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Abstract The common vole (Microtus arvalis) and the field
vole (Microtus agrestis) are morphologically similar species
but are ecological distinctive and differ in the details of their
evolutionary history as revealed by mitochondrial DNA
(mtDNA). The aim of this study is to describe patterns of
genetic variability using microsatellite markers in populations
of the common and field vole in Poland using museum spec-
imens, to assess the degree of congruence with mtDNA vari-
ation and thereby determine the factors that influence current
patterns of gene flow. We genotyped 190 individuals of the
common vole at 11 loci and 190 individuals of the field vole at
13 loci. Overall differentiation based on FSTwas higher for the
common vole than in the field vole. We detected a significant
isolation by distance pattern for both species. Bayesian anal-
ysis in STRUCTURE identified Eastern and Western geo-
graphic groups in Poland based on microsatellites for both
species. The location of river barriers is likely to be the main
factor in these partitions. The eastern-western subdivision
with microsatellites does not coincide with the distribution

of mtDNA lineages for either species. Unlike previous studies
in the common and field vole elsewhere in Europe, we found
no evidence of reproductive isolation between the mtDNA
lineages of these species at their contact zones in Poland.
This study highlights the different roles of evolutionary histo-
ry and landscape in shaping contemporary genetic structure in
voles in Poland.
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Introduction

The Last Glacial Maximum (LGM), which lasted from ap-
proximately 27.5–19 thousand years before present (ka BP;
Clark et al. 2009), forced European species to survive the
severe climatic conditions by retreating to refugia located in
the south (in three peninsulas: Apennine, Balkan and Iberian;
Taberlet et al. 1998; Hewitt 1999) and further north
(Dordogne and the Carpathian Basin; Kotlík et al. 2006;
Sommer and Nadachowski 2006). In Eastern Europe, post-
LGM expansion has led to the formation of a phylogeographic
‘suture zone’ in present-day Poland in various mammalian
species between multiple mitochondrial DNA (mtDNA) line-
ages originating from different refugia (Wójcik et al. 2010;
McDevitt et al. 2012). In this region, three mtDNA lineages
in the bank vole (Clethrionomys glareolus; Wójcik et al.
2010), four lineages in the weasel (Mustela nivalis;
McDevitt et al. 2012), two lineages in the field vole
(Microtus agrestis; Herman et al. 2014) and two lineages
in the common vole (Microtus arvalis; Stojak et al. 2015)
are present.
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Contrasting population histories and ecological preferences
of different species likely promoted the various patterns of re-
colonization during the return of more favourable conditions
after the LGM (Heckel et al. 2005). If we consider the two
aforementioned Microtus vole species (the common and field
vole), they are morphologically similar species but differ in
their population histories in Europe (Herman et al. 2014;
Stojak et al. 2015). For the common vole, two different chro-
mosomal forms have been identified using cytogenetics,
arvalis and obscurus. The hybrid zone between them occurs
in central European Russia (Meyer et al. 1997; Haynes et al.
2003; Jaarola et al. 2004; Bulatova et al. 2010a, b, 2013). For
the arvalis form, six main mtDNA lineages have been de-
scribed in Europe: Western-South, Western-North, Central,
Italian, Eastern and Balkan (Haynes et al. 2003; Tougard
et al. 2008; Bužan et al. 2010; Martínková et al. 2013;
Stojak et al. 2015). For the field vole, three main evolutionary
units (which may represent cryptic species) have been de-
scribed—Portuguese, Southern and Northern (Paupério et al.
2012). For the Northern evolutionary unit in the field vole, six
main mtDNA lineages have been identified: Eastern,
Scandinavian, Central European, French, North British and
Western (Herman and Searle 2011; Herman et al. 2014). The
differences in the distribution and origin of the mtDNA line-
ages between the common and field vole are evident in Poland
(Herman et al. 2014; Stojak et al. 2015). The phylogeographic
suture zone in Poland that was formed after the LGM in the
common vole consists of two lineages, the Eastern lineage
likely originating from the Carpathian refugium (based on
fossil records and molecular data; Pazonyi 2004; Sommer
and Nadachowski 2006; Stojak et al. 2015) and the Central
lineage from a refugium originally suggested to be Italy
(Haynes et al. 2003) but likely located further north (Heckel
et al. 2005; based on molecular data). For the field vole, the
two lineages that occur in Poland (Central European and
Western; Fig. 1) are thought to represent expansion following
the Younger Dryas cold period (12.9–11.7 ka BP; Herman
and Searle 2011; Herman et al. 2014). There appears to
have been a single LGM refugium for the Northern evo-
lutionary unit of the field vole (Herman and Searle 2011),
but the location of this is uncertain. The Carpathians is a
possibility, following the suggestion of Jaarola and Searle
(2002); however, a later fossil assessment (Pazonyi 2004)
suggested that field voles were not part of the LGM com-
munity in the Carpathians.

In terms of the ecology of the common and field vole, both
are grassland species, but the common vole inhabits open
areas including farmlands (Amori et al. 2008), while the field
vole prefers more damp habitats like meadows, marshes or
river banks (Kryštufek et al. 2008). It is therefore apparent
that different historical and contemporary processes may im-
pact upon patterns of genetic structure in these two Microtus
species.

Several studies have now described the phylogeography and
genetic structure of multiple mammalian species using mtDNA
in the vicinity of present-day Poland (Wójcik et al. 2010;
McDevitt et al. 2012; Stojak et al. 2015). However, there has
been little attempt to study the influence of these ancient pro-
cesses on contemporary genetic structure in this region. The
application of genetic markers such asmicrosatellites will allow
an assessment of contemporary patterns of gene flow and dif-
ferentiation in areas where different mtDNA lineages come into
contact (Heckel et al. 2005; Godinho et al. 2008; Beysard et al.
2012). For the common vole, mtDNA and microsatellites have
been used in other regions in Europe to find general congruence
in patterns of genetic structure between the two types of marker
(Heckel et al. 2005; Braaker and Heckel 2009; Beysard and
Heckel 2014), including in an area of contact involving the
same mtDNA lineages as found in Poland (Eastern and
Central) but along the German-Czech Republic border
(Beysard and Heckel 2014). Given that differences in genetic
structuremight be expected betweenmtDNA andmicrosatellite
markers, because of differences in mutation rate, effective pop-
ulation sizes and inheritance, the congruent patterns for the two
types of marker in the previous studies in the common vole
indicate that a degree of contemporary reproductive isolation
exists between mtDNA lineages in this species. Nuclear-
mitochondrial congruence has also been found in a contact
zone between the Southern and Northern evolutionary units
(‘cryptic species’) of the field vole in the Swiss Jura mountains,
revealing a degree of post-mating isolation (Beysard et al.
2012); the contact zone in Poland involves two mtDNA line-
ages within the Northern unit.

The purposes of our study were as follows: (i) to describe
the patterns of genetic variability using microsatellite markers
in populations of the common and field vole in Poland and (ii)
to determine whether contemporary genetic structure demon-
strates agreement with mtDNA lineage distribution found in
these species across Poland (Herman et al. 2014, Stojak et al.
2015). Similar to these previous studies on mtDNA in both
species, we are utilizing well-preserved museum specimens
collected between 1960 and 1970 to allow for direct temporal
comparisons of genetic structure between the marker types.
Even though DNA degradation is an obvious concern for
these types of specimens (Bi et al. 2013), a number of studies
in different species have now successfully amplified microsat-
ellite loci in museum specimens to infer genetic structure and
diversity (e.g. Bourke et al. 2010; Rubidge et al. 2012).

Materials and methods

Samples

In this study, we used 380 museum specimens archived in the
scientific zoological collection of the Mammal Research
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Institute of the Polish Academy of Sciences in Białowieża that
were collected from different parts of Poland between 1960
and 1970. Specimens that yielded high DNA quantity and
quality were chosen. We analysed 190 M. arvalis from 39
localities and 190 M. agrestis from 23 localities (Fig. 1).
Sample sizes for the populations varied for both species, rang-
ing from one to 11 collected individuals. A complete list of all
specimens, localities and number of individuals per popula-
tion is given in Tables 1 and 2.

Molecular methods

DNAwas extracted from dried legs, using the Qiagen DNeasy
Tissue Kit according to the manufacturer’s protocol. Based on
their cross-species amplification in voles (Rudá et al. 2009;

Czajkowska et al. 2010), an initial panel of 23 microsatellite
markers from five species of vole (M. arvalis, M. agrestis,
Microtus oeconomus, Microtus montebelli and Arvicola
terrestris) was screened in a subset of individuals from both
species to assess amplification success, ease of genotyping
and variation (Table 3). Of these 23 loci, 11 were demonstrat-
ed to reliably genotype common vole individuals, and 13 loci
were used for genotyping field vole individuals (Table 3).
Microsatellites were amplified by polymerase chain reaction
(PCR) in 10-μl reactions containing 5 μl of Multiplex PCR
Master Mix (Qiagen), 1 μl template DNA, ddH2O and primer
volumes ranging from 0.2 to 0.4 μl (from a stock concentra-
tion of 10 μM). Two or three primer pairs were combined in
each multiplex reaction (see Tables S1 and S2 for details of
each multiplex reaction). Negative PCR controls without

Fig. 1 aGenetic structure ofMicrotus arvalis (top) andMicrotus agrestis
(bottom) populations in Poland based on a Bayesian analysis of
microsatellite data in STRUCTURE, coloured according to their
assignment to one of two genetic clusters at q ≥ 0.8 (yellow—the
Western group; blue—the Eastern group). Individuals coloured in red
represent admixed individuals between the two genetic clusters
(0.2 < q< 0.8). Numbers on maps match sampling localities presented in

Tables 1 and 2. The diameter of the circles represents the number of
sampled individuals within the population. b Mitochondrial DNA
lineage distributions described by Stojak et al. (2015) for M. arvalis and
Herman et al. (2014) forM. agrestis. See the aforementioned publications
for further information regarding population localities and the number of
individuals used (Colour figure online)
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template DNA for each set of samples and each multiplex
were included. Amplification conditions were as follows: ini-
tial denaturation of 95 °C for 15 min, 35 cycles of 94 °C for
45 s, 54 °C for 90 s and 72 °C for 60 s, followed by a final

elongation step of 72 °C for 45 min. Then, 1 μl of product was
added to 0.2 μl of size standard GeneScan 500 Liz dye (Life
Technologies) and 10 μl of Buffer HiDi Formamide (Applied
Biosystems). After 3 min of incubation at 96 °C, the mixture

Table 1 Diversity indices for
museum samples ofMicrotus
arvalis from Poland including
sampling locality with geographic
coordinates, sample size (n),
observed (HO) and expected (HE)
heterozygosity, allelic richness
(AR) and the inbreeding
coefficient (FIS)

Sampling
locality

Symbol Map
reference
(see Fig. 1a)

n Longitude
(E)

Latitude
(N)

HO HE AR FIS

Bogdaniec – 1 3 16.58 53.95 – – – –

Bobolice BOB 2 6 16.59 53.95 0.697 0.891 5.84 0.236

Bolewice – 3 3 16.12 52.40 – – – –

Cisna CIS 4 10 22.32 49.21 0.749 0.888 5.88 0.163

Czarna Białostocka – 5 1 23.29 53.30 – – – –

Darżlubie DAR 6 6 18.32 54.7 0.694 0.784 4.54 0.125

Górowo Iławieckie GIL 7 7 20.49 54.28 0.714 0.757 4.70 0.153

Goszcz – 8 3 17.48 51.40 – – – –

Iława ILA 9 5 19.56 53.59 0.655 0.798 4.80 0.198

Kryńszczak KRY 10 9 22.36 51.99 0.747 0.853 5.22 0.131

Kadyny – 11 3 19.49 54.30 – – – –

Krosno Odrzańskie KRO 12 7 15.09 52.05 0.701 0.724 4.48 0.034

Krzystkowice – 13 1 15.23 51.80 – – – –

Łochów – 14 1 21.68 52.53 – – – –

Międzychód MCH 15 9 15.89 52.59 0.775 0.817 5.23 0.054

Mikaszówka – 16 2 23.40 53.89 – – – –

Nurzec – 17 3 22.48 52.67 – – – –

Pułkownikówka PLK 18 9 18.98 54.23 0.685 0.777 4.86 0.126

Pomorze POM 19 9 20.69 52.87 0.660 0.851 5.19 0.235

Przyborów – 20 2 19.39 49.62 – – – –

Rajgród – 21 1 22.70 53.73 – – – –

Rogalice – 22 1 17.61 50.96 – – – –

Ruda Różanecka RDR 23 5 23.18 50.31 0.677 0.839 5.31 0.213

Ryjewo – 24 1 18.96 53.84 – – – –

Rzepin RZE 25 8 14.83 52.34 0.716 0.807 5.16 0.120

Sobibór SOB 26 10 23.63 51.47 0.814 0.917 6.10 0.118

Świętokrzyski NP SPN 27 8 20.93 50.90 0.682 0.857 5.48 0.216

Stary Kraków – 28 2 16.62 54.44 – – – –

Świerzawa SWI 29 9 15.89 51.01 0.778 0.744 4.35 –0.049

Szprotawa – 30 1 15.54 51.57 – – – –

Trzebieszki TRZ 31 11 16.61 53.36 0.692 0.803 5.09 0.145

Wierzchlas WIE 32 5 18.66 51.20 0.6 0.895 5.85 0.356

Wiśniowa WIS 33 6 20.11 49.78 0.752 0.873 5.47 0.151

Wojsław WOJ 34 5 17.35 50.72 0.764 0.890 5.75 0.167

Wschowa WSCH 35 5 16.31 51.80 0.636 0.752 4.88 0.169

Zagożdżon – 36 3 21.45 51.48 – – – –

Zielona – 37 3 18.61 49.95 – – – –

Złocieniec – 38 3 16.01 53.53 – – – –

Żytkiejmy – 39 4 22.70 54.35 – – – –

Only samples with ≥5 individuals were used for calculations
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was then analysed with an ABI Prism 3100 DNA sequencer
and GeneMarker v1.7.0 was used to visualise the microsatel-
lite alleles and determine the genotypes.

Following the procedure of Bourke et al. (2010), we repeat-
ed each PCR three times to avoid artefacts and mistakes
caused by potential fragmentation of DNA in museum sam-
ples. All genotypes were independently scored twice for these
three repeats. We accepted a homozygote if it was scored as
such on all three occasions (or two out of three if it did not
amplify in one of the repeats). A heterozygote was scored if it
appeared on two out of three occasions. If these criteria were
not met, alleles were scored as missing data (Table 4).

Genetic structure of populations

Only populations with five or more individuals were included
in all population-level analyses. Observed and expected het-
erozygosity (HO and HE, respectively) and allelic richness
(AR) were calculated in Arlequin v. 3.5 (Excoffier and
Lischer 2010) and FSTAT v. 2.9.3 (Goudet 2001). We used
FSTAT to estimate the inbreeding coefficient (FIS) for each
locus and each population, with significance levels calculated

by randomizing alleles among individuals within each popu-
lation. We then compared this to the observed data to deter-
mine deviations from Hardy-Weinberg equilibrium (HWE),
using 10,000 simulations. Tests for linkage disequilibrium be-
tween all pairs of loci were carried out in FSTAT. Pairwise FST

values (Weir and Cockerham 1984) between populations
within each species were estimated in FSTAT, and signifi-
cance was determined using 10,000 permutations. Pairwise
comparisons were corrected for type I errors using sequential
Bonferroni corrections (Rice 1989). Null alleles were identi-
fied in Micro-Checker v. 2.2.3 (van Oosterhout et al. 2004).
The relationship between pairwise genetic (FST) and geo-
graphic distances was tested using a Mantel test (Mantel
1967) using IBDWS v. 3.23 (Jensen et al. 2005).

We carried out a Bayesian analysis in STRUCTURE v.
2.3.3 (Pritchard et al. 2000) to establish the number of genetic
clusters of both species in Poland using all available individ-
uals. For each value of K (1-10), we performed ten indepen-
dent runs of 500,000 generations following 100,000 genera-
tions of burn-in under the admixture model and with the as-
sumption that allele frequencies among populations are corre-
lated. We identified the optimal number of clusters for both

Table 2 Diversity indices for
museum samples ofMicrotus
agrestis from Poland including
sampling locality with geographic
coordinates, sample size (n),
observed (HO) and expected (HE)
heterozygosity, allelic richness
(AR) and the inbreeding
coefficient (FIS)

Sampling
locality

Symbol Map
reference
(see
Fig. 1a)

n Longitude
(E)

Latitude
(N)

HO HE AR FIS

Kosobudy KOS 1 10 23.08 50.63 0.774 0.827 4.08 0.069

Sobibór SOB 2 9 23.63 51.47 0.812 0.848 4.26 0.045

Płaska PLA 3 10 23.25 53.90 0.821 0.837 4.29 0.022

Świętokrzyski
NP

SPN 4 10 20.93 50.90 0.657 0.840 4.23 0.229

Cisna CIS 5 8 22.32 49.21 0.775 0.823 4.06 0.062

Sierżno SIE 6 9 17.47 54.11 0.774 0.869 4.44 0.116

Górowo
Iławieckie

GIL 7 10 20.49 54.28 0.713 0.842 4.37 0.161

Bogdaniec BOG 8 10 15.07 52.68 0.827 0.837 4.16 0.012

Wymiarki WYM 9 10 15.08 51.51 0.743 0.857 4.35 0.140

Goszcz GOS 10 9 17.48 51.39 0.779 0.847 4.25 0.086

Kryńszczak KRY 11 6 22.36 51.99 0.792 0.862 4.37 0.090

Zagożdżon ZAG 12 5 21.45 51.48 0.750 0.850 4.20 0.130

Bobolice BOB 13 6 16.58 53.95 0.744 0.816 4.02 0.097

Żytkiejmy ZYT 14 10 22.69 54.35 0.800 0.856 4.36 0.069

Iława ILA 15 6 19.56 53.59 0.744 0.846 4.32 0.132

Pomorze POM 16 8 20.69 52.87 0.786 0.843 4.27 0.073

Wierzchlas WIE 17 6 18.66 51.20 0.808 0.855 4.32 0.061

Kadyny KAD 18 5 19.48 54.29 0.805 0.884 4.55 0.100

Głusko GLU 19 8 15.94 53.04 0.817 0.861 4.38 0.054

Szprotawa SZP 20 10 15.53 51.56 0.772 0.89 4.59 0.139

Zielona ZIE 21 10 18.60 49.94 0.733 0.847 4.32 0.142

Kobiór KOB 22 5 18.93 50.06 0.692 0.826 4.23 0.183

Dębno DEB 23 10 14.69 52.73 0.675 0.820 4.04 0.184
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datasets using the Evanno method (ΔK; Evanno et al. 2005) in
STRUCTURE HARVESTER (Earl and vonHoldt 2012).
Individuals were assigned as belonging to a particular cluster
with an assignment probability (q) of ≥0.8, with individuals with
an assignment probability of 0.2 < q < 0.8 classified as
‘admixed’ (Vähä and Primmer 2006; Bergl and Vigilant 2007;
Shafer et al. 2011;McDevitt et al. 2013).We additionally carried
out a discriminant analysis of principal component (DAPC;
Jombart et al. 2010) in RStudio (2012). This is a two-step pro-
cess, the first of which transforms the genotypes using principal
component analysis (PCA) and then maximises the

differentiation between populations, while minimizing within-
population variation. Unlike the previous method, it does not
assume HWE or linkage disequilibrium (Jombart et al. 2010).
Twenty-two PCA components were retained in the discriminant
analysis for the common vole and 24 for the field vole.

Results

The total dataset of 380 individuals (190 individuals of each
species) were successfully genotyped from Poland. There

Table 3 Origin, repeat number
and size range of microsatellite
loci studied inmuseum specimens
of Microtus arvalis and
M. agrestis from Poland

Locus
name

Size
range

Fluorescent
dye

References Repeat
number

Species origin

Ma25ab 146–187 VIC Gauffre et al. (2007) 2 Microtus arvalis

Ma29ab 216–246 FAM Gauffre et al. (2007) 2 Microtus arvalis

Ma36ab 280–346 NED Gauffre et al. (2007) 2 Microtus arvalis

Ma68ab 112–138 NED Gauffre et al. (2007) 2 Microtus arvalis

Ma75a 261–297 PET Gauffre et al. (2007) 2 Microtus arvalis

MSM2ab 171–203 PET Ishibashi et al. (1999) 2 Microtus
montebelli

MSM3b 120–139 FAM Ishibashi et al. (1999) 2 Microtus
montebelli

MSM5b 70–95 VIC Ishibashi et al. (1999) 2 Microtus
montebelli

MSM6ab 143–163 PET Ishibashi et al. (1999) 2 Microtus
montebelli

Mag6ab 183–227 NED Jaarola et al. (2007) 3 Microtus agrestis

AV12ab 119–156 NED Stewart et al. (1998) 4 Arvicola terrestris

Moe1b 96–136 NED van de Zande et al.
(2000)

2 Microtus
oeconomus

Moe5ab 119–165 VIC van de Zande et al.
(2000)

2 Microtus
oeconomus

Moe6ab 222–258 PET van de Zande et al.
(2000)

2 Microtus
oeconomus

MSM4 – PET Ishibashi et al. (1999) 2 Microtus
montebelli

MSM7 115–133 NED Ishibashi et al. (1999) 2 Microtus
montebelli

MSM8 – VIC Ishibashi et al. (1999) 2 Microtus
montebelli

AV1 205 PET Stewart et al. (1998) 4 Arvicola terrestris

AV7 177 PET Stewart et al. (1998) 4 Arvicola terrestris

AV13 200 NED Stewart et al. (1998) 4 Arvicola terrestris

AV14 250 VIC Stewart et al. (1998) 4 Arvicola terrestris

AV15 169–224 FAM Stewart et al. (1998) 4 Arvicola terrestris

Moe8 230–276 VIC van de Zande et al.
(2000)

2 Microtus
oeconomus

Those loci which were tested and which failed to amplify consistently (and were therefore not used) are given
below the bold line
a The final microsatellite panel used for M. arvalis
b The final microsatellite panel used for M. agrestis
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were very few instances where the three genotyping repeats
differed (recorded as missing data): 0.8 % in common voles
and 2.6 % in field voles (Table 4).

No loci showed significant linkage disequilibrium tested
over all populations. Results ofHO andHE estimation and null
allele identification per locus are presented in Tables S3 and
S4. For the 11 loci in the common vole, diversity values
ranged from 0.450 to 0.899 (HO) and 0.629 to 0.960 (HE).
Null alleles were identified for Moe6 and AV12 in some pop-
ulations of the common vole. As these loci had little influence
on the overall results, they were not excluded from further
analyses (see below). For the 13 loci in the field vole, diversity
values ranged from 0.492 to 0.957 (HO) and 0.774 to 0.974
(HE). We identified no null alleles in this species.

Looking at variation at the population level in the common
vole, values of allelic richness (AR), observed heterozygosity
(HO) and expected heterozygosity (HE) varied from 4.35 to
6.10, 0.600 to 0.814 and 0.724 to 0.917, respectively, and
inbreeding coefficients (FIS) from 0.049 to 0.356 (Table 1).
In the field vole populations, they ranged from 4.02 to 4.59
(AR), 0.657 to 0.827 (HO), 0.816 to 0.884 (HE) and 0.012 to
0.229 (FIS; Table 2). No locus for any population within either
species significantly differed from HWE expectations after
Bonferroni correction.

Overall population differentiation was higher for the com-
mon vole (FST=0.058, 95 % confidence interval (CI) 0.042–
0.077) than for the field vole (FST=0.047, 95 % CI 0.040–
0.055). For M. arvalis, this value was almost the same after
removing the Moe6 and AV12 loci (FST=0.056, 95 % CI
0.037–0.079). Most population pairs were significantly differ-
entiated from each other within both species (Tables S5 and
S6). Mantel tests of the relationships between genetic and
geographic distances revealed a significant isolation by dis-
tance pattern for both species (r=0.326 for M. arvalis and
r=0.397 for M. agrestis; P<0.001). Bayesian analysis in
STRUCTURE showed that two genetic groups of the com-
mon vole and field vole were present in Poland (ΔK=2 was

selected in both cases; Figs. 2 and S1). However, the distribu-
tion of these groups and the contact zone between them are not
exactly the same (Fig. 1). For the common vole, the Western
group occurs in western and northern Poland, whereas the
Eastern group inhabits the eastern, central and southern parts
of Poland. For the field vole, the Western group inhabits west-
ern, southern and northern Poland, whereas the Eastern group
occurs mostly in the eastern part of Poland. The majority of
individuals (176 out of 190 in the common vole and 167 out of
190 in the field vole) were assigned to one of the clusters at
q ≥ 0.8. In the common vole, the admixed individuals
(0.2<q<0.8) were as follows: four individuals from popula-
tion 7; two individuals each from population 4 and 15; and
one individual each from populations 20, 23, 33, 38 and 39
(Fig. 1). In the field vole, the admixed individuals were as
follows: five individuals from population 7; two individuals
each from populations 4, 5, 6 and 17; three individuals from
population 13; and one individual each from populations 8, 9,
10, 15, 19 and 20 (Fig. 1).

The two species of vole exhibited relatively little popula-
tion structure detected by the DAPC (Fig. 3). Genetic structure
is more pronounced between populations of the common vole
than in the field vole. There are four populations of the com-
mon vole which are distinguished from the others:
Pułkownikówka, Górowo Iławieckie and Pomorze from
the northern part of Poland and Świerzawa from south-
western Poland. In case of the field vole, populations
largely overlapped (Fig. 3).

Discussion

In this study, we utilised museum samples collected between
1960 and 1970 and found that these samples gave very reli-
able and consistent results for the microsatellite panels used.
Only a few genotypes were rejected from further analyses
(Table 4). Therefore, we contend that the data that we obtained
from these well-preserved museum specimens are a valuable
resource for population genetic studies of these two vole
species.

Herein, we describe genetic structure and variability in
populations of the common vole and field vole in Poland
using microsatellites. We can also determine whether geo-
graphic structure revealed by microsatellites is in agreement
with the mtDNA lineage distributions across Poland found in
previous studies (Herman et al. 2014, Stojak et al. 2015). For
one of these species, the common vole, studies from other
regions in Europe have already found general congruence in
patterns of genetic structure between mtDNA and
microsatellites at contacts between lineages (Heckel et al.
2005; Braaker and Heckel 2009; Beysard and Heckel 2014).
For the field vole, Beysard et al. (2012) demonstrated an over-
all pattern of congruence betweenmtDNA,microsatellites and

Table 4 Consistency of microsatellite genotyping of museum
specimens of Microtus arvalis and Microtus agrestis from Poland

Heterozygotes Homozygotes Missing data

3/3 (%) 2/3 (%) 3/3 (%) 2/3 (%)

M. arvalis 61.8 8.9 23.5 5.0 0.8

M.agrestis 69.0 7.8 17.3 3.3 2.6

Laboratory procedures were repeated three times for each sample and
each locus. All data obtained for each species are divided up into five
categories, and the percentage out of 100 is given for each. For both
heterozygotes and homozygotes, the values in the 3/3 columns indicate
where all three repeats gave the same result, and the 2/3 columns give the
percentage values when one of these repeats was unreadable. Themissing
data represent those samples in which more than one repeat was unclear
or if the results of genotyping were different for any of repeats
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Y chromosome markers at the contact of the Northern and
Southern evolutionary units but also showed evidence of
asymmetrical and differential gene introgression. Our study
in Poland allows us to look for congruence between
microsatellites and mtDNA in the contact zones between
mtDNA lineages of the two species there (Herman et al.
2014; Stojak et al. 2015). These two vole species are morpho-
logically similar but are characterised by different post-glacial
evolutionary histories and different ecologies.

We found similar levels of genetic diversity across popula-
tions within each species and between them (Tables 1 and 2).
The overall differentiation was higher for the common vole
(FST=0.058) than for the field vole (FST=0.047). Almost all
pairwise comparisons between populations were significant
with the exception of those involving the field vole population
from Kobiór (KOB; Tables S5 and S6) which may reflect the
small sample size for this population. We detected a

significant but moderate isolation by distance pattern for both
species. The DAPC revealed a lack of obvious genetic struc-
ture for both species with individuals mostly overlapping be-
tween populations (Fig. 3). In agreement with overall FST, the
common vole showed evidence of higher levels of differenti-
ation between populations in the DAPC.

Bayesian analysis in STRUCTURE revealed that there
were two geographic groups for each species in Poland based
onmicrosatellites (Figs. 1 and 2). Although strong isolation by
distance can influence inferences of genetic structure based on
STRUCTURE (Frantz et al. 2009), we did not observe this in
our data (see above). The distribution patterns of the geo-
graphic groups differ slightly between the common and field
voles, but they can both be roughly categorised into an Eastern
and Western subdivision (Fig. 1). The Eastern group of the
common vole has a wider distribution in Poland than the
Eastern group of the field vole. For the common vole, the

Fig. 2 Evanno et al. (2005) ΔK
(dashed line, right Y axis) and the
mean log probability LnP(K)
(continuous line, left Yaxis) result
from STRUCTURE for Microtus
arvalis (a) and Microtus agrestis
(b) based on the microsatellite
data
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contact zone between the two microsatellite groups begins in
the north, going through the western part of Poland, ending in
the south, whereas for the field vole, the contact zone starts in
the north-western part of Poland and goes straight through
central Poland to the south-eastern border (Fig. 1). The
Eastern group is located on the eastern side of the Vistula
and San rivers and the Western group on the western side
(Fig. 1). Additionally for the field vole, several mixed genetic
groups are observed in northern Poland, separated from the
Western group by the Noteć river (Fig. 1).

The distributions of mtDNA lineages of common and field
voles in Poland do not match the Eastern and Western micro-
satellite groups. In Poland, there are two mtDNA lineages
(Central and Eastern) of the common vole and the contact
zone is located in the north-western part of Poland (Fig. 1;
Stojak et al. 2015). Individuals from the Central lineage ap-
parently recolonised Eastern Europe from a refugium in an ill-
defined area north of Italy (Heckel et al. 2005), whereas the
Eastern lineage most likely stemmed from the Carpathian re-
fugium (Stojak et al. 2015). The contact zone of the two ge-
netic groups based on microsatellites of the common vole is
shifted considerably to the east (described above, see Fig. 1).
For the field vole, the contact zone between the Western and
Central European mtDNA lineages was in south-western
Poland (Fig. 1) from unspecified Younger Dryas refugia
(Herman et al. 2014). The proposed contact zone between
the two genetic groups based on microsatellites of the field
vole is located in the central part of Poland (Fig. 1).

Beysard and Heckel (2014) analysed the genetic structure
and dynamics of three contact zones between mitochondrial
lineages of the common vole located in Switzerland and
Bavaria. They found very narrow zones of hybridization
(using microsatellites) between the Central and Western line-
ages and a much wider hybrid zone between the Central and
Eastern lineages (which are the lineages present in Poland;
Stojak et al. 2015). The Eastern and Central lineages are
grouped within the same clade and have an estimated time
to most recent common ancestor (tMRCA) of approximately
28 ka BP, whereas the Central and Western lineages belong to
separate clades, with a tMRCA at approximately 56 ka BP

(Stojak et al. 2015). Given that the Central and Eastern
lineages are less divergent than the Western and Central
lineages, it is perhaps not surprising that Beysard and
Heckel (2014) found stronger evidence for reproductive iso-
lation for the Western and Central lineages. Our results are in
general agreement with the aforementioned study because the
microsatellites employed here demonstrate that individuals
generally belong to a single genetic cluster (Western group)
across the Central and Eastern mtDNA lineage contact zone in
Poland (Fig. 1).

For the field vole, there is a similar lack of congruence
between the distribution of mtDNA lineages and geographic
groups based on microsatellites in Poland (Fig. 1). Beysard
et al. (2012) revealed that there was a degree of reproductive
isolation between the contact zone of what we now refer to as
the Northern and Southern evolutionary units (Paupério et al.

Fig. 3 Discriminant Analysis of
principal components (DAPC) of
genetic variation based on the
microsatellite datasets for
Microtus arvalis (a) andMicrotus
agrestis (b). Only populations
with ≥5 individuals sampled were
included
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2012) in Switzerland. These evolutionary units likely diverged
at the LGM (Paupério et al. 2012). In Poland, the contact zone
is between two more recently diverged mtDNA lineages with-
in the Northern evolutionary unit, which apparently derived
from two separate Younger Dryas refugia (Herman et al.
2014). Given that the field vole populations in Poland marked
by mitochondrial differences were not isolated from each oth-
er for a long period, it is perhaps unsurprising that there is no
evidence for reproductive isolation between those mtDNA
lineages.

Given the similarities in the patterns of contemporary ge-
netic structure in the common and field vole, it appears that
major river valleys restrict or act as barriers to contemporary
gene flow between populations of these taxa in Poland
(Fig. 1), leading to differentiation between Eastern and
Western geographical groups. Rivers have been identified as
significant barriers to gene flow in many terrestrial mammals
(e.g. Gerlach and Musolf 2000; Mullins et al. 2014). At the
broad scale of this study, our results indicate that the end
glacial population history has less of an impact on contempo-
rary genetic structure in these two species than the landscape.
Beysard and Heckel (2014) concluded that the divergence
times between lineages play an important role in the level of
gene introgression between them. A recent study by Beysard
et al. (2015) demonstrated that female common voles from the
Western mtDNA lineage preferentially selected males from
their own lineage under lab conditions in preference to
Central lineage males. At present, we do not know if there is
such a preference between voles of the Central and Eastern
lineages present in Poland (which diverged more recently than
the Central and Western lineages; Stojak et al. 2015) or be-
tween lineages in the field vole (Beysard et al. 2012). Various
studies in the European house mouse hybrid zone (between
the subspecies Mus musculus musculus and Mus musculus
domesticus) have demonstrated introgression between the
subspecies, but reduced male fertility maintains a degree of
reproductive isolation between the subspecies (Turner et al.
2012; Albrechtová et al. 2012). A similar mechanism was
proposed to account for the partial reproductive isolation be-
tween the Northern and Southern evolutionary units of the
field vole (Beysard et al. 2012) and the Central and Western
mtDNA lineages of the common vole (Beysard and Heckel
2014). In Poland, however, where there are contact zones
between mtDNA lineages that have diverged more recently
in both species, there does not appear to be the same pattern of
reproductive isolation between the mtDNA lineages based on
the contemporary genetic structure inferred from microsatel-
lite data. However, it is clear that further sampling would be
beneficial to definemore accurately the contact zones between
the mtDNA lineages and the genetic clusters based on
microsatellites in these two species in Poland (Beysard et al.
2012; Beysard and Heckel 2014). Newly collected specimens
from Poland would also allow us (i) to investigate in more

detail the influence of river barriers and other environmental
and landscape features on gene flow in the common vole and
field vole populations in Poland and (ii) to compare if the
patterns of genetic structure based on microsatellites have
changed or been retained over the last ca. 50 years (the sam-
ples that we analysed in the present study were of that age).
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