

Accepted Manuscript

Artefacts and Agile Method Tailoring in Large-Scale Offshore
Software Development Programmes

Julian M. Bass

PII: S0950-5849(16)30035-0
DOI: 10.1016/j.infsof.2016.03.001
Reference: INFSOF 5703

To appear in: Information and Software Technology

Received date: 7 August 2015
Revised date: 10 February 2016
Accepted date: 4 March 2016

Please cite this article as: Julian M. Bass, Artefacts and Agile Method Tailoring in Large-Scale
Offshore Software Development Programmes, Information and Software Technology (2016), doi:
10.1016/j.infsof.2016.03.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.infsof.2016.03.001
http://dx.doi.org/10.1016/j.infsof.2016.03.001

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Artefacts and Agile Method Tailoring in Large-Scale
Offshore Software Development Programmes

Julian M. Bass

University of Salford, The Crescent, Salford, Manchester, UK

Abstract

Context: Large-scale offshore software development programmes are complex,
with challenging deadlines and a high risk of failure. Agile methods are being
adopted, despite the challenges of coordinating multiple development teams.
Agile processes are tailored to support team coordination. Artefacts are tangi-
ble products of the software development process, intended to ensure consistency
in the approach of teams on the same development programme.
Objective: This study aims to increase understanding of how development
processes are tailored to meet the needs of large-scale offshore software develop-
ment programmes, by focusing on artefact inventories used in the development
process.
Method: A grounded theory approach using 46 practitioner interviews, sup-
plemented with documentary sources and observations, in nine international
companies was adopted. The grounded theory concepts of open coding, memo-
ing, constant comparison and saturation were used in data analysis.
Results: The study has identified 25 artefacts, organised into five categories:
feature, sprint, release, product and corporate governance. It was discovered
that conventional agile artefacts are enriched with artefacts associated with
plan-based methods in order to provide governance. The empirical evidence
collected in the study has been used to identify a primary owner of each arte-
fact and map each artefact to specific activities within each of the agile roles.
Conclusion: The development programmes in this study create agile and plan-
based artefacts to improve compliance with enterprise quality standards and
technology strategies, whilst also mitigating risk of failure. Management of
these additional artefacts is currently improvised because agile development
processes lack corresponding ceremonies.

Keywords: Agile software development, software development artefacts,
scrum, large-scale, enterprise, offshore, outsourced, grounded theory, process
tailoring

Email address: j.bass@salford.ac.uk (Julian M. Bass)
URL: https://www.seek.salford.ac.uk/profiles/JBass.jsp (Julian M. Bass)

Preprint submitted to Elsevier March 5, 2016

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1. Introduction

Practitioners managing large-scale offshore software development programmes
appear to find it increasingly attractive to blend elements of both plan-based and
agile software development methods, with the result being a pragmatic tailoring
of agile methods which accommodates organisational constraints, governance
requirements and geographical distribution. This article explores process tai-
loring by investigating artefact inventories, using empirical data collected from
industry practitioners at all levels representing nine international companies.

Agile methods have been proposed as way to avoid project failures [1]. Risk
of project failure is reduced each time a software increment is delivered, since
the highest priority requirements are selected for development during each incre-
ment and each increment is used to gather client and user feedback. Increments
are delivered regularly and each comprises a carefully defined fragment of the
overall development effort. This contrasts with plan-based methods in which
risks progressively rise until product handover at the end of the project. There
is evidence that agile methods improve both software development productiv-
ity and product quality [2]. However, such agile methods are conventionally
associated with small, co-located development teams.

The scaling of agile methods to large-scale software development programmes
has attracted interest from practitioners [3, 4, 5], and has been identified as a
priority area for researchers [6, 7]. For example, the scrum of scrums approach
supports multiple concurrent scrum teams [3]. Teams working in parallel with
each other need coordination, consequently the scrum masters from each team
work together to coordinate activities, manage dependencies and avoid the du-
plication of effort [8, 9].

Outsourcing is the process of procuring products or services from a third-
party vendor or provider [10]. In onshore outsourcing the third party vendor is
located in the same territory as the client organisation. Onshore outsourcing
is not the focus of this study. Offshore outsourcing involves a geographically
remote third-party vendor, often separated from the client organisation by sig-
nificant temporal and cultural distance. In contrast, some client organisations
establish their own in-house offshore development centres. Offshore develop-
ment (whether in-house or outsourced) can help establish a presence in emerging
markets or benefit from their anticipated lower cost base.

The focus of this study is on large-scale development programmes compris-
ing a system under development or integrated portfolio of related products.
Inevitably, large-scale systems involve the integration of new features into an
existing code base sometimes called a legacy system. In this study, large-scale
consists of at least 25 developers configured into multiple cooperating teams
working together for a period of 9 months or more.

Various forms of artefact are used to negotiate, record and disseminate de-
cisions made during the development process. An artefact is a tangible product
or by-product produced during the development of software, typically includ-
ing: models, designs, reports and source code. The artefacts act as boundary
objects between the different technical specialisms of stakeholders involved in

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the development programme [11].
Development teams are required to record and share design decisions to avoid

duplication of effort and resolve dependencies. The artefacts record the results of
negotiations between stakeholder groups, decisions made and decisions revised.
Written records contradict the agile manifesto which advocates focus on working
software over comprehensive documentation [12]. So, large-scale agile develop-
ment programmes dictate forms of documentation to coordinate the activities
of groups and teams, yet agile methods advocate focus on working code. Thus,
artefacts represent an area of tension between traditional plan-based methods
and agile methods. As a consequence, artefacts can provide insights in to the
tailoring of agile methods in large-scale development programmes.

To enhance understanding of software development process tailoring in large-
scale offshore agile software development programmes, this research explores
practitioner interactions with the artefacts used. The main research question
for this study is: “how do practitioners describe the inventory of artefacts they
use in large-scale offshore software development programmes?”

This primary research question is further explored using two subsidiary
research questions: “how do the artefacts map to software development pro-
cesses used in large-scale offshore software development programmes?” and
“how do these practitioner descriptions contribute to our understanding of arte-
facts in agile method tailoring in large-scale offshore software development pro-
grammes?”

In order to answer these research questions the author has conducted qual-
itative empirical research with nine international companies engaged in large-
scale offshore agile software development programmes; leading to 46 open-ended
semi-structured interviews with practitioners ranging from senior executives to
novice testers and developers. In addition, documentary sources describing de-
velopment process standards and guidelines have been reviewed and workplace
observations have been conducted.

The main contribution of this article is a systematic description of practi-
tioner interactions with the artefacts created in large-scale offshore agile soft-
ware development programmes. The project teams in this study use several
agile techniques, notably: daily stand-up meetings, short iterations, prioritized
backlogs, iteration planning, retrospectives and release planning. These tech-
niques have been identified as most popular by respondents to a well established
industry survey [13].

Five categories of artefacts emerge from the empirical data collected in this
study: feature, sprint, release, product, and programme governance. A taxon-
omy is then established that relates these artefacts to their role in the software
development process. An actor within the development process is identified as
primary owner of each artefact. Further, information sources and information
consumers for each artefact are derived from the data obtained during this study.
It is suggested that agile processes are missing ceremonies for managing certain
artefacts and that agile processes need to be enhanced with additional scrum
of scrum ceremonies to manage these artefacts in large-scale offshore software
development programmes.

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The rest of this paper is structured as follows. In the next section a review
of related work is undertaken, with agile methods summarised, along with a
brief review of global software development, where the use of agile methods
in large-scale offshore software development programmes is considered. The
article then introduces the research method adopted, providing information on
the selected research sites, data collection methods and analysis undertaken.
Findings are then presented, organised into sections on programme governance,
product, release, sprint, and feature artefacts. At the end of the article, the
findings are discussed, and the limitations of the work are presented, along with
suggestions for further work and conclusions.

2. Agile Software Development

There are a range of agile software development methods that are increas-
ingly being adopted in large-scale offshore software development programmes,
including Feature Driven Development, Scrum, Extreme Programming (XP)
and Lean Software Development [14]. These software development methods
build upon three key themes in software engineering: development using short
iterations, feature-driven development and the close interaction with customers.

Short iterations are now widely used in software development, providing fre-
quent and regular feedback on smaller scale development activities, rather than
more traditional six or nine month development efforts. Within an agile team,
short iterations help to identify the causes of any development delays, while
the relevant development team also gains feedback from external stakeholders
regarding its compliance with agreed requirements. Short iterations require the
continuous integration of software code artefacts as they are combined, tested
and released [15]. The use of automated software tools migrates code artefacts
between the platforms used for build, integration and testing activities.

In feature driven development, team members work together in self-organising
teams to produce end-to-end functionality [16]. Each feature is designed to meet
a business need and is just one element of a much larger system. Such features
must include all the necessary technical components (including databases, net-
work communications and user interface screens) needed to solve that specific
business problem, and thus provide end-to-end functionality. Features are self-
contained and independent, making them well suited for managing from the
initial requirements stage through design and implementation to final testing.
Staff members in feature teams either possess all the necessary skills needed to
build all the technical components to implement a particular feature; or occa-
sionally they work together in small groups to bring the required skills together.
The feature team concept is in contrast to teams organised around technical spe-
cialisms, where, for example one team has the skills to develop user interfaces
with another team responsible for developing databases.

The close collaboration with customers has been advocated as a way to make
detailed application domain knowledge available to the team [17]. Customers,
or more specifically, product owners in a scrum, should be able to identify and
prioritise requirements and define the test criteria for the successful completion

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of each requirement. Product owners can also take responsibility for assessing
the number and severity of outstanding issues in a code base, and for approving
the release to any clients.

2.1. Large-Scale Agile Methods

There are currently four main themes of concern in using agile methods
on large-scale development programmes: scaling, portfolio management, inter-
team coordination and architecture [18]. The Scaled Agile Framework (SAFe)
is targeted at large enterprises and has three main layers: team, programme
and portfolio [3, 19]. SAFe comprises an implementation strategy, nine lean
agile principles and extends the scrum of scrums concept. The framework uses a
structured programme of training and large scale organisation change to support
adoption. The scrum master and product owner roles are envisaged along with
selected engineering practices from XP.

The scrum of scrums meeting, in which scrum masters from cooperating
teams meet to provide each other status updates, has previously been investi-
gated [20, 21]. It was found that, in large-scale projects, the scrum of scrums
meeting membership can grow making it difficult to expedite the meeting in the
recommended 15 minutes. Further, scrum of scrum meeting participants did
not find it useful to listen to status updates from teams working on relatively
unrelated aspects of the development programme. Both studies [20, 21] found
practitioners preferring to conduct a more frequent series of smaller, more fo-
cused, scrum of scrum meetings to share information about related aspects of
the development programme, alongside a less frequent large scrum of scrums
meeting involving all stakeholders.

Release planning, in large-scale agile development programmes, is an on-
going process comprising regular scoping and prioritisation decisions [15]. This
approach to release planning is in contrast with traditional approaches which
create the release plan at an early stage of development process, a release plan
which is adhered to throughout subsequent phases.The release planning decision
making may be decentralised to include development team members [15] or it
may be more centralised in the product owner job function informed develop-
ment team members where technical dependencies are present [22].

To retain flexibility in the face of changing requirements, architecture is not
fixed at the start of an agile development programme. In small agile teams,
the whole team takes on-going responsibility for developing architecture dur-
ing the development project. However, in large-scale agile, teams cooperate to
build the overall system, sometimes subject to corporate governance or third
party development standards, and so cannot realistically be jointly responsible
for architecture. Eckstein [23] identifies four approaches to architecture devel-
opment in large-scale agile programmes: community of practice, chief architect,
technical service team, technical consulting team. In the community of practice
model, a self-selecting small group of specialists representing each team work
together to derive the architecture. The chief architect approach, in contrast,
uses a technically skilled individual to coordinate the architecture needs of the

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Sprint
Sprint

Sprint

Scrum of
Scrums

Product
Backlog

Market
Evaluation

Product Vision
And Road Map

SprintSprint
Client

Satisfaction
Evaluation

Sprint
Backlog

Development Time box
Customer

Demo

Sprint
Kick off

Scrum
Meeting

SprintSprint
SprintSprint

Scrum of
Scrums

Scrum of
Scrums

C) Sprint Process

B) Product Release Process

A) Development Programme Process

Release
Planning

Sprint
SprintProduct n

Release m-1

Retrospective

Sprint
SprintProduct n
Release m

Sprint
SprintProduct n

Release m+1

Scrum
Meeting

Scrum
Meeting

Figure 1: Overall Scrum of Scrums Process (adapted from [22])

cooperating teams, this is similar to the Technical Product Owner role iden-
tified in [22]. In development programmes with complex architecture needs, a
specialist team is formed called the technical service team [24]. The technical
service team provides architecture development services to the feature teams.
Some organisations impose corporate architecture governance on teams across
development programmes, in such cases a technical consulting team can provide
architecture support to features teams combining the community of practice or
chief architect and technical services team models [23].

The overall scrum of scrums process, as shown in Figure 1, is comprised of
the individual sprints shown in (C), the co-ordinated product releases illustrated
in (B), and the portfolio of multiple products that form the software product
lines of (A). The sprints in Figure 1 (C) consist of sprint planning to prepare
a sprint backlog and conduct of a sprint kick off meeting; with scrum meetings
held daily throughout the development period culminating in the demonstration
of the working code to a customer, followed by a retrospective. In Figure 1 (B)
a number of sprints are included in a release, whilst in Figure 1 (A) a set of
products are produced through a series of releases.

2.2. Agile Method Tailoring

Agile method tailoring describes the overall process of selecting or adapt-
ing software practices and comprises two main approaches, contingency-based

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

method selection and method engineering [25]. Contingency-based method se-
lection assumes that software development methods are not universally appli-
cable but that teams or organisations should select a method in its entirety,
dependent upon their project context. In contrast, using the method engineer-
ing approach, development teams construct a bespoke new process using method
fragments [26].

For example, a method engineering approach appears to have been used
at Intel Shannon where aspects of both scum and XP were adopted [27]. A
recent systematic literature review of empirical agile tailoring research papers
suggests that the method engineering approach is more popular with project
teams [28]. Tailoring interventions can relate to stakeholders, project life cycle,
project organisation and knowledge building [29].

2.3. Agile Artefacts

Conventionally, agile development methods consist of roles, practices and
artefacts. Previous studies have investigated these roles, including self-organising
teams [16], on-site customers [17], product owners [22] and scrum masters [20].
There have also been a number of studies considering engineering practices, con-
ducted as a part of the XP process including pair programming [30, 31, 32], test
driven development [33], continuous integration [34] and refactoring [35]. These
studies have found that effective XP teams exhibit a shared sense of responsi-
bility, and a relaxed yet rhythmic approach to working; with the resulting good
quality code a jointly owned and valued asset [36].

There have also been a number of attempts to identify software development
artefacts. Broadly, these artefacts can be categorised in terms of planning,
requirements, development, testing and change management [37, 38]. Three
patterns of artefact use within requirements engineering have been identified:
solution oriented, function oriented and problem oriented [39]. Within these
broad categories specific agile artefacts including the product backlog, sprint
backlog, burn down chart, task, issue and working software are located. A more
detailed ethnography has focused on two specific agile artefacts the physical
user ‘story card’ and the ‘wall’, a large board displaying project status [40].

3. Method

This research adopts a grounded theory approach, using the empirical data
gathered from research sites in selected international companies, as shown in
Table 1. Data collection used documentary evidence, workplace observation
of software development practices and semi-structured face-to-face practitioner
research interviews, which were recorded and subsequently transcribed. The
unit of analysis is the set of software practitioners working on development
programmes in selected organisations. Data analysis was conducted using a
grounded theory approach [41].

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.1. Research Sites

The nine international companies investigated, shown in Table 1, perform
either off-shoring (companies B, F and I) or outsourcing (companies A, C, D,
E, G and H). Off-shoring is used to access and cultivate specialist technical
skills from around the world, with both off-shoring and outsourcing offering
access to lower cost skills than traditional in-house onshore specialists. Five of
the companies have achieved Capability Maturity Model Integration (CMMI®)
maturity level 5 accreditation.

Company B is a well-known Internet business. It has an in-house devel-
opment capability based in California, USA and has also established a devel-
opment team in India, to attract a wide range of specialist skills while also
reducing staffing costs. In contrast, Company F has interests in the industrial
products space. Company F has headquarters in Europe, and also has research
and development centres in India and other territories across the world. Work
assignments in these organisations are allocated according to the critical mass
of technical of expertise within specialist groups, in order to avoid the dupli-
cation of competencies. The selected IT services companies (Companies A, C,
D, G and H) are each well-known vendors in the world-wide software and/or
IT service outsourcing sectors. The two largest companies investigated in this
study have a turnover of almost €8 billion and over US $1.5 billion.

The selected companies have head offices located in Germany, India and the
USA, although the research sites chosen were exclusively in the UK and India,
due to budgetary constraints. The interviews were conducted in Bangalore,
India, London, England, Delhi, India, and Glasgow, Scotland, between January
2010 and September 2014.

Two phases of sampling were undertaken, in order to decide which companies
to include in the study: a snowball sampling technique ([42] pp. 237; [43] pp.
37), which was followed by intensity sampling ([42] pp. 234). During the first
phase, former co-workers and other professional contacts provided access to
study participants, who then provided access to development teams in other
companies. During this initial, exploratory phase of the study, semi-structured
interviews were conducted with a broad range of companies (Companies A, B,
C, F and G).

Employing snowball sampling techniques provided access to perspectives
drawn from a range of different stakeholders. For example, Company C ex-
clusively used agile software development methods, while Companies E and G
provided access to some agile sceptics, who had negative experiences to report.

During the second phase of the study, intensity sampling ([42] pp. 234)
was used to obtain a greater richness and depth in the study, by accessing
a larger number of interview participants with different responsibilities in the
same company or software development programme. Triangulated perspectives
were provided by developers, quality assurance testers (QAs), project managers,
development programme managers and corporate-level executives in Company
H and Companies D and E.

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 1: Participating Companies, Industry Sectors and Interviewee Job Titles

Company Company Sector Interviewee Job Titles Interviewee Projects and Programmes
Company A, IT Service Provider Programme Manager Customer Relationship Management
Bangalore Senior Project Manager

Team Member
Company B, Internet Engineering Manager Web Mail
Bangalore Product Manager Web Calendar
Company C, Software Service Development Manager Rail Booking
Bangalore Provider
Company D, Software Service Project Manager Marketing Campaign Management
Bangalore Provider Product Owner Customer Relationship Management
(Offshore Scrum Master (3)
Provider to QA Lead
Company E) Team Member
Company E, Enterprise CRM Programme Manager Banking
London Project Manager Marketing Campaign Management

Director of Engineering Customer Relationship Management
Company F, Industrial Products Scrum Master Healthcare Instruments
Bangalore
Company G, IT Service Provider Engagement Manager Media Entertainment
Bangalore
Company H, IT Service Provider Chief Technology Officer Airline Customer Service
Delhi Corporate Lead Architect Flight Booking

General Manager Human Resources
Delivery/Programme Manager (3)
Project/Senior Project Manager (3)
Scrum Master (2)
Technical Analyst/
Consultant/Specialist (6)
Team Member (9)
Business Analyst

Company I, Customer Chief Operating Officer Customer Relationship Management
Glasgow, Scotland Relationship Management

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Details of the enterprise software development programmes selected for the
study, including team size and development method, are shown in Table 2. As
mentioned previously, in this study, a large software development programme is
defined as a minimum of 25 developers engaged for a duration of nine months
or more. The overall team size will be much larger when analysts and other
support staff are included. Three of the development programmes are geo-
graphically distributed (Company A, CRM insurance; Company G, healthcare;
and Company F, healthcare). While the remaining 17 development programmes
use various configurations of onshore clients and offshore teams. All the devel-
opment programmes in the study and shown in Table 2, are for commercial
revenue generation and are not for internal IT infrastructure applications.

In summary, research sites were selected to provide replication using snow-
ball sampling in the first phase of the study, with intensity sampling employed
in the second phase to enhance both the depth and richness of the data, with
the aim of increasing data reliability through participant triangulation. Using
both snowball and intensity sampling methods is a combination sampling ap-
proach that provides methodological triangulation to the sample selection. This
methodological triangulation also acts to minimise researcher bias in the study.

3.2. Data Collection

Three types of secondary data were used to support the study: corporate
process guidelines, project and development programme documentation, and
technical reports or white papers. Some of the participating companies also
made commercially confidential process guidelines available. These guidelines
provided details of corporate agile practices, roles, policies and recommenda-
tions. However, it was not possible to obtain access to such documentation
from all of the companies, due to the extreme commercial sensitivity of the
contents. Some documentation produced for specific software development pro-
grammes, including design and architecture documents, has also been explored.
Publicly available white papers, technical reports, case studies and descriptions
of vendor capabilities were also reviewed. Such documents are usually produced
to provide potential customers with marketing information. Direct observation
of working practices and work place environments was enabled by on-site vis-
its. Some secure work environments were visited with coordination meetings
(stand-up meetings) of both co-located and distributed scrum teams observed
at Companies C, D and H. The on-site visits were also used to investigate
the arrangements in place for distributed scrum coordination meetings, using
both video and audio conferencing technologies. Furthermore, various informal
(sometimes off-site) discussions with executives, project managers and develop-
ment team members were conducted.

The primary data used in the study was gathered from 46 face-to-face semi-
structured interviews conducted with practitioners, as detailed in Table 1. The
recordings of these interviews were then transcribed using a specialist commer-
cial transcription service and reviewed to ensure verbatim transcription. The
interviews were conducted using open-ended interview guide approach. An ex-
ample of the semi-structured interview guide used in this research is presented

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Company Project Team
Size

Development Process Project
Type

CRM (Insurance) 325 RUPa

Distributed BA Team
Bespoke

A CRM (Banking) 50 Scrum Bespoke
CRM (Healthcare) 75 Scrum Bespoke
Internet (Calendar) 25 Scrum SPLb

B Internet (Mail) 25 Scrum SPL
Internet (Options) 25 Scrum SPL

C Transport
(Rail Ticketing)

40 XP Bespoke

Marketing
(Campaign
Management)

25 Scrum SPL

Enterprise CRM
(Core)

20 Scrum SPL

D/E Enterprise CRM
(Banking)

12 Scrum Bespoke

Enterprise CRM
(Credit Card)

20 FDDc

(Capsule Development)
SPL

Enterprise CRM
(Financial Services)

25 RUP Bespoke

Healthcare
(Instruments)

1000 Scrum SPL

F Industrial Automation 200 Scrum SPL
Media Entertainment 50 Scrum Bespoke

G Healthcare 180 Scrum SPL
Travel (Loyalty) 30 Scrum SPL

H Travel
(Airline Reservation)

25 Scrum Bespoke

Risk Management and
Insurance

30 Scrum SPL

I Enterprise CRM 190 Scrum SPL

Table 2: Development Programme Details

aRUP, Rational Unified Process
bSPL, Software Product Line
cFDD, Feature Driven Development

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

in the Appendix. The interviews were open-ended to provide respondents with
the opportunity to raise any issues or concerns that were outside the scope of
the scripted interview questions. Interviews were typically conducted in small
meeting rooms exclusively booked for the purpose on company premises.

3.3. Data Analysis

The audio interviews and corresponding verbatim transcripts were carefully
reviewed to ensure consistency. The transcript text was then imported into a
qualitative data analysis software tool, in this case Nvivo V9 [44].

The grounded theory analysis began with the identification of concepts con-
tained within the interview data [45]. These interview concepts were coded and
then compared within and between interviewees. These interview concepts were
then iteratively grouped and refined into selected categories. Therefore, inter-
view concepts were combined to create categories which were then themselves
coded, listed and compared within and between interviewees. There were four
main aspects of the data analysis used in this research.

3.3.1. Open Coding

A sentence-by-sentence approach to interview transcript coding was adopted
in this research. Each code was represented by a short descriptive phrase. The
codes were handwritten onto hard copies of the interview transcripts, during
the early stages of analysis. This approach offered a quick and easy way to start
analysis, identifying initial codes, that were then collated. These early stage
codes were tentative and evolved quickly as data analysis progressed. Later,
the data analysis software tool NVivo [44] was used to record and formalise the
coding process. Concept classification was used to organise the large volume
of data into categories [46], with the categories becoming saturated as the data
collection progressed [47]. This categorisation formed the basis of the subsequent
grounded theory [41].

3.3.2. Memoing

Memo writing was used to capture and sharpen topics identified using open
coding as they develop into categories. Each memo was short, often informal, es-
say on the topic which includes selected quotations to provide primary evidence.
Some memos build upon field notes, that were initiated during data collection,
to capture interesting topics raised during interviews. The memo writing helps
to clarify, refine and sharpen categories, evolving as new transcript data is added
[46, Chapter 12].

3.3.3. Constant Comparison

When using constant comparison, the researcher iterates back and forth
between data collection and analysis. Further, constant comparison is used to
compare incidents that apply to each category, integrate categories and their
properties, delimit the theory, and write the theory [45, pp.105]. This approach
is “close to the common-sense approach which one might use when trying to

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Bug

Issue

Feature

Feature
Enhancement

Coded Concepts in
Interview Data

Categories in
Interview Data

Grouped Categories in
Interview Data

Grounded
Theory

Comparison Between
Categories

Comparison Within
Categories

Jira

Ticket

Bug

Defect
Issue

Binary Code
(Feature)

Ticket

Issue
Jira

Figure 2: Grounded Theory Development Example

understand something which is complex and puzzling”[48, pp. 148]. Interview
transcript codes were compared with each other at two levels: within the same
organisation or project team and with outside organisations and teams. In this
way, the codes were honed over time using constant comparison.

The data analysis process is illustrated in Figure 2. Practitioners describe
managing artefacts called Jiras, tickets, bugs, issues or defects. Analysis of the
interview transcripts shows the handling of these artefacts can be grouped. Sim-
ilarly, practitioners describe a range of activities surrounding feature enhance-
ments. Feature enhancements are clearly related to features, but analysis of the
interview transcripts shows their handling within the software development pro-
cess has more in common with other Jiras, bugs and issues. The grouping and
categorisation has been performed iteratively, as data collection has proceeded.

3.3.4. Saturation

At early stages of the research, conducting practitioner interviews with a
new company or new project team causes re-appraisal of the categories identi-
fied. New artefacts, development practices and stakeholders are discovered at
the new research sites. As the study evolves, and the number of respondents
increases, the richness and detail of the grounded theory is enhanced. At the
later stages of the research, analysis of new research sites provides evidence that
is consistent with the grounded theory categories already identified. Gradually,
each new research site and practitioner interview has less and less impact on the

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

categorisation. Saturation has occurred in the research when new research sites
or interviews no longer result in new categories in the area of research under
investigation.

To summarise, a combination of open coding, memoing, constant comparison
and saturation was adopted for data analysis in this research. Early in the
analysis, topics were identified using sentence-by-sentence analysis of transcript
data. These topics were recorded in memos, which were refined and honed using
constant comparison within project teams and between organisations. As the
volume of interview data expanded, the topics evolved into categories that form
the basis of the grounded theory, presented in the findings. Saturation has been
achieved as analysis of new practitioner interview transcripts no longer result
in the emergence new categories.

4. Findings

The artefacts identified in this study are organised into five levels of abstrac-
tion: programme governance, product, release, sprint and feature. Each of these
categories is discussed in turn.

4.1. Programme Governance

Five artefacts have been identified in this study that are used across devel-
opment programmes: risk assessment, programme architecture standards, test
plans, contracts and reference architectures. These artefacts are created to co-
ordinate cooperating agile development teams and mitigate risk of development
programme failure by providing a layer of oversight and governance.

4.1.1. Risk Assessment

Risk assessment is used to identify potential sources of risk and estimate
the likelihood of occurrence. For each risk identified, mitigating actions are
listed and described. In large-scale development programmes, potential financial
losses are greater, the possibility of damage to reputation is higher and the
consequences of schedule overruns are more severe than on smaller projects.
Risk assessment is not normally associated with agile development methods,
it is “not really an agile-specific thing. It’s for any kind of project” (Delivery
Manager, Company H).

An important driver for conducting risk assessments in large-scale develop-
ment programmes is complexity:

“if something is seen as technically very complex, it will come up as
part of the risk [assessment] of that particular project, and then you
will have to [decide] how you mitigate that risk” (Delivery Manager,
Company H).

Risks maybe identified around several dimensions such as: client relation-
ships, solutions, team composition, operational issues and delivery. For large
projects the risk assessment is performed regularly, as part of project monitoring

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

“we have the practice of risk assessment every month and at the time
of defining the minimum viable product. . . to review and update the
risks for every Sprint” (Programme Manager, Company A)

Team members are involved in the regular risk assessments

“the Agile coach and Scrum master work with team and support
them to review the risks” (Programme Manager, Company A)

Whereas team composition and solution risks maybe reviewed at the end of
each sprint, client risks will be reviewed less frequently, perhaps quarterly. Op-
erational and delivery risks are reviewed only after major milestones, such as
product delivery. Architectural design is used to mitigate any technical com-
plexity identified during the risk assessment process.

4.1.2. Architecture Standards

Architecture standards are used to ensure software systems are well struc-
tured, internally consistent, simple to understand, easy to maintain and satisfy
non-functional requirements. Proposed enhancements to existing systems are
thus checked and subject to approval to ensure compliance with corporate tech-
nical strategy. Systems “need to have some technical governance on how changes
are made” (Lead Architect, Company H). Making unauthorised changes to sys-
tems is discouraged and “there can be certain serious implications, if there is
no governance out there” (Lead Architect, Company H). In CMMI® level 5
accredited organisations, such as several of the companies in this study, archi-
tectural decisions must be recorded in a form that can be disseminated to team
members.

Architecture standards are required when the adoption of a new technology
or design approach is being considered. The impact of adopting such a new
approach must be carefully considered from different perspectives:

“we had a governance process where you have people from Banga-
lore, Pune and the UK participating, and they were thrashing out,
‘what would we achieve by [adopting] a service oriented architec-
ture?’ ‘what is our vision of service oriented architecture?’ And
then define some standards for it” (Development Manager, Com-
pany C).

The standards developed by governance authorities are then disseminated to
development teams “team members, should have thorough understanding of
the domain as well as technical architecture” (Scrum Master, Company H).
In turn, development teams can promote their own demands for revisions or
extensions to the existing recommended standards:

“if I’m a developer working on a story that needs some amendment
to a service, or which demands a creation of a new service, I could go
to the service governance board” (Development Manager, Company
C).

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Architecture standards are then disseminated in order to encourage consistency
of software structure among development teams.

4.1.3. Test Plan

In plan-based software development methods, the emphasis on testing is to-
wards the end of the project: “in a waterfall model, you will actually budget for
a QA cycle towards the end of the development cycle” (Development Manager,
Company C). In contrast, when using agile methods, each iteration involves
testing: “we are taking the [testing] budget and we are spreading it across the
development cycle” (Development Manager, Company C). Members of the test
team are assigned to work within multi-functional sprint teams.

However, in large-scale offshore outsourced software development programmes,
user acceptance test teams are often separate from the development teams “our
testing team and development team are different” (Senior Software Engineer,
Company H). Several practitioners argue that independent test teams result
in higher quality code because developers may reproduce logical errors in both
tests and the implemented software. In contrast, when test teams are indepen-
dent, “testing is always different under different perceptions” (Senior Software
Engineer, Company H).

Test plans describe the overall approach to testing for the development pro-
gramme. The test plan articulates the resources required for different stages of
testing. The schedule for conducting the different types of testing is described
in the plan, which is particularly important where personnel from a third-party
user acceptance test team are required, as is more common on large-scale off-
shore development programmes than smaller projects. The test plan also de-
scribes the deployment of personnel, whether centralised in a dedicated test
team, or distributed in multi-functional development teams.

4.1.4. Contracts

Contracts between outsourcing vendors and clients are are always delicate,
potentially adversarial and sometimes the scene of outright conflict. The com-
plexity and duration of large-scale development programmes mean that change
is inevitable, “I’ve never been involved in a tender process whereby the deliv-
erable has been what they tendered for. You know, in bigger projects, there’s
always change” (Chief Operating Officer, Company I). The two main types of
contract observed in this study are fixed price and time and materials (T&M)
“when we draw up contracts, it will be a fixed price, or a T&M contract” (Deliv-
ery Manager, Company H). Both contract models can be used to accommodate
change during the contract. A T&M contract enables ongoing billing for work
completed, while in “a fixed-price project, you’ll look for change requests, to
make it more [like] time and materials” (Chief Operating Officer, Company
I). In contrast, in-house offshore organisations, such as Companies B and F,
use an internal project approval process to allocate resources for development
programmes and projects.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.1.5. Reference Architecture

In large-scale offshore software development programmes, reference archi-
tectures are required in order to maintain consistency in design between co-
operating development teams working on the same development programme.
Outsourcing vendors are typically subject to client approval processes to ensure
development programmes adhere to prevailing architecture standards:

“a technical design authority looks at a reference architecture for
a [development] programme or for a solution. So, governance is in
place” (Lead Architect, Company H).

The reference architecture is then used to disseminate the approved architecture
to stakeholders in a development programme:

“this requires almost every individual to put a lot of effort into under-
standing the architecture of the product, and the common patterns
of issues that we’re getting. So this responsibility is shared in the
team” (Scrum Master, Company D).

The reference architecture simplifies software maintenance and facilitates staff
deployment across project teams in the development programme. The refer-
ence architecture is created to ensure development teams consistently follow the
agreed design approaches.

The reference architecture defines how the software will meet non-functional
requirements, such as performance or security goals:

“to be able to implement these features, or new concept, we need
to do certain design changes or maybe architecture changes. So
before we can start working on a particular feature, these are the
engineering tasks they need to perform. There could be certain
performance guidelines we need to meet, there are security guidelines
we need to meet. Engineering managers or teams, they start to look
at the pre-requisites before we start working on any major features”
(Product Manager, Company B).

In large-scale offshore software development programmes, the reference architec-
ture sustains the project beyond the needs of the functional code in the current
iteration:

“So while doing the designing with the current architecture, we are
[also] trying to make a design that it is adaptable to future require-
ments as well. We make the design more generalised [and] try to
make more decoupling. So that future requirements can be catered
for in this [architecture]” (Technical Analyst, Company H).

4.2. Product Artefacts

This study identifies four artefacts used at the product level: product back-
logs, product architecture implementation, user acceptance tests and product
release binaries.

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.2.1. Product Backlog

The product owner elicits and prioritises requirements in the form of a prod-
uct backlog. Items in the backlog are re-prioritised, as the development pro-
gramme progresses, by the product owner, “it is a product owner’s responsibil-
ity to make sure product backlog should be continuously evolving” (Programme
Head, Company H). Product grooming, the process of constantly re-prioritising
requirements, is necessary to ensure that the next sprint tackles the highest
value development items. In Company H, for example, “if [product backlog
items]. . . are not sequenced properly, whatever we are delivering will not give
that priority value to the end user or the business user” (Programme Head,
Company H).

In large scale development programmes, higher levels of complexity cause a
greater number of technical dependencies between product backlog items.

Scrum masters help the product owner to identify technical dependencies
between backlog items and assist in prioritising items, “it’s the scrum master
and the product owner’s responsibility to make sure the backlog is prioritised
(Developer, Company D). However, development teams members do not usually
have the opportunity to influence items in the product backlog, “we as team
members don’t really have the access to the [product] backlog” (Developer,
Company D).

The diverse stakeholder communities in large-scale development communi-
ties increase the likelihood of conflicting requirements:

“different regions like APAC and Europe and North America come
with some requirements, this is what they want to get done” (Engi-
neering Manager, Company B).

The product owner identifies and reconciles the needs of the different parts of
the client organisation. Successful product owners have the necessary authority
to perform this conflict resolution function, “we keep re-triaging [the product
backlog] because we have too many mandatories” (Engineering Director, Com-
pany E). In Company H, if the “product backlog. . . is not groomed properly, or
in advance [of iteration planning], we really find [it] a challenge” (Programme
Head, Company H).

These findings show that product owners create and continuously revise
the product backlog during the software development programme, with scrum
masters providing technical advice regarding dependencies between features.

4.2.2. Product Architecture Implementation

The project teams analysed in this study conducted architecture implemen-
tation prior to development iterations, at the same time as release planning.
Architecture implementation changes precipitated by a new requirement may
well impact on the work of multiple development teams, and so is therefore
subject to scrutiny outside of any specific team. Practitioners often refer to
architecture implementation as high level design.

Architecture implementation changes can arise from new functional require-
ments.

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

“In our company, the project manager comes up with high level
feature list first . . . and tells the overall team, ‘to implement these
features, we need to do certain design changes or maybe architecture
changes’. We see if the design is okay in a couple of sprints, then
start working on actual features” (Product Manager, Company B).

There is an awareness that architecture decisions can have an impact beyond
the scope of a particular feature or iteration, “if you’ve taken a good decision it
will help you, if you’ve taken a bad decision, then you will have to go back and
fix it” (Development Manager, Company C).

4.2.3. Other Product Artefacts

Two other product artefacts identified in the research are user acceptance
testing and product release code binaries. User acceptance testing (UAT) follows
integration and regression tests “after two/three sprints we have UAT release
testing for two weeks” (Scrum Master, Company H). Sometimes the UAT is
conducted within the development team, “all the developers and QA are ex-
ecuting the [automated test] scripts” (Scrum Master, Company H), but it is
often conducted by a third party team on behalf of clients, “once [the code]
is released from the development team, the UAT team picks [it] up and starts
doing testing” (Scrum Master, Company D).

The development teams in this study do not release code at the end of each
iteration, rather multiple iterations are integrated into product release code
binaries. A freeze on new features occurs when all the functionality has been
implemented during the final sprint in the release, “once the code complete cycle
happens, from now on the developers are not going to merge anything in that
branch” (QA Lead, Company D). Product owners then approve release, if test
results exceed the required quality threshold “we can ask the product owner,
‘can we go ahead with the release cycle’?” (QA Lead, Company D).

4.3. Release Artefacts

Practitioners in this study identify four artefacts applied at the release pro-
cess level: regression tests, release code binaries, release plans and integration
tests.

4.3.1. Regression Tests

Functional regression testing is used to confirm the correct behaviour of pre-
viously implemented software, after new features are added. Regression testing
is “to make sure the new feature does not affect the older features” (Software
Developer, Company D).

Despite being automated, running full regression test can be very time con-
suming. “Regression tests take too long to do [on] every sprint. So we don’t
run a regression suite, it is like three and a half days to run a full regression
suite, so we don’t run that” (Director of Engineering, Company E). Similarly,
at Company H regression testing too time consuming to perform at the end of

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

each sprint “And after three to four sprints we have release testing. And release
testing normally [lasts] two weeks” (Test Analyst, Company H).

Practitioners argue that time consuming regression tests are an important
reason why code is not released to clients at the end of each iteration in large-
scale offshore development programmes.

4.3.2. Release Code Binaries

In large-scale offshore software development programmes, the release process
includes governance checks on releases to minimise any customer dissatisfaction
arising from poor quality releases. In the companies analysed in this study,
release plans, integration code binaries and release candidates are produced
prior to any product release to clients.

Therefore, a release will commonly consist of a series of iterations, often
involving multiple teams. A strategy is prepared for each release, “on the basis
of the new features we have implemented. . . I will come up with a strategy. How
much time my team requires for doing the [release]” (QA Lead, Company D).

The presence of multiple scrum teams (whether co-located or geographically
distributed) can lead to problems in integrating the code bases under develop-
ment by different teams.

“They follow their sprint cycle, we follow our sprint cycle. Finally,
they match and we take their code base merge into our one and
give it to QA as a single release and then it goes into production”
(Product Manager, Company B).

Similarly, “as a scrum master, the challenges were. . . code synchronising prob-
lems, task updating problems” (Scrum Master, Company D).

Scrum masters must therefore adopt and disseminate an integration coor-
dination strategy. “Suppose Team A has a ‘show and tell’ [customer demo]
tomorrow, say Wednesday. On Monday there would be a code freeze for that
particular branch. On that branch, no other team members from Team B or
Team C would be allowed to check in any code into that particular branch. So
for two days, because there would be show and tell preparation, for two days the
branch would be blocked by that particular team” (Project Manager, Company
H).

4.3.3. Other Release Artefacts

Two other artefacts, release plans and integration tests, are identified from
the data in this study and are summarised here. Large projects require a release
plan to schedule product delivery, often coordinated with external events such
as TV or print media advertising campaigns “I’d advocate more agile feature
set delivery [but] there would still be a master plan of everything you’re trying
to build” (Chief Operating Officer, Company I) and “there’s a six-monthly
road map discussion. . . where they have a high-level look at the things we are
trying to achieve this year” (Engineering Manager, Company B). Integration
tests are typically used to identify problems with data or control flows through

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the software system, “to validate what you’re building is right, and get early
visibility of issues, [you] do a happy path end-to-end test, quite early on in the
project” (Chief Operating Officer, Company I).

4.4. Sprint Artefacts

Five artefacts have been identified that support the sprint development pro-
cess: sprint backlog, user story estimates, burn down chart, status board and
sprint code binaries.

4.4.1. Sprint Backlog

Practitioners argue that incremental approaches reduce initial time to mar-
ket and improve resilience to change during development programmes. In plan-
based methods “you go for a requirement analysis, then design, and then cod-
ing. And by the time you actually go for delivery. . . the market situation has
changed” (Scrum Master, Company F). Reducing time to market and getting
feedback on product releases is attractive, “[we want to] come in the market as
soon as possible. . . with newer ideas” and “you don’t know your customers face-
to-face, so it’s pretty critical to get the product out [and] get their feedback”
(Engineering Manager, Company B). However, agile methods are less attrac-
tive for when negotiating between external providers, “in systems integration
we need to interact with multiple vendors. . . they don’t have any knowledge of
agile” (Engagement Manager, Company G).

In large development programmes, ‘ad hoc’ features emerge during the con-
duct of the project. As such ‘ad hoc’ features are not a part of the functional
requirements gathering process. However, ‘ad hoc’ features are often needed to
address other corporate needs. For example:

“In a company like ours, because there are multiple products, they
might come up with a security issue or a new way of registration,
a new way they handle some cookies. Suddenly, every team in our
company needs to get this particular thing done by a particular date.
Suddenly, those things become priority, then obviously we need to
drop a few things on the next sprint to pick up those [new things]”
(Product Manager, Company B).

The sprint backlog is the mechanism used to add ‘ad hoc’ features into the
development pipeline.

4.4.2. User Story Estimates

In scrum, story points are often used to estimate work: “we have projects
that are using story points for estimation” (Programme Manager, Company
H) and “we give a story point [estimate] for each feature” (Senior Developer,
Company D). An advantage of using story points is that a burn down chart can
be generated during each sprint and a velocity can be calculated for the team at
the end of the iteration. However, another common approach to estimation is
known as ‘T-shirt sizing’ which divides effort estimates into the broad categories
of small, medium and large:

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

“Everybody gives their own T-shirt sizes to their particular story. If
somebody is saying that it’s a large size story, then we listen to him
talking about why it is a large story. And if we all agree, then it’s a
large story” (Scrum Master, Company H).

Tee shirt sizing is less onerous to perform than story point estimation because it
is less precise. However, tee shirt sizing does not provide the numerical estimates
that can be used to produce burn-down charts or perform velocity calculations.

A collaborative approach among team members is sometimes used, “we check
whether we have the capacity to do those stories or not. We do the planning, we
do the estimates” (Scrum Master, Company H). The task estimation performed
by team members is then communicated to managers, “a product manager
says to the development team ‘tell me how much time we’ll need to finish this
and [we’ll] commit to that’.” (Product Manager, Company B). However, on a
number of development programmes estimates are performed by managers, in
negotiation with clients, and presented to the teams.

4.4.3. Other Sprint Artefacts

Three other sprint artefacts identified in the research are burn down charts,
sprint code binaries and status board. A burn down chart is used to record
and disseminate completion of user stories in scrum, “we maintain a burn down
chart on a day to day basis” (Senior Project Manager, Company H). Within each
team, the source code for new features must be integrated with the source code
for existing features “we integrate the new code and the old code every week”
(Developer, Company H). A physical status board is used to disseminate the
progress of features through the development process, “the card wall is nothing
but a picture of how your iteration is going. We have stories which are marked
there at different stages of development” (Development Manager, Company C)
or, “on the Kanban board we have all the different columns created, that is,
to be ‘done, ‘verified’, ‘in progress’, ‘impediments’.” (Developer, Company H).
However, in geographically distributed development teams, a physical board
is less useful. Software tools were thus used to disseminate information to
dispersed team members, “we used an internal tool which actually creates the
Kanban board virtually [i.e. an online representation of the Kanban board]”
(Technology Consultant, Company H).

4.5. Feature Artefacts

Practitioners in this study identified seven artefacts that describe aspects of
specific features: user stories, detailed designs, source code, test criteria, unit
tests, issues and feature code binaries.

4.5.1. Source Code

User stories drive the source code development process “we pick the user
story from the proxy [product owner], and then work from user stories” (De-
veloper, Company H). The source code produced by the teams analysed in this

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

study usually follows a feature driven development approach, as has been men-
tioned. Features are used in order to encourage cohesion of closely related func-
tions, and independence of unrelated functions, to avoid undesirable coupling
“there should be no interdependency between two different features” (Software
Developer, Company D).

The features require a vertical slicing of the project architecture into end-to-
end functionality, thus a user story comprises elements of user interface, business
logic functionality and data storage, with team members working together to
provide these features as end-to-end functional units. For example,

“[agile] is aimed at providing customers [with] the most satisfac-
tion. . . basically it’s designed around vertical slicing of the project. . . let’s
say we have completed the server side for ten functionalities. But
we haven’t created the UI for all of them, so we can’t say to the
customer that those things are all working” (Developer, Company
H).

This is in contrast with conventional project organisation where teams are
organised around the technical specialisms needed for horizontal layers, such as
database design in the persistence layer or user interface development for the
presentation layer. Advocates of plan-based approaches saw risks in the feature
driven development approach, for example:

“At that time the US [team approach] was to do every thing, in little
‘capsules.’ They developed the requirements and then [implemented
the] program and tested a capsule then move to the next one. . . This
struck us as a bit dangerous. Because you could get 10 capsules on
and find something in a capsule that affected an earlier capsule that
[consequently] needed reworking” (Programme Manager, Company
E).

Large-scale offshore software development programmes often create new soft-
ware in order to re-implement, modify or integrate with the source code of a
legacy system. Sometimes projects may have to re-implement the legacy code,
“So you had a piece of old code which has to be re-written” (Development Man-
ager, Company C), while other projects will have to change the behaviour of
legacy code “[we have a] piece of code which was [previously] attempted at, but
which doesn’t really match what [the client] wants” (Development Manager,
Company C). This may include adding new features to interact with existing
legacy code. “You somehow had to combine them, marry them together, and
then form a transition plan so that you can reach where the clients want it”
(Development Manager, Company C).

Large-scale offshore software development programmes are complex, with
multiple interacting programming languages and software technologies, “we are
using Java, we are using C, [and] some other code is in CORBA” (Developer,
Company H).

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

“It’s really difficult to understand everything because it involves
Java, C++ and [an international flight booking] server. [The in-
ternational flight booking] API is third party area, it’s [integrating
their] libraries and your own code” (Senior Developer, Company H).

The development teams in this study developed features using source code
artefacts comprising multiple programming languages, which integrated with
existing or legacy systems.

4.5.2. Issues (Defects and Feature Enhancements)

On large-scale offshore software development programmes, there are often
many more known issues and bugs than can be fixed within the time and re-
sources available. Consequently, the issues are prioritised according to severity
and the likely impact on end users. Selected issues are then fixed within devel-
opment teams and the solutions subsequently tested.

The companies analysed in this study reported using automated software
tools to manage these issues. For example, in Company B:

“I’ll create a ticket in my system, [then developers will update the
ticket saying] ’we have progressed a bit and only this part is left.’ I
automatically get an email notification [saying] that the ticket has
had an update” (Product Manager, Company B).

Issues are constantly reviewed and prioritised, “we have a process where we
go through each and every open defect and we see if [it] needs to be fixed or not”
(Architect, Company D), and “there is a certain number of Jiras [a colloquial
name for issues tracked using the Jira software tool] per sprint which I like
the team to take up, so the quality of the line product improves” (Director of
Engineering, Company E).

This study has identified three different strategies used for handling issues:
a dedicated maintenance team, a subset of development team members assigned
to issue resolution and periodic sprints focusing specifically on issues. Company
D has a sustaining team that focuses on bugs, issues and infrastructure up-
grades (such as migration to new operating system releases, or support for new
browser releases). For instance, “the sustaining group takes care of bug fixes
in the previous releases” (Architect, Company D). Whereas, on one project in
Company H, a number of developers are assigned to dealing with these issues,
“we have two or three developers in the whole team who are assigned to defect
removal” (Test Analyst Company H).

The relevant bug fixes are then collated into releases. For example,

“in [the] case of minor issues, we plan for a minor release, which
is typically handled by the sustaining team. We may have to give
technical help to the sustaining team” (Scrum Master, Company D).

Furthermore, in each of these minor releases, a significant number of issues are
resolved, “so for every release, we have close to 200 defects fixed” (Architect,
Company D).

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The development teams in this study manage large numbers of issues caused
by the complexity and scale of their development programmes.

4.5.3. Other Feature Artefact Findings

This research has found evidence of five other feature-level artefacts: user
stories, detailed designs, test criteria, unit tests and feature code binaries which
are summarised here. User stories are developed during requirements analysis
by product owners, a “product owner is making a [user] story” (Scrum Mas-
ter, Company H). Detailed designs are needed to meet complex requirements
approved prior to implementation “This particular story could be complex, so
we put an extra check with that story, we will first create the design of that
story [then] the design will get approved, and then we will move it to develop-
ment” (Developer, Company H). Test criteria are defined for each user story and
sometimes the test criteria are recorded on physical story cards “[we] put the
acceptance criteria on the story itself” (Scrum Master, Company F). Unit test-
ing is conducted to improve the quality of software produced by a team, “When
you think you’ve got every logical point accomplished on a story, you would
actually run test cases to make sure they are all fine” (Development Manager,
Company C). The feature code can then be uploaded to a shared repository,
“when you’ve got every logical point accomplished on a story, you’ve run test
cases to make sure they are all fine, and then you check-in the story [to the
shared repository]” (Development Manager, Company C).

In summary, feature artefacts comprise user stories which are produced and
prioritised by product owners. Then low level design and source code devel-
opment for the story is conducted. Subsequently, source code is compiled into
feature code binaries, unit tests are executed and the code binary is uploaded
to a repository.

5. Discussion

The application of agile methods in large-scale and geographically distributed
software development programmes is an area of emerging interest [7]. Whereas
agile early adopters tended to use engineering practices from the XP process [1],
this research confirms more recent findings showing an increase in the popularity
of scrum process orchestration practices [13, 49].

Previous research has focused on specific artefacts, such as the story card
and wall [40], or on artefacts developed during a specific development phase,
such as requirements engineering [39]. Others have explored the evolution of
specific artefacts during the development process [50]. In contrast, the research
presented here focuses on artefacts across the development life cycle but has
only investigated large-scale agile development programmes. It is argued that
the artefacts used in large-scale agile development programmes are a superset
of those used in smaller projects.

Artefacts in software engineering are a locus of tension and controversy be-
tween production of working code and documentation for record keeping when

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

scaling agile methods to large development programmes. On one hand the ag-
ile community deprecates various forms of documentation in favour of working
code [12] and yet larger scale projects require coordination between separate,
yet concurrently working, development teams [9]. Further, high maturity soft-
ware quality assurance processes, such as used by companies with CMMI®

maturity level 5 accreditation, are often perceived to advocate detailed record
keeping. Agile methods are thought by practitioners to generally discourage
artefact production. While plan-based methods, encourage artefact production,
for review and dissemination, to externally demonstrate high levels of quality
assurance. Hence, this study focuses on artefacts to shed light on the tailoring
of agile methods in a large-scale software development programme context. The
interest here then is in practitioner interactions with artefacts and not in the
artefacts per se.

RQ1 “how do practitioners describe the inventory of artefacts they
use in large-scale offshore software development programmes?”

The findings presented here confirm earlier research [37, 38] categorising
artefacts in terms of planning (e.g. test plans, sprint plans and release plans),
requirements (e.g. product backlog and sprint backlog), development (e.g. fea-
ture source code and feature code binaries), testing (e.g. unit tests and re-
gression tests) and change management. However, the findings presented here
identify additional artefacts which do not neatly fit into these categories, such
as risk assessments and programme architecture standards. This suggests the
need for a new category of agile ’governance’ artefacts in large-scale software
development programmes.

In addition, previous work [39] on requirements artefacts identifies: business
risk analysis (risk assessment), release plans, test criteria which are confirmed
by the findings presented here. However, agile requirements artefacts, such as
product and sprint backlogs, are missing from that study.

The development teams in this study have recognised the value of physical
artefacts, such as story cards and the kanban board [40], however, the geo-
graphical distribution of team members has more commonly necessitated their
implementation using software tools.

Meyer lists impediments as artefacts [51], but the practitioners in this study
did not seem to perceive impediments in exactly this way, instead viewing im-
pediments more commonly as information that is available outside the team,
or decisions from client representatives or other stakeholders, but which are
required by team members in order to make progress with their work.

RQ2 “How do the artefacts map to software development processes
used in large-scale offshore software development programmes?”

Five categories of artefact have emerged from the empirical data in this study:
feature, sprint, release, product and development programme governance. The
feature and sprint categories are standard in agile methods. However, the arte-
facts in the release, product and programme governance categories are less fre-
quently discussed in the agile literature. The artefacts identified in this study

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

form a taxonomy that can be mapped to the software development process. The
development processes represented in Figure 1 comprise sprint, product release
and development programme layers. Since features are produced within sprints
and products are comprised of releases, we can map artefacts to the scrum of
scrums process, as shown in Figure 3.

Several artefacts identified in this study, such as reference architectures,
architecture implementation and release plans provide a means for communica-
tion between cooperating scrum teams [8, 9]. However, there appears to be a
paucity of agile ceremonies to accompany the artefacts shared by cooperating
scrum teams, the management of shared artefacts is not clearly defined, and
currently agile teams improvise to fill this gap. The absence of agile ceremonies
for managing shared artefacts presents a challenge for practitioners. New agile
ceremonies to support artefacts shared across cooperating scrum teams, such
as risk assessment, architecture standards and reference architectures should
become a routine part of the scrum of scrums process.

The reference architecture artefact identified here is an example of a core
asset from agile software product line engineering [52]. In a sense, the refer-
ence architecture is a constraint on the freedom of self-organising development
teams to develop their own architecture. However, on large-scale development
programmes architecture is a core asset to ensure inter-operability of software
sub-systems and enable comprehensibility.

Four main themes have been identified for large-scale agile development pro-
grammes: scaling, portfolio management, inter-team coordination and architec-
ture [18]. There is a paucity of agile artefacts for scaling, the teams in this
study used the scrum of scrums meetings to identify and resolve dependencies
between teams, but this seemed to be a recurring challenge. In this study, there
is comparatively little evidence of interaction between projects and the central
release plan used for portfolio management. In terms of inter-team coordina-
tion, this study found no evidence of artefacts for establishing shared values
between teams. This study found strong evidence for the use of architecture
standards, reference architectures and product architecture implementations.

RQ3 “How do these practitioner descriptions contribute to our un-
derstanding of artefacts in agile method tailoring in large-scale off-
shore software development programmes?”

Taken together, the five artefact categories: feature, sprint, release, prod-
uct and development programme governance, provide evidence of agile method
tailoring in large-scale offshore software development programmes. This study
confirms other recent studies showing that the method engineering approach
[26] is more popular with project teams [28].

Using the study data and these sources, the artefacts identified can be
mapped to agile roles and the activities within roles and is shown in Table
3. This tentative, and somewhat simplified mapping of artefacts to activities
helps to lay the basis for integrating the expanded artefact set into a large-scale
agile development programme. This could form the basis for developing new

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Contract

Reference

Architecture

Burn Down

Chart

Sprint

Development Programme

High Level

Design

Test Plans

Product Release

Integration

Tests

Issues

Sprint Backlog

Architecture

Standards

Story Estimates

Product

Backlog

Architecture

Implementation

Regression

Tests

User Acceptance

Tests

Unit TestTest CriteriaUser Stories Detailed Design Source Code

Release Plans

Status Board

Product

Binaries

Sprint Binaries

Release

Binaries

Risk

Assessment

Figure 3: Mapping of Selected Artefacts to Scrum of Scrum Process

agile ceremonies to support the creation and management of the full artefact
set.

As already mentioned, the artefacts identified in this study act as bound-
ary objects enabling communication between diverse project stakeholders [53].
Boundary objects play an important role in knowledge sharing in cross-cultural
software development teams [54]. Boundary objects can be identified at three
levels: syntactical, semantic and pragmatic [11]. Syntactic boundary objects
enable simple transfer of knowledge between distinct technical specialisms or
across organisational boundaries, such as burn down charts and status boards.
Semantic boundary objects enable translation or interpretation of information
across the boundary, such as user stories and test criteria. While, pragmatic
boundary objects require information transformation or negotiation between
competing interests, such as product backlogs and risk assessments.

The increased number of stakeholders and the complexity of their intra- and
inter-organisational relationships may encourage the proliferation artefacts in
large-scale offshore software development programmes. It has been suggested
that the process of constructing boundary objects helps the formation of shared
organisational identities [55]. It has also been shown that boundary object use
reduces conflict duration and reduced the time to identify and resolve conflict in
global virtual teams [56]. Thus, stakeholders may be using creation of bound-
ary objects to mitigate conflict and diffuse tension around potential areas of
controversy in the development programme.

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: Artefact Mapping to Agile Role Activities

Artefact Creation Activity Information Sources Primary Information
(within Primary Role) Consumer

Product Backlog Product Sponsor Market, Existing Clients Development Team
Potential Clients

Release Plan Proxy Product Owner Product Sponsor Development Team
User Stories Proxy Product Owner Product Sponsor Development Team
Reference Technical Product Owner Technology Trends Development Team
Architecture Product Backlog
Architecture Standards Technical Product Owner Technology Trends Development Team
Risk Assessment Proxy Product Owner Contract Product Sponsor
Contract Product Sponsor Product Backlog, Client Proxy Product Owner
Test Criteria Proxy Product Owner Client Development Team
Burn Down Chart Scrum Master Feature Binaries, Unit Tests Proxy Product Owner
Status Board Scrum Master Feature Binaries, Unit Tests Development Team

Proxy Product Owner
Product Sponsor

Sprint Backlog Scrum Master Product Backlog Development Team
Product Binaries Development Team Release Binaries Development Team
Test Plans Tester Product Backlog, Test Criteria Development Team

Architecture Implementation
Integration Tests Tester Sprint Binaries, Test Criteria Scrum Master
Regression Tests Tester Sprint Binaries, Test Criteria Product Owner
Release Binaries Development Team Sprint Binaries Clients, Product Sponsor
Sprint Binaries Development Team Source Code Development Team
Unit Tests Tester User Story, Test Criteria Development Team
Issues Tester Unit Tests, Integration Tests Development Team

Regression Tests, UATs
User Story Estimates Development Team User Stories, Architecture Implementation Proxy Product Owner
Detailed Design Development Team User Stories, Architecture Implementation Development Team
Source Code Development Team Detailed Design, User Stories Development Team
Feature Binaries Development Team Source Code Proxy Product Owner

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.1. Limitations

Four important tests for evaluating the quality of descriptive empirical social
research, from a positivist standpoint, are: objectivity, reliability, internal valid-
ity and external validity [57, 48]. However, Adolph et al. [41] draw on Lincoln
and Guba [58] to establish corresponding criteria that are more appropriate for
an interpretive stance: confirmability, dependability, internal consistency and
transferability. These positivist and interpretive criteria have been contrasted
in [59]. In this view, the positivist and interpretive quality criteria are intel-
lectually incommensurable [59, Pg. 91]. In contrast, [43] adopt a stance they
describe as “critical realist”, preferring to avoid “discussing how ‘goodness cri-
teria’ flow from epistemological positions” [43, Pg. 277] and grouping the issues
together for consideration in the following categories.

5.1.1. Objectivity/Confirmability

In seeking to demonstrate that the findings of the research are representative,
the research questions, research sites, data collection from documentary sources
and practitioner interviews as well as the use of ‘Glaserian’ grounded theory
such as open coding, memoing, constant comparison and saturation have all
been described in some detail. This is intended to show the actual sequence of
steps used in the conduct of the research. A potential weakness of this work is
that it has been conducted by a sole researcher. As a researcher with prior first
hand experience of both large-scale plan-based and small team agile methods, I
was deeply curious to objectively understand how these large-scale teams select
artefacts from these methods in their development programmes. In consequence,
efforts have been made to objectively present the contrasting approaches of the
development programmes investigated.

5.1.2. Reliability/Dependability

The goal of reproducible research has been pursued by collecting data across
a wide range of appropriate settings and respondents and also by demonstrat-
ing meaningful parallelism across sources. Conducting the study in multiple
organisations helps avoid bias from respondents giving monolithic and uniform
answers, perhaps due to management pressure. Making the research sites anony-
mous is intended to avoid bias from respondents acting in pursuit of some per-
ceived marketing objectives. Thus, the reliability of categories in this research
has been sought not only by gaining the perspective of different actors within
development programme teams and their surrounding organisational contexts
but also by interviewing actors from different organisations. The risk of re-
searcher bias has been minimised by obtaining feedback on early drafts of this
article from key informants. This allowed validation of key findings from the
research participant perspective.

5.1.3. Internal Validity/Internal Consistency

Here I want to establish that the research findings are credible, consistent and
‘truthful.’ The research is intended to present a descriptive understanding of the

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

artefacts selected in large-scale offshore software development programmes. It
is intended that the account of findings presented is sufficiently comprehensive,
coherent and authentic to make that case.

It was necessary to establish that the development teams were actually us-
ing agile methods and not simply deviating from text book methods through
ignorance or due to organisational constraints. This was achieved through com-
parison with non-agile teams from Companies A and E, which were using RUP
processes. Further dimensions of comparison were provided by Company C
which was using XP rather than the more popular Scrum approach used in the
other development programmes and Company B were senior management were
promoting enterprise-wide adoption of scrum.

To maximise internal credibility sources of evidence have been used, includ-
ing observation, documentary sources as well as practitioner interviews through
conducting studies at nine different companies. A combination of snowball and
intensity sampling was used, with snowball sampling providing data from a
wide selection of projects, while the intensity sampling adopted at Companies
D, E and H allowed for in-depth contact with a range of respondents, including
corporate executives, project portfolio managers, project managers and various
development team members. This intensity sampling provided varied sources of
evidence and different perspectives on the software development processes used.

5.1.4. External Validity/Transferability

The purpose of this study has been to explore artefacts within large-scale off-
shore software development programmes, which operate within a particular cli-
mate of commercial pressures and quality assurance constraints. The study at-
tempts to show that governance and architecture artefacts are required to meet
these specific pressures and constraints. Within the large-scale offshore software
development programme context, efforts to enhance transferability have been
made by conducting the studies across nine companies and by gaining access to
a wide range of project stakeholder respondents.

There has been no attempt to collect data relating to small and medium
sized software development projects. Similarly the artefacts used in entirely co-
located projects have not been explored. This contrasts with the approach taken
in large scale surveys such as [60] which conflates findings from these different
contexts in order to draw general conclusions. As a consequence of the research
design employed, it is not appropriate to attempt to generalise the findings and
conclusions presented here to small and medium sized co-located projects.

The intention of the article is to demonstrate a chain of evidence from the
actual artefact inventories used in large-scale offshore development programmes
to the findings, conclusions and contribution of the research. The interview
extracts from respondents are intended to provide authentic evidence of current
practice.

Companies B, F and I operate an in-house offshore development model,
whereas the other companies are engaged in outsourced offshore. This might
suggest that the data set is somewhat skewed towards outsourcing.

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6. Conclusions

This article uses a grounded theory approach to investigate artefact invento-
ries used in large-scale offshore software development programmes, using quali-
tative analysis of practitioner interview transcripts and supported by documen-
tary sources and workplace observations. The study has focused on a sam-
ple of nine international companies and interviews with 45 practitioners. The
grounded theory concepts of open coding, memoing, constant comparison and
saturation were used to analyse the data that was triangulated across the se-
lected companies as well as within project teams and corporate-level executives.

The research contribution of this study lies in its practitioner descriptions
of the 25 artefacts created and managed in large-scale offshore agile software
development programmes. This research confirms that the large-scale offshore
software development programmes in this study use a range of conventional
agile process artefacts. Agile artefacts are: user stories, issues (new feature
requests, feature enhancements or defects), detailed designs, test criteria, unit
tests, feature source code, sprint backlogs, story point estimates, burn down
charts, status boards and the sprint code binaries. The artefacts used confirm
that the teams have adopted elements of agile culture, and use agile process
ceremonies such as daily review (scrum) meetings, collaborative work estima-
tions and empirical measures of progress. However, a large, physically visible
chart showing project status, regularly updated to show progress was used in
few projects, with geographically distributed project teams more likely to use
software tools to manage a ‘virtual’ status board.

A further contribution of the article is to provide a mapping of artefacts to a
scrum of scrums software development process. At the release and product level
artefacts identified in this study are: release plans, integration tests, regression
tests, binary code releases, product backlog, user acceptance tests, reference
architectures, product architecture implementation and product code binaries.
While at the development programme level, artefacts used are: contracts, risk
assessments, architecture standards, test plans and release plans.

The teams in this study skilfully blend agile artefacts with conventional
plan-based artefacts such as reference architectures, risk assessments, regression
tests, architecture standards, third-party user acceptance tests, release plans
and product releases. Some of these plan-based artefacts reflect the need for
co-ordination among software development teams working on the same product
or aspects of the same development programme. Several of the project teams
were using a software product line model in which releases contributed towards
products which in turn contribute toward the overall development programme.
However, other artefacts reflect quality assurance and governance culture among
diverse development programmes occurring within the same organisation.

Thus, cooperating agile teams need shared artefacts such as: product back-
log, reference architecture, architecture implementation, risk assessment, ar-
chitecture standards and test plans in order to coordinate their development
activity. However, currently there are no agile ceremonies specifically designed
to create and refine any of these artefacts. The teams in this study improvise,

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

using programme governance groups, product owner teams or scrum of scrums
meetings to overcome these challenges to the expansion of agile methods to
large-scale offshore software development programmes. It is suggested that new
agile ceremonies are needed, which could be used to create, review and refine
these artefacts in keeping with the iterative and incremental ethos of the agile
programmes investigated.

There is a risk that additional artefacts and new ceremonies detract from a
healthy focus on producing working code. However, the additional artefacts are
needed to provide governance oversight, coordinate the activities of cooperating
teams, ensure a consistent approach is taken in areas such as software structure
and testing, support correct sequencing where were there are dependencies and
avoid duplication of effort. Further research is needed to identify a minimum
set of additional artefacts required for this domain of software development
practice.

Mapping the artefacts to agile job roles helps to identify actors with primary
responsibility for creating and refining the artefacts. Drawing on other studies,
it is possible to identify activities conducted within job roles [22, 16, 20] and
map the artefacts to these specific activities. Mapping artefacts to activities
provides a tentative first step toward defining new agile ceremonies for creat-
ing and managing additional artefacts required on large-scale offshore software
development programmes. The mapping can also be used for staff training and
development to disseminate best practice.

7. Acknowledgements

I am grateful to the companies and interviewees who participated in this
research. Thanks also go to the students of the Executive MBA at the Indian
Institute of Management, Bangalore; who facilitated access to several partici-
pating companies. The International Institute for IT, Bangalore provided hos-
pitality during several research visits. The research benefited in part from travel
funding from the UK Deputy High Commission, Bangalore; Science and Innova-
tion Network; and Robert Gordon University, Aberdeen, UK. Accommodation
and sustenance was provided by Company H during the data collection visit to
Delhi, India.

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

[1] T. Dyb̊a, T. Dingsøyr, Empirical studies of agile software development: A
systematic review, Information and Software Technology 50 (910) (2008)
833–859. doi:10.1016/j.infsof.2008.01.006.
URL http://www.sciencedirect.com/science/article/pii/

S0950584908000256

[2] T. Dyb̊a, T. Dingsøyr, What do we know about agile software develop-
ment?, IEEE Software 26 (5) (2009) 6–9. doi:10.1109/MS.2009.145.

[3] D. Leffingwell, Scaling software agility: Best practices for large enterprises,
Addison Wesley, Boston, MA, USA, 2007.

[4] C. Larman, B. Vodde, Scaling Lean and Agile Development, Addison Wes-
ley, Upper Saddle River, NJ, USA, 2008.

[5] S. W. Ambler, Agile software development at scale, in: B. Meyer,
J. Nawrocki, B. Walter (Eds.), Balancing agility and formalism in soft-
ware engineering, Vol. 5082 of lecture notes in computer science, Springer
Berlin Heidelberg, 2008, pp. 1–12. doi:10.1007/978-3-540-85279-7 1.

[6] S. Freudenberg, H. Sharp, The top 10 burning research questions from
practitioners, Software, IEEE 27 (5) (2010) 8–9. doi:10.1109/MS.2010.129.

[7] T. Dingsøyr, N. B. Moe, Research challenges in large-scale agile soft-
ware development, SIGSOFT Softw. Eng. Notes 38 (5) (2013) 38–39.
doi:10.1145/2507288.2507322.
URL http://doi.acm.org/10.1145/2507288.2507322

[8] J. Vlietland, H. van Vliet, Towards a governance framework for chains of
scrum teams, Information and Software Technology 57 (0) (2015) 52 – 65.
doi:10.1016/j.infsof.2014.08.008.
URL http://www.sciencedirect.com/science/article/pii/

S0950584914001992

[9] J. Vlietland, R. van Solingen, H. van Vliet, Aligning codependent Scrum
teams to enable fast business value delivery: A governance framework and
set of intervention actions, Journal of Systems and Software 113 (2016)
418–429. doi:10.1016/j.jss.2015.11.010.
URL http://www.sciencedirect.com/science/article/pii/

S0164121215002435

[10] S. Sahay, B. Nicholson, S. Krishna, Global IT Outsourcing: Software De-
velopment across Borders, 1st Edition, Cambridge University Press, 2003.

[11] P. R. Carlile, A pragmatic view of knowledge and boundaries: Boundary
objects in new product development, Organization Science 13 (4) (2002)
442–455. doi:10.1287/orsc.13.4.442.2953.
URL http://dx.doi.org/10.1287/orsc.13.4.442.2953

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[12] Kent Beck, James Grenning, Robert C. Martin, Mike Beedle, Jim High-
smith, Steve Mellor, Arie van Bennekum, Andrew Hunt, Ken Schwaber,
Manifesto for Agile Software Development (2001).
URL http://agilemanifesto.org/

[13] Version One, The 9th Annual State of Agile Survey, http://

stateofagile.com/, [accessed 25-06-2015].

[14] T. Dingsøyr, S. Nerur, V. Balijepally, N. B. Moe, A decade of agile
methodologies: Towards explaining agile software development, Journal
of Systems and Software 85 (6) (2012) 1213 – 1221, special Issue: Agile
Development. doi:10.1016/j.jss.2012.02.033.
URL http://www.sciencedirect.com/science/article/pii/

S0164121212000532

[15] V. Heikkilä, M. Paasivaara, C. Lassenius, C. Engblom, Continuous release
planning in a large-scale scrum development organization at ericsson, in:
H. Baumeister, B. Weber (Eds.), Agile Processes in Software Engineer-
ing and Extreme Programming, Vol. 149 of Lecture Notes in Business
Information Processing, Springer Berlin Heidelberg, 2013, pp. 195–209.
doi:10.1007/978-3-642-38314-4 14.
URL http://dx.doi.org/10.1007/978-3-642-38314-4_14

[16] R. Hoda, J. Noble, S. Marshall, Self-organizing roles on agile software devel-
opment teams, IEEE Transactions on Software Engineering 39 (3) (2013)
422–444. doi:10.1109/TSE.2012.30.

[17] A. Martin, The role of the customer in agile projects, PhD thesis, Victoria
University of Wellington, New Zealand (2009).

[18] T. Dingsøyr, N. Moe, Towards principles of large-scale agile development,
in: T. Dingsøyr, N. Moe, R. Tonelli, S. Counsell, C. Gencel, K. Petersen
(Eds.), Agile Methods. Large-Scale Development, Refactoring, Testing, and
Estimation, Vol. 199 of Lecture Notes in Business Information Processing,
Springer International Publishing, 2014, pp. 1–8. doi:10.1007/978-3-319-
14358-3 1.
URL http://dx.doi.org/10.1007/978-3-319-14358-3_1

[19] Scaled Agile Framework.
URL http://www.scaledagileframework.com/

[20] J. M. Bass, Scrum master activities: Process tailoring in large enterprise
projects, in: Global Software Engineering (ICGSE), 2014 IEEE 9th Inter-
national Conference on, 2014, pp. 6 – 15. doi:10.1109/ICGSE.2014.24.

[21] M. Paasivaara, C. Lassenius, V. T. Heikkilä, Inter-team coordination in
large-scale globally distributed scrum: Do scrum-of-scrums really work?,
in: Proceedings of the ACM-IEEE international symposium on Empirical
software engineering and measurement, ESEM ’12, ACM, New York, NY,
USA, 2012, pp. 235–238. doi:10.1145/2372251.2372294.

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[22] J. M. Bass, How product owner teams scale agile methods to large dis-
tributed enterprises, Empirical Software Engineering 20 (6) (2015) 1525 –
1557. doi:10.1007/s10664-014-9322-z.
URL http://dx.doi.org/10.1007/s10664-014-9322-z

[23] J. Eckstein, Architecture in large scale agile development, in: T. Dingsøyr,
N. Moe, R. Tonelli, S. Counsell, C. Gencel, K. Petersen (Eds.), Agile Meth-
ods. Large-Scale Development, Refactoring, Testing, and Estimation, Vol.
199 of Lecture Notes in Business Information Processing, Springer Inter-
national Publishing, 2014, pp. 21–29. doi:10.1007/978-3-319-14358-3 3.
URL http://dx.doi.org/10.1007/978-3-319-14358-3_3

[24] C. Larman, B. Vodde, Practices for Scaling Lean and Agile Develop-
ment: Large, Multisite, and Offshore Product Development with Large-
Scale Scrum, Addison Wesley, Upper Saddle River, NJ, 2010.

[25] K. Conboy, B. Fitzgerald, Method and developer characteristics for effective
agile method tailoring: A study of xp expert opinion, ACM Trans. Softw.
Eng. Methodol. 20 (1) (2010) 2:1–2:30. doi:10.1145/1767751.1767753.
URL http://doi.acm.org.salford.idm.oclc.org/10.1145/1767751.

1767753

[26] S. Brinkkemper, Method engineering: engineering of information systems
development methods and tools, Information and Software Technology
38 (4) (1996) 275 – 280, method Engineering and Meta-Modelling.
doi:http://dx.doi.org/10.1016/0950-5849(95)01059-9.
URL http://www.sciencedirect.com/science/article/pii/

0950584995010599

[27] B. Fitzgerald, G. Hartnett, K. Conboy, Customising agile methods to soft-
ware practices at Intel Shannon, European Journal of Information Systems
15 (2) (2006) 200–213. doi:10.1057/palgrave.ejis.3000605.
URL http://dx.doi.org/10.1057/palgrave.ejis.3000605

[28] A. S. Campanelli, F. S. Parreiras, Agile methods tailoring a systematic
literature review, Journal of Systems and Software 110 (2015) 85 – 100.
doi:http://dx.doi.org/10.1016/j.jss.2015.08.035.
URL http://www.sciencedirect.com/science/article/pii/

S0164121215001843

[29] G. Kalus, M. Kuhrmann, Criteria for Software Process Tailoring: A Sys-
tematic Review, in: Proceedings of the 2013 International Conference on
Software and System Process, ICSSP 2013, ACM, New York, NY, USA,
2013, pp. 171–180. doi:10.1145/2486046.2486078.
URL http://doi.acm.org/10.1145/2486046.2486078

[30] K. M. Lui, K. C. C. Chan, J. Nosek, The effect of pairs in program design
tasks, IEEE Transactions on Software Engineering 34 (2) (2008) 197–211.
doi:10.1109/TSE.2007.70755.

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[31] V. Balijepally, R. Mahapatra, S. Nerur, K. H. Price, Are two heads bet-
ter than one for software development? The productivity paradox of pair
programming, MIS Quarterly 33 (1) (2009) 91 – 118.

[32] J. E. Hannay, E. Arisholm, H. Engvik, D. I. K. Sjoberg, Effects of person-
ality on pair programming, IEEE Transactions on Software Engineering
36 (1) (2010) 61 – 80. doi:10.1109/TSE.2009.41.

[33] J. W. Wilkerson, J. F. Nunamaker, R. Mercer, Comparing the de-
fect reduction benefits of code inspection and test-driven development,
IEEE Transactions on Software Engineering 38 (3) (2012) 547–560.
doi:10.1109/TSE.2011.46.

[34] M. A. Cusumano, Extreme programming compared with Microsoft-
style iterative development, Commun. ACM 50 (10) (2007) 15–18.
doi:10.1145/1290958.1290979.

[35] T. Mens, T. Tourwe, A survey of software refactoring, Soft-
ware Engineering, IEEE Transactions on 30 (2) (2004) 126–139.
doi:10.1109/TSE.2004.1265817.

[36] H. Sharp, H. Robinson, An ethnographic study of XP prac-
tice, Empirical Software Engineering 9 (4) (2004) 353–375.
doi:10.1023/B:EMSE.0000039884.79385.54.

[37] M. Kuhrmann, D. Mendez Fernandez, M. Grober, Towards artifact models
as process interfaces in distributed software projects, in: Global Software
Engineering (ICGSE), 2013 IEEE 8th International Conference on, 2013,
pp. 11–20. doi:10.1109/ICGSE.2013.11.

[38] H. Femmer, M. Kuhrmann, J. Stimmer, J. Junge, Experiences from the
Design of an Artifact Model for Distributed Agile Project Management, in:
2014 IEEE 9th International Conference on Global Software Engineering
(ICGSE), 2014, pp. 1–5. doi:10.1109/ICGSE.2014.9.

[39] D. Méndez Fernández, S. Wagner, K. Lochmann, A. Baumann,
H. de Carne, Field study on requirements engineering: Investigation of arte-
facts, project parameters, and execution strategies, Information and Soft-
ware Technology 54 (2) (2012) 162–178. doi:10.1016/j.infsof.2011.09.001.
URL http://www.sciencedirect.com/science/article/pii/

S0950584911001820

[40] H. Sharp, H. Robinson, M. Petre, The role of physical artefacts in agile
software development: Two complementary perspectives, Interacting with
Computers 21 (1) (2009) 108–116.

[41] S. Adolph, W. Hall, P. Kruchten, Using grounded theory to study the
experience of software development, Empirical Software Engineering 16 (4)
(2011) 487–513. doi:10.1007/s10664-010-9152-6.

37

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[42] M. Q. Patton, Qualitative Research & Evaluation Methods, 3rd Edition,
Sage Publications, Inc, Thousand Oaks, CA, USA, 2002.

[43] M. B. Miles, A. M. Huberman, Qualitative Data Analysis: An Expanded
Sourcebook, 2nd Edition, Sage Publications, Inc, Thousand Oaks, CA,
USA, 1994.

[44] NVivo 9 help, http://help-nv9-en.qsrinternational.com/nv9_help.
htm, [accessed 10-09-2013].

[45] B. G. Glaser, A. L. Strauss, Discovery of Grounded Theory: Strategies for
Qualitative Research, Aldine, Chicago, IL., USA, 1967.

[46] B. G. Glaser, Doing Grounded Theory: Issues and Discussions, Sociology
Press, Mill Valley, USA, 1998.

[47] B. G. Glaser, Basics of Grounded Theory Analysis: Emergence vs. Forcing,
Sociology Press, Mill Valley, USA, 1992.

[48] C. Robson, Real World Research, 3rd Edition, John Wiley and Sons Ltd.,
Chichester, UK, 2011.

[49] J. M. Bass, Influences on Agile Practice Tailoring in Enterprise Software
Development, in: Agile India, IEEE, Bangalore, India, 2012, pp. 1 – 9.
doi:10.1109/AgileIndia.2012.15.
URL http://doi.ieeecomputersociety.org/10.1109/AgileIndia.

2012.15

[50] Z. Xing, E. Stroulia, Analyzing the evolutionary history of the logical design
of object-oriented software, IEEE Transactions on Software Engineering
31 (10) (2005) 850–868. doi:10.1109/TSE.2005.106.

[51] B. Meyer, Agile!: The Good, the Hype and the Ugly, Springer, New York,
USA, 2014.

[52] J. Dı́az, J. Pérez, P. P. Alarcón, J. Garbajosa, Agile product line engi-
neeringa systematic literature review, Software: Practice and Experience
41 (8) (2011) 921–941. doi:10.1002/spe.1087.
URL http://dx.doi.org/10.1002/spe.1087

[53] S. L. Star, J. R. Griesemer, Institutional Ecology, ‘Translations’ and Bound-
ary Objects: Amateurs and Professionals in Berkeley’s Museum of Verte-
brate Zoology, 1907-39, Social Studies of Science 19 (3) (1989) 387–420.
doi:10.1177/030631289019003001.
URL http://sss.sagepub.com/content/19/3/387.abstract

[54] M. Barrett, E. Oborn, Boundary object use in cross-cultural soft-
ware development teams, Human Relations 63 (8) (2010) 1199–1221.
doi:10.1177/0018726709355657.
URL http://hum.sagepub.com/content/63/8/1199.abstract

38

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[55] U. Gal, K. Lyytinen, Y. Yoo, The Dynamics of IT Boundary Objects, In-
formation Infrastructures, and Organisational Identities: The Introduction
of 3d Modelling Technologies into the Architecture, Engineering, and Con-
struction Industry, European Journal of Information Systems 17 (3) (2008)
290–304. doi:10.1057/ejis.2008.13.
URL http://dx.doi.org/10.1057/ejis.2008.13

[56] J. Iorio, J. E. Taylor, Boundary object efficacy: The mediating role of
boundary objects on task conflict in global virtual project networks,
International Journal of Project Management 32 (1) (2014) 7–17.
doi:10.1016/j.ijproman.2013.04.001.
URL http://www.sciencedirect.com/science/article/pii/

S0263786313000409

[57] R. K. Yin, Case Study Research: Design and Methods, 4th Edition, Sage
Publications, Inc, Thousand Oaks, CA, USA, 2009.

[58] Y. S. Lincoln, E. G. Guba, Naturalistic Inquiry, 1st Edition, SAGE Publi-
cations, Inc, Beverly Hills, Calif, 1985.

[59] S. Gasson, Rigor in Grounded Theory Research: An Interpretive Perspec-
tive on Generating Theory from Qualitative Field Studies, in: M. Whitman,
A. Woszczynski (Eds.), The Handbook of Information Systems Research,
Hershey, PA, USA, 2004, pp. 79–102.
URL http://www.igi-global.com/chapter/rigor-grounded-theory-

research/30344

[60] S. de Cesare, M. Lycett, R. D. Macredie, C. Patel, R. Paul, Examining
perceptions of agility in software development practice, Commun. ACM
53 (6) (2010) 126–130. doi:10.1145/1743546.1743580.

39

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Appendix

The interviews were conducted using an open-ended, semi-structured, inter-
view guide approach. There was some modification of the interview guide as
the study evolved. An example recent interview guide is provided here.

Interview Guide, Agile Method Tailoring

Agile Processes

• What agile methods and practices are you using?

• Would you describe agile methods as being successful for you? In what
ways?

• What challenges have you encountered with agile methods?

Scaling to Enterprise Projects

• Describe any software tools or technologies that you use to support agile
methods?

• Have you adapted agile methods because of the geographical distribution
of the team?

• Have you adapted agile methods because the client organisation was geo-
graphically distributed?

• Have you adapted agile methods because of a particularly large team?

• Have you used agile methods in a context with demanding regulatory
compliance? What adaptations did you make?

• Have you used agile methods in a particularly complex domain context?
What adaptations did you make?

• Have you used agile methods on a particularly technically complex project?
What adaptations did you make?

• Have you used agile methods with an especially complex range of stake-
holder relationships?

• What adaptations did you make?

• Have you adapted agile methods for use on a strategically important en-
terprise architecture programme?

Social Media/Cloud

• What forms of social media or electronic communication are used in the
projects?

• What forms of cloud computing services are used in the projects?

Learning

• What do you think about learning, particularly in the offshore situation?
How do you distribute knowledge and skills around the team?

40

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Future Perspectives

• What future trends do you foresee in your use of agile methods?

• If there was one thing you could change about the way agile methods are
used at [Company H] what would it be?

• What advice would you give to improve transitioning to offshore agile?

Any other comments

• Do you have any further comments on agile methods?

About Your Project(s)

Now I want to ask some questions about you and your project. These details
will be kept confidential.

• What project are you working on currently? How many projects?

• How is the project team structured (for management purposes)?

• How is the project team organised geographically?

• What is the project domain? What is the project purpose?

• How large is the project in terms of team size? In terms of value?

41

