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Abstract

LSTSVM is a relatively new version of SVM based on nonparallel twin hy-
perplanes. Although, LSTSVM is an extremely efficient and fast algorithm
for binary classification, its parameters depend on the nature of the problem.
Problem dependent parameters make the process of tuning the algorithm with
best values for parameters very difficult, which affects the accuracy of the al-
gorithm. Simulated Annealing (SA) is a random search technique proposed to
find the global minimum of a cost function. It works by emulating the pro-
cess where a metal slowly cooled so that its structure finally “freezes”. This
freezing point happens at a minimum energy configuration. The goal of this
paper is to improve the accuracy of the LSTSVM algorithm by hybridizing it
with simulated annealing. Our research to date suggests that this improvement
on the LSTSVM is made for the first time in this paper. Experimental results
on several benchmark datasets demonstrate that the accuracy of the proposed
algorithm is very promising when compared to other classification methods in
the literature. Also, computational time analysis of the algorithm showed the
practicality of the proposed algorithm where the computational time of the
algorithm falls between LSTSVM and SVM.

Keywords: Twin Support Vector Machine, Least Squares Twin Support
Vector Machine, Simulated Annealing.

1. Introduction

Support Vector Machine (SVM), first introduced by Cortes and Vapnik [1],
is a classification technique based on the Structural Risk Minimization (SRM)
algorithm. The algorithm rapidly became used in many classification tasks due
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to its success in recognizing handwritten characters in which it outperformed
precisely trained neural networks. In addition to recognizing handwritten char-
acters, SVMs performed successful classification in other applications such as:
time series prediction [2], pattern classification [3], and bioinformatics [4, 5]. A
comprehensive tutorial on the SVM classifier algorithm has been published by
Burges [6].

After the introduction of SVM in 1995, different versions of this powerful clas-
sifier were advanced including the Least Squares Twin Support Vector Machine
(LSTSVM), introduced in 2009 [7]. LSTSVM combines the idea behind Least
Squares SVM (LSSVM) [8] and Twin SVM (TSVM) [9].

A crucial challenge in LSTSVM and all other versions of SVM is how to set their
parameters with best values. LSTSVM has four parameters which are highly
dependent on the nature of the problem. Therefore, finding best values for these
parameters is almost impossible for user.Our current research suggests that this
is the first study to find the best values for LSTSVM parameters. However, there
are several methods for dominating this challenge in SVM. Huang and Wang
[10] proposed a Genetic Algorithm (GA) approach for parameter optimization.
They evaluated several medicine datasets using their proposed GA-based SVM.
Ren and Bai [11] also presented two approaches for parameter optimization in
SVM, GA-SVM and Particle Swarm Optimization (PSO) SVM. A hybrid Ant
Colony Optimization (ACO) based classifier model which simultaneously opti-
mizes SVM kernel parameters and selects the optimum feature subset has been
proposed by Huang [12]. Salimi et al. proposed a method that hybridized SVM
and Simulated Annealing (SA) [5]. Also, Lin et al. develops a simulated an-
nealing approach for parameter determination and feature selection in the SVM,
termed SA-SVM [13].

Simulated Annealing is an optimization algorithm which solves the problem of
becoming fixed at local minima (or maxima) by allowing less optimum moves
to be chosen sometimes by some probability. The method was described inde-
pendently by Scott Kirkpatrick et al. in 1983 [14] and by Vlado Cerny in 1985
[15]. Simulated annealing selects a solution in each iteration by first checking if
the neighbor solution is better than the current solution. If it is, the new solu-
tion will be accepted unconditionally. If however, the neighbor solution is not
better, it will be accepted based on some probability depending on how much
it differs form the neighbor solution and the value of the current solution. In
this paper, we have integrated Simulated Annealing with LSTSVM to identify
the optimal parameters which enhance LSTSVM accuracy. Our experimental
results have demonstrated that the proposed method has higher accuracies com-
pared to other well-known versions of SVM. Also, for all evaluated data sets the
proposed algorithm outperformed C4.5 which is a powerful algorithm in clas-
sification context. Furthermore, computational time analysis showed that our
proposed algorithm is faster than SVM and it is completely a practical algo-
rithm for classification tasks.

The rest of this paper is organized as follows. A brief review of basic con-
cepts including SVM and some different versions of the algorithm is presented
in Section 2. The proposed SA-LSTSVM algorithm is introduced in Section 3.



Section 4 gives the experimental results, and finally in Section 5 conclusions are
presented.

2. Basic Concepts

This section presents a brief review of different versions of SVM. The versions
presented are the standard SVM, TSVM, and LSTSVM.

2.1. Support Vector Machine

SVM is a maximum margin classifier which means that its goal is to minimize
classification error and at the same time maximize the margin between two
classes. For example, given a set of training points (z;,v;), ¢ = 1,--- ,n each
input training data z; € R? belongs to either of two classes with labels y; €
—1,41. SVM seeks a hyperplane with equation w.z + b = 0 which can satisfy
the following constraints

yi(w.a; +b) > 1, Vi. (1)

where w is the weight vector and b is the bias term. Such a hyperplane could
be obtained by solving equation 2:

Jl?
2
subjectto  y;(w.z; +b)—1>0

Minimize f(x) (2)

The geometric interpretation of this formulation is depicted in Figure 1 for a
toy example.
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Figure 1: Geometric interpretation of SVM

An important problem with SVM is its computational time. If “I” indicates the
size of training data samples, then the computational complexity of SVM is of
order O(I?), which is very expensive.



2.2. Twin Support Vector Machine

In SVM only one hyperplane performs the task of partitioning samples into
two groups of positive and negative classes. In 2007, Khemchandani et al. [9]
proposed TSVM to use two hyperplanes in which samples are assigned to a class
according to their distance from each hyperplane. The main equations of TSVM
are:

2w 4+ =0 (3)
ziw® + 53 =0

where w® and b are weight vectors and bias terms of the i*" hyperplane.
In TSVM each hyperplane is a representative of the samples of its class. This
concept is geometrically depicted in Figure 2 for a toy example.
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Figure 2: Geometric interpretations of Twin SVM

In TSVM, the two hyperplanes are non-parallel with each being closest to the
samples of its own class and farthest from the samples of the opposite class
[16, 17]. Assuming A and B indicate data points of class +1 and class —1,
respectively, the two hyperplanes are obtained by solving (4) and (5).

1
Minimize §(Aw(1) + et bNT (Aw® + e0M) 4 ¢1elg (4)
wrt w®, p®

subjectto — (Bw(l) + egb(l)) +q>e, q=>0

1
Minimize E(Bw(z) + eabNT(Bw® + e2b®@) + cpel'q (5)
w.r.t w(2), A

subjectto  Aw® +eb® +q>e1, ¢>0



In these equations, ¢ is a vector contains the slack variables, e; (i € {1,2})
is a column vector of ones with arbitrary length, and ¢; and co are penalty
parameters. Once the hyperplanes are obtained, a new data point is assigned
to class +1 or class —1 depending on to which hyperplane the point is closer in
terms of perpendicular distance.

In TSVM, the number of constraints in the equation of each hyperplane is
equal to the number of samples in the opposite class. Therefore, if there is an
equal number of samples in the two classes, the number of constraints for each
hyperplane in TSVM is equal to half the number of constraints in SVM. The
computational complexity of TSVM is O((1/2)3) [18]. It can be shown that the
TSVM increases the speed of the algorithm by a factor of 4 compared to the
traditional SVM, i.e. it is 4 times faster when compared to the SVM.

2.8. Least Squares Twin Support Vector Machine

LSTSVM [7, 19] is a binary classifier which combines the idea of LSSVM
[8, 20] and TSVM. LSTSVM employs “least squares of errors” to modify inequal-
ity constraints in TSVM to equality constraints by solving a set of linear equa-
tions rather than two Quadratic Programming Problems (QPPs). Experiments
have shown that LSTSVM can considerably reduce the training time, while
still achieving competitive classification accuracy [8, 21]. Because LSTSVM is
a combination of TSVM and LSSVM, it dramatically reduces the time com-
plexity of SVM. This is because LSTSVM solves equality constraints instead of
inequality constraints as in LSSVM which makes the computational speed of the
algorithm faster. The number of constraints in each hyperplane in LSTSVM is
half of that in SVM which again results in very low computational complexity
when compared to SVM. LSTSVM also has far better accuracy compared to
SVM in most classification tasks.
LSTSVM finds its hyperplanes by minimizing equations (6) and (7) which are
linearly solvable. By solving (6) and (7), values of w and b for each hyperplane
are obtained according to (8) and (9).

1
Minimize i(Aw(l) + eb) T (Aw® + epM) + %QTQ (6)
w.r.t w(l),b(l)

subjectto  (Bw™ +ebM) +q=e

1
Minimize §(Bw(2) + eb®)T(Bw® + eb®) + %QQTQ (7)
w.r.t w(z)7 b

subjectto (Aw® +eb®)+qg=e

w® 1 _
{b(l)} = —(FTF + aETE) 'FTe (8)



(2) 1
w _
{b(g)} = —(ETE + aFTF) 'ETe (9)
where E = [A e] and F = [B €] whereas A, B, e and q are introduced in
Section 2.2.

3. Proposed Algorithm

LSTSVM has four parameters ci, ¢z, sigma; and sigmas which should be

set by the user where ¢; and ¢y represent the amount of error for each class and
sigmay and sigmas measure the impact of error on each hyperplane. These four
parameters are highly dependent on the nature of the problem which means that
for different problems, they would have different optimum values. This affects
the accuracy of LSTSVM and is considered as a weakness.
Genetic algorithms, analytical gradient, numerical gradient and Monte Carlo
are examples of methods used to find the optimum values for the parameters.
Simulated Annealing (SA) is also used to find global optimum values for param-
eters. Although SA is time consuming, it achieves better accuracies compared
to other methods. In this study the SA algorithm is used to find the best global
values for LSTSVM parameters.

8.1. Simulated Annealing

SA is a technique to find the best solution for an optimization problem by

trying random variations of the current solution. It is a generalization of a
Monte Carlo method for examining equations of state and frozen states of n-
body systems. Figure 3 shows the pseudo code of the SA heuristic.
In each step, SA considers some neighboring state s; of the current state seyrrent,
and decides between moving to state s; or staying in state scyrren: With some
probability. The new state (s;) will be accepted if it has a better fitness com-
pared to the current state (Seyrrent)- If however the new state has lower fitness,
it will be accepted with the probability showed in line 13 of the pseudo code.
Note that the definition of “fitness” depends on the goal of the problem. These
probabilistic movements ultimately lead the system to a state with almost op-
timum solution.

3.2. SA-LSTSVM

This section presents the proposed SA-LSTSVM algorithm in more detail.
As already stated, LSTSVM has four parameters, two for each of the hyper-
planes, which depend on nature of the problem. In SA a set of states is defined
where each state has a set of parameters which include ci, ¢, sigma; and
stgmas. The start state and its parameters are initiated by the user. For each
state, SA defines a set of neighbors (which are also part of the state set). To
find optimum values for LSTSVM parameters, the values of parameters for each
particular state will initially differ from its neighbors. At first, there is a great



1 input: iteration,,,,
2 output: Sp,;
3 S.urrent < create_initial_solution ()

4 Sbest < Scurrent

5 for (i =1 toiteration,,,, )

6 s; < create_neighbor_solution (S.,,en:)
7 temp,.,,, < calculate_temperature (i)

8 if f(5) 2 f (Scurrent)

9 Scurrent < Si

10 if £(s;) = f (Spest)

1 Spest < Si

12 end

f (scurrent)—f (si)

13 elseif exp ( py— ) >rand()
curr

14 Scurrent < Si

15 end

16 end

17 return (Sp.g;:)

Figure 3: Pseudo Code of Simulated Annealing

difference between the parameter values of each two neighbor states, but the
difference decreases as the algorithm iterates. In each iteration, a neighbor will
be selected randomly. If the selected neighbor has higher accuracy than the
current state, the selected neighbor will be taken and its parameters values (c¢
and sigma) used as new parameter values. Figure 4 shows the pseudo-code of
the combined algorithm.

4. Experimental Results

In this section, we describe the experiments designed to evaluate the perfor-
mance of the proposed algorithm using some benchmark datasets. To achieve
more reliable test results, our experiments used the k-fold cross-validation tech-
nique. This technique minimizes the bias associated with the random sampling
of training [22]. The k-fold cross-validation technique randomly divides the
whole dataset into & mutually exclusive and approximately equal size subsets.
Each classification algorithm was trained and tested k times using these subsets.
Each time one of the k folds is taken as a test set, the remaining (k—1) folds are
used as training data. Averaged results of the k-fold cross-validation are con-
sidered as the final results. In our evaluation, we used 10-fold cross-validation
which is a very common case in the context. Furthermore, because Simulated
Annealing tries random variations of the current solution, one may criticize the
proposed method that it will be very time consuming for large data sets. To
answer this comment, we run our experiments on two types of data sets: small
data sets with less than 2000 samples, and larger data sets with 3000 to 100,000
samples.



¢ = [e1, eo] and sigma = [sigmay, sigmas)
¢ 4 co;
sigma 4— stgmao;
Acc = MyLSTSVM (dataset, classes, method, ¢g, sigmay);
Chest — C; SIgMApest <— Sigma; AccCpest < Acc;
iteration < 0; iteration,,q, < Constant Value (e.g. c0);
While iteration < iteration,q.
{
Cnew = ¢ — 0.01 + (0.02) * randn(1, 2);
$1gMAney = sigma — 0.0001 + (0.0002) * randn(1, 2);
AceNew = MyLSTSVM (dataset, classes, method, ¢g, sigmaop);
if exp((AccNew — Acce) * iteration) > rand(1,1)

C 4 Cpew; SEGMA < SIGMApey; Acc — AceN ew;
Chest < Cnew; Sigmabest — Sigmanew;
iteration < iteration + 1;

}
}

return Cpest, Sigma'besh Accbest

Figure 4: Algorithm Outline: SA-LSTSVM

4.1. Small Data Sets

In this section, 9 standard small data sets from the UCI repository [23] were
evaluated. Table 1 shows some features of these data sets.

Table 1: Characteristics of the small Data Sets

Data Sets # Features # Samples Lost Data?
Australian Credit Approval 14 690 No
Liver Disorders 7 345 No
Contraceptive Method Choice (CMC) 9 1473 No
Statlog (Heart) 13 270 No
Hepatitis 19 155 Yes
Tonosphere 34 351 No
Connectionist Bench (Sonar) 60 208 No
Congressional Voting Records 16 435 Yes
Breast Cancer Wisconsin (Prognostic) 34 198 No

Table 2 presents the evaluation results of SA-LSTSVM and 6 other algorithms
on these data sets. These algorithms are SVM, 4 different versions of SVM
and a decision tree classification algorithm, C4.5 [24], which has been selected
because of its good performance in classification tasks. Bold text indicates best
accuracies for each data set.

In this table the average accuracy of 10-fold cross-validation together with
the variance of the accuracies are shown as accuracy + variance. For SA-



Table 2: Experimental Results of SA-LSTSVM and Other Algorithms

Algorithm
Data Set
SA-LSTSVM LSTSVM TSVM GEPSVM PSVM SVM C45
Australian 88.21+0.02
Credit c:05 86.61+4.0 86.91+3.5 80.00+3.99 8543+3.0 8551+4.58 85.2+1.3
Approval sigma: 0.015
Liver 71.3+0.15
Disorder c 0.0004 70.90+6.09 70.5+6.6 66.36+4.39 70.15+8.82 58.32+8.2 68.3+0.7
sigma: 0.037
Conraceptive 70.48+0.04
Choice o 0.5 68.84+2.77 68.84+2.39 68.76+2.98 68.98+3.95 67.82+2.63 65.1+0.02
(€MC) sigma: 5.08E-05
90.61+0.43
Statlog 05 85.55+4.07 86.66+6.8 85.55+6.1 85.55+7.27 84.07+4.4  76.6+0.4
(Heart) sigma: 0.0004
98.21+0.30
Hepatitis c:0.007 86.4249.78 85.71+6.73 85+9.19 85.71+5.83 80.83+8.3 60.6+1.08
sigma: 2.09E-07
91.3740.11
lonosphere c: 05 89.70+5.58 88.23+3.10 84.11+3.2 89.11+2.79 86.04+2.37 90.8+2.3
sigma: 5.08E-05
Connectionist 82.81+0.18
Bench c:0.031 80.47+6.7 80.52+4.9 79.47+7.6 78.94+4.43 79.79+5.31 68.3+3.5
(Sonar) sigma: 1.69E-05
Congressional 98.22+0.01
Voting c:0.25 95.23+1.94  95.9+2.2 95 +2.36 95 +3.06 945+2.71 91.6+0.87
Records sigma: 5.08E-05
Breast Cancer 97.35+0.005
Wisconsin c:05 83.88+5.52 83.68+6.24 81.11+7.94 83.3+453 79.92+9.18 90.5+3.9
(Prognostic) sigma: 0.012

LSTSVM the best values of ¢ and sigma are shown, too. Reported accuracies
for TSVM, GEPSVM [25], and PSVM [26] are all extracted from [7].

Figures 4-12 show the accuracy of the SA-LSTSVM algorithm for each of the 9
data sets for different values of ¢ and sigma. In some figures, the relation be-
tween values of the parameters and the accuracy of SA-LSTSVM is obvious, e.g
Figure 9, however for some others, e.g Figure 7 there is not an obvious relation-
ship between the accuracy of SA-LSTSVM and values of the parameters. As it
is mentioned before the optimum values for parameters are problem dependent.
The SA algorithm is used to find the highest accuracy among continuous values
of ¢ and sigma.

Figures 13-21 show how the values of ¢ and sigma changed during iterations
of the SA algorithm for the 9 data sets. In these figures, the blue shows the
changes in the value of ¢ and the red curve shows how sigma changes during
the iterations. As it can be seen form the figures, the way the algorithm moves
toward the optimum values for parameters depends on the data set.

Figures 22-30 show how the accuracy of the SA-LSTSVM algorithm changes
during iterations of SA algorithm on the data sets. The figures show that as
the algorithm iterates the average accuracy increases, but the accuracy variances
decreased. The figures also show that using SA-LSTSVM it is possible to achieve
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SA-LSTSVM for different values of ¢
and sigma on Australian Credit Ap-
proval data set

accuracy

log(sigmaa) 00 log(c)

Figure 7: Changes in the accuracy of
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and sigma on Hepatitis data set

ﬂ\".ﬁm

Al
A\’ '{‘Q

accuracy
o
@

log(sigma) 00 log(c)

Figure 6: Changes in the accuracy of
SA-LSTSVM for different values of ¢
and sigma on Liver Disorder data set
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Figure 8: Changes in the accuracy of
SA-LSTSVM for different values of ¢
and sigma on Statlog (Heart) data set
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Figure 10: Changes in the accuracy of
SA-LSTSVM for different values of ¢
and sigma on Ionosphere data set

the global best accuracy in a limited number of iterations (less than 60 iteration

in most of the data sets).
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Figure 11: Changes in the accuracy of
SA-LSTSVM for different values of ¢
and sigma on Sonar data set

Figure 12: Changes in the accuracy
of SA-LSTSVM for different values of
c and sigma on Congressional Voting
Records data set
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Figure 13: Changes in the accuracy of SA-LSTSVM for different values of ¢ and sigma
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Figure 14: Changes of ¢ and sigma in
SA-LSTSVM on Australian Credit Ap-
proval data set
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Figure 15: Changes of ¢ and sigma in
SA-LSTSVM on Liver Disorder data
set
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Figure 16: Changes of ¢ and sigma in
SA-LSTSVM on CMC data set

Iog( c, sigma)

100 200 300 400 500 €00 700 800
iteration

Figure 18: Changes of ¢ and sigma in
SA-LSTSVM on Hepatitis data set
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Figure 20: Changes of ¢ and sigma in
SA-LSTSVM on Sonar data set
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Figure 19: Changes of ¢ and sigma in
SA-LSTSVM on Ionosphere data set
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Figure 22: Changes of ¢ and sigma in SA-LSTSVM on Breast Cancer Wisconsin data
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Figure 23: Changes of the accuracy of
SA-LSTSVM on Australian Credit Ap-
proval data set
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Figure 25: Changes of the accuracy of
SA-LSTSVM on CMC data set
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Figure 24: Changes of the accuracy of
SA-LSTSVM on Liver Disorder data
set

OBEIu

5 10 15 2 % 0
iteration

Figure 26: Changes of the accuracy of
SA-LSTSVM on Statlog (Heart) data
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Figure 27: Changes of the accuracy of
SA-LSTSVM on Hepatitis data set
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Figure 28: Changes of the accuracy of
SA-LSTSVM on Ionosphere data set
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4.2. Larger Data Sets

To evaluate the performance of SA-LSTSVM on larger data sets, we used
David Musicant’s NDC Data Generator [27] to generate data sets with 3000,
4000, 5000, 10000, and 100000 samples and 32 features. Results of running
each algorithm are shown in Table 3. The best accuracy for each data set is
shown in boldface. As it is shown in the table, again SA-LSTSVM has the
highest accuracies among all versions of SVM for all data sets. However, only in
NDC-100k data set, C4.5 obtains a better accuracy compared to SA-LSTSVM.

Table 3: Experimental Results of SA-LSTSVM and Other Algorithms on Larger Data
Sets. The * sign shows that the algorithm did not converge in a reasonable time

Algorithms
Dataset
SA-LSTSVM  LSTSVM TSVM GEPSVM PSVM SVM C45
NDC-3k 85.16 79.24 77.73 77.20 79.23 62 80
NDC-4k 84.32 79.87 78.65 75.98 79.87 61.85 80.42
NDC-5k 85.40 78.93 77.49 75.43 78.01 61.72 79.52
NDC-10k 87.64 86.17 85.31 84.32 85.95 61.4 82.5

NDC-100k 88.31 86.07 * 84.02 86.32 * 89.2

4.8. Statistical Comparison of Classifiers

The above experiments showed that for all of the studied datasets, the accu-
racy of SA-LSTSVM is higher than other compared algorithms. However, there
still a question remains which is “Are these differences statistically significant?”.
In other words, it is important to show that these algorithms are statistically dif-
ferent. In [28], Demsar introduced different ways of comparing algorithms over
multiple data sets. Since we have seven algorithms for comparison, we choose to
use Friedman test which is a non-parametric counterpart of ANOVA. Although
there are some implementations of the Friedman test in some software tools
like MATLAB and KEEL [29], we chose to implement the test by ourselves in
MATLAB. The Friedman test ranks the algorithms for each dataset separately
in the way that the best performing algorithm getting the rank 1, the second
best ranked 2 and so on. In case of ties, e.g. in CMC, Hepatitis, Congressional
Voting Records, and NDC-4k, the average ranks are assigned. Table 4 shows
the ranks of the classifiers for different datasets used in this paper. Numbers
inside the parenthesis are the ranks of classifiers for the corresponding dataset.
The final row contains the average ranks of each classifier which is computed as
R; = % o rf, where rg is the rank of the j-th algorithm on the i-th dataset.
Note that since for NDC-100k two of the algorithms do not converged, we do
not count this dataset in the evaluation.

The null-hypothesis is that all the algorithms are equivalent. Then the Fried-
man statistic is calculated and finally the critical value of the distribution of the

15



Table 4: Rankings of the classifiers for each dataset

Algorithms

Dataset SA-

Lstoym  LSTSVM  TSVM  GEPSVM  PSVM SVM c45
Australian
Credit 88.21(1)  8661(3) 8691(2) 80.00(7) 8543(5) 8551(4) 85.2(6)
Approval
Liver 713 (1) 7090(2) 705(3)  6636(6) 70.15(4) 58.32(7) 68.3(5)
Disorder . ’ . : : . .

Contraceptive

'\élﬁg:gg 70.48 (1) 68.84 (3.5) 68.84(3.5) 68.76 (5) 68.98 (2) 67.82(6) 65.1(7)
(CMC)
Statlog
(Heart) 90.61 (1) 85.55(4)  86.66 (2) 85.55 (4) 85.55(4) 84.07(6) 76.6(7)
Hepatitis 98.21 (1) 86.42(2) 85.71(35) 85 (5) 85.71(35) 80.83(6) 60.6(7)

lonosphere 91.37(1)  89.70(3) 88.23(5) 8411(7) 89.11(4) 86.04(6) 90.8(2)

Connectionist
Bench

(Sona) 8281 (1)  8047(3) 8052(2) 79.47(5) 78.94(6) 79.79(4) 68.3(7)

Congressional
Voting

Records 98.22(1)  9523(3) 959(2)  95(45) 95(45) 945(6) 91.6(7)

Breast Cancer
Wisconsin

(Prognosticy 735D 8388(3)  8368(4)  BLIL(E)  8II(E)  7992() 905()

NDC-3k 8516 (1)  79.24(3) 77.73(5) 77.20(6) 7923(4) 62(7)  80(2)
NDC-4k 8432(1)  79.87(35) 78.65(5)  75.98(6) 79.87(35) 61.85(7) 80.42(2)
NDC-5k 8540 (1)  7893(3) 77.49(5) 7543(6) 78.01(4) 61L72(7) 79.52(2)

NDC-10k 87.64(1)  86.17(2) 8531(4) 8432(5) 8595(38) 614(7) 825(6)

Average

Rank 1 2.923 3.538 5.576 4.038 6.153 4.769

Friedman statistic is compared with the statistic itself. The null-hypothesis will
be rejected if the statistic is higher than the critical value.
The Friedman statistic is computed as follows:

12N E(k +1)2
= Sope o MEEDTH (10)

k(k+1) ity
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In this equation, k and N are the total number of classifiers and the total num-
ber of datasets, respectively. In our case k =7 and N = 13. The statistic is
distributed according to x% with k — 1 degrees of freedom, when N and k are
big enough (as a rule of thumb, N > 10 and k > 5) which is our case [28]. Iman
and Davenport [30] showed that Friedman’s x% is undesirably conservative and
they proposed a better statistic as bellow.

(N - Dx%

Fp=——2F
PUNE-1) X2

(11)
which is distributed according to the F-distribution with ¥ — 1 and (k — 1)(N — 1)
degrees of freedom.

The computed Friedman statistic and the corresponding F statistic for our
experiments are:

12 %13
X

2
XF= 7758

7 % 82

(12 +2.923% + 3.538% + 5.576% + 4.038% + 6.153% + 4.769%) —

12 % 50.3

Fp—= 2200
F = 13%6-50.3

=21.8

With seven algorithms and 13 datasets, Fr is distributed according to the F
distribution with 7— 1 =6 and (7 — 1) x (13 — 1) = 72 degrees of freedom. The
critical value of F(6,72) for o = 0.05 is 2.23, so we reject the null-hypothesis
which means that the algorithms are statistically different.

By rejecting the null-hypothesis we can proceed with a post-hoc test. Since
we want to compare all other classifiers with our proposed SA-LSTSVM, we
will use the Bonferroni-Dunn test [31]. In [28] it is explained that based on Ne-
menyi test [32], the performance of two classifiers is significantly different if the
corresponding average ranks differ by at least the critical difference

k(k+ 1)

OD =4\ =55

where ¢, is the critical value.

The Bonferroni-Dunn test controls the family-wise error rate by diving a by
the number of comparisons made which is £ — 1 in this case. The alternative
way to compute the same test as it is introduced in [28] is to compute the criti-
cal ditference, C'D, using the same equation as the Nemenyi test, but using the
critical values for ﬁ The critical value gg g5 for seven classifiers is 2.638 and

therefore we have C'D = 2.638 % = 2.235. Using this critical difference, we

can conclude that:
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e SA-LSTSVM performs significantly better that LSTSVM, since 1—-2.923 <
2.235

e SA-LSTSVM performs significantly better that TSVM, since 1 — 3.538 <
2.235

e SA-LSTSVM performs significantly better that GEPSVM, since 1—5.576 <
2.235

e SA-LSTSVM performs significantly better that PSVM, since 1 — 4.038 <
2.235

e SA-LSTSVM performs significantly better that SVM, since 1 — 6.153 <
2.235

e SA-LSTSVM performs significantly better that C4.5, since 1 — 4.769 <
2.235

4.4. Computational Time Analysis

As stated in Section 2.3, LSTSVM is computationally faster than SVM with
a computational time better than SVM by a factor of 4. SA is a probabilistic
meta heuristic algorithm which takes random walks through the problem space.
This may suggest that the SA-LSTSVM algorithm may be computationally very
slow. However, our computational time analysis indicates otherwise.
Table 5 shows the computational times in second for the SA-LSTSVM, LSTSVM
and SVM algorithm for all of the data sets. For the SA-LSTSVM algorithm
the maximum number of iterations considered in the experiment was 25. This
number was chosen because with this value for k.., the algorithm achieves
good accuracies for each of the different data sets. Although, we did not have
any claim about the running time of the proposed SA-LSTSVM, Table 5 shows
that the computational time of the SA-LSTSVM algorithm falls between the
computational time of LSTSVM algorithm, which is the fastest version of SVM,
and the standard SVM. In the table, the * sign shows that the computational
time is extremely high and the algorithm doesn’t converge to an acceptable
accuracy in a reasonable time. Although, the obtained computational times for
LSTSVM are better than SA-LSTSVM and SVM, the proposed SA-LSTSVM
has higher accuracies when compared to both LSTSVM and SVM for all data
sets.

5. Conclusion

The LSTSVM algorithm is a relatively new addition of the family of SVM
classifier algorithms and being based on non-parallel twin hyperplanes has shown
good classification performance. However the algorithm has parameters which
are problem dependent and finding the optimum values for these parameters
is itself a challenging problem that affects the accuracy of the algorithm. In
this paper we have proposed an improved LSTSVM algorithm (SA-LSTSVM)
by hybridizing it with the well-known SA (Simulated Annealing) algorithm to
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Table 5: Computational Time Analysis (in second) of SVM, LSTSVM and SA-

LSTSVM
Data Sets \ Algorithms SVM  LSTSVM SA-LSTSVM
Australian Credit Approval 1.9 0.014 1.74
Liver Disorder 1.85 0.008 1.01
Contraceptive Method Choice (CMC) 3.6 0.018 0.87
Statlog (Heart) 1.58 0.013 1.11
Hepatitis 1.3 0.009 0.93
Tonosphere 1.49 0.035 0.69
Connectionist Bench (Sonar) 1.45 0.053 1.29
Congressional Voting Records 3.21 0.008 1.6
Breast Cancer Wisconsin (Prognostic) — 3.73 0.028 0.8
NDC-3k 11.08 0.009 3.05
NDC-4k 22.83 0.014 7.54
NDC-5k 59.58 0.018 45.50
NDC-10k 241.68 0.026 211.56
NDC-100k * 0.19 1684.82

determine the optimum parameter values for the LSTSVM algorithm. Exper-
imental results on data sets with different sizes have demonstrated that the
algorithm has higher accuracies compared to other well-known classification al-
gorithms while its computational time is also reasonable.
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