
Introduction 

Radiation dose in computed tomography (CT) is a highly topical concern in medical imaging 

and there is a recognition of increased dose with the use of multi-detector CT (MDCT).1–5 

However, radiation dose risk needs to be balanced with benefits, and MDCT has been a 

significant development in acute medicine6–9 where a quick and accurate diagnosis is 

important for patient outcome. 

Low noise and high spatial resolution are important considerations for accurate radiological 

CT reports. Until recently, filtered back projection (FBP) had been the image reconstruction 

method of choice. Unfortunately, data non-linearity and image reconstruction artefacts are 

prevalent with FBP and a loss of spatial resolution is an unwanted trade-off when attempting 

to reduce image noise.10–12 Improved computer processing capability currently allows the 

use of iterative reconstruction (IR) in CT as an alternative to FBP. Incorporating physical 

models into the algorithm allows image quality to be maintained at lower dose and lower 

noise levels13 and dose reductions ~ 23-79% have been reported when using IR in place of 

FBP.14–17  

Adaptive iterative dose reduction 3D (AIDR3D, Toshiba Medical Systems, Minato-ku, Japan) 

is a recently developed iterative reconstruction (IR) algorithm for CT data, where it has been 

suggested that using AIDR3D in place of FBP could allow dose saving ~ 75%.18 A detailed 

explanation of how AIDR3D works in the projection and reconstruction domains has been 

published.19 

Several studies19–21 have assessed this new algorithm using objective and subjective 

measures. Common to all is an objective evaluation of image noise, evaluating either the 

standard deviation of pixels values in regions of interest in various quasi-uniform anatomical 

regions19, 20 or the noise power spectrum (NPS) in a phantom model.21 All studies report 

reductions in image noise. Spatial resolution was assessed objectively using the modulation 

transfer function21 and subjectively using a 5-point scale to assess the pulmonary vessels;20 

both of these methods suggested that spatial resolution (or sharpness) was reduced with 

AIDR3D in comparison to FBP.20, 21 Subjective evaluations of images, using 5-point visual 

scoring systems, were used to assess diagnostic acceptability,19–21 artefacts,20, 21 and 

pathology.19 With one exception20 subjective image quality was stated as being better with 

AIDR3D. Despite the inconsistencies listed above, all studies suggested that AIDR3D could 

offer a large dose reduction in the thorax: by a factor of 6 from 150 mAs down to 25 mAs,19 

when using a low dose acquisition in place of a standard dose acquisition,20 or as an 

average of 36% over a range of tube current-time product settings (comparing FBP and 



AIDR3D directly).21 Ohno et al19 and Yamada et al20 both used the computed tomography 

dose index (CTDI) to assess radiation dose, when in fact it is only a measure of absorbed 

dose to a standardized phantom and does not account for patient size and potential cancer 

risk.22 The above studies are further limited by a the lack of an ROC type analysis and low 

case numbers: e.g., 37,19 and 5020 patients respectively. 

We are aware of only one paper that assesses the value of IR in the thorax with observer 

performance methods. A study by Katsura et al23 assessed the value of using a model-

based IR algorithm (MBIR) against adaptive statistical IR (ASIR; GE Healthcare, Waukesha, 

WI). An ultralow-dose MBIR acquisition with a fixed tube current was compared to a low-

dose acquisitions using ASIR and automatic tube current modulation. The study used 59 

patients and 2 observers, with 84 nodules present in 41 patients, with the remaining 18 

patients having no lung nodules. Nodule detection rates were similar between the two 

acquisitions (p=0.57), and the authors reported dose saving of more than a factor of 4, from 

a DLP of 66mGy-cm to 14.5mGycm. However, it is not possible to claim that nodule 

detection rates were equivalent without performing an equivalence study.24, 25 Stated simply, 

not being able to reject the null hypothesis of equal performance does not imply the two 

modalities have equal performances. The work of Katsura et al differs from previous work 

and this study in that they compared two IR algorithms and not FBP. In this work we make 

methodological improvements on previous studies to evaluate the performance of AIDR3D 

and FBP for nodule detection over a range of tube current-time product. Initial results 

questioning the advantages of IR over FBP in an anthropomorphic chest phantom were 

presented as a conference paper in early 2015.26 

 

Method 

A free-response study was conducted using an anthropomorphic chest phantom to 

determine nodule detection performance for images constructed using FBP and IR over a 

range of mAs values. This was combined with an accurate assessment of radiation dose 

using a separate phantom.  

Phantoms 

An anthropomorphic chest phantom (Lungman N1 Multipurpose Chest Phantom, Kyoto 

Kagaku Company, Japan) representing a 70Kg male was loaded with simulated nodules 

measuring 5, 8, 10 and 12mm in spherical diameter and +100, -630 and -800 Hounsfield 

Units (HU) densities. The higher electron density (+100HU) nodules are composed of 

polyurethane, hydroxyapatite and a urethane resin; the lower electron density (-630 and -

800HU) nodules are composed of urethane. 



An ATOM 701D (ATOM 701; CIRS, Norfolk, VA) whole-body dosimetry verification phantom 

was used to measure organ doses. Prior to data collection the median-sagittal and mid-

coronal planes, and the scan range that covered the lung apices and costo-diaphragmatic 

recesses, were marked on the dosimetry phantom using an indelible marker. This allowed 

accurate and reproducible positioning and scanning of the dosimetry phantom. 

Image Acquisitions 

All image acquisitions were completed on a Toshiba Aquilion One 320-slice MDCT scanner 

(Toshiba Medical Systems,Minato-ku, Japan) in volume mode. Each volume covered 

160mm in the transaxial (z-axis) plane, where the volume is also the collimation size in this 

instance, and three volumes were required to provide complete coverage of the 

anthropomorphic chest phantom. A tube current-time product range (10, 20, 30 and 40 mAs) 

was investigated for both reconstruction algorithms (FBP and IR) while all other CT 

acquisition parameters remained constant (120kVp, 0.5 second rotation time, pitch 1, 64x0.5 

mm detector configuration, 1mm slice reconstruction, 512x512 matrix size, 320 mm scan 

and reconstruction field of view, 0.625mm pixel size, a medium bowtie filter, appropriate for 

the 320mm field of view). The images were reconstructed with FBP and AIDR3D, Figure 1. 

The anthropomorphic chest phantom was loaded with three different nodule configurations. 

Nodules were distributed as described in Table 1, with nodules considered peripheral if they 

were in close proximity to the chest wall. For each tube current-time product and image 

reconstruction, 34 abnormal transaxial image slices (containing 1-3 nodules, mean 

1.35±0.54) and 34 normal transaxial image slices corresponding to the same anatomical 

position for each modality were chosen for the observer study. Nodule positions were 

recorded at the time of insertion, and confirmed on the lowest noise images (40 mAs, 

reconstructed with AIDR3D) to act as the truth (gold standard) for the observer study. 

Dosimetry 

TLDs (TLD100H LiF:Mg,Cu,P, Thermo Scientific, Waltham, MA) (n=271 plus n=5 for 

background correction) were grouped into batches of similar response (intra batch variation 

≤2%). Processing of the TLDs was carried out using Harshaw 3500 manual TLD reader 

(Thermo Scientific, Waltham, MA). Each batch of TLDs was calibrated. Annealed TLDs were 

positioned within the dosimetry phantom at locations corresponding to 23 of the critical 

organs identified in ICRP report 10327 for each of the four imaging conditions. Effective dose 

was calculated from the organ doses by applying radiation and tissue-weighting factors 

specified in the same publication.27 



Effective risk was calculated using PCXMC software (STUK, Helsinki, Finland), a Monte 

Carlo program for estimating patient doses. The software estimates the patient risk of death 

due to radiation-induced cancer, according to the risk model of the BEIR VII committee.28, 29 

This CT system acquires data in volume mode. The volume of 160mm is not fully contained 

within the dimensions of a typical CT dose phantom and standard pencil CT ionization 

chamber.30 This CT scanner reports CTDIvol values that are adjusted for wide beam CT 

when acquiring data in volume mode.  

Observer Study 

Six radiologists (12.2±9.1 years reporting experience) and five radiographers trained to 

perform CT examination (18±5.3 years CT imaging experience) completed the observer 

study. For each combination of tube current-time product and reconstruction method, each 

observer interpreted 68 cases (i.e., single transaxial CT images) using the FROC paradigm. 

The interpretations were performed in two sessions, each lasting approximately 1 hour. 

Each observer viewed the cases in a different randomised order. They were unaware of the 

tube current-time product and reconstruction methods used to generate each image, but 

were informed that half of the images contained 1-3 simulated nodules of varying size and 

contrasts and the remaining contained none. All observers completed a training exercise 

prior to the main study. Ten non-identifiable images containing nodules and ten not 

containing any nodules, which were cases not used in the main study, were used to 

demonstrate the appearance of the anthropomorphic chest phantom and simulated nodules, 

while also giving the opportunity to learn how to localise nodules and use the rating scale 

and familiarize themselves with the user interface. The same monitor (PG21HQX, Wide, 20”, 

LCD, Wide Corporation, Korea) (1536x2080 pixels, 3.2 megapixel resolution) was used for 

all observers and evaluations under the same controlled viewing conditions. 

The free-response receiver operating characteristic (FROC) method was used to acquire the 

observer data. Observers were instructed to mark the centre of each simulated nodule using 

a single mouse click; this would cause a "pop-up" a slider bar rating scale to appear by 

which they could rate confidence on a 1-10 integer scale. Using a 20-pixel acceptance 

radius, marks were classified as nodule localisation (LL) if they were within the acceptance 

radius of the nearest nodule, or non-nodule localisation (NL). Image display and FROC 

study functionality was managed by ROCView 31 display and data acquisition software. 

Images were viewed on a fixed lung window (1500, -500) to maximise nodule visibility and 

reduce observer variability. 



Statistical Analysis 
In this study the equally weighted JAFROC figure of merit was used, denoted by 𝜃.32 The 

JAFROC figure of merit is the weighted empirical probability that a nodule rating is higher 

than any rating on a normal case.32 In this study all nodules on a case were assigned the 

same weight. The weighting gives equal importance to each case, independent of the 

number of true nodules in it. To check for consistency, inferred-ROC analysis was also 

performed. To do this we used the highest rating on a case to define the inferred-ROC rating 

for that case. 

In this study there were two factors (in the statistical sense) that would ultimately influence 

the performance of the observer – tube current-time product and image reconstruction 

method. In a typical analysis of multi-modality multiple reader multiple case, typically termed 

an MRMC ROC/FROC study, modality is considered as a single factor with 𝐼 levels, where 𝐼 

is usually small, but greater than 2. For example, if comparing two image reconstruction 

methods, 𝐼 = 2. The measure of performance or figure of merit for modality 𝑖(𝑖 = 1, 2, … , 𝐼) 

and reader 𝑗(𝑗 = 1, 2, … , 𝐽), where 𝐽 is the number of readers, is denoted 𝜃𝑖𝑗. Current MRMC 

ROC/FROC analysis compares the observed difference in reader-averaged figures of merit 

between modalities 𝑖 and 𝑖′ (𝑖 ≠ 𝑖′) to the estimated variability of the difference. For 

example, the reader-averaged difference in figures of merit is 𝜃𝑖• − 𝜃𝑖′• , where the dot 

symbol represents and average of the corresponding index, specifically, the reader index. 

The variability of the difference is estimated using the Hillis-modified Obuchowski-Rockette 

(ORH) method,33 with resampling (i.e., jackknifing) used to determine the two covariances 

needed for the ORH method. With 𝐼 levels, the number of possible 𝑖 versus 𝑖′ comparisons is 

𝐼(𝐼 − 1)/2. If the current study were analysed in this manner, where 𝐼 = 8 (4 levels of tube 

current-time product and two image reconstruction methods) then this would imply 28 

comparisons. The large number of comparisons is sub-optimal in terms of statistical power 

and does not inform us of the main points of interest: whether performance depends on (i) 

tube current-time product and/or (ii) reconstruction method. 

Unlike conventional ROC type studies, the images in this study are defined by two factors. 

The first factor, tube current-time product, had four levels: 10, 20, 30 and 40 mAs. The 

second factor, reconstruction method, had two levels: FBP and AIDR3D. Each factor is 

combined with the other, so they are fully-crossed factors (in the statistical sense). The 

figure of merit is represented by 𝜃𝑖1𝑖2𝑗  where represents the levels of the 

first factor (mAs), and represents the levels of the second factor 

(reconstruction method), . This called for two sequential analyses to be performed: the 

first was mAs analysis, where the figure of merit was averaged over the 𝑖2 or the 

i1 i1 =1,2,..., I1( )

I1 = 4 i2 i2 =1,2,..., I2( )

I2 = 2



reconstruction index; the second was reconstruction analysis, where the figure of merit was 

averaged over the 𝑖1 or the mAs index. For example, the mAs analysis figure of merit 

difference is 𝜃𝑖1•• − 𝜃𝑖′•• , where the first dot represents the average over the reconstruction 

index and the second dot represents an average over readers. In either analysis the figure of 

merit is dependent on only a single factor, and therefore the standard ORH method applies. 

The mAs analysis determines whether there is a tube current-time product effect and in this 

analysis the number of possible comparisons is six. The reconstruction analysis determines 

whether AIDR3D offers any advantage over FBP and in this analysis the number of possible 

comparisons is one. Multiple testing on the same dataset increases the probability of Type I 

error, therefore a Bonferroni correction (Appendix A) was applied by setting the threshold for 

declaring significance at 0.025; this is expected to conservatively maintain the overall 

probability of a Type I error at α = 0.05. We use the term crossed-modality analysis to 

describe this type of analysis of ROC/FROC data. 

Since the phantom is unique, and conclusions are only possible that are specific to this one 

phantom, the case (or image) factor was regarded as fixed. For this reason only results of 

random-reader fixed-case analyses are reported. Software for crossed-modality modified 

JAFROC analysis was implemented in the R programming language 34, and is downloadable 

from the https://cran.r-project.org/web/packages/RJafroc/index.html. 

A Welch’s independent sample t-test was performed to assess any difference in 

performance between radiologists (n=6) and radiographers (n=5); the null hypothesis of no 

difference was tested at an alpha of 0.05.  

Contrast-to-Noise Ratio of Nodules 

The contrast-to-noise ratio (CNR) of all nodules was measured using ImageJ35 software. 

The CNR is a measure of image quality based on contrast (in this instance between nodule 

and background), rather than the raw signal.36 Nodule measurements were made on images 

viewed by the observer. A region of interest (ROI) was placed just within the outer edge of 

each nodule and the mean pixel value was recorded. A background ROI was placed within a 

portion of the lung field containing no nodule or vascular markings, and the mean pixel value 

and standard deviation were recorded. A linear least squares analysis was performed to 

determine the impact of tube current-time product and image reconstruction method on the 

CNR of all nodules. Test alpha was set at 0.05 for detecting significant differences in CNR 

between images reconstructed with FBP and AIDR3D. 



Results 

A Welch’s unpaired t-test of observer averaged figures of merit revealed no significant 

difference in nodule detection performance between radiologists and CT trained 

radiographers (p = 0.1124, mean difference 0.051 (95% CI -0.015, 0.117). Based on this all 

observers were included in the subsequent analysis. 

For a statistically significant difference to be declared the p-value of the treatment pair t-test 

and that of the overall F-test must both be significant (Appendix B). For the first of the 

sequential crossed-modality JAFROC analyses, the mAs analysis, where the figure of merit 

is averaged over the 𝑖2 or the reconstruction index, significant differences were revealed 

between multiple pairs of tube current-time product settings (F(3,30) = 15.96, p<0.001). For 

the second of the sequential analyses, the reconstruction analysis, where the figure of merit 

was averaged over the 𝑖1 or the mAs index, there was no statistically significant difference in 

nodule detection performance between FBP and AIDR3D (F(1,10) = 0.08, p = 0.789). 

Individual figures-of-merit are displayed in Table 2 and Figure 2; inter-treatment differences 

are presented in Figure 3. The Inter-treatment differences for inferred ROC analysis are 

presented in Figure 4. These yielded similar results; mAs analysis (F(3,30) = 15.18, 

p<0.001) and reconstruction analysis (F(1,10) = 0.27, p = 0.615), i.e., consistent with 

crossed-modality JAFROC analysis. The important outcome is that no statistical difference 

was demonstrated between images reconstructed with FBP and AIDR3D. A statistically 

strong effect (p < 0.001) was seen with tube current-time product. Figure 3 shows weighted 

JAFROC FOM differences and 95% confidence intervals for all 6 pairings of tube current-

time product. A difference is significantly different from zero if the corresponding confidence 

interval does not include zero. Figure 3 shows that except for the 20-30 mAs and 30-40 mAs 

comparisons, the rest were all statistically significant. Figure 4 shows corresponding results 

using the inferred ROC FOM: the results are consistent with those shown in Figure 3. As 

expected, the inferred ROC differences are smaller in magnitude than the corresponding 

JAFROC FOM differences (the ROC FOM ranges from 0.5 to 1, while the JAFROC FOM 

ranges from 0 to 1). 

Statistically significant differences in nodule detection performance were observed between 

multiple pairs of tube current-time product settings when the p-value of the overall F-test was 

p<0.001; significant pairs were 10 mAs and 20 mAs (p<0.001), 10 mAs and 30 mAs 

(p<0.001), 10 mAs and 40 mAs (p<0.001), and 10 mAs and 20 mAs (p=0.008); no difference 

was found between 20 mAs and 30 mAs or between 30 mAs and 40 mAs (p > 0.025). 

The results of effective dose and effective risk are summarized in Table 3. The observations 

are consistent with the expected strict linear dependence of dose on tube current-time 

product. The CTDIvol values for each tube current-time product setting are also reported. 



Results for CNR are summarised in Table 4. Analysis by least squares revealed that 

measures of CNR were statistically higher for the simulated nodules on images 

reconstructed with AIDR3D (p<0.001). The reconstruction method did not impact on the 

contrast between nodule and background (p=0.223), but the image noise was statistically 

higher on images reconstructed with FBP (p<0.001). This is to be expected as the HU of the 

nodules and background should not change when using different reconstruction method, 

and therefore the only variable element within the CNR is the image noise. The relationship 

between image noise and tube current-time product for each image reconstruction method is 

demonstrated in Figure 5. Mean noise is lower at all tube current-time product settings for 

images reconstructed with AIDR3D in place of FBP. At 40 mAs, the noise level is very 

consistent when images are reconstructed with AIDR3D, demonstrated by the small standard 

deviation. 

 

Discussion 

This study has evaluated nodule detection in CT images reconstructed with AIDR3D and FBP 

over a range of tube current-time product. We found no statistically significant difference in 

nodule detection when images were reconstructed with either FBP or AIDR3D. However, we 

did find that the level of image noise was statistically higher in images reconstructed with 

FBP. This disparity, consistent with earlier studies, between image noise, a physical 

measure, and nodule detection, an observer performance measure, is an important finding 

given the steps taken to improve statistical power in this study. We removed case variability 

through the use of a phantom and the large number of readers (n=11) used minimized 

reader variability, the crossed-modality methodology averaged the data over all tube current-

time product settings for a more stable measure, and taking location into account, i.e., 

FROC study, increases statistical power compared to the ROC method. The other important 

finding of this work, evident in Fig. 2, is that tube current-time product was found to have a 

significant effect on nodule detection, with detection compromised below 20 mAs as 

compared to 40 mAs. However, the fact that the 95% CI for the 20-30 comparison, includes 

zero, does not imply that the two are equivalent. A different type of statistical procedure is 

needed to infer equivalence between the two tube current-time product settings.24 Software 

for this type of testing is not readily available. 

Many previous studies 19–21, 37, 38 have found a similar result to the present study when 

assessing image noise, be in by measuring CNR, NPS or signal-to-noise ratio (SNR): they 

all find that the physical metrics improve as a result of reduced image noise with the IR 

algorithm. Our study is consistent with previous results: significant effect on physical 

measures between processing algorithms but insignificant effect in objective observer 



performance. We believe the difference is due to the fact that an objective FROC observer 

performance measure, such as used in this study, takes the combined effect of all factors 

affecting nodule detectability into account, including visual search, while physical measure 

focus on a few individual measures in isolation and do not account for visual search. 

Moreover, the physical measures considered in this manuscript do not represent state-of-

the-art because they do not account for spatial corrections in the images. Newer model 

observer methods account for some of these correlations,39–41 and they are just beginning to 

account for visual search.42 However, observer performance studies suffer from much larger 

sources of variability than physical measures, so more careful statistical analysis is needed. 

As noted by the late Dr. Robert F. Wagner, finding physical measures, or combinations of 

physical measures, that correlate with the more time-consuming observer measures is one 

of the "holy-grails" of medical imaging.43 

Diagnostic acceptability must be maintained when looking to optimise the dose delivered to 

the patient. Many studies have suggested that IR algorithms can be used to optimise dose 

with a range of percentage reductions previously quoted (36-75 %).18–20 This requires the 

pre-optimisation start point to be reasonable and it is the post-optimisation dose that should 

be given the greatest consideration. 

For true optimisation, the risk to the patient must also be understood. Patient dose is 

frequently reported using sub-optimal estimation methods (CTDI, DLP, body part specific 

conversion factors) and the lifetime risk associated with X-ray exposures is rarely reported. 

The method used in the current work is considered a reliable method to accurately represent 

dose and risk and we would encourage future studies of IR algorithms to adopt this 

technique. 

Lee et al 44 quote a mean effective dose of 1.84±1.05 mSv in a study of paediatrics, where 

the purpose of the examination was to evaluate lung metastases. The mean weight of the 

patients was 41.4 kg, somewhat lighter than the estimated 70Kg patient size in our study. 

When using ASIR-FBP blending and FBP alone, Qi et al 45 showed that radiation dose to the 

patient could be optimised at an average effective dose of 4.25 mSv (range 2.6-6.3 mSv) 

with ASIR-FBP blending compared to an average of 8.65mSv (range 7.9-9.5 mSv) with FBP 

alone. This finding is supported by Chen et al 46, but their post-optimisation dose was much 

lower at 0.74 mSv. Both studies investigated ASIR in a patient population, and both 

proposed ASIR blending at 50% as being optimal. The large difference in estimated effective 

dose in these studies is likely due to the amount of noise permitted in the images by the 

automatic exposure control (AEC) and image quality paradigm. The noise index, in the GE 

systems of the above papers, is referenced to the standard deviation of pixel values in a 

water phantom, compared to patient attenuation measured in the CT planning image, in 

order to maintain a constant level of image noise.47 Qi et al chose a noise index of 15, while 



Chen et al chose a noise index of 30, where a higher noise index provides a greater 

reduction in tube current. Neither observer performance evaluation nor equivalency study 

was performed in either of these works, and further assessment is required before dose 

optimisation can be claimed with IR algorithms. 

Previous optimistic claims of dose reduction with IR algorithms are mainly based on physical 

measures. While our methods were sensitive enough to find statistical differences in nodule 

detection performance attributed to tube current-time product, we were unable to detect any 

statistical difference in nodule detection on the basis of image reconstruction algorithm. It is 

not surprising that pixel-variance is a poor predictor of lesion detectability; for example it can 

be reduced almost arbitrary, by smoothing the image. The inadequacy of pixel variance as a 

predictor of lesion detectability was noted in 1999 by Burgess, but this work is not well 

appreciated.48 IR algorithms require further investigation, with observer performance and 

equivalency testing playing a more prominent role. 

Conclusion 

We have successfully demonstrated the use of a crossed-modality JAFROC analysis that 

allows us to take co-existing factors into account in order to determine the dependence of 

nodule detection on each factor. We believe this is a useful methodological improvement, 

since system performance is usually dependent on more than just a single factor. No 

significant difference in nodule detection performance was demonstrated between images 

reconstructed with FBP and AIDR3D. Tube current-time product was found to influence 

nodule detection, but further work is required for dose optimization. 
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Appendix A: Bonferroni Correction 

Under null hypothesis (NH) true conditions, a valid significance testing procedure maintains 

the probability of a Type I error (incorrect rejection of the NH) at the chosen value of alpha, 

i.e., 5% in our study. The Bonferroni correction falls under the subject of multiple significance 

tests. To quote Bland and Altman:49 "Many published paper include large numbers of 

significance tests. These may be difficult to interpret because if we go on testing long 



enough we will inevitably find something that is significant. We must beware of attaching too 

much importance to a lone significant result among a mass of non-significant ones". 

In the current context there are two significance tests, the first for the mAs effect (with 6-

levels) and the second for the reconstruction effect (with 2-levels). For the mAs-effect the 

DBMH procedure accounts for the 6 pairings and maintains the NH rejection rate at 5%. In 

other words, if the study were repeated 2000 times independently under NH true conditions 

(obviously this is only possible using a data simulator) there would be about 100 incorrect 

rejections of the NH for the mAs-effect. However, one is also attempting to draw conclusions 

about the effect of the two reconstruction algorithms, i.e., applying a second significance 

testing procedure. Again, the DBMH procedure maintains the Type I error rate at 5% for this 

comparison, so for 2000 simulations one expects about 100 incorrect NH rejections for the 

reconstruction effect. The question arises: to what extent the set of specific simulations 

where the NH was rejected for the mAs comparison (e.g., the 23rd, 30th, …, 1940th, etc. 

simulations, for a total of about 100) are common or distinct from the set of specific 

simulations that incorrectly rejected the algorithm effect. If the two sets are identical, then 

one still has a total of 100 NH rejections and the overall NH rejection rate is 5% and no 

correction is needed, which is the best-case scenario. The worst-case scenario is that the 

two sets are completely different, in which case the total number of NH rejections is 200. 

The only way to control for this is to set a more stringent criterion for rejecting the NH. For 

example, if the criterion were set to reject 2.5% of the time for each type of comparison, 

there would be 50 NH rejections for the mAs comparison study, and 50 different rejections 

for the algorithm comparison study, for a total of 100 NH rejections. To summarize, the 

Bonferroni correction involves using a smaller value of alpha, equal to the desired value 

divided by the number of significance tests. It is a conservative correction that, depending on 

the correlations between the two significance test results, tends to yield an effective alpha of 

less than 5%. A conservative correction is not always desirable because it leads to loss of 

statistical power and more sophisticated procedures are available.50 

Appendix B: JAFROC Statistics and Degrees of Freedom 

JAFROC software reports the results of an overall F-test of the NH that all modalities being 

tested have identical FOMs. The analysis obtains two estimates of variance, the first due to 

the differences between modalities and the second due to other causes. If the observed ratio 

of the first variance to the second variance is large enough, the FOMs are expected to be 

significantly different. The ratio follows the F-distribution, which is characterized by two 

quantities called the numerator and denominator degrees of freedom, ndf and ddf 



respectively. In general, if the ratio of the two variances is large and the degrees of freedom 

are large, the study tends to be more significant (smaller p-value).51 

 


