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This paper develops a new algorithm for inducing cost-sensitive decision trees that is inspired 

by the multi-armed bandit problem, in which a player in a casino has to decide which slot 

machine (bandit) from a selection of slot machines is likely to pay out the most. Game Theory 

proposes a solution to this multi-armed bandit problem by using a process of exploration and 

exploitation in which reward is maximized. This paper utilizes these concepts to develop a 

new algorithm by viewing the rewards as a reduction in costs, and utilizing the exploration 

and exploitation techniques so that a compromise between decisions based on accuracy and 

decisions based on costs can be found. The algorithm employs the notion of lever pulls in the 

multi-armed bandit game to select the attributes during decision tree induction, using a look-

ahead methodology to explore potential attributes and exploit the attributes which maximizes 

the reward. The new algorithm is evaluated on fifteen datasets and compared to six well-

known algorithms J48, EG2, MetaCost, AdaCostM1, ICET and ACT. The results obtained 

show that the new multi-armed based algorithm can produce more cost-effective trees without 

compromising accuracy.  The paper also includes a critical appraisal of the limitations of the 

new algorithm and proposes avenues for further research.
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1 INTRODUCTION 

 

Decision trees are a natural way of presenting a decision-making process, because they are 

simple and easy for anyone to understand [1]. Learning decision trees from data however is 

more complex, with most methods based on an algorithm known as ID3 which was developed 

by [1, 2, 3]. ID3 takes a table of examples as input, where each example consists of a 

collection of attributes, together with an outcome (or class) and induces a decision tree, where 

each node is a test on an attribute, each branch is the outcome of that test and at the end are 

leaf nodes indicating the class to which an example, when following that path, belongs. ID3, 

and a number of its immediate descendants, such as C4.5 [4], CART [5] and OC1 [6] focused 

on inducing decision trees that maximized accuracy. 

However, several authors have recognized that in practice there are costs involved [5, 7, 8, 9]. 

For example, it costs time and money for blood tests to be carried out [10]. In addition, when 

examples are misclassified, they may incur varying costs of misclassification depending on 

whether they are false negatives (classifying a positive example as negative) or false positives 

(classifying a negative example as positive). This has led to many studies which develop 

algorithms that aim to induce cost-sensitive decision trees.   

A comprehensive survey has revealed over fifty algorithms which includes algorithms that 

extend statistical measures to take account of costs, methods based on genetic algorithms, and 

the use of boosting and bagging techniques [11]. An empirical evaluation of existing cost-

sensitive decision tree algorithms shows variations in performance with no single algorithm 

always the best in terms of minimizing cost and retaining accuracy [12]. The empirical 

evaluation shows that whilst existing cost-sensitive decision tree algorithms can solve two-

class balanced problems well, other types of problems cause difficulties. In particular several 
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authors have recognized that there can be a trade-off between accuracy and minimizing cost 

[12, 13] or a reduction in performance [14].  

The survey carried out by [11] reveals there are two major approaches used to induce cost-

sensitive decision trees; methods that adopt a greedy approach that aims to induce a single 

tree, and non-greedy approaches that generate multiple trees. Over 50 cost-sensitive 

algorithms have been identified and a taxonomy developed which classifies these algorithms 

into seven classes by the way in which costs have been introduced.  

Given such a wide range of algorithms, which one performs well? In [12] the authors carried 

out an independent empirical evaluation over a range of cost matrices for the following 

algorithms: EG2 [15], CS-ID3 [16, 17], IDX [18], MetaCost [19], MetaCost_A and 

MetaCost_CSB [14], AdaCost [20], SSTBoost [21], CS-AdaBoost and CSB [14], LS-ID3, 

CS-LSID3 [22], and ICET [8]. 

The evaluation, together with the survey, lead to the following conclusions [11, 12]: 

 Problems arise from an imbalance in the class distribution, with most decision tree 

learners biasing outcomes towards the dominant class; if this class is not the most 

costly, this explains the reduction of accuracy rates 

 Multi-class datasets cause problems because the frequency of examples in each class 

may not be high making it difficult to distinguish between the classes; the classes 

themselves may be similar also. Additionally multi-class datasets have the 

characteristics of imbalanced datasets  

 Extreme misclassification costs are difficult to handle since they result in bias and can 

result in no model being built; For example, MetaCost returned no models when the 

misclassification cost range was high because the training set had all been labelled 

as the most costly class thus meeting the stopping criteria of decision tree algorithms 

with all examples in the one class 
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 Trade-offs between high misclassification costs usually result in the accuracy rate 

being sacrificed; the higher the misclassification costs, the more unbalanced the 

class distribution, the lower the accuracy rate 

The nature of datasets could account for these discrepancies and inconsistent performances 

and one direction of research is to develop recommender systems for advising which 

algorithm to use given the characteristics of the data, such as skew, number of attributes, etc.  

The STATLOG project [23] supported by the European Commission (ESPRIT 5170) initiated 

work in this direction but focused on accuracy and has continued in the EU funded project e-

Lico
1
.  A related direction of work, known as landmarking, is to use simpler learning 

algorithms, such as Naive Bayes to predict the performance of other, more complex 

algorithms such as neural networks and support vector machines [24, 25, 26]. This line of 

research is interesting and has its own challenges such as how best to learn about learning 

algorithms, and selection of datasets to provide as training data. In contrast, this paper focuses 

more directly on the above issues, and aims to utilize game theory for handling the cost versus 

accuracy trade-off in decision tree induction. 

A key feature of game theory is its ability to handle trade-offs [27, 28, 29].  Game theory can 

be used to predict outcomes by choosing strategies according to and linked with ‘payoffs’. 

The pay-offs vary but can easily be described as ‘costs’. For example in cost-sensitive 

learning the goal is to reduce costs, therefore the pay-off is simply the reduction of cost or to 

obtain the lowest cost as possible.  

Cost-sensitive decision tree learning involves building a model in a cost-effective way.  From 

examination of games and Game Theory, the Multi-Armed Bandit game looks the most 

promising in that its lever pulls could be viewed as generating models, and could be mapped 

to paths contained in a decision tree model.  

                                                 
1
 An e-Laboratory for Interdisciplinary Collaborative Research in Data Mining and Data-Intensive Science, an 

EU-FP7 Collaborative Project (2009 – 2012), http://www.e-lico.org/?q=node/4 
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Cost-sensitive learning could be thought of as involving two decision-makers because there is 

an algorithm and costs which sometimes work together well and sometimes do not. For 

example, player 1; ‘accuracy-based player’ chooses strategies concentrating only on accuracy 

and player 2; ‘cost-based player’ chooses strategies which consider costs in some way, each 

produces a different set of strategies. Conflict between decisions based on accuracy and 

decisions based on costs require a trade-off, so a technique which deals in trade-offs should be 

utilized in a framework for cost-sensitive learning. What can be surmised at this stage is that 

the pay-offs matter when deciding strategies. 

Hence, this research aims to utilize game theory as a basis for developing a cost-sensitive 

decision tree algorithm, which aims to address the trade-off between accuracy and cost that 

has been observed in previous studies.  

The rest of the paper is organized as follows. Section 2 presents the background to decision 

tree learning and Game Theory; Section 3 presents a new framework using a specific game 

theory approach known as multi-armed bandits and Section 4 presents the results of an 

empirical evaluation against existing cost-sensitive decision tree algorithms and an accuracy-

based algorithm. Finally, Section 5 presents the conclusions and possible future work. 

2 BACKGROUND 

 

This section presents the background: Section 2.1 presents an introduction to cost-sensitive 

decision tree learning and Section 2.2 presents some background on Game Theory.  Both the 

fields of cost-sensitive learning and Game Theory have an extensive history , so the 

introductions are brief and the reader is referred to [5, 7, 8, 9, 10, 11, 12] for further 

background on cost-sensitive learning and to [28, 29, 30, 31, 32, 33] for more detailed 

information on game theory.   
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2.1 Cost-Sensitive decision tree learning 

 

The early decision tree learning algorithms, such as ID3, focused on accuracy, though 

practical requirements dictate that one should take account of the cost of misclassification. So, 

for example, the cost of misclassifying a process plant as safe is likely to be much higher than 

the cost of misclassifying a safe plant as unsafe. The past three decades have seen a 

significant interest in this problem, known as cost-sensitive induction, with the development 

of a number of independent algorithms [8, 19, 22, 34, 35, 36, 37, 38, 62, 63]. Authors have 

also recognised that in practice there are other costs involved [5, 7, 8, 9]. For example, it costs 

time and money for blood tests to be carried out [10].  

As an example, consider a problem that requires classification of items as faulty or not faulty.  

A typical cost might be as presented in Table 1 which states that if an example is not faulty 

and is misclassified as faulty the cost would be 1.0 however if an example is faulty and is 

misclassified as not faulty, the cost would be much higher at 10.0 because this is a more 

costly error. 

TABLE 1. An example of a cost matrix for a two-class problem 

 

 Predicted 
faulty 

Predicted 
not faulty 

faulty 0 10.0 

not faulty 1.0 0 

 

 

Suppose, now that we use a data mining algorithm to learn a model to classify whether an 

item is faulty or not, and when evaluated, the model is known to incorrectly classify faulty 

items 20% of time, and classifies items that are not faulty as faulty at a rate of 30%.  Suppose 

also that the model utilises two attributes, a1 and a2  in 30% and 80% of the cases respectively, 

where a1 has a cost of 2 units  and a2  has a cost of 1 unit.   Then, given the cost matrix of 
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Table 1, and the cost of attributes, the expected cost is the sum of the expected cost due to 

misclassification and the expected cost of classification: 

      [0.2*10 + 0.3*1] + [0.3*2 + 0.8*1]   = 3.7 

More formally, given a cost matrix for an n class problem with m attributes, where:  Ci,j 

represent the cost of classifying an example of class i as class j,   Pi,j represents the probability 

of classifying an example of class i as j, Pak  and Cak represent the  probability and cost of the 

kth attribute ,  the expected cost is defined by: 

 

In general, the aim is to develop algorithms that learn classifiers that minimize this expected 

cost of misclassification as well as the cost of gaining the information needed to perform the 

classification[9]. 

Questions which have arisen in developing suitable algorithms include how can these costs be 

introduced into the decision tree learning process and at what stage of the process is it better 

to do this? It is possible to incorporate these costs at any stage of the decision tree induction 

described earlier but what would be the overall effect of including costs, and what impact 

could this have on the accuracy rate?  

2.2 Game Theory 

Game theory is a discipline which deals in trade-off when there may be more than one 

decision-maker [28, 29].The decision makers, referred to as players, choose a strategy (make 

a decision) and as a result a reward or pay-off occurs. 

Game theory aims to help understand situations where decision-makers interact with each 

other according to a set of rules and consists of a collection of models which need to be 

simple with assumptions capturing the essence of the situation [29]. Many problems can be 

understood without special technical background [28]. Applications which can be reduced to 
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a single problem, for example a shop keeper reducing prices of his stock in response to a 

competitor doing likewise, are all situations for which game theory can be applied. 

In game theory, decisions are linked to goals and the aim is to use the best strategy in order to 

reach a goal. Pay-off functions are assigned to strategies in order to help make the decisions. 

Picking strategies which maximizes pay-off is the desired outcome with a trend towards 

simplicity; finding the simplest assumption needed is the ideal outcome [33]. Pay-offs are 

shown using a matrix and strategies can be illustrated using decision-tree like structures. 

Models are not either right or wrong but useful or not depending on the purpose for which 

they are used. The models are examined in order to analyse their implications, to either 

confirm an idea or suggest it is wrong. This analysis should help understand why it is wrong. 

Each player chooses their actions “simultaneously” in that no player is informed when an 

action is chosen or what action another player has chosen [29]. The assumption is that actions 

are chosen once and for all and it is assumed that all players will try to do their best.  

Studies by [29, 32, 39] give detailed information about of the main categories of games along 

with many examples.  

The Multi-Armed Bandit game, first proposed by Robbins [40], is a scenario where a gambler 

must choose which slot machine from a selection of slot machines to play. A player pulls the 

lever of one of the machines and receives a payoff. The gambler’s purpose is to maximize his 

return i.e. the sum of the pay-offs obtained over a random number of lever pulls. There is a 

trade-off here between exploration (trying out solutions or strategies to find the best one)  and 

exploitation (using the solutions or strategies, which are believed to give the better payoff) as, 

if the gambler plays only one machine which he thinks is best he may miss out on another 

machine about to pay out. On the other hand, too much time spent trying out all the slot 

machines may not actually return a high enough reward [41, 42]. The Multi-Armed Bandit 

game has been used for a variety of problems such as selecting routes for packages and 
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allocation of money to different projects where the outcome is not known [41, 42, 43, 44, 45, 

46, 47, 48, 49, 50]. In these applications trade-off occurs in order that total cost of sending a 

set of packets on selected routes would not be larger than sending the packets all together on a 

single route or the trade-off between potential research projects which may prove profitable 

but this information is only obtained over time.  More formally, the aim for these types of 

bandit problems is to maximize the sum of the rewards in a sequence of T lever pulls, with 

rewards Ri [40, 42, 51]: 

 

An alternative aim, explored by several studies is to select the best lever after exploring a 

certain number of lever pulls and focus on optimizing the reward after the exploration [52, 53, 

54]. This latter objective, which is in contrast to the cumulative reward, is known as a simple 

reward in the literature.  A key decision in maximizing the sum of rewards or finding the best 

arm with a simple reward is about deciding when to select the current best lever and when to 

explore alternative levers in the hope of even better rewards.   Several different exploration-

exploitation strategies have been proposed and analysed.    Simple approaches include ε-first 

strategy, which involves carrying out all the exploration upfront and the ε-greedy strategy that 

selects the current best lever a certain proportion of the time [52, 53, 54]. More sophisticated 

strategies include the use of Thompson sampling, where a lever is selected based on its 

probability of being the optimal, and the use of Gaussian processes to model the reward 

distribution and using the resulting upper confidence bounds as an indicator of points (i.e., 

levers) that might lead to better rewards [42, 50]. 
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3 COST-SENSITIVE DECISION TREE LEARNING USING PRINCIPLES FROM 

THE MULTI-ARMED BANDIT PROBLEM 

This section develops the algorithm for cost-sensitive decision tree induction which uses the 

principles of the multi-armed bandit algorithm.  

A key step in decision tree learning is the selection of the attribute upon which to split the 

data. Once an attribute is selected, the data is sub-divided according to the values of the 

attribute and the process repeated recursively on the subsets until some stopping condition is 

reached. For algorithms that aim to maximize accuracy, the selection criteria is typically an 

information theoretic measure, such as information gain, and the stopping criteria can be 

based on the proportion of examples being in one class.  For algorithms that aim to minimize 

misclassification costs, the selection and stopping condition utilize expected cost, either 

directly or in combination with an information theoretic measure [11]. When test costs (the 

costs of gaining the information) are involved, the issue of trade-off between the cost of an 

attribute and its benefit in minimizing misclassification cost arises. Exploration can determine 

which combination of attributes minimizes misclassification costs but also minimizes the test 

costs. 

To utilize the multi-arm bandit approach, we view the selection of an attribute during the tree 

construction process as equivalent to that of selecting a bandit.  In principle, any of the 

strategies outlined in Section 2 could be adopted, though in this paper, we adopt the simplest 

that meets our needs, namely the ε-first strategy in which all the exploration is done in the 

first P rounds, and followed by exploitation.   

FIGURE 1 illustrates what happens when one bandit that is, an attribute, (i.e, the root 

attribute) is selected at random and its lever is pulled. Given a set of attributes A, an attribute 

a is chosen at random. A value v belonging to attribute a is chosen at random followed by 

additional attributes and their values until the depth to look ahead is reached.  



11 

 

 

 

FIGURE 1. Illustration of a single lever pull look-ahead path in the algorithm 

 

Such a lever pull results in a subset containing examples where attribute a equals value v etc. 

and for which a cost can be calculated, which is the sum of the misclassification costs plus 

costs associated with the attributes used. In theory, this could result in no examples meeting 

these criteria. In this case, the particular lever pull would be ignored with no cost being 

calculated.
2
 

                                                 
2
 This situation can also occur in most greedy tree induction algorithms and handled in a similar way. 
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FIGURE 2. Generate P paths and calculate cost at the end of each path 

 

FIGURE 2 illustrates P paths which have been generated and the cost calculated at the end of 

each path as defined in Section 2.1 or marked as empty in cases when there are no examples 

with the combination of attributes and values specified in a path. In the illustration there are 

five different attributes chosen; odor, sr, hab, gc and bruises. For each time they have been 

randomly selected, an attribute value has been chosen.  

 

TABLE 2. Multi-Armed Cost Sensitive Decision Tree (MA-CSDT) algorithm choosing an attribute 

attribute summed up cost mean of costs 

odor 26.0 6.5 

sr 27.33 13.665 

hab 218.69 72.89 

gc 29.1 14.55 

bruises 127.48 42.49 

 

TABLE 2 presents the cost values summed up for each attribute and the mean for each 

attribute. As the requirement is to reduce costs, the attribute that is represented by the bandit 
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with the lowest mean cost is selected.  This strategy of first carrying out the lever pulls, 

computing the mean and then selecting the bandit is called the ε-first strategy [52].   Bubeck 

et al. [52] presents a theoretical analysis of this type of bandit strategy showing that the level 

of simple regret, which is defined as the difference between the optimal and actual reward, 

decreases exponentially with the number of lever pulls, and that the expected simple regret 

)( prE   can be bounded for a problem with N bandits as the number of lever pulls, P, for each 

arm  increases (corollary 3 from Bubeck et al.[52]): 

                                 
P

NN
rE p

ln2
2)(          

The probably approximately correct (PAC) framework provides an alternative    analysis of 

the ε-first bandit strategy.  In the PAC framework, we are interested in the extent to which it 

is possible to select an attribute that results in a reward that is within an ε distance of the 

reward from a best attribute and to do this with a probability  of at least 1- .    Even-Dar et 

al.[64]  show that the ε-first strategy is PAC learnable by  selecting  the following number of 

lever pulls, P,  for each of the N arm:
3
 













N
P

2
ln

4
2

 

Although such results are useful in showing asymptotic convergence,  Kuleshov and Precup 

[66] show that they do not necessarily  reflect the performance of the different bandit 

strategies in applications.   Indeed, a study by Vermorel and  Mohri [49] suggests that bandit 

strategies with the “ best asymptotic guarantees do not provide the better results, and could 

not have been inferred from a simple comparison of the theoretical results known so far”  but 

also conclude that “the ranking of the strategies changes significantly when switching to real 

world data”. Perhaps surprisingly, empirical evaluations suggest that the simpler strategies 

can sometimes outperform the more sophisticated strategies [49, 66].   Thus selecting the 

                                                 
3
 Fern[65] presents a similar result for individual bandits. 
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number of lever pulls for particular bandit problems, including the one addressed in this paper 

requires experimentation.    Section 4 will describe the approach we use in deciding the 

number of lever pulls when carrying out an empirical evaluation. 

FIGURE 3 presents the top level of the algorithm MA_CSDT illustrated above, where the 

function exploreAttributes uses the function leverPulls to explore the 

combinations of attributes by generating the paths and returning the best attribute to exploit 

that will trade-off the cost of an attribute against the misclassification cost.  The functions 

exploreAttributes and leverPulls are defined in FIGURE 4. 

 

MA_CSDT(A, Examples, P, K) 

Inputs:  A is the set of available attributes 

         Examples are the training examples 

         P is number of lever pulls  

         K is depth to look ahead  

Output:  DT, a decision tree       

  

   if A is empty OR  

      Proportion of Examples is less than user specified percentage OR 

 Proportion of examples in the majority class exceeds a threshold         

 return DT as a leaf   

             class set as the majority class,  

             except in cases of equal class distribution when it is 

             set to the class which minimizes cost  

   else  

  a_exploit = exploreAttributes(A, Examples, P, K) 

      cost_reduction = misclassification cost without a_exploit  

                         – misclassification cost with a_exploit 

 

      if cost_reduction > cost of using test a_exploit         

    subset = Split_Data(Examples, a_exploit) 

     For each subset i   

     subTreei = MA_CSDT(A – {a_exploit},subseti, P, K) 

    End For 

    return a DT with test a_exploit and subtrees subTreei               

 

      else                

         return  DT as a leaf   

             class set as the majority class,  

             except in cases of equal class distribution when it is 

             set to the class which minimizes cost       

End  

 

FIGURE 3. Multi-Armed Cost-Sensitive Decision Tree Algorithm (MA_CSDT), adapted from [58]  
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FIGURE 4.  Definition of exploreAttributes and leverPull  

Several authors have observed that when an attribute is recommended using cost, it can lead 

to a node where the cost of the attribute exceeds the savings [34, 57]; hence a further check is 

needed to ensure that an attribute is worth exploring before continuing the tree induction 

process recursively.   The stopping condition is similar to that adopted in most tree induction 

algorithms (such as J48): stopping when the available data is below a user-specified 

exploreAttributes(A, Examples, P, K) 

Inputs: A is the set of attributes   

        Examples are the training examples 

        P is number of lever pulls  

        K is depth to look ahead  

Output: Attribute, the recommended attribute 

 

/*  Rai denotes the cumulative cost of utilizing attribute ai  

    Nai denotes number of times that attribute ai is chosen as root of path, 

    mean_ai  denotes the mean cost   for attribute  ai    

*/ 

Initialize Rai, Nai, mean_ai to zero for all ai  set of attributes A        

 

For j = 1 to P 

  ai set of attributes A 

(Path_ai,Exs)  = leverPull(ai,A,K,Examples) 

 If  |Exs|/|Examples| > user specified minimum threshold 

      Rai  += cost for ai (Path_ai,Exs) 

      Nai = Nai + 1 

End For 

Compute mean_ai = Rai/ Nai for all ai set of attributes A     

 return aj  set of attributes A  that has the lowest mean_aj cost 
End 

 

 

leverPull(ai, A, K, Es) 

Inputs: ai is attribute chosen at random  

 A is the set of attributes 

K is depth to look ahead 

Es is the set of examples   
Output: (Path, set of examples) 

Select v  values of attribute ai 

Es_ai = {e  Es | attribute ai of example e has value v} 

If K=0 then return ([ai], Es_ai) 
else begin 

 aj  A-{ai} 

 (PathAj,Es_aj) = leverPull(aj,A-{ai},K-1, Es_ai) 

 Path = sequence with ai first followed by PathAj 
 return (Path, Es_aj) 

End 
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proportion, there are no attributes left, or the proportion of examples in the majority class 

exceeds a user-specified value.  .   

The merits of this algorithm are evaluated empirically in the next section. 

 

4 EMPIRICAL COMPARISON  

This section presents an empirical evaluation and comparison of MA_CSDT with five other 

cost-sensitive tree induction algorithms. Our choice of comparison algorithms is based on 

selecting representative algorithms from the categories of cost-sensitive algorithms identified 

in [11, 56], which classifies algorithms by the way in which costs are introduced.  The 

algorithms selected aim to cover five of the most common classes: 

 Use of costs during construction: The algorithm chosen is EG2 [15] and has been 

implemented by adapting the J48 algorithm in WEKA. 

 Bagging: The algorithm chosen is MetaCost [19],which is included in the WEKA 

package. 

 Boosting: AdaCostM1 [20] is an adaptation of the algorithm AdaBoostM1 [59] which 

is included in the WEKA package. The adaptations developed by [20] for the 

algorithm AdaCost, have been added to AdaBoostM1 in order that the algorithm 

AdaCost can process multi-class datasets and be included in the evaluation. 

 GA methods: ICET has been previously implemented and has been tested by 

comparing experiments in [8] in order to check the implementation [60].  

 Stochastic approach: The algorithm chosen is ACT which was implemented and has 

been tested by repeating and comparison with results in [56]. 

In addition, the J48 algorithm, which is an implementation of C4.5[4],  is also used so that 

comparison can be made with an algorithm that aims to maximize accuracy. 



17 

 

The experimental evaluation was carried out using 15 datasets obtained from the Machine 

Learning Repository [61]. A range of misclassification costs were used in order to examine 

the trade-off between the two types of cost used; test costs (the costs associated with 

attributes) and misclassification costs. For example misclassification costs were assigned to 

the classes in a dataset to be higher than the test costs, lower than the test costs and a mixture 

of high and low values in relation to the test costs. Test costs have either been devised by 

experts or have been used in other studies [8, 12, 56]. The Appendix shows the ranges of test 

costs which the dataset contains. Each attribute has been assigned a test cost which is within 

this range and remains consistent throughout the experiments when that attribute is used. The 

cost to classify is calculated and normalized as per Turney’s method described in [8]. The 

other parameter we need to set is the number of lever pulls.  As described in Section 3, 

although there are theoretical bounds that could be used to set the number of lever pulls, these 

are not sufficiently tight, and several studies have suggested that the optimal value is problem 

dependent [49,66].  In these empirical evaluations, we use the maximum number of possible 

paths, which are computed from the number of attributes and their possible values, as a guide 

to setting the number of lever pulls in advance.  The Appendix provides details of the data 

sets,  cost matrices and number of lever pulls  used in these experiments. 

The methodology utilized included randomly creating 10 training and testing pairs consisting 

of 70% of the dataset for training with the remaining used for testing.   

As mentioned in Section 3, there are also two user specified parameters often required in the 

stopping condition of decision tree learning algorithms:  the proportion of examples below 

which it is not worth continuing, and the proportion of examples in the majority class above 

which the algorithm can stop.  These were set arbitrarily at 5% and 90% respectively in these 

experiments.   
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In applications, the ideal is, of course, that we are able to maximize accuracy and minimize 

costs.  However, this is not always possible and as mentioned earlier, there is often a trade-off 

between accuracy and costs. Thus, there is a need to consider situations in which a user may 

wish to optimize costs, in which case one can select the trees that minimize cost, or 

alternatively there may be a preference for more accurate trees.  Hence, the empirical 

evaluation in Section 4.1 presents results from these two strategies. 

4.1 Empirical results 

TABLE 3 presents the percentage of time that each cost-sensitive algorithm achieved the 

lowest costs and the highest accuracy.  

The costs for each dataset returned by each algorithm have been averaged over all the cost 

matrices. Cases where no tree is produced are excluded from consideration with regard to 

their performance. 

TABLE 3. Percent that each cost-sensitive algorithm achieves the lowest cost or highest accuracy for a cost 

matrix 

 lowest cost for 

a cost matrix 

highest accuracy 

for a cost matrix 

J48 1.38% 32.08% 

EG2 9.67% 11.77% 

MetaCost 6.45% 11.09% 

AdaCostM1 3.92% 3.92% 

ICET 5.07% 3.41% 

ACT 5.30% 2.73% 

MA_CSDT 68.20% 34.98% 

 

TABLE 4 presents the results for the 15 datasets using the five cost-sensitive algorithms and 

J4.8, when pruned versions of the algorithms are used. The second-last column, labelled 

"cost-based” records the results from MA_CSDT when adopting a strategy where lowest cost 

tree is selected, while the last column, labelled  "accuracy-based" presents the cost associated 

with the most accurate tree. 
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The “cost-based” strategy results in the lowest cost on the datasets diabetes, flare, heart, 

hepatitis, iris, mushroom, nursery, tic-tac-toe and wine. However in most cases, this results in 

a large sacrifice of the accuracy rate obtained. 

The “accuracy-based” strategy obtains a higher accuracy at a lower cost than J48 on datasets 

diabetes, flare, glass and heart and higher accuracy than the other cost-sensitive algorithms for 

datasets breast, flare, hepatitis iris and wine. The accuracy rate obtained for hepatitis for 

example, using this strategy was only 0.10% lower than that of J48 with a lower cost and only 

0.014% lower on the wine dataset. The accuracy rate obtained for the diabetes dataset was 

only 0.04% lower than that of EG2 with a lower cost of 3.0% less.  
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TABLE 4. Results from all datasets for each of the algorithms 
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annealing cost 12.080 ± 0.001 1.080 ± 0.000 12.093 ± 0.003 10.933 ± 0.012 2.060 ± 0.002 2.747 ± 0.004 1.280 ± 0.001 2.027 ± 0.002

accuracy 97.340 ± 0.000 97.260 ± 0.000 96.924 ± 0.212 95.267 ± 0.851 95.140 ± 0.635 83.499 ± 1.544 86.747 ± 3.243 95.758 ± 0.063

breast cost 32.967 ± 0.039 26.540 ± 0.062 1.887 ± 0.017 1.787 ± 0.016 18.007 ± 0.066 19.260 ± 0.047 26.460 ± 0.016 31.867 ± 0.026

accuracy 72.370 ± 0.000 66.660 ± 0.000 51.433 ± 4.830 51.491 ± 4.846 68.527 ± 0.154 56.022 ± 4.068 60.805 ± 2.238 68.627 ± 0.819

car cost 47.883 ± 0.019 39.775 ± 0.014 46.117 ± 0.025 40.850 ± 0.047 11.117 ± 0.035 11.542 ± 0.025 19.192 ± 0.027 32.775 ± 0.035

accuracy 90.640 ± 0.000 81.900 ± 0.000 86.493 ± 1.076 80.383 ± 3.340 71.267 ± 1.248 58.968 ± 5.181 57.080 ± 5.108 71.826 ± 0.544

diabetes cost 38.047 ± 0.015 33.907 ± 0.012 4.980 ± 0.032 4.193 ± 0.029 19.773 ± 0.033 12.640 ± 0.019 12.280 ± 0.030 30.940 ± 0.023

accuracy 75.880 ± 0.000 76.090 ± 0.000 52.771 ± 3.898 52.732 ± 3.873 70.207 ± 0.970 61.171 ± 2.120 62.810 ± 1.858 76.054 ± 0.176

flare cost 8.678 ± 0.007 2.089 ± 0.008 9.678 ± 0.017 14.067 ± 0.036 3.289 ± 0.007 3.422 ± 0.008 3.667 ± 0.008 6.267 ± 0.013

accuracy 89.440 ± 0.000 89.440 ± 0.000 76.504 ± 9.293 81.210 ± 4.111 89.033 ± 0.052 79.026 ± 7.789 84.838 ± 2.781 89.452 ± 0.051

glass cost 35.783 ± 0.019 24.050 ± 0.011 32.483 ± 0.023 31.050 ± 0.024 22.500 ± 0.014 15.444 ± 0.023 16.711 ± 0.019 34.250 ± 0.019

accuracy 68.060 ± 0.000 70.730 ± 0.000 57.852 ± 2.196 55.587 ± 2.569 63.944 ± 0.749 37.594 ± 1.116 44.954 ± 3.319 71.971 ± 0.184

heart cost 29.633 ± 0.008 13.027 ± 0.019 5.187 ± 0.027 4.373 ± 0.024 16.973 ± 0.017 10.253 ± 0.023 5.333 ± 0.002 10.133 ± 0.012

accuracy 75.750 ± 0.000 75.670 ± 0.000 53.528 ± 2.235 53.461 ± 2.189 74.820 ± 0.337 63.525 ± 1.676 65.545 ± 0.815 76.957 ± 0.167

hepatitis cost 28.240 ± 0.006 25.027 ± 0.034 4.753 ± 0.024 4.500 ± 0.024 21.107 ± 0.027 19.193 ± 0.021 6.027 ± 0.012 18.327 ± 0.019

accuracy 87.350 ± 0.000 83.970 ± 0.000 56.499 ± 8.104 57.622 ± 7.629 86.260 ± 0.484 78.069 ± 2.141 70.822 ± 3.826 87.252 ± 0.470

iris cost 33.333 ± 0.019 29.267 ± 0.013 34.211 ± 0.023 34.244 ± 0.027 21.867 ± 0.010 9.822 ± 0.035 6.356 ± 0.025 33.389 ± 0.026

accuracy 93.660 ± 0.000 90.020 ± 0.000 92.309 ± 1.627 92.046 ± 1.638 78.500 ± 2.167 57.856 ± 8.911 46.723 ± 6.331 94.688 ± 0.111

krk cost 44.678 ± 0.012 41.756 ± 0.020 43.744 ± 0.013 41.928 ± 0.013 31.244 ± 0.035 40.189 ± 0.016 34.978 ± 0.022 43.483 ± 0.017

accuracy 53.560 ± 0.000 33.800 ± 0.000 49.859 ± 0.700 49.036 ± 0.910 25.950 ± 2.503 22.237 ± 1.075 16.077 ± 0.623 30.029 ± 0.312

mushroom cost 2.341 ± 0.005 1.351 ± 0.003 2.348 ± 0.005 1.539 ± 0.005 1.708 ± 0.004 2.641 ± 0.005 1.300 ± 0.002 1.658 ± 0.002

accuracy 100.000 ± 0.000 100.000 ± 0.000 99.748 ± 0.199 79.111 ± 6.252 99.607 ± 0.082 96.171 ± 3.089 98.551 ± 0.028 98.585 ± 0.025

nursery cost 34.793 ± 0.040 35.367 ± 0.040 33.947 ± 0.041 33.042 ± 0.041 16.685 ± 0.028 18.973 ± 0.036 16.382 ± 0.030 22.496 ± 0.026

accuracy 96.237 ± 0.000 95.498 ± 0.000 91.567 ± 1.349 87.258 ± 2.729 66.880 ± 5.790 59.397 ± 6.644 48.663 ± 4.867 70.393 ± 3.697

soybean cost 6.460 ± 0.003 6.827 ± 0.003 6.193 ± 0.003 6.287 ± 0.004 6.553 ± 0.003 14.573 ± 0.006 7.513 ± 0.004 8.020 ± 0.004

accuracy 90.330 ± 0.000 87.660 ± 0.000 87.421 ± 0.946 82.641 ± 0.924 88.267 ± 0.187 80.369 ± 0.453 83.594 ± 1.301 87.605 ± 0.181

tictactoe cost 27.840 ± 0.017 27.820 ± 0.017 7.767 ± 0.031 4.827 ± 0.028 16.773 ± 0.021 11.907 ± 0.018 9.027 ± 0.028 19.720 ± 0.031

accuracy 83.670 ± 0.000 83.890 ± 0.000 57.475 ± 4.311 54.195 ± 4.401 74.767 ± 1.978 80.003 ± 2.236 61.333 ± 3.043 75.170 ± 0.338

wine cost 18.256 ± 0.002 13.022 ± 0.002 16.822 ± 0.004 15.211 ± 0.012 12.867 ± 0.004 5.044 ± 0.017 10.600 ± 0.001 17.822 ± 0.004

accuracy 93.470 ± 0.000 87.510 ± 0.000 90.909 ± 1.693 81.560 ± 4.796 86.478 ± 0.329 45.798 ± 4.363 78.777 ± 1.522 93.456 ± 0.259

DATASET

 

 

The algorithm MA_CSDT does not perform well on the datasets car, nursery and krk. No 

algorithm returns a higher accuracy rate than J48 on these datasets, although it accomplishes 

this at a greater cost than each of the other algorithms including both strategies of MA_CSDT. 

MetaCost and AdaCostM1 get closer to the accuracy rate of J48 than any other algorithm and 

return a lower cost than J48. MA_CSDT does not get anywhere near this accuracy rate, the 

highest accuracy rate is produced by “accuracy-based” strategy and returns a low cost but this 

accuracy rate is 23.53% less than J48.  
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MetaCost and AdaCostM1 also perform better on datasets soybean and wine than other cost-

sensitive algorithms. ICET does not perform as well as J48 on the soybean dataset but for all 

other datasets, it does obtain a lower cost than J48, but also has problems with car, iris, 

nursery, tic-tac-toe and wine. Along with all other algorithms, ICET also encountered 

problems whilst processing the krk dataset. 

4.2 Discussion of the outcome of the empirical evaluation 

As TABLE 3 summarizes, the MA_CSDT algorithm returns the lowest cost for a cost matrix 

68.2% of the time and the highest accuracy for a cost matrix 34.98% of the time. Each time 

the highest accuracy is achieved, its corresponding cost is lower than that of J48. The main 

aim, to achieve the same or higher rate of accuracy more cost-effectively than the accuracy-

based algorithm J48 has been met for the datasets annealing, flare, glass, iris, heart and 

mushroom.  

For the datasets breast, diabetes, hepatitis, tic-tac-toe and wine a sacrifice of less than between 

1% to 3% of the accuracy rate returned by J48 results in a lower cost. For the remaining 

datasets, car, krk, nursery and soybean, this aim has not been met.  

By looking at the two strategies “cost-based” and “accuracy-based” it is apparent that a trade-

off is required.  The heart dataset is representative of the datasets on which MA_CSDT 

produces a high accuracy rate in a more cost-effective way. Almost all such cases are a result 

of adopting the “accuracy-based” strategy. In contrast, although the “cost-based” strategy can 

results in lower cost, the corresponding accuracy rates are always lower than the J48 

algorithm.  

The krk dataset is representative of poor results, where the MA_CSDT algorithm has been 

unable to minimize cost as well as retain accuracy. The accuracy-based algorithm J48 

achieved the highest accuracy overall, with only two of the cost-sensitive algorithms 

MetaCost and AdaCostM1 achieving a similar accuracy rate. They achieved almost the same 
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rate with a small reduction in costs. EG2, ICET and ACT also failed to achieve a comparable 

accuracy rate but do manage to at least reduce costs. 

On examination of the trees induced, the most likely cause of this is that the MA_CSDT 

algorithm either grows trees that are too small in comparison with the size of the dataset, 

which has a large number of examples in the training set, or grows a tree which is far too 

large with over 20,000 leaves. The paths in these trees are comprised of 6 attributes in order 

to reach the leaves. The smaller trees have paths to the leaves which consist of two or three 

attributes. The conclusion reached is that the large number of examples contributes to the 

problems of processing this dataset. In each training file there are approximately 20,000 

examples. Pruning or stopping the tree build early results in many examples at the leaf nodes 

which results in low accuracy. Allowing the tree to grow fully results in overgrown trees with 

few examples at the node, which results in higher test costs but still does not improve 

accuracy.  The ACT algorithm also produces trees which follow this pattern of either too small 

or too large and is also not very successful on this dataset.  

The three algorithms, which produce the better results for this dataset (J48, MetaCost, 

AdaCostM1), all produce the same tree which has 3948 leaves. They all choose the same root; 

‘wkr’ which happens to be the attribute with the highest cost. However this is statistically the 

better attribute and in combination with less costly attributes further down the tree, results in a 

medium sized tree which produces the accuracy rate of around 50%. EG2 produces similar 

trees but chooses one of the less costly attributes for its root, and uses the more costly one 

later in the tree build. This produces a similar sized tree but the less costly attribute is not as 

good a root attribute as the more costly one in this dataset. ACT chooses the same root as the 

better algorithms, however reduces the tree produced too much during its pruning stage.  
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This dataset demonstrates that higher accuracy does not always mean lower costs, if to 

achieve this, the tree grows uncontrollably. However spending less on test costs does not 

always work either as money saved on tests may be spent on misclassification costs. 

In some cases either pruning a tree results in no tree being left or that no tree has been grown 

in the first instance; for MetaCost and AdaCostM1 the reason that no trees have been 

produced on some occasions, is that the process stops as all the examples belong to one class. 

In the case of AdaCostM1 this will be owing to the initial weight procedure and in the case of 

MetaCost, owing to the way that this algorithm re-labels the training example with the class 

that minimizes the cost, as described in Section 5.2.2 in [11].  

In the case of the flare dataset, each of the other algorithms fails to grow trees for some of the 

cost matrices. In particular EG2 does not grow any trees at all, ICET does not grow trees 84% 

of the time and even J48 does not grow any trees 70% of the time. After careful examination 

of the output, it has been concluded that the lack of trees are as a result of the class 

distribution of the dataset which causes the majority of trees to be pruned back to nothing. 

The majority class in the whole dataset has 88.9% of the examples in it. Pruning techniques 

would most likely determine that sub-trees were not able to improve on the results of the 

original dataset and so would be converted into leaves, resulting in a large percentage of no 

models being produced.  

Although not successful in every dataset, there is sufficient evidence to suggest that it is 

possible to find a compromise between accuracy-based decisions and cost-based decisions in 

order to both maintain accuracy and return lower costs or to minimize the sacrifice of the 

accuracy rate whilst still returning lower costs. 
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5 CONCLUSIONS AND FUTURE WORK 

This paper has developed a new algorithm, MA_CSDT, for cost-sensitive decision tree 

induction based on the principles and concept of the multi-armed bandit problem.  

An empirical evaluation and comparison of the algorithm with six representative cost-

sensitive algorithms on 15 data sets shows promising results, with MA-CSDT producing 

lowest cost trees in 68% of the trials.  The algorithm has helped explore and confirm a 

research hypothesis, that cost-sensitive learning involves a trade-off between the decisions 

based on accuracy and decisions based on cost and that there is merit in utilizing multi-arm 

bandits for this problem.   

By using a framework which explores strategies based on cost, a compromise between these 

viewpoints can be reached in the majority of cost-sensitive problems. The nature of the 

domain dictates the importance of this aim. Whilst some domains may err on the side of 

caution and prefer to sacrifice the accuracy rate rather than incur high misclassification costs, 

there are many domains where this is not acceptable. In these domains, if a classifier can be 

found which will minimize costs, but at the same time be as accurate as an accuracy-based 

classifier, this is more desirable.  

Although many different approaches have been attempted for inducing cost-sensitive trees 

[11], this is a first attempt at using the concepts of multi-arm bandits for this problem, and 

there is significant potential for future work.  First, on the theoretical front,  it is worth 

pursuing whether use of MABs can lead to tighter PAC bounds for decision tree learning than 

those currently published such as in [67].  Secondly, this paper has used the simplest strategy, 

namely a pure exploration strategy to select attributes that help minimise cost.  Although the 

empirical trials show good results,  some sensitivity analysis could reveal further properties 

and other MAB strategies are also worth exploring.  For example,   Even-Dar et al. [64] 

propose refinements of the pure exploration strategy that eliminates weak bandits in 
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successive rounds of resampling, leading to tighter bounds and which could result in further 

improvements.   For larger data sets, where computational cost is a major issue, more 

sophisticated strategies such as  Gaussian Processes Bandits   [45, 48, 49],  could be also be 

attempted  to optimise the number of lever pulls in cost-sensitive decision tree learning.   
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APPENDIX 

A1 Dataset Information 

dataset name no classes (attributes) test cost range (total test cost) grouped 

annealing 5 (24) 50.0 – 2000.0 (15850.0) yes 

breast 2 (9) 5.02877 – 93.0188 (368.9732) yes 

Car 4 (6) 5.58562 – 98.6441 (258.7396) yes 

diabetes 2 (6) 1.00 – 22.78 (44.39) yes 

Flare 3 (10) 4.36544 – 96.5457 (382.248) yes 

glass 6 (7) 13.3987 – 78.2133 (393.804) yes 

heart 2 (11) 1.0 – 102.9 (592.3) yes 

hepatitis 2 (16) 1.0 – 8.3 (35.84) yes 

Iris 3 (4) 7.65056 – 98.2458 (206.6928) no 

Krk 18 (6) 7.11229 – 89.3119 (260.0522) no 

mushroom 2 (21) 1.0 – 7.0 (63.0) no 

nursery 5 (8) 8.21288 – 98.6441 (185.9273) yes 

soybean 15 (35) 5.0 – 10.0 (270.0) yes 

tic-tac-toe 2 (9) 1.0 (9.0) no 

wine 3 (13) 5.86631 – 98.5054 (697.0051) yes 

 

Full details of the datasets and the costs associated with each attribute are given in [57]. 

A2 Value of P for each dataset used in the experiments 

The Table below lists the values of the number of lever pulls (P) used for each data set. The 

values of P were allocated for each dataset by calculating the number of potential unique 

paths there would be in a decision tree given the number of attributes and their values. This 

was then used as a guideline to allocate values so that there are five values for each dataset. 

These values are (1) lower than the potential unique path value; (2) rounded down from the 

potential unique path value; (3) the potential unique path value; (4) higher than the potential 

unique path value and (5) a much lower value than any of the previous values. The identifiers 

(6) and (7) were specially included for soybean and used in one smaller experiment. This was 

done as the soybean dataset has a longer process time than all other datasets. 

Chapter 5 of [57] investigates this parameter in depth and justifies the necessity for 

consideration when setting this parameter. 
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 Identification of the value of P for each dataset 

depth (k) 1 1 2 3 4 5 6 7 

dataset        

annealing 7000 8000 8312 10000 1000   

breast 1500 2000 2152 5000 500   

car 200 300 366 500 50   

diabetes 150 180 184 300 30   

flare 700 800 898 2000 100   

glass 200 300 338 1000 50   

heart 500 600 658 1000 100   

hepatitis 800 1000 1082 1500 100   

iris 75 100 108 500 30   

krk 1000 1300 1312 1500 100   

mushroom 10000 12000 12624 15000 1000   

nursery 500 600 632 1000 100   

soybean 1000 3000 9104 5000 50 8000 9000 

tic-tac-toe 500 600 648 1000 100   

wine 1000 1200 1256 1500 100   

depth (k) 2        

dataset        

car 3000 4000 5082 6000    

diabetes 500 1000 1776 3000    

glass 3000 4000 4692 6000    

iris 500 600 648 1000    

 

A3 Details of the misclassification costs used in all experiments 

For the two class datasets, a range of misclassification costs have been chosen which are a 

mixture of higher and lower values than the test costs in the dataset. This has then been 

reversed so that each class costs each value in turn during the experiments. This is to remove 

any advantages with regard to class distribution within each dataset. 

 2-class datasets 

cost 

matrix 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

class                

1 1 1 1 1 1 1 1 1 10 50 100 500 1000 5000 10000 

2 10000 5000 1000 500 100 50 10 1 1 1 1 1 1 1 1 

Multi class dataset misclassification costs were devised to examine the trade-off between test 

costs and misclassification costs. Each set of misclassification costs have been assigned to be 

lower than test costs in each dataset (L), higher than the test costs (H) or a mixture of high and 

low values in relation to the test costs (M), as indicated in each table. 
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3-class datasets 

cost matrix 1 2 3 4 5 6 7 8 9 

 (M) (L) (H) 

class          

1 1 100 10 1 10 5 150 250 200 

2 10 1 100 5 1 10 200 150 250 

3 100 10 1 10 5 1 250 200 150 

 

4-class datasets 

cost matrix 1 2 3 4 5 6 7 8 9 10 11 12 

 (M) (L) (H) 

class             

1 1 500 100 10 1 20 10 5 150 300 250 200 

2 10 1 500 100 5 1 20 10 200 150 300 250 

3 100 10 1 500 10 5 1 20 250 200 150 300 

4 500 100 10 1 20 10 5 1 300 250 200 150 

 

 

 

5-class dataset: annealing 

cost matrix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
 (M) (L) (H) 

class                

1 100 10000 5000 1000 500 150 350 300 250 200 1000 5000 4000 3000 2000 

2 500 100 10000 5000 1000 200 150 350 300 250 2000 1000 5000 4000 3000 
3 1000 500 100 10000 5000 250 200 150 350 300 3000 2000 1000 5000 4000 

4 5000 1000 500 100 10000 300 250 200 150 350 4000 3000 2000 1000 5000 

5 10000 5000 1000 500 100 350 300 250 200 150 5000 4000 3000 2000 1000 

 

5-class dataset: nursery 

cost matrix  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 (M) (L) (H) 

class                

1 1 1000 500 100 10 1 50 20 10 5 150 350 300 250 200 

2 10 1 1000 500 100 5 1 50 20 10 200 150 350 300 250 

3 100 10 1 1000 500 10 5 1 50 20 250 200 150 350 300 

4 500 100 10 1 1000 20 10 5 1 50 300 250 200 150 350 

5 1000 500 100 10 1 50 20 10 5 1 350 300 250 200 150 

 

6-class dataset: glass 

cost matrix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
 (M) (L) (H) 

class                   

1 1 1000 500 100 50 10 1 70 50 20 10 5 150 400 350 300 250 200 

2 10 1 1000 500 100 50 5 1 70 50 20 10 200 150 400 350 300 250 
3 50 10 1 1000 500 100 10 5 1 70 50 20 250 200 150 400 350 300 

4 100 50 10 1 1000 500 20 10 5 1 70 50 300 250 200 150 400 350 
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5 500 100 50 10 1 1000 50 20 10 5 1 70 350 300 250 200 150 400 

6 1000 500 100 50 10 1 70 50 20 10 5 1 400 350 300 250 200 150 

 

As there are so many classes in the final two datasets, a similar process to the two class 

datasets was used to allocate misclassification costs. In these cases a range of costs were 

chosen and allocated to each class (cost matrix 1). Then for each subsequent cost matrix 

identifier the misclassification costs were moved round one place. The result is that each class 

is allocated each misclassification cost in turn. 

 

 

 

 

 

15-class dataset: soybean 

cost matrix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

class                

1 1 700 650 600 550 500 450 400 350 300 250 200 150 100 50 

2 50 1 700 650 600 550 500 450 400 350 300 250 200 150 100 

3 100 50 1 700 650 600 550 500 450 400 350 300 250 200 150 

4 150 100 50 1 700 650 600 550 500 450 400 350 300 250 200 

5 200 150 100 50 1 700 650 600 550 500 450 400 350 300 250 

6 250 200 150 100 50 1 700 650 600 550 500 450 400 350 300 

7 300 250 200 150 100 50 1 700 650 600 550 500 450 400 350 

8 350 300 250 200 150 100 50 1 700 650 600 550 500 450 400 

9 400 350 300 250 200 150 100 50 1 700 650 600 550 500 450 

10 450 400 350 300 250 200 150 100 50 1 700 650 600 550 500 

11 500 450 400 350 300 250 200 150 100 50 1 700 650 600 550 

12 550 500 450 400 350 300 250 200 150 100 50 1 700 650 600 

13 600 550 500 450 400 350 300 250 200 150 100 50 1 700 650 

14 650 600 550 500 450 400 350 300 250 200 150 100 50 1 700 

15 700 650 600 550 500 450 400 350 300 250 200 150 100 50 1 

 

 

 

18-class dataset: krk 

cost matrix 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

class                   

1 1 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 
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2 50 1 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 

3 100 50 1 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 

4 150 100 50 1 850 800 750 700 650 600 550 500 450 400 350 300 250 200 
5 200 150 100 50 1 850 800 750 700 650 600 550 500 450 400 350 300 250 

6 250 200 150 100 50 1 850 800 750 700 650 600 550 500 450 400 350 300 

7 300 250 200 150 100 50 1 850 800 750 700 650 600 550 500 450 400 350 
8 350 300 250 200 150 100 50 1 850 800 750 700 650 600 550 500 450 400 

9 400 350 300 250 200 150 100 50 1 850 800 750 700 650 600 550 500 450 

10 450 400 350 300 250 200 150 100 50 1 850 800 750 700 650 600 550 500 
11 500 450 400 350 300 250 200 150 100 50 1 850 800 750 700 650 600 550 

12 550 500 450 400 350 300 250 200 150 100 50 1 850 800 750 700 650 600 

13 600 550 500 450 400 350 300 250 200 150 100 50 1 850 800 750 700 650 
14 650 600 550 500 450 400 350 300 250 200 150 100 50 1 850 800 750 700 

15 700 650 600 550 500 450 400 350 300 250 200 150 100 50 1 850 800 750 

16 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 1 850 800 
17 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 1 850 

18 850 800 750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 1 

 

 


