow pressure to be applied using M5 screws, in 

accordance with the requirements for the cell to fit into the high pressure gas loading 

equipment at University of Edinburgh (see § 4.1.1). For greater control over the 

pressure, the load on the cell is transferred from the screws onto a lever arm vice 

during experiments. 

For high temperature experiments, we employ a long piston-cylinder type 

DAC modified from the Mao-Bell design first used to reach 1 Mbar (Mao 1976), with a 

heating jacket placed around the cylinder.  It is possible to see in Figure 4.2 the 

insulating cement on the top of the piston which holds in place a type K thermocouple 

placed inside the cell for a measurement of the temperature at the sample chamber. 

This thermocouple feeds back to a temperature control circuit that regulates the power 

supplied to a Watlow 120 V nozzle heater which acts as an external heating jacket to 

maintain a steady set temperature. 

Typically, 0.1 carat diamonds with a 600 µm culet are employed. Through use 

of a set screw, the diamonds are kept a small distance (tens of µm) apart and their 

culets aligned. Small (~1 cm2) plates of 200 µm-thick stainless steel are pre-indented 

to a thickness of typically 60-120 µm and sample chambers of 300 or 350 µm diameter 

are made in the centre of the indentation by either mechanical drilling or spark 

erosion. 
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Figure 4.2: Photographs of custom-made diamond anvil cells. (top) HT2, based on a 

Mao-Bell type piston-cylinder cell for use in combination with resistive heaters in 

experiments at combined high pressure and temperature. (bottom) TE3, a piston-

cylinder cell suitable for experiments at ambient temperature. 
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Inside the cell, diamonds are glued to tungsten carbide seats with a step, such 

that the gap between the piston and cylinder bodies is sufficiently large to facilitate a 

second, smaller internal heater placed around the diamonds for experiments 

exceeding 1000 K, see Figure 4.3. 

  

Figure 4.3:  Internal design of the high temperature diamond anvil cell to facilitate an 

internal resistive heater. (a) The piston and cylinder as they appear when connected, 

showing the various entries that allow access to the alignment screws and viewing 

access to the diamonds, from original designs by Dr John Proctor. (b) Design of the 

cylinder seat to be used in experiments at high temperature – with wide opening for 

collecting backscattered light or diffracted X-rays. (c) Design of the piston seat. 

4.1.1. High pressure gas loading of hydrogen into a diamond anvil 

cell 

For experiments on hydrogenation of graphene in a DAC, we employ high 

pressure gas loading of hydrogen at University of Edinburgh. It is important to have 

hydrogen loaded at the highest a density possible to ensure that sufficient hydrogen is 

captured in the sample chamber to reduce the severity of the reduction in chamber 

size as fluid hydrogen is compressed to high pressures. There is also concern that 

hydrogen could be lost at higher pressures to diffusion into the gasket material 

surrounding the sample chamber, with iron hydride formed at 3.5 GPa (Badding 1991) 

and rhenium hydride above 5 GPa (Besedin 1998). 

The high pressure gas loader at University of Edinburgh features a two-stage 

compressor. The first stage (booster) pump compresses the gas to 200 bar and feeds it 
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into the second (main) pump, where it is compressed as high as 2,000 bar inside a 

pressure vessel large enough to accommodate a DAC. Cells to be loaded with hydrogen 

are first calibrated such that a known amount of turns on the screws is required to 

bring the diamonds into contact with the gasket and then placed inside the pressure 

vessel. A system of gears connect the screws of the DAC to a wheel outside of the vessel 

so that the DAC can be closed in an atmosphere of 2,000 bar hydrogen (or deuterium), 

trapping enough gas in the sample chamber to reduce the amount by which the 

chamber shrinks as we raise the pressure to the gigapascal range. 

Success of the loading is confirmed by looking for the hydrogen vibron in its 

Raman spectrum at around 4,000 cm-1 inside the sample chamber. For carriage back 

to University of Salford, hydrogen is solidified by compressing above 5.5 GPa (Mao 

1979), and the phase change is further confirmed by the softening of the low-frequency 

roton modes (Howie 2013).  

4.1.2. Loading diamond anvil cells with CH4 

To load a DAC with methane in such a way that sufficient methane is in the 

sample chamber to prevent large-scale collapsing of the chamber on pressure increase, 

we exploit methane’s boiling temperature of 111 K (Gordon 1972) at ambient pressure 

and employ cryogenic loading methods. 
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Figure 4.4: Cryogenic loading of methane into a HT-DAC. Liquid nitrogen cools the 

inner container until methane begins to condense and sufficient liquid methane has 

collect to fill the sample chamber, before the methane flow is stopped, inner chamber 

unsealed and the cell closed. 

Figure 4.4 shows the method in which methane is loaded into a diamond anvil 

cell. In the same way as with hydrogen loadings (§ 4.1.1), cells are calibrated such that 

there is a known amount of turns required on the screws for the cell to close 

completely, and the cell is placed inside a container. The container for methane 

loadings is a sealable steel vessel with thick Perspex viewing window at the top, 

through which two copper pipes allow for the flow of methane through the vessel. The 

vessel is purged thoroughly with methane (CP grade, 99.5%, BOC) and submerged to 

its brim in liquid nitrogen. As the vessel cools below the boiling curve, methane starts 

to condense and liquid methane collects. When enough liquid methane has collected, 

the vessel is opened and the DAC closed before lifting out of the vessel. 
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Confirmation of successful loading comes from the presence of the methane 

vibron in its Raman spectrum at around 2,900 cm-1 (Hollas 1996) from inside the 

sample chamber. 

4.2. Pressure measurement at high temperature 

4.2.1. Ruby crystal 

The photoluminescence of ruby crystals (aluminium oxide doped with 

chromium ions, Cr3+:Al2O3) was famously exploited in the building of the first laser, 

stimulating red laser light at a pair of wavelengths R1 = 694.3 and R2 = 692.9 nm, 

caused by the excitation of chromium ions within the alumina lattice (Maiman 1960). 

 

Figure 4.5: Pressure measurement using the photoluminescence spectrum of ruby 

crystal. (blue) Ambient pressure on a glass slide, (red) 7.1 GPa inside a DAC sample 

chamber. 
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Photoluminescence of ruby can be stimulated using focused laser light inside 

a DAC and, under compression, the redshift of R1 and R2 has been calibrated to provide 

an accurate scale of the pressure inside a sample chamber (Mao 1986). Meanwhile, the 

broadening of the peaks can be used as a gauge of hydrostaticity of the pressure inside 

the chamber (Piermarini 1973). For quasi-hydrostatic compression at room 

temperature, Mao et al. provide a pressure gauge for the R1 line: 

  
0

R1
GPa 1 1

R1

B
A

P
B

          

  4.1 

Where A = 1904 GPa and B = 7.665 (Mao 1986). This calibration has since 

become widely used in high pressure research – cited 2,034 times in articles 

recognised by the Thomson Reuters Web of Science as of October 2015. 

Issues with the ruby fluorescence scale arise when temperature is elevated, 

however. The broadening and softening of the R1 and R2 peaks limits the use of ruby 

as a pressure scale at very high temperatures, a problem that has been well-known 

since the early days of its use (Block 1976), but perhaps the greater problem is the shift 

in R1 and R2 with changing temperature. A number of corrections to the Mao 

relationship have been offered which add a temperature-dependent term (Vos 1991, 

Ragan 1992) to or suggest a correction to the factor A (Rekhi 1999) in equation 4.1, but 

none are in agreement. 
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Figure 4.6: Photoluminescence spectra of ruby at upon increasing temperature with 

pressures shown as calculated after temperature calibration (Rekhi 1999). Dotted 

line illustrates the shift in ruby peaks with increasing temperature at constant 

pressure. 

Experimental data showing the pressure inside the cell during hydrogenation 

of graphene in § 5.5 is shown in Figure 4.6. Note that, although the pressure measured 

inside the cell is the same, with ~50 K increase in temperature we observe a large (0.34 

nm) redshift in the position of the R1 peak – comparable to the shift that would be 

generated by a pressure increase of 1 GPa (0.365 nm, from equation 4.1 at low pressure 

and (Piermarini 1975)). At higher temperatures still, the peaks become broad, adding 

another source of uncertainty to the immediate measurement of pressure during an 

experiment. 
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4.2.2. Diamond edge 

The diamond anvils themselves can be used as a pressure scale, as the stress 

on the diamond lattice at the point of contact between the culet and the sample 

chamber (the edge) causes a shift of the Raman peak of diamond at 1333 cm-1 to higher 

frequencies. Use of the anvil itself as a pressure scale becomes important at extremely 

high pressures, where culet and sample chamber size restrict the use of a fluorescent 

crystal and photoluminescence from ruby crystal diminishes (Bell 1984). 

By calibration against the equation of state of platinum to multi-megabar 

pressures, Akahama et al. have provided a relationship between the Raman frequency 

at the stressed diamond edge and pressure: 

    0 0
0 0

D 1 D
GPa 1 1

D 2 D
P K K

     
  

  4.2 

Where ΔD denotes the shift in the diamond Raman peak at the edge relative to 

the D0 = 1333 cm-1 and K0 and K0ʹ are 547 and 3.75 GPa respectively for uniaxial strain 

as is the case for the edge of the diamond anvil (Akahama 2006), while separate K0 and 

K0ʹ values exist for diamond under hydrostatic compression via calibration with 

diamond microcrystals placed inside the sample chamber of the DAC (Kunc 2003, 

Dubrovinskaia 2010). 

An example of diamond edge pressure scale used to a measure pressure inside 

a sample chamber containing deuterium up to 318 GPa is provided in Figure 4.7a, while 

Figure 4.7b shows the diamond edge at constant pressure upon cooling (Howie 2013). 

The temperature dependence of the diamond Raman mode has been explored (Huang 

2010) and is small – approximately –0.03 cm-1/K in the explored region. 

The study by Huang et al. also goes some way towards calibrating the pressure 

response of the diamond Raman mode with increasing temperature, though pressure 

inside the chamber was measured using the ruby fluorescence scale, with which there 

are serious problems at high temperature (§ 4.2.1) and the temperature calibration 

used is not disclosed. In any case, a pressure scale for use at high temperature 

comprises two parts: the pressure shift at ambient temperature and the temperature 

shift at ambient temperature – which are considered to be independent of one another. 
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In the case of the diamond edge, the laboratory restraints on the resolution of any 

Raman spectrometer system along the beam axis mean that diamond some distance 

away from the edge is still excited by the laser and collected with the spectrum – i.e. 

the ambient pressure reference peak and the peak for pressure measurement are 

collected in the same spectrum (Figure 4.7 and Figure 4.8), negating the need to 

consider temperature-induced shifting. 

 

Figure 4.7: (a) Measurement of pressure inside a sample chamber containing 

hydrogen up to 318 GPa using the stressed culet of the diamond in contact with the 

sample chamber, (b) The spectra of the stressed diamond culet at 252 GPa upon 

cooling to 190 K (Howie 2013). 

While pressure measurement with the diamond edge is at a disadvantage 

since it is not a measurement of pressure based on a material placed inside the sample 

chamber, one advantage of using the diamond edge to measure pressure inside a 

sample chamber is that it is possible to observe the stress-induced shifting of the 

diamond Raman peak at any location across the culet. In any DAC experiment, we 

expect pressure gradients across the sample chamber as the hydrostaticity of the 

pressure transmitting medium is altered with increasing pressure (Klotz 2009). The 

diamond edge splitting can be measured directly at the location of a sample – such as 

a b 
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a flake of graphene on copper in experiments on hydrogenation of graphene – to get a 

measurement of the pressure, where other pressure calibrants can be some distance 

away. 

 

Figure 4.8: Stress-induced splitting of the diamond edge measuring 5.0 GPa at 476 K 

as determined by the difference in centre positions of two Gaussian curves fitted to 

the data in the MagicPlot software package. 

Figure 4.8 shows the diamond edge splitting in the centre of a sample chamber 

filled with fluid molecular hydrogen at 476 K during an experiment on hydrogenation 

of graphene (§ 5.3). Red lines show the data fitted with MagicPlot fitting software as a 

pair of Gaussian curves with their calculated peak centres marked below the spectrum. 

According to equation 4.2 (Akahama 2006), the pressure here is 5.0 GPa. 

4.2.3. Samarium-doped yttrium aluminium garnet (Sm:YAG) 

As a solution to the reduced accuracy in pressure measurements with ruby 

crystal calibrant at high temperature due to its photoluminescence lines shifting with 
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temperature, an alternative has been proposed in the form of samarium-doped yttrium 

aluminium garnet (Sm:Y3Al5O12, Sm:YAG) crystal. Early experiments on the 

development of the Sm:YAG pressure scale suggest a pressure response that is 

comparable to that of ruby and no significant dependence of the photoluminescence 

peak positions up to temperatures of 820 K (Hess 1992). Figure 4.9 shows the 

temperature dependence of 10 different Sm:YAG photoluminescence lines up to 982 K 

with very little shift in the positions of Y1 and Y2 due to temperature – the most 

common options as a foundation for a pressure scale due to their large intensity. The 

straight line fits in Figure 4.9 are in good agreement with the experimental data and 

provide a temperature shift –6.79×10-3 nm/K for the Y1 peak and –4.41×10-3 nm/K for 

Y2, two orders of magnitude smaller than the shifts due to pressure – 0.29 nm/GPa and 

0.24 nm/GPa respectively in that study (Zhao 1998) and 0.31 nm/GPa and 0.30 

nm/GPa in a more recent study (Goncharov 2005). 

 

Figure 4.9: Position of 10 Sm:YAG photoluminescence lines up to 982 K at 1 bar 

pressure by Zhao et al., with almost no frequency dependence on temperature in Y1 

or Y2 (Zhao 1998). 

Just as the ruby fluorescence pattern changes with hydrostaticity of the 

pressure transmitter, the Sm:YAG pattern is subject to change upon temperature 

increase. Notably, at very high pressures, the Y4 and Y1 peaks are seen to split (Trots 
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2013) and the Y1 peak – which is most prominent at ambient pressure – is seen to 

greatly soften above 60 GPa (Goncharov 2005), making the Y2 peak a more 

recommended basis for a pressure scale. 

Pressure scales based on Sm:YAG are often linear in form (Hess 1992, Zhao 

1998) and this is seen to be valid up to 100 GPa (Goncharov 2005), thus: 

    0GPa Y YP A X X   4.3 

Here, YX and YX0 are the measured positions of the X Sm:YAG 

photoluminescence peak under pressure and at ambient pressure respectively, in units 

of nm. While pressure can be measured using X up to 10 (Zhao 1998), Goncharov et al. 

suggest calibrations based on X up to 4, giving A coefficients of 3.175, 3.29, and 3.03 for 

the Y1, Y2 and Y3 peaks – which we use most frequently (Goncharov 2005). 

While the Sm:YAG photoluminescence peaks are not subject to the shift in 

temperature that is observed in the ruby peaks, they do still exhibit significant 

broadening (Zhao 1998, Wei 2011). The peaks begin to broaden after 373 K (Figure 

4.10) and quick and accurate pressure measurement during an experiment becomes 

difficult. During experiments it is beneficial to use the Y3 scale wherever possible since 

it is sufficiently separated from Y1 and Y2, but still displays a large shift in pressure 

compared with the more prominent Y4 (Goncharov 2005), however it is not sharp at 

ambient conditions and suffers further broadening at elevated temperature. 

As an alternative, for fast measurements during high temperature 

experiments, we can employ the “Y1.5” pressure scale which uses the centre of the 

broad peak caused by the overlapping Y1 and Y2 peaks and an A value of 3.2325 in 

equation 4.3 – the average of the Y1 and Y2 A values. 

When exciting Sm:YAG in situ in a DAC, blue laser light must be employed. 

While the green laser light has sufficient photon energy to excite photoluminescence 

from the material, the second-order diamond peak when diamond is excited with a 

green laser falls in the same location as the Sm:YAG lines – complicating the 

determination of their position and thus the pressure. A simple modification to the 

spectroscopy equipment is made, introducing a 405 nm solid state laser, directed 

towards the objective lens via a 50-50 beam splitter (Figure 3.11). 
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Figure 4.10: Devolution of Sm:YAG photoluminescence spectrum on temperature 

increase until complete signal loss at high temperature. Broadening becomes 

significant after 373 K. Spectra are fitted with Lorentzian functions in MagicPlot 

fitting software up to 473 K. Spectrum at 496 K was unable to be confidently fit with 

peak functions due to loss of photoluminescence signal. 

Contrary to claims that Sm:YAG peaks can be resolved easily up to 1,000 K 

(Zhao 1998), a recurring issue with Sm:YAG crystals is that of the photoluminescence 

peaks disappearing at sample-dependent, arbitrary high temperatures. Figure 4.10 

shows the evolution of the Sm:YAG photoluminescence spectrum upon heating, with 

significant broadening between 373 K and 473 K and the signal ultimately 

disappearing into the background at 496 K. In all cases where the signal is lost at high 
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temperature, it is not recovered upon cooling below the arbitrary temperature at 

which it disappears, and does not begin to return until temperatures approach 

ambient. 

Unlike ruby, Sm:YAG crystals are not widely commercially available and are 

most frequently purpose-grown for high pressure experiments. Without having being 

subject to the decades of development and quality control that is the case with ruby 

crystal, there is the potential that the crystals used in our experiments, grown by the 

Czochralski process and provided by Trots et al. (Trots 2013 and supplementary 

information) are of fairly low quality, and that some of the Sm3+ ions in the crystal are 

sitting in interstitial sites on the lattice rather than replacing yttrium ions. If this were 

true, it is conceivable that with enough thermal energy, Sm3+ ions could begin to diffuse 

out of the crystal, leaving only those ions which form part of the lattice available to 

provide photoluminescence – which would be broad at high temperature, but more 

pronounced once the crystal returns to room temperature. In their study presenting 

the crystals, Trots et al. use laser ablation inductively coupled plasma-mass 

spectrometry (ICP-MS) to determine the stoichiometry as Y2.71Sm0.29Al5O12. It would 

be interesting to directly measure the Sm3+ content before and after an experiment at 

high temperature.
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Chapter 5. Hydrogenation of graphene 

at high pressure and temperature 

5.1. Hydrogenation at 6.5 GPa and 493 K 

Figure 5.1 shows graphene on a copper substrate in an atmosphere of solid 

hydrogen at 6.5 GPa, with a sufficient border of hydrogen around the sample. 

 

Figure 5.1: Optical micrograph showing a copper flake coated with CVD-grown 

graphene surrounded by solid hydrogen at 298 K. Scale bar is 100 µm. 

Whilst maintaining this pressure by observation of the splitting of the 

diamond anvil Raman peak at the culet, the sample was heated to a maximum of 493 

K. This temperature was maintained until the sample chamber had collapsed 

significantly around the sample – a total of around 10 minutes, at which point the 
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temperature was gradually reduced with pressure maintained constant, before the 

pressure was released at ambient temperature. 

It is important not to release pressure at elevated temperatures to avoid the 

accidental removal of any hydrogen bonded to the lattice following the observations 

that hydrogen can be thermally annealed from hydrogenated graphene at 

temperatures starting as low as 75°C (348 K) under vacuum conditions (Luo 2009) – 

pressure was thus released at ambient temperature. Similarly, a study has shown that 

pristine graphene can be denatured using photons with even modest laser power 

focused to a diffraction-limited point (Krauss 2009). Although the effects documented 

by Krauss et al. take place over a number of hours, laser-induced denaturing is a factor 

which should be considered when performing Raman spectroscopy on samples, taking 

care not to accidentally damage graphene or hydrogenated graphene samples, or to 

anneal away hydrogen with the laser on hydrogenated samples.  

The resulting Raman spectra from the high pressure high temperature 

hydrogen treatment of graphene are presented in Figure 5.2. Similarly to reports on 

graphene hydrogenated by the atomic hydrogen method (Elias 2009), the D peak 

intensity is seen to vary greatly across the sample. 
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Figure 5.2: Changes in the Raman spectra of a graphene sample exposed to fluid 

molecular hydrogen at 6.5 GPa and 493 K for ~10 minutes. (bottom, red) Raman 

spectrum before the treatment, showing no measurable D peak activity. (top, blue) 

Raman spectrum at a number of sites across the sample after exposure, showing 

development of the defect peaks with varying intensity. All spectra are normalised to 

the G peak intensity. 

In order to measure the ID/IG ratio to quantitatively compare the 

hydrogenation with the literature, the Raman spectra were fitted with peak functions 

using MagicPlot Student 2.5.1. It was found in all cases that after subtraction in 

OriginPro 9.0 to remove the background due to the copper substrate that the peaks 

fitted well with Gaussian functions (In Figure 5.3, R2 close to 1, implying a good fit). 
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Figure 5.3: Gaussian curves fitted to the G and D and Dʹ defect peaks in the Raman 

spectrum of the of the area the hydrogenated sample shown in Figure 5.2 exhibiting 

the most intense D peak – i.e. the most hydrogenated area. 

In the case of the area exhibiting the most intense D peak from the 

hydrogenated sample, the ID/IG determined from the Gaussian height values after 

fitting in MagicPlot was 1.4 (LD = 11.97 nm, 514 nm excitation), suggesting that only 

low levels of hydrogenation have been achieved across the sample. 

5.2. Deuteration of graphene at 6.5 GPa and 473 K 

A sample of graphene on copper was prepared in an environment of molecular 

deuterium via high pressure gas loading. The motivation behind loading into and 

reacting with deuterium is that its melting curve is lower than that of hydrogen 

(Caillabet 2011), allowing an investigation into whether having the reagent and 

pressure transmitting medium (PTM) further into the fluid state would influence the 

rate of the reaction. 
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Figure 5.4: Optical micrographs of graphene on copper substrate in fluid deuterium 

at 6.5 GPa and 443 K. (a) Front lighting only, (b) back lighting only, illustrating 

presence of deuterium between the sample and gasket. Scales bar are 100 µm. 

As in § 5.1, graphene in deuterium was compressed to 6.5 GPa with reference 

to the splitting of the diamond Raman peak at the culet. Pressure was maintained up 

to 473 K and this temperature was maintained until the border of deuterium around 

the sample (Figure 5.4) was observed to almost disappear before cooling to ambient 

temperature – the time spent at the nominal conditions was once again around 10 

minutes. 

a 
b a 
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Figure 5.5: Change in Raman spectrum from pristine (red) to functionalised (blue) 

after 10 minutes of exposure of graphene to fluid deuterium at 6.5 GPa and 473 K. 

Observation of the sample after retrieval show the D and Dʹ peak in the Raman 

spectrum with varying intensity in different locations. In the most intense location, a 

fit with Gaussians functions in MagicPlot reveals an ID/IG value of 2.5 – equivalent to LD 

= 6.70 (using 514 nm excitation) – shown in Figure 5.6. The deuterated sample is 

modified to a level that is comparable to the hydrogenated samples produced by Elias 

et al. using graphene membranes exposed to atomised hydrogen on both sides of the 

lattice for 2 hours (Elias 2009), while only allowing molecular deuterium access to one 

side of the lattice for around 10 minutes. 
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Figure 5.6: Gaussian peak functions fitted to the location in Figure 5.5 exhibiting the 

strongest defect peaks. MagicPlot reports for the fitted peaks allow calculation of the 

intensity ratio ID/IG = 2.5. 

5.2.1. Long-term stability of deuterated graphene 

Regarding the stability of functionalised graphene, the deuterated sample was 

left untouched in the lab for some 5 months. Figure 5.7 shows the Raman spectrum of 

graphene deuterated in a diamond anvil cell immediately after the treatment, 

exhibiting ID/IG = 2.5 (Figure 5.6), compared with the Raman spectrum in the same 

location after 5 months. 
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Figure 5.7: The Raman spectrum of deuterated graphene immediately after 

deuterium treatment (bottom) and 5 months after deuterium treatment (top) in the 

same location on the sample. The intensity of the defect-induced D and Dʹ peaks has 

not reduced in this time (ID/IG = 2.5 in both spectra). 

The D and Dʹ peaks are still visible in the Raman spectra – collected as close to 

the original locations as possible – after 5 months. Immediate inspection of the 

spectrum allows confirmation that deuterium has remained bonded to the graphene 

lattice, and the ID/IG value of the most deuterated location is still 2.5, as it was when 

measured immediately after the high pressure high temperature treatment. This 

suggests that functionalised graphene samples prepared by the DAC method are stable 

for extended time periods. 
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5.3. Hydrogenation at 5.0 GPa and 473 K 

Figure 5.8 shows the resulting Raman spectrum at several locations across the 

sample after hydrogen treatment at 473 K and 5.0 GPa – measured using the stress-

induced splitting of the diamond Raman peak at the culet – for roughly 10 minutes. As 

before, the intensity of the D peak, i.e. the extent of hydrogenation, varies greatly across 

the sample.  

 

Figure 5.8: Several locations on graphene sample treated with fluid molecular 

hydrogen at 5.0 GPa and 473 K exhibiting D peak with varying intensity (blue) 

compared with no D peak activity in pristine graphene before treatment (red). 
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As before, the peaks have been fitted with Gaussian curves (Figure 5.9) in 

order to determine their relative intensities. In the location with the most intense D 

peak, the ID/IG ratio is 3.7, which equates to a spacing of LD = 5.20 nm between 

hydrogenated sites – close to the Stage II transition (Figure 3.7). 

 

Figure 5.9: Gaussian functions fitted in MagicPlot to the D and G peaks for the most 

hydrogenated location of graphene sample treated at 5.0 GPa and 473 K in hydrogen. 

In addition, the Raman spectrum of the highly hydrogenated area shown in 

Figure 5.9 was collected 33 days after the treatment at high pressure and high 

temperature – suggesting long-term stability of hydrogenated graphene even at higher 

levels of hydrogenation. 

5.4. Thermal annealing of hydrogenated and deuterated 

graphene 

Following the protocol set by Elias et al. (Elias 2009), we aim to test that the D 

peak had been activated in the Raman spectra of our graphene samples after hydrogen 
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treatment at high pressure and temperature due to hydrogen forming covalent bonds 

with the carbon atoms in the graphene – partially converting the bonding nature to 

become sp3-like in those sites – and not simply due to structural damage of the 

graphene caused by physical disruption during the experiment, by subsequently 

removing the hydrogen from the graphene using a mild thermal annealing. 

As Elias et al. used 450°C in an inert atmosphere of argon (Elias 2009), but Luo 

et al. have reported thermal annealing of their hydrogenated samples as low 

commencing at temperatures as 348 K in a vacuum, with total removal of hydrogen 

achieved by 350°C (Luo 2009), we opted for an easily-achievable temperature of 200°C 

in an inert atmosphere of nitrogen for extended periods of time to ensure a complete 

anneal whilst remaining sufficiently below the graphitisation temperature of carbon 

(Figure 2.6). The hydrogenated graphene sample produced in § 5.1 was placed on a 

Stuart US150 hotplate inside a Saffron Beta glovebox, pumped with nitrogen to have a 

dry environment with 3 ppm oxygen. The hotplate was set to 473 K – measured with a 

thermocouple fixed on its surface – and the sample left overnight on the plate. The 

resulting Raman spectrum resembled that of disordered carbon (Ferrari 2000), 

suggesting a burning of the sample under these conditions. 

In order to find a more inert atmosphere to ensure a successful annealing, 

heating experiments were performed at 2×10-7 mbar with colleagues at Manchester 

Metropolitan University’s Dalton Research Institute (now University of Huddersfield) 

in the vacuum chamber of a Zeiss Supra VP 40 scanning electron microscope (SEM) 

modified to facilitate in situ Raman spectroscopy. The deuterated sample from § 5.2 

was placed inside the SEM chamber and heated to 423 K for 5 hours, and its Raman 

spectrum after heating once again suggested damage caused by the environment. 

After continued failure of the annealing attempts, arrangements were made 

with University of Manchester to load hydrogenated samples into a scanning 

tunnelling microscope (STM) capable of capturing atomic resolution images of 

graphene (Zan 2012). The STM vacuum chamber is pumped to a normal working 

pressure of 3×10-10 mbar and its tantalum stage can be illuminated from behind with 

radiation from a tungsten filament to heat the sample. Feedback from a type K 

thermocouple is used to maintain constant temperature. 
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Figure 5.10: Raman spectrum of graphene sample hydrogenated at 5.0 GPa and 473 

K in fluid molecular hydrogen (§ 5.3) after thermal annealing at 3×10-10 mbar at 473 

K. Red spectrum is the location on the sample that had previously exhibited high 

Stage I hydrogenation (ID/IG = 3.7). 

The hydrogenated sample from § 5.3 was left overnight at 473 K in ultra-high 

vacuum conditions. Figure 5.10 shows the resulting Raman spectrum of annealed 

graphene. After inspection via Raman spectroscopy on both sides of the copper 

substrate, no areas were found exhibiting a sizeable D peak, and the hydrogenated area 

which had previously shown ID/IG = 3.7 was seen to exhibit no D peak activity. 
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Figure 5.11: Evolution of the Raman spectrum of graphene subjected to fluid 

molecular hydrogen at 5.0 GPa and 473 K, first pristine after CVD growth (black 

spectrum), then exhibiting high Stage I hydrogenation (red spectrum) and ultimately 

returning to pristine graphene with mild thermal annealing (blue spectrum). 

We thus prove the hydrogenation of monolayer graphene in the same manner 

as other authors (Elias 2009, Luo 2009): by removing hydrogen from the sample by 

thermal annealing at temperatures far below the graphitisation temperature of carbon 

(Saito 2004), i.e. temperatures which are not sufficient to remove the D peak from the 

Raman spectrum of graphene were it caused by structural damage. 

In addition, when preparing pristine graphene samples for preliminary 

annealing attempts inside the SEM and STM chambers, it was found to be convenient 

to deliberately mount samples in a stainless steel gasket to improve thermal contact 

and greatly simplify handling. Mounting was achieved by placing the sample inside the 

DAC in air and closing the cell while viewing the sample chamber under a microscope, 

applying enough force to the diamonds so as to have the walls of the sample chamber 

collapse onto the edges of the copper flake. Subsequent investigation with Raman 
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spectroscopy shows no change in the spectrum of the graphene away from the edges 

of the sample. This strengthens the argument that the D peak in high pressure and 

temperature samples has been caused by adding hydrogen to the graphene and not 

caused by structural damage to the graphene during experiments – since during 

experiments, the contact with the collapsing gasket is comparable to the contact during 

deliberate mounting and often avoided altogether . 

5.5. Influence of pressure on graphene-hydrogen reaction 

at 473 K 

It is important to observe the effects of changing pressure on the reaction 

between graphene and hydrogen, as pressure requirements are intrinsically linked to 

the maximum sample size. Should it be possible to get high levels of hydrogenation at 

lower pressure, diamonds with larger culets could be employed to allow for more 

sample space – in this way, it may be possible to prepare samples on a variety of 

substrates including thin silicon, allowing electronic measurements of samples to be 

made. 

By employing diamonds with a 1 mm culet for larger control over pressure at 

lower pressure levels, samples of graphene on copper were loaded in an atmosphere 

of hydrogen and compressed to 2.6 GPa. The larger chamber compared with the 

sample size allowed high pressure and temperature conditions to be maintained for 1 

hour – allowing exposure of the graphene to hydrogen at the nominal conditions for a 

longer time than the usual 10–15 minutes. After 1 hour of exposure, the graphene 

sample was recovered onto a glass slide – i.e. the sample chamber had not collapsed 

around the copper flake so as to mount it inside the steel gasket. 
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Figure 5.12: Raman spectra of sample treated in hydrogen at 2.6 GPa and 473K for 1 

hour, showing small D peak enhancement after treatment (blue spectra) compared 

with small D peak in before spectrum (red). 

Subsequent Raman spectra are shown in Figure 5.12. Areas exhibiting 

hydrogenation at 2.6 GPa and 473 K are sparse – across both sides of the ~200 µm 

copper flake, only one location was able to be found that had significant D peak activity. 

The intensity of the D peak in this location is only 0.7 times that of the G peak, 

suggesting very low levels of hydrogenation compared with experiments at higher 

pressure, a spacing LD = 27.46 nm between defects (in this case hydrogenated sites) on 

the lattice. The enhanced D peak is considered to come from hydrogenation alone and 

not physical damage to the lattice as in this case the graphene sample did not come 
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into contact with sample chamber edges which could cause damage – even in 

procedures where graphene was deliberately brought to sufficient contact with a 

collapsing sample chamber so as to fix it in place (as in § 5.4), no enhancement of the 

D peak was observed. 

 

Figure 5.13: Raman spectrum at several locations of sample treated with hydrogen 

at 4.0 GPa and 473 K. (red) Before treatment, (blue) after treatment with significant D 

peak enhancement. 

Upon increasing pressure to 4.0 GPa, we observe two improvements in the 

hydrogenation. Firstly, hydrogenation was seen at almost all locations across the 

sample and secondly, the highest recorded ID/IG ratio was 2.3 – or LD = 8.36 nm. These 
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results suggest that while activation of hydrogenation may occur as low as 2.6 GPa, the 

favourability of the reaction is greatly enhanced with further pressure. 

Upon reflection of the argument in § 2.3 which discusses the low dissociation 

energy of C-H bonds in partially-hydrogenated graphene, this result is intuitive. 

Graphene, especially when grown by CVD on copper substrates, has a complicated 

long-range structure containing curvature and kinks – i.e. a large variation in η. Owing 

that high-η areas on the lattice already more closely resemble sp3 in their bonding, it 

follows that they should be the first locations to accept hydrogenation and that a higher 

pressure should be required for hydrogenation to occur in low-η areas where the 

bonding more closely resembles sp2. 

5.6. Influence of temperature on graphene-hydrogen 

reactions at high pressure 

To map out the graphene-hydrogen reaction in P-T space, experiments were 

carried out in hydrogen and deuterium at ambient temperature and high pressure. 

Graphene on copper was loaded into the room-temperature DAC (Figure 4.2) in an 

atmosphere of hydrogen or deuterium into the solid phase at high temperature and 

left for some time at ambient pressure. 

The Raman spectra of graphene after pressure release are shown in Figure 

5.14. Graphene pressurised to 7.4 GPa at ambient temperature in hydrogen – a 

pressure comparable to that used in §§ 5.1 and 5.2 to achieve hydrogenation or 

deuteration – does not develop a significant D peak after 4 hours in these conditions. 
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Figure 5.14: Raman spectrum of graphene after pressure treatment at 298 K. 

(bottom) 4 hours in hydrogen at 7.4 GPa showing almost zero D peak activity. (top) 

36 days in deuterium showing small D peak. 

There is a measurable D peak in graphene pressurised to 9.0 GPa in deuterium 

after 36 days in these conditions – the ID/IG measured by fitting Gaussian functions to 

the peaks is 0.4. Such a small D peak is difficult to attribute to deuteration since, in 

some cases, a D peak of this magnitude is inherently visible in a graphene sample 

grown by CVD (Riikonen 2013). However, if deuteration has occurred over this time 

period at ambient pressure, it is insignificant when compared with the levels achieved 

in § 5.2 under more modest pressure conditions in only 10 minutes. It may suggest that 

at significantly higher pressures, we may see this rate increase, but to press beyond 9.0 

GP would require diamonds with smaller culets, drastically reducing the possible 

sample size.
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Chapter 6. The Frenkel line in 

supercritical methane 

6.1. The Frenkel Line 

A new microscopic model for liquids has been formulated by considering 

particle motion in a liquid to be a duality of solid-like vibrations around fixed sites and 

gas-like diffusion between those sites, and then by the introduction of a liquid 

relaxation time, τ (Frenkel 1946, Brazhkin 2012). Physically, τ describes the average 

time between consecutive jumps between the fixed sites, separated on average by a 

distance a. 

Immediately, then, it can be deduced that if one is to observe a liquid for a time 

t which is shorter than the liquid relaxation time τ, the particles in the liquid would not 

jump between fixed sites and the liquid would appear as if it were a solid. It follows 

that for all frequencies ω which correspond to t < τ, a liquid is capable of supporting 

shear waves as does a solid (Brazhkin 2012). Comparing with the maximum 

vibrational frequency available to the particles, the Debye frequency, ωD, gives an 

effective range: 

 
D

2 2 


 
    6.1 

over which a liquid can support shear waves. Here τD is the time period related 

to the Debye frequency. The zero shear resistance of liquids at low frequencies is 

responsible for their ability to flow. Providing particles in a liquid with more thermal 

energy by increasing temperature increases the number of jumps made, i.e. reduces τ. 
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This reduces the range defined by equation 6.1 over which a liquid is “solid-like”, or 

rigid, until: 

 D    6.2 

At which point, the liquid is no longer able to support shear waves at any 

frequency (Brazhkin 2012), we can consider the liquid to be entirely “gas-like” or a 

non-rigid fluid.  Increasing pressure on a liquid moves its particles closer together, 

thereby increasing the Debye frequency (Baierlein 1999) and increasing the 

temperature requirement to satisfy 6.2, tracing out a Frenkel line on the phase diagram 

in pressure-temperature space, as seen in Figure 6.1 (Brazhkin 2012). 

 

Figure 6.1: Frenkel line on the pressure-temperature phase diagram of an ordinary 

material (Brazhkin 2012). 

In contrast with the understanding of the supercritical fluid state from van der 

Waals theory (§ 1.2), this new microscopic theory of a liquid predicts a distinguishable 

difference between liquid and gas (rather, rigid fluid and non-rigid fluid) which 

extends to arbitrarily high pressure and high temperature beyond the critical point 

(Brazhkin 2012). 

The microscopic Frenkel model already has some support from empirical 

observations. Frenkel predicted that a rigid liquid should have a positive dispersion in 

sound velocities as there would be a contribution to the velocity from the shear 

τ = τD 

τ 

τD 
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modulus for all frequencies which satisfy 6.1 (Brazhkin 2012). The positive dispersion 

of sound velocities in a liquid can be observed experimentally (Gorelli 2006, Simeoni 

2010), and Frenkel theory predicts that it should cease to exist once the criterion 

defined in equation 6.2 is satisfied as there are then no more shear waves supported 

to contribute to the velocity. 

 

Figure 6.2: Temperature dependences of viscosity, thermal conductivity and sound 

velocity for carbon dioxide at twice its critical pressure exhibiting qualitative changes 

in their behaviours as the fluid goes from rigid to gas-like (Brazhkin 2014).  

Taking the criterion 6.2 as the point at which particles in a liquid transition 

from solid-like diffusive to gas-like ballistic dynamics, the Frenkel model predicts 

qualitative changes in the behaviour of the diffusion coefficient, viscosity and thermal 

conductivity of a material with temperature (Brazhkin 2012, Brazhkin 2014, 

Trachenko 2014), which are consistent with experimental observations (Brazhkin 

2012). 
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Figure 6.3: Examples of heat capacity cv calculated by Bolmatov et al. using Frenkel 

theory for molecular liquids (blue lines), compared with measured cv (purple lines) 

(Bolmatov 2012). Note: (The Boltzmann constant kB = 1 in these simulations). 

The Frenkel model also provides theoretical values of the constant volume 

heat capacity cv which are consistent with measured values for a wide variety of liquids 

(Bolmatov 2012). The immediate drop in cv from 3kB to 2kB (Figure 6.3) is attributed 

the gradual disappearance of shear rigidity as temperature increases and the range in 

equation 6.1 decreases, beyond which cv tends towards its ideal gas value (Bolmatov 

2013). 
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The properties of supercritical fluids are predicted to be at their most 

interesting close to the Frenkel line. For example, in Figure 6.2 the viscosity, thermal 

conductivity and sound velocity each takes their lowest values in carbon dioxide – a 

supercritical fluid widely used in various industries (§ 1.2) – and it is predicted that 

other technologically-useful properties of fluids, such as their surface tension and thus 

ability to wet and their chemical reactivity, might also be optimised close to the 

dynamic transition at the Frenkel line (Brazhkin 2014, Yang 2015). A confirmation of 

the presence of the Frenkel line would thus allow these useful physical and chemical 

parameters to be optimised for supercritical fluids at pressure and temperature 

arbitrarily higher than their critical values for a variety of industrial purposes. 

6.1.1. The Widom line 

In recent years, supercritical fluids have been subject to experiments which 

confirm a range of physical properties above, but close to, the critical point show 

uncharacteristic discontinuous properties. The discontinuities appear as maxima or 

ridges in properties such as the constant pressure heat capacity cp (Xu 2005), thermal 

expansion coefficient and density fluctuations with temperature which protrude out 

separately from the critical point (Brazhkin 2011), and each protrusion is termed a 

Widom line in honour of American chemist Benjamin Widom. The Widom lines have 

also been noted as forming a boundary between liquid-like and gas-like dynamics 

beyond the critical point via the disappearance of the positive sound velocity 

dispersion (Gorelli 2006, Simeoni 2010). 

It is important to draw the distinction between the Widom lines, which are 

each an extension of the maximum of an individual property of the fluid beyond the 

critical point, and the Frenkel line.  The Frenkel line is predicted to extend to arbitrarily 

high pressure and temperature beyond the critical point, existing as a definitive 

transition between solid-like and gas-like fluid which is not related to the boiling curve, 

as evidenced by its prediction even in theoretical materials without a boiling curve 

(Brazhkin 2012). 
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6.1.2. Frenkel line report on argon 

During preparation of this thesis, an article has been published claiming the 

first experimental detection of Frenkel line transition in argon (Bolmatov 2015). The 

proposed Frenkel line for argon is shown in Figure 6.4, alongside the points on the 

pressure-temperature path traversed during the experiments. 

 

Figure 6.4: P-T phase diagram of argon with proposed Frenkel line by Bolmatov et 

al., inset shows the path in pressure and temperature taken (Bolmatov 2015). 

It is important to note that neither pressure nor temperature is kept constant 

during the experiments by Bolmatov et al., their Frenkel line transition region (Figure 

6.5b) comprises a large (1.5 GPa) change in pressure as well as a 60 K drop in 

temperature, but the Frenkel line transition is attributed solely to the raster in 

temperature. If the Frenkel line does exist as an equilibrium line on the pressure-

temperature phase diagram, an accurate confirmation of its existence and location 

requires either pressure or temperature to be constant while the other varied. 
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Figure 6.5: X-ray diffraction of fluid argon at high pressure and high temperature by 

Bolmatov et al. (a) Changes in structure factor S(q) at different pressure-temperature 

conditions. (b) Position (and height, inset) of first peak in S(q) at different 

pressure(labels)-temperature(axis) conditions (Bolmatov 2015). 

a 

b 
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Whether or not one expects to observe a significant change in the static 

structure of a fluid as it crosses the Frenkel line is not yet determined. The first major 

peak in the structure factor is effectively a statistical measure of short-range order, its 

position providing the average distance a between particles (Fischer 2006) and its size 

a measure of the amount of particles at that distance. 

The suggestion that a significant change in the first peak should occur on 

crossing the Frenkel line suggests either that the particles should suddenly move 

relative to one another – an increase in a, i.e. a change in density – or their spread of 

separations around the average a should suddenly change. The former disagrees 

directly with established van der Waals equation of state (§ 1.2) – which the original 

Frenkel model does not challenge – and the latter implies that a gradual reduction in 

temperature should see a sudden jump in liquid relaxation time τ, which is not 

suggested in the original Frenkel model (Brazhkin 2012). 

The work performed by Bolmatov et al. thus should not be considered as an 

experimental confirmation of the Frenkel line until it is repeated at constant pressure 

or temperature and supplemented with measured changes in parameters which are 

predicted to be affected by a transition across the Frenkel line. 

6.2. Experimental considerations 

High pressure and high temperature X-ray diffraction on methane was 

performed using the ID27 beamline, capable of delivering a high-intensity, focused 

monochromatic X-ray beam with micrometre-scale width to avoid contributions to 

diffraction patterns from the gasket or pressure sensors (Mezouar 2005). 

ID27 also features a multichannel collimator for X-ray diffraction experiments. 

During DAC experiments, measurements are made on a samples orders of magnitude 

smaller than the diamonds used to apply pressure and there is a significant 

background spectrum caused by the inelastic Compton scattering of the diamonds. 
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Figure 6.6: Design of the multichannel collimator at ID27 (Weck 2013). 

To address this issue, the multichannel collimator was developed for use in 

high pressure experiments with large volume presses (Morard 2011) and recently 

redesigned for DACs (Weck 2013). The device is shown in Figure 6.6 and has the slits 

of the collimator trained to a focal point such that the device acts as a spatial filter 

which removes contributions from locations not in focus. The small (50 µm) primary 

slits define the effective volume over which the collimator samples, which is close to 

the sample sizes we expect in DAC experiments (Weck 2013), thus removing a large 

part of the Compton background. 

6.2.1. Methane 

As discussed in § 4.1.2, the low boiling point of methane allows for large 

amounts of liquid to be condensed inside the sample chamber of the DAC. The 

properties of methane are of fundamental interest as it is found in atmospheres 

throughout the solar system (Cruikshank 1976, Loveday 2001). 

In addition, methane features an intense Raman peak around 3,000 cm-1 due 

to the C-H bonds stretching (Hollas 1996) which undergoes significant changes in its 

behaviour under high pressure phase changes (Hebert 1987). This makes methane, 

unlike monatomic argon, a suitable material for investigating how changes in the local 
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environment of a molecule due to a Frenkel transition might affect intramolecular 

vibrations. 

6.3. Experiments on supercritical methane 

6.3.1. Raman transition at 298 K 

Methane was compressed to 1.5 GPa. During a slow decompression, Raman 

spectra showing the vibron mode of methane were collected at small pressure 

intervals according to the shift in ruby photoluminescence peaks. After background 

subtraction in OriginPro 9.0, the Raman vibron was fitted with a Lorentzian profile 

using MagicPlot fitting software.  

 

Figure 6.7: Raman vibron of methane 298 K. (a) Peak position and (b) fitted peak 

area at various pressures. Red squares are data collected after transition was 

observed on decompression. The blue dashed line is placed at 0.152 GPa to represent 

the suggested crossover. 

Figure 6.7 shows the trends in the peak centre and area under the fitted peak 

with pressure. In both cases, a sudden change is observed between data collected at 

0.153 and 0.151 GPa according to the fitted position of the ruby photoluminescence 

peak: the vibron peak frequency loses its dependence on pressure and the area 
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underneath the peak drops by a factor of 1/3 and loses its dependence on pressure. 

The blue line on Figure 6.7 is thus placed at the proposed transition pressure 

0.152(±0.032) GPa – the error in transition pressure is propagated from equation 4.1 

using the uncertainty in ruby peak positions, described in Appendix B. 

The red squares in Figure 6.7 represent the 5 data points that were collected 

after the pressure had been released below the transition pressure at 0.152(±0.032) 

GPa, showing that the changes observed in vibron behaviour are reversible. The results 

signify a discontinuous transition in methane 100 K above its critical point. 

6.3.2. X-ray diffraction at 298 K 

To complement Raman spectroscopy measurements, X-ray diffraction has 

been performed on methane under isothermal decompression. Diffraction patterns 

were integrated using the Dioptas software package (Prescher 2015) and the pattern 

from the DAC once emptied of methane subtracted to remove any remnant Compton 

scattering. The integrated patterns were then normalised and the first peak fitted in 

MagicPlot (Appendix C has full details on X-ray analysis). 

The trends in the position and magnitude of the first peak in S(q) with 

pressure are shown in Figure 6.8 for two separate X-ray diffraction experiments. The 

parameters of the first peak show no discontinuities over the range of 0–1.5 GPa, 

where we see a transition in Raman behaviour. Notably, the maximum intensity of the 

first peak varies roughly linearly with pressure at constant temperature. This is unlike 

the inset of Figure 6.5b, which shows Bolmatov et al. claiming to have crossed the 

Frenkel line on reducing temperature due to a significant change in first peak height 

(Bolmatov 2015), but pressure is also changed in this region by approximately 1.5 GPa 

and the effects of pressure on S(q) first peak height are wrongly neglected in the work 

by Bolmatov et al. 
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Figure 6.8: Changes in first peak of measured structure factor S(q) of methane under 

decompression from 1.5 GPa at 298 K. (a) The centre position, (b) the normalised 

height, (c) the normalised area and (d) the HWHM. Blue dashed lines are intended as 

guides to the eye only. 

Figure 6.8 shows the position, height, area and width of the first peak in S(q) 

varying smoothly upon decompression from 1.5 GPa to ambient pressures at room 

temperature. 

Figure 6.8a gives the position of the first major peak in S(q), i.e. 2π/a where a 

is the average distance between particles (Fischer 2006). By considering each methane 

molecule as existing inside a sphere with radius a/2, we can convert first peak position 

into the volume V occupied by a single methane molecule. 
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The smooth variation in Figure 6.8a, and thus Figure 6.9, resembles the 

isotherms of an ideal gas. The foundation of the van der Waals corrections to the ideal 

gas law is to account for the effects of intermolecular potential energy on the pressure 

and volume of a system (Baierlein 1999). At temperatures far exceeding TC, kinetic 

energy of the particles far exceeds their potential energy and the V plot varies 

monatonically in P as in the ideal gas law (Figure 1.2). We thus fit volume data with the 

equation: 

 
A

P C
V B

 


  6.3 

Where A, B and C are scaling and translating coefficients. Figure 6.9 shows the 

fit from OriginPro 9.0, with A = 4.20 kg Å2 s-2, B = -13.82 and C = -0.20 GPa. 

 

Figure 6.9: Modified isothermal ideal gas equation of state fitted to volumes derived 

from first peak in S(q) for supercritical methane at 298 K as measured by X-ray 

diffraction. 
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The trend in volume with increasing pressure correlates with existing theory 

of supercritical fluids according to the van der Waals equation. Above Tc, we do not 

expect to observe discontinuous changes in volume (i.e. density) under isothermal 

compression. This is in disagreement with the significant change in first peak position 

seen by Bolmatov et al. (Figure 6.5, Bolmatov 2015), which we can attribute to their 

uncontrolled path in P-T. 

6.3.3. Experiments at 523 K 

The implications of the Frenkel model are that a characteristic crossover 

between rigid and non-rigid fluid exists until arbitrarily high pressure and 

temperature beyond the critical point. If the Raman transition in Figure 6.7 is due to a 

Frenkel line transition, we thus expect to observe it at higher temperatures. Methane 

was heated to 523 K and decompressed, with pressure measured using Sm:YAG 

crystals for the insensitivity of their photoluminescence peaks to temperature. 

Methane vibron data were processed as in § 6.3.1. 

 

Figure 6.10: Raman vibron of methane 523 K. (a) Peak position and (b) fitted peak 

area at various pressures. 

In contrast to Figure 6.7, Figure 6.10 show the vibron peak position and area 

varying smoothly between 0.3 and 3.0 GPa, no change in behaviour of the vibron 

intensity is observed and the vibron position does not become unresponsive to 

pressure. 
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The anomalously small methane vibron at 2.9 GPa can be attributed to data 

collected near the edge of the sample chamber of the DAC, while all other data was 

collected in the centre – i.e. maximising the amount of methane inside the beam. 

 

Figure 6.11: Changes in first peak of measured structure factor S(q) of methane 

under decompression from 2.5 GPa at 540 K. (a) The centre position, (b) the 

normalised height, (c) the normalised area and (d) the HWHM. Neglecting the cluster 

of points around 0.5 GPa, the blue dashed lines are intended as guides to the eye. 

Similar to experiments at 298 K, and in accordance with existing van der Waals 

thermodynamics, X-ray diffraction experiments on methane at 540 K show no clear 

discontinuities in static structure factor S(q) that would suggest a change in structure 

(Figure 6.11). 
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As in § 6.3.2, first peak positions in S(q) are converted into volume per atom 

and fitted with the modified ideal gas law in equation 6.3. The resulting smooth PV 

isotherm is shown in Figure 6.12 with the parameters A = 14.96 kg Å2 s-2, B = -11.23 

and C = -0.64. 

 

Figure 6.12: Modified isothermal ideal gas equation of state fitted to volumes 

derived from first peak in S(q) for supercritical methane at 540 K as measured by X-

ray diffraction. 

The broad distribution of first peak position in Figure 6.11a, and thus volume 

in Figure 6.12, compared with similar experiments at 298 K can be attributed to 

variations in temperature over the course of the two experiments – two separate 

experimental runs with average temperature at collection 540 ± 11.5 K. Referring to 

discussions in § 4.2, the uncertainty in measuring pressure at elevated temperature is 

already high at low DAC pressures, the large variations in diffraction patterns at 523 K 

(Figure 6.11) can be attributed to both the temperature variation and its 

corresponding large effect on accurate pressure measurements.
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Chapter 7. Conclusions and future 

directions 

7.1. Hydrogenation of graphene in a diamond anvil cell 

The experiments in this work in this thesis can be summarised as a pressure-

temperature “phase diagram” for the reaction between graphene and hydrogen. Figure 

7.1 shows reacting conditions for hydrogen in blue and deuterium in green, with 

conditions at which no reaction occurs shown as red crosses. The red cross at ambient 

pressure and high temperature is placed in the knowledge that temperature in absence 

of pressure will readily remove hydrogen from hydrogenated graphene (§ 2.3). 

Other than the reactions at 6.5 GPa, there is a clear trend in LD – the average 

separation between defects, and thus hydrogenation extent (§ 3.3) – with increasing 

pressure. This could be down to experimental procedures, as the 6.5 GPa reactions 

were performed before the acquisition of Sm:YAG crystals for accurate measurement 

of pressure at high temperature in the low-pressure regions, where diamond splitting 

is not the most useful for fast pressure determination mid-experiment since the 

splitting is small and the overlap between unstressed and stressed diamond peaks is 

significant (Figure 4.8). After Sm:YAG was included in experiments, a higher level of 

confidence in pressure measurements was found in quick measurements, such that 

fewer alterations needed to be made to be sure to have constant pressure. Repeating 

the experiments at 6.5 GPa might see higher levels of hydrogenation – perhaps even 

Stage II, but the high levels of hydrogenation reached with single-sided samples at 

more modest pressures suggest that having the samples prepared as membranes to 
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allow hydrogen access to both sides of the graphene will have a much larger impact on 

the hydrogenation extent than further pressure increase. 

Omitting the 6.5 GPa reactions from a plot of LD against pressure P, the extent 

of hydrogenation in the region explored can be tentatively fitted with a decay function 

in Origin, giving 
D

2.67350.3L P    (inset of Figure 7.1), which suggests a defect 

spacing of 1 nm – well into Stage II – could require pressures of 9 GPa at 473 K – 

although it is very important to note that only three data points are fitted. 

 

Figure 7.1: Pressure-temperature phase diagram for graphene-hydrogen reactions, 

where bubbles represent the extent of hydrogenation according to ID/IG and LD values 

marked onto the points, data from Figure 5.3, Figure 5.9, Figure 5.12 and Figure 5.13. 

Crosses show non-reacting conditions. (green) Deuterated graphene, data from 

Figure 5.6. (inset) Decreasing LD with pressure P. 

 The results in Chapter 5 confirm a new method of creating partially-

hydrogenated graphene using a combination of high pressure and high temperature in 

a diamond anvil cell. The table in Figure 7.2 shows values of LD collected from Raman 
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spectra in the literature employing plasma methods on single-sided samples (Luo 

2009, Burgess 2011, Matis 2012) and with an atomising gun (Guillemette 2014), 

demonstrating the competitiveness of the DAC method with existing methods. In all 

cases with existing methods, the LD values shown are those where those authors have 

seen saturation in ID/IG, whereas the new DAC method has improvements that may be 

made in order to improve hydrogenation – in pressure, temperature, time and sample 

preparation. As such, the first lab synthesis of graphane is feasible using high pressure 

and high temperature. 

 LD / nm 

(Elias 2009) 20.09 (single-sided)6.61 (double sided) 

(Luo 2009) 4.04 

(Burgess 2011) 4.53 

(Matis 2012) 4.31 

(Guillemette 2014) 4.5 (Stage I) / 1.5 (Stage II) 

This work 5.20 

Figure 7.2: Table of LD representing hydrogenation extent from the literature. 

As a general comment on the large variation in hydrogenation extents in 

samples throughout the work, we refer to the discussion in § 2.1 of ripples in graphene, 

i.e. variations in the factor η which describes the curvature (or sp3-like nature) of the 

bonding. Graphene naturally exhibits ripples and curves, and it is suggested that these 

sites with higher η should hydrogenate more readily than the flatter sites. Based on 

STM images from their study of deliberately disordered graphene, Lucchese et al. 

characterise defect sites in graphene as comprising two parts: the defect itself and an 

extended “activated region” surrounding the defect where the graphene sheet exhibits 

short range, out-of-plane rippling (Lucchese 2010). These ripples signify a drastic 

change in the η value close to the defects and we would expect a similar activated 

region to occur around hydrogenated sites, which could cause a cascade effect in 

hydrogenation around distinct points – for instance, as in Figure 5.8, where we 

simultaneously observe low-ID/IG locations and our most highly hydrogenated 

locations. 
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In samples with the highest hydrogen content (Figure 5.8 and Figure 5.9), ID/IG 

is measured as 3.7. Using equation 3.7, this equates to an average distance LD of 5.20 

nm between hydrogenated sites on the graphene lattice. Referring to the study on 

deliberately disordered graphene by Lucchese et al. and Figure 3.7, an ID/IG of around 

3.5 and LD around 5 nm sees the transition between Stage I and Stage II derivatisation 

(§ 3.3), indicating that samples hydrogenated under conditions of 5.0 GPa and 473 K 

are close to Stage II. 

The high ID/IG also comments on the stability of graphene hydrogenated with 

only a single side exposed. The stability of single-sided hydrogenated graphene was 

modelled by DFT calculations on graphene with added ribbons of hydrogenated 

graphene of various thicknesses and densities by Xiang et al., who saw that above 10 

at. % coverage, single-sided hydrogenated graphene was not stable (Xiang 2010). 

These calculations form the basis of the assertion by Burgess et al. that an ID/IG of 2 

equates to approximately 10 at. % coverage, as both Burgess et al. and Elias et al. saw 

saturation in their ID/IG at around 2 (Elias 2009, Burgess 2011). Although there are 

issues with accuracy in the measurements of hydrogen content as well as the Xiang et 

al. DFT model lacking intrinsic ripples which we expect to affect reactivity, it is not 

inconceivable that samples prepared through the DAC method are hydrogenated on 

both sides, albeit not to the same extent as a sample prepared as a membrane. Under 

compression in a DAC and heating, hydrogen molecules may find themselves accessing 

the underside of the graphene lattice by entering through the gaps around the edges of 

the graphene crystal or by diffusing through the copper itself (Braaten 1936) – indeed, 

fluid molecular hydrogen is even known to diffuse through diamond anvils under 

compression (Howie 2013). 

The employment of STM will become crucial in experiments where samples 

prepared through the DAC method exhibit higher levels of functionalisation, beyond 

the Stage II transition where the Raman peaks broaden. The suggestion prevailing in 

the literature (Luo 2009, Burgess 2011) is that plasma methods begin to etch graphene 

above a certain power to cause damage, thus limiting the method from producing fully-

hydrogenated graphane. Burgess et al. remark on a broadening of the Raman peaks as 

in Stage II, but suggest that this is wholly down to etched defects, incorrectly 

suggesting a discrepancy between the low-level hydrogenation and low-level defects 
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up to that point (Burgess 2011), while Luo et al. suggest a loss of reversibility of their 

hydrogenated graphene as evidence that defects are present (Luo 2009). The Luo 

explanation has a stronger foundation, and could be confirmed easily with atomic-

scale images of Stage II hydrogenated (and subsequently dehydrogenated) graphene 

prepared by the DAC method – where the risk of etching is not present since the 

reaction occurs between graphene and molecular H2, not due to bombardment of the 

graphene with high-energy atomic H. 

The preparation of graphene samples suspended over apertures in a substrate 

as a quasi-freestanding membrane will be crucial in the refinement of the DAC 

hydrogenation method developed in this thesis. Suspended samples elsewhere have 

seen a roughly doubled rate of hydrogenation with the plasma hydrogenation 

technique (Elias 2009). In addition, the Grüneisen parameters of graphene have only 

been determined so far for graphene on a substrate, where the substrate has significant 

influence on the compressibility of the sample (Proctor 2009, Filintoglou 2013), and 

preparation of graphene membranes for DAC experiments would allow the mechanical 

properties of freestanding pristine graphene to be probed without dependence on a 

substrate material. 

7.1.1. Towards graphane with DAC-compatible graphene 

membranes 

In order to vastly improve hydrogen coverage and to press towards making 

fully-hydrogenated graphane using the DAC method, it will be important to develop 

samples of free-standing graphene membranes. Samples of this architecture were 

employed by Elias et al., who saw a roughly doubled rate of hydrogenation for their 

plasma method when graphene was exposed to hydrogen on both sides (Elias 2009). 

Graphene grown by CVD onto copper is commonly transferred between 

substrate using a polymer conduit. A thin layer of the polymer can be deposited onto 

the graphene and the copper chemically etched away. The graphene-on-polymer can 

then be placed onto the desired substrate and the polymer chemically removed 

(Mattevi 2011). 
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Figure 7.3: Transfer of CVD-grown graphene from copper substrates to substrates 

containing apertures, such that monolayers exist as partially-unsupported 

membranes, via a polymer conduit. Modified from (Suk 2011). 

By utilising laser drilling, spark erosion or milling with a focused ion beam, 

substrates can be prepared either as bulk containing a system of apertures or as a large 

batch of small – 50-200 µm – substrates with apertures. Following the scheme 

proposed in Figure 7.3 (Suk 2011) could allow batch processing of graphene grown by 

CVD onto copper into DAC-compatible graphene membranes for future hydrogenation 

experiments. 

7.2. Search for the Frenkel line 

Through gradual pressure reduction in methane at 298 K, we observe 

discontinuous changes in the intensity and in the pressure dependence of the 

frequency of its Raman-active vibron – well above its critical point. 

The loss of rigidity at the Frenkel line is due to a complete disappearance of 

the vibrational, “solid-like” component of the motion of liquid particles. In other words, 
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the particles are no longer partially confined to equilibrium positions by 

intermolecular interactions (Brazhkin 2012). This insensitivity to intermolecular 

interactions can be used to explain the Raman effects observed below 0.152(±0.032) 

GPa (Figure 6.7), where the frequency of the Raman vibron of methane and its intensity 

are no longer affected by density, i.e. changes in intermolecular separations that would 

alter interaction potentials. The significant step in vibron intensity at 0.152(±0.032) 

GPa, which we observed to be reversible, could be a result of the sudden appearance 

and disappearance of solid-like behaviours which affect the environment of each 

molecule, affecting their polarizability and thus, by equation 3.6, the intensity of the 

Raman scattering (Hollas 1996).  

That the Raman transition observed in methane at 298 K is not reflected at far 

greater temperatures (Figure 6.10) casts doubt over whether the transition is in fact 

due to a transition across the Frenkel line. However, whilst the effects described by 

Widom phenomena are only present close to the critical point, the Raman transition 

was observed at a temperature exceeding TC of methane by over 100 K, eliminating the 

possibility of confusion with a Widom line. It could be possible that the Frenkel line – 

or, at least, some of its detectable effects such as the Raman behaviour transition – do 

not extend to arbitrarily high pressures and temperatures beyond the critical point as 

predicted, and this could be confirmed by observing the Raman discontinuity at 

smaller intervals in temperature, both away from and towards the critical point. 

Importantly, the transition in Raman behaviours seen in Figure 6.7 is not 

accompanied by any detectable change in local structure (Figure 6.8 and Figure 6.11). 

From van der Waals theory (§ 1.2), we do not expect any discontinuous change in 

density at any pressure-temperature conditions once we are beyond the critical point. 

The Frenkel line, if this is indeed the cause behind the Raman transition, is thus not 

associated with a first-order phase transition. 

 An important step in confirming that the Raman transition seen in 6.3.1 is an 

effect due to Frenkel line transition will be to investigate the effect in other Raman-

active systems. For its astronomical importance (Owen 2005), Raman activity 

(Schmidt 1991) low critical temperature (Linstrom 2011) and ease of loading into a 

DAC, nitrogen is an immediate candidate, as well as hydrogen (Howie 2015) or 

ammonia (Wright 1984, Palasyuk 2014). Both nitrogen and hydrogen have strong 
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rotational modes unlike the near-spherical methane, allowing further investigations 

into the changes in Raman behaviour at the transition. 

7.2.1. Acoustic measurements at high pressure 

As discussed in § 6.1, a crossing of the Frenkel line is marked by a complete 

collapse of the frequency range (equation 6.1) over which shear waves can be 

supported by a liquid. Thus, a concrete method of confirming the validity of the Frenkel 

line theory would be observations of such an acoustic change in a material well above 

its critical point. Acoustic measurements on sample in a DAC are complicated by the 

diamond anvils, which are typically orders of magnitude larger than the sample itself, 

but some methods have been developed. 

A technique has been developed by Chigarev et al. which allows direct 

measurement of the speed of sound in a material placed inside a DAC (Chigarev 2008) 

using a pulsed laser to generate acoustic waves inside the sample and a continuous 

wave laser to detect fluctuations in reflectivity of the sample due to acoustic waves. 

The Chigarev method could detect Frenkel transitions by the disappearance of the 

transverse mode signals from a sample as it becomes a non-rigid fluid under 

decompression. However, it has not yet been demonstrated in transparent samples 

and the effectiveness of generating and detecting acoustic waves at the diamond-

sample interface could be lost. 

Using a buffer rod tailored to convert compressive waves into shear waves and 

direct them through a diamond anvil, Jacobsen et al. have devised a method for 

measuring sound velocities in crystalline samples under compression in a DAC 

(Jacobsen 2004). However, their method does not see shear reflections in alcohol 

samples until the liquid-glass transition line has been crossed, suggesting that some 

redesigning must be made in order to detect a Frenkel transition (Jacobsen 2005). 

To probe for Frenkel line transitions in the lower pressure range, it is possible 

to employ a large volume press such as the Paris-Edinburgh cell (Besson 1992) in place 

of the diamond anvil cell. The Paris-Edinburgh cell has recently been modified to 

feature a buffer rod arrangement for ultrasonic measurements (Kono 2013), and by 

varying the pressure of the sample and sweeping the frequency of the transducer, it 
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could be possible to watch the range in equation 6.1 decrease until eventual 

disappearance at the Frenkel line. 

 

Figure 7.4: Brillouin spectra of boron trioxide at ambient and elevated temperatures, 

exhibiting shear (T) waves well into the liquid state (Grimsditch 1989). 

Perhaps the most suitable method for observing acoustic phenomena inside a 

DAC is Brillouin spectroscopy, the analogue of Raman spectroscopy where light is 

inelastically scattered by long wavelength acoustic phonons in a material (Polian 

2003). Low-frequency modes attributed to shear rigidity are present in liquids (Figure 

7.4, Grimsditch 1989) and a crossing of the Frenkel line would see these modes 

disappear.
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Appendix A: Other interactions between graphene and 

pressure media 

A study by Filintoglou et al. details experiments performed on graphene under 

quasi-hydrostatic pressure in a 1:1 mixture of FC70 and FC77 Fluorinert – branded 

coolant fluids, generally fluorocarbons and fluorinated oils, often used as a pressure 

transmitting medium in neutron scattering experiments to avoid noise from scattering 

from hydrogen in other common PTMs such as alcohols and oils (Sidorov 2005). 

Filintoglou et al. observed defect-related Raman peaks appearing on pressure release 

(Filintoglou 2013). The elegant explanation offered by Filintoglou et al. is that at 

pressures above the melting line of the PTM, the graphene will exist essentially as a 

free-floating single-layer in a solid solvent, having no preferential adhesion to either 

the substrate or the PTM. However, upon melting, the monolayer graphene will 

develop some preferential adhesion to either the substrate or the PTM, varying in 

different locations across the sheet. This, they claim, causes structural damage to the 

graphene as the PTM melts. 

In order to ensure that the D peak was activated in high pressure and 

temperature hydrogenation experiments due to hydrogen bonded to the graphene 

lattice and not due to structural damage across the sample caused by crossing the 

hydrogen melting line several times during an experiment (on initial compression, on 

both heating and cooling, and once again at pressure release), graphene was loaded 

into a HT cell in an atmosphere of liquid nitrogen. Pressure was raised to 7.1 GPa, well 

into the region where nitrogen is solid at ambient temperature (Schmidt 1991) and 

then released. Care was taken not to mount the sample in the gasket on this occasion, 

as it was important to be able to distinguish between damage caused by PTM melting 

and damage potentially caused by contact with the gasket. Raman inspection of the 

sample afterwards reveals no damage to the sample – evident by the lack of D peak 

across both sides of the copper flake (Figure A.1). 



  Appendix A: Other interactions between graphene and pressure media 

99 
 

 

Figure A.1: (a) Raman spectrum of graphene after compression in nitrogen to 7.1 

GPa, resembling pristine graphene with no structural damage. (b) Graphene 

spectrum after compression to 3.0 GPa in a Fluorinert mixture, exhibiting disorder-

induced D and Dʹ peaks (Filintoglou 2013). 

The explanation offered by Filintoglou et al. suggests a phenomenon which 

should be true for any solidifying and melting atmosphere around graphene on a solid 

substrate, which is not the case in experiments with nitrogen either here or in past 

compressions by Proctor et al. (Proctor 2009), or in hydrogen and deuterium. While 

the large electronegativity difference between the carbon and fluorine means that the 

C-F bonds in the Fluorinert compounds are strong and the D peak is unlikely to be 

caused by a chemical reaction between PTM and graphene (Lemal 2004), it also makes 

the Fluorinert compounds partially polarised. The relationship between polarity of a 

PTM and its tendency to damage graphene has been probed by compressing graphene 

on copper in a 4:1 methanol-ethanol mixture as a PTM, Figure A2 shows the Raman 

spectrum of graphene after pressure was released. 
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Figure A.2: Raman spectrum of graphene on copper substrate after compression to 

7.2 GPa in a 4:1 methanol-ethnol mixture, resembling Stage I disordered graphene 

with ID/IG = 1.7 determined by Gaussian peak fitting in MagicPlot. 

The implication from Figure A.2 and Filintoglou et al. is that graphene will 

become disordered upon compression cycles in an atmosphere that is polar, which is 

supported in part by experiments elsewhere compressing graphene to 7 GPa in alcohol 

mixtures (Nicolle 2011), though no comment was made there on the presence or 

disappearance of the D peak after pressure treatment. Results on compression in 

hydrogen and deuterium shown in Figure 5.14 and in nitrogen in Figure A.1a, however, 

suggest that compression cycles on graphene in a non-polar medium will not lead to 

damage even when the melting line is crossed.
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Appendix B: Propagation of errors in pressure 

measurement 

When describing the location of the Raman transition in § 6.3.1, it is important 

to consider the error in measuring pressure using ruby photoluminescence. First, by 

rearranging equation 4.1 from Mao et al. (Mao 1986): 

 
0

R1

R1

B B
A A

P
B B


     B.1 

The constants A and B are derived from fitting equation 4.1 to experimental 

data by Mao et al. and their errors can be considered not to affect our measurements. 

Thus only the second term in equation B.1 needs to be considered. We have then: 

 0

0

R1R1

R1 R1

P
B B
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  B.2 

The uncertainties in the shift in R1 and in the original position in R1 can be 

taken from the standard deviations of the R1 peak positions given in the report 

outputted from MagicPlot. In general, the values are around 0.0015 cm-1, so δΔR1 and 

δR10 will be replaced by a single value, δfit, and B.2 becomes: 
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  B.3 

Substituting values of B from (Mao 1986) and δfit from MagicPlot: 

 
0

0.0015 0.0015
7.665

R1 R1
P P

 
    

  B.4 

Averaged over the 24 datapoints collected during the experiment in § 6.3.1, 

the value of δP is 0.032 GPa.
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Appendix C: Analyses of raw data from supercritical 

methane experiments 

 

Figure C.1: Waterfall plots showing selected Raman spectra from § 6.3.1. Spectra are 

displayed in (a) pressure-order and (b) acquired order to demonstrate reversibility 

of the Raman transition. Red arrows point to transition pressures. 
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Figures C.1 and Figure C.2 show the vibrational mode of methane upon 

pressure variation at 298 and 523 K respectively. Raman spectra in Chapter 6 were 

collected in situ in a DAC using spectrometer layout in Figure 3.11. Background was 

fitted with a parabola in MagicPlot Student and subtracted, then the peak fitted with a 

Lorentzian curve. Details of the vibron obtained from the fitting form the plots in 

Figure 6.7 and Figure 6.10. 

 

Figure C.2: Waterfall plot of Raman spectra from experiment in §6.3.3 (Figure 6.10) 

not exhibiting any sudden changes in intensity as in Figure C.1. 

The procedure by which data on the first peak in S(q) for supercritical 

methane was analysed begins with integration using the Dioptas software (Prescher 

2015). Experiment geometry was calibrated in Dioptas using a lanthanum hexaboride 

or cerium dioxide standard. 
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Figure C.3: Two-dimensional diffraction pattern of fluid methane at 0.69 GPa 

captured at ID27, semi-transparent red areas are those which are masked out (inset: 

image without multichannel collimator). 

Figure C.1 shows how the images must be masked in order to remove sections 

of the image plate which are not exposed due to the multichannel collimator. To 

account for Compton scattering background not removed by the collimator, scattering 

data was collected from the DAC after methane had been released (Figure C.2a). 
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Figure C.4: Background correction of integrated diffraction patterns. (a) Diffraction 

pattern of fluid methane at 0.69 GPa (black) and Compton-scattered signal from 

empty pressure cell (red). (b) Static structure factor of methane S(q) at 0.69 GPa 

obtained by subtracting cell background and normalising in the high q limit. 

After subtraction of the background, all data was normalised in the high q limit 

where S(q) tends to 1 (Fischer 2006). The first peak in S(q) can be fitted with a 

Gaussian peak using the MagicPlot software and used to generate the data shown in 

Figure 6.8 and Figure 6.11.
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