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Summary 1 

1. Undersampling is commonplace in biodiversity surveys of species-rich tropical assemblages in 2 

which rare taxa abound, with possible repercussions for our ability to implement surveys and 3 

monitoring programs in a cost-effective way. 4 

2. We investigated the consequences of information loss due to species undersampling (missing 5 

subsets of species from the full species pool) in tropical bat surveys for the emerging patterns of 6 

species richness and compositional variation across sites. 7 

3. For 27 bat assemblage datasets from across the tropics, we used correlations between original 8 

datasets and subsets with different numbers of species deleted either at random, or according to 9 

their rarity in the assemblage, to assess to what extent patterns in species richness and 10 

composition in data subsets are congruent with those in the initial dataset. We then examined to 11 

what degree high sample representativeness (r  0.8) was influenced by biogeographic region, 12 

sampling method, sampling effort, or structural assemblage characteristics. 13 

4. For species richness, correlations between random subsets and original datasets were strong (r 14 

 0.8) with moderate (ca. 20%) species loss. Bias associated with information loss was greater 15 

for species composition; on average ca. 90% of species in random subsets had to be retained to 16 

adequately capture among-site variation. For non-random subsets, removing only the rarest 17 

species (on average ~10% of the full dataset) yielded strong correlations (r > 0.95) for both 18 

species richness and composition. Eliminating greater proportions of rare species resulted in 19 

weaker correlations and large variation in the magnitude of observed correlations among 20 

datasets. 21 

5. Species subsets that comprised ca. 85% of the original set can be considered reliable 22 

surrogates, capable of adequately revealing patterns of species richness and temporal or spatial 23 
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turnover in many tropical bat assemblages. Our analyses thus demonstrate the potential as well 24 

as limitations for reducing survey effort and streamlining sampling protocols, and consequently 25 

for increasing the cost-effectiveness in tropical bat surveys or monitoring programs. The 26 

dependence of the performance of species subsets on structural assemblage characteristics (total 27 

assemblage abundance, proportion of rare species), however, underscores the importance of 28 

adaptive monitoring schemes and of establishing surrogate performance on a site-by-site basis 29 

based on pilot surveys. 30 

 31 

Key-words: biodiversity surveys; Chiroptera; cost-effectiveness; representative sampling; 32 

species rarity; species subsamples 33 

 34 

Introduction 35 

Recent studies suggest that the indicator potential and surrogacy value of single taxa is 36 

usually poor (Kessler et al. 2011; Larsen et al. 2012) and that tropical biodiversity surveys 37 

should aim to include as many different taxa as possible under given financial and logistical 38 

constraints. Selection of ‘high-performance indicator taxa’ for monitoring purposes requires 39 

consideration not only of the ecological value of a taxon, but also of the practical feasibility and 40 

cost-effectiveness with which it can be surveyed (Gardner et al. 2008; Kessler et al. 2011). The 41 

monetary cost and time allocation necessary to survey a given taxon, undoubtedly, are two of the 42 

main constraints faced in monitoring programs, which therefore typically seek to obtain the 43 

information required for the least cost and within the shortest time (Gardner et al. 2008; 44 

McDonald-Madden et al. 2010). 45 
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Designing a survey program that is at the same time statistically robust and cost-effective 46 

requires balancing opposing limitations – maximizing sample representativeness (i.e. trying to 47 

enumerate all or most species in an assemblage), versus maximizing statistical power by 48 

increasing the number of sites surveyed at the expense of survey comprehensiveness. The effects 49 

of reducing cost and sampling effort may be particularly significant when those species that are 50 

most difficult to sample are also the rare ones. Species that are locally rare abound in species-51 

rich assemblages in the humid tropics (e.g. Coddington et al. 2009), usually rendering attempts at 52 

achieving sampling completeness in biodiversity surveys or monitoring programs cost-53 

ineffective. Apart from species that are genuinely rare as a result of small geographic ranges, 54 

limited habitat breadth, or low local population density (Rabinowitz 1981), in many cases 55 

apparent rarity may simply reflect a sampling artifact linked to sampling effort, methodology, or 56 

differential species detectability (Kéry & Schmid 2008; Meyer et al. 2011; van der Burg et al. 57 

2011). As a recent study suggests, the explicit inclusion or exclusion of rare species can 58 

profoundly affect estimates of the relative conservation value of different land-uses (Barlow et 59 

al. 2010), and can be thought to generally influence comparisons of biodiversity survey or 60 

monitoring data among habitat or land-use types. 61 

Bats are considered potentially valuable indicators of biodiversity and ecosystem health 62 

and there is now increased momentum for establishing a global bat monitoring network (Jones et 63 

al. 2009; Flaquer & Puig-Montserrat 2012; KE Jones et al. 2013). The value of bats as 64 

bioindicators stems from their high taxonomic and functional diversity, widespread geographic 65 

distribution, their documented sensitivity to a host of anthropogenic alterations in habitat quality, 66 

and to changes in environmental conditions associated with climate change (Jones et al. 2009; 67 

Sherwin, Montgomery & Lundy 2013). Moreover, response patterns of bats to habitat 68 
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deterioration may be congruent with those of other taxa, such as insects (Jones et al. 2009), an 69 

important attribute with respect to the surrogacy value of a particular taxon (Moreno et al. 2007). 70 

Especially in the tropics where bats reach peak species richness and comprise a large fraction of 71 

local mammal faunas, they are providers of key ecosystem services and as such are integral to 72 

ecosystem functioning (Kalka, Smith & Kalko 2008; Lobova, Geiselman & Mori 2009; Kunz et 73 

al. 2011). Single localities in Neotropical lowland forests may support more than 100 sympatric 74 

bat species (Rex et al. 2008) and highly species-rich assemblages are also known from both 75 

tropical Asia (Kingston, Boo Liat & Zubaid 2006) and Africa (Fahr & Kalko 2011). Despite the 76 

fact that most bat biodiversity is concentrated in the tropics, current systematic monitoring 77 

efforts focus on bats in temperate regions (Battersby 2010). 78 

Adequate sample representativeness is a fundamental tenet of any monitoring program or 79 

biodiversity study, as replicate surveys should adequately reflect the underlying assemblage at a 80 

site. As we have previously shown, in tropical bat surveys a certain number of repeat visits is 81 

indispensable for reliable estimation of species detectability (Meyer et al. 2011) and the 82 

detection of population trends (Meyer et al. 2010). However, as for other highly diverse tropical 83 

taxa, aiming to capture the whole spectrum of diversity at a site may not be feasible in practice as 84 

it would require a disproportionate and usually prohibitively large amount of resources within a 85 

project’s given budgetary and time constraints. On the other hand, such efforts might not even be 86 

necessary when the primary objective is to characterize assemblage-environment associations or 87 

track changes in species richness or turnover rather than an in-depth enumeration of all species 88 

present at a site. 89 

The effects of excluding rare species on assemblage comparisons have been well studied 90 

and have been the subject of controversial debate for aquatic macroinvertebrate and fish 91 
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assemblages (Cao, Williams & Williams 1998; Marchant 2002; Holtrop, Cao & Dolan 2010; 92 

Wan et al. 2010). A recent study by Vellend, Lilley & Starzomski (2008) addressed this topic 93 

also for several terrestrial taxa, including plants, reptiles, birds, and alpine mammals. However, 94 

for species-rich tropical bat assemblages inferential biases associated with information loss due 95 

to species undersampling have not been systematically assessed and remain poorly understood. 96 

Drawing from a unique suite of some of the most extensive tropical bat assemblage 97 

datasets available, pantropical in extent, our aim was to evaluate the effectiveness of species 98 

subsets in representing among-site variation in species richness and composition. To this end, we 99 

assessed the magnitude of correlations for bat species richness and species composition, 100 

respectively, between each full dataset that included all species sampled vs. species subsets with 101 

different numbers of species deleted either at random, or according to their rarity in the 102 

respective assemblage. We predicted that species subsets would be less effective at describing 103 

among-site variation in species composition compared to species richness, as found for other 104 

taxa (Magierowski & Johnson 2006; Vellend et al. 2008). Further, we expected subset 105 

performance to be dependent on (i) sampling effort and sampling method, due to their influence 106 

on species detectability (Meyer et al. 2011) and consequently on patterns of species rarity; (ii) 107 

structural assemblage characteristics, particularly the proportion of rare species, whereby subset 108 

performance should decrease with increasing proportions of rare species in assemblages; and (iii) 109 

biogeographic region, considering that bat assemblages in the Neotropics and Paleotropics are 110 

structured differently (e.g. Struebig et al. 2013). 111 

If species subsets retained sufficient information relative to full species sets and, for 112 

instance rare species that would be time-intensive to survey could be ignored with little loss of 113 

information, survey costs may be considerably reduced, as fewer repeat visits per sampling site 114 
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would be required. Our assessment therefore is of immediate relevance in the context of 115 

evaluating the feasibility and cost-effectiveness of a potential future monitoring program for 116 

tropical bats. Moreover, our analysis is timely in view of the recently revived interest in the role 117 

of bats as bioindicators (Flaquer & Puig-Montserrat 2012). 118 

 119 

Materials and methods 120 

DATASETS 121 

We focused on tropical bat assemblages as this study was conceived as part of an 122 

evaluation of the suitability of tropical bats for long-term monitoring within Conservation 123 

International’s Tropical Ecology, Assessment and Monitoring (TEAM) network 124 

(http://www.teamnetwork.org). Following a call for data among tropical bat ecologists, a total of 125 

27 datasets were provided by colleagues and included in the study (Table S1, Supporting 126 

Information). In all cases, datasets consisted of species abundance data collected at multiple 127 

sampling sites. For datasets originating from fragmented or otherwise disturbed areas, data only 128 

from control plots in continuous or mostly undisturbed forest were used for analysis. Nineteen 129 

datasets were based on ground-level mist netting (GN), six on canopy-level mist netting (CN), 130 

and two on acoustic sampling (AS). The majority of datasets were from the Neotropics (21 131 

compared to six from the Paleotropics). Disparities in the datasets’ coverage reflect general 132 

differential research efforts in terms of sampling method and geographic region (e.g. Kingston 133 

2013). Although the datasets analysed cannot be regarded as representing 100% sampled 134 

assemblages from which to subsample, they were comparable in that they comprised bat 135 

assemblages that in each case were thoroughly sampled to similarly high levels of completeness 136 
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(mean inventory completeness 81.3 ± 6.6% SD [range 67-92%] as assessed with the Jackknife1 137 

species richness estimator; Gotelli & Colwell 2010). 138 

 139 

GENERATION OF RANDOM AND NON-RANDOM SPECIES SUBSETS 140 

For each dataset, we calculated species richness (SR) for each site. In addition, we 141 

performed a detrended correspondence analysis (DCA) based on the species-by-site matrix of 142 

each dataset and extracted the site scores of the first DCA axis (DCA1), which represents the 143 

dominant gradient in species composition (Legendre & Legendre 1998; see Vellend et al. 2008 144 

for details about the rationale for choosing this eigenanalysis-based ordination method in the 145 

context of the present analysis). As a measure of species composition complementary to DCA1, 146 

we calculated Jaccard’s dissimilarity index (J) for each pair of sites, one of the most widely used 147 

dissimilarity indices for species presence-absence data (Jost, Chao & Chazdon 2011).  148 

For all datasets, we calculated SR, DCA1 and J for the full dataset, i.e. using the full 149 

species pool (hereafter denoted SRFULL, DCA1FULL, and JFULL). We then calculated SR, DCA1, 150 

and J for different subsets of species per dataset (SRSUB, DCA1SUB, and JSUB), whereby two 151 

different approaches were taken. In the first case, species were randomly drawn from the original 152 

species pool at each of five species pool sizes (i.e. producing five species subsets of a variable 153 

number of species). The latter ranged from 90% down to 50% of the full species pool. Following 154 

Vellend et al. (2008), at each species pool size, 100 subsets of species were randomly chosen 155 

with replacement. For each random draw of species, Pearson product-moment correlations 156 

between the full vs. randomly generated reduced datasets [r(SUB x FULL)] were subsequently 157 

used to characterize the degree to which patterns of species richness and composition in the data 158 

subsets reflect those in the complete dataset. For each dataset, we plotted the median and 95th 159 
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percentile correlations for the 100 random subsets against species pool size. We based 160 

assessments of the effect of randomly subsampling the entire species pool on the lower 95th 161 

percentile of the 100 correlations at each species pool size, which can be regarded as a 162 

conservative estimate of the information loss as a consequence of surveying less than the full set 163 

of species (see Vellend et al. 2008). 164 

As a second approach, in addition to evaluating the consequences of random species 165 

subsampling, we explored the effects of removing species from the full species pool in a non-166 

random fashion, based on their rarity in the local assemblage. To this end, we calculated the 167 

relative abundance (RA) (%) for each species per dataset and selected species subsets by 168 

eliminating increasingly larger proportions of rare species. Rare species were defined as those 169 

with a relative abundance less than 1% of total relative abundance (Maurer & McGill 2011). The 170 

average proportion of rare species across datasets was 0.54 ± 0.15 (range 0.12-0.71). Depending 171 

on the species-abundance distribution of the respective assemblage, we evaluated effects with 172 

respect to up to three different rarity thresholds (whenever applicable), successively removing all 173 

species with RA < 0.1%, < 0.5%, and < 1%, i.e. always starting with the rarest species. As with 174 

random species subsets, we assessed correlations between full datasets and non-random subsets 175 

for SR, DCA1, and J. 176 

We then calculated for each dataset the minimum proportion of species from the full set 177 

of species that would be required to achieve lower 95th percentile correlations r(SUB x FULL) of 178 

 0.8. We considered a correlation of 0.8 as an appropriate threshold as the effectiveness of using 179 

a species subset as a surrogate at lower correlation levels is questionable and may provide 180 

misleading statistical results (Vellend et al. 2008). 181 
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Analyses were conducted in R (R Development Core Team 2010), mostly using package 182 

vegan (Oksanen et al. 2008) and code adapted from Vellend et al. (2008) for generating random 183 

species subsets. Differences between response metrics, non-random data subsets, and sampling 184 

methods in the magnitude of achieved correlations r(SUB x FULL) were tested in a linear mixed 185 

model framework in the R package ‘lme4’ (Bates & Maechler 2010), using likelihood ratio tests 186 

to assess significance (Zuur et al. 2009). 187 

 188 

CORRELATES OF HIGH SAMPLE REPRESENTATIVENESS 189 

We assessed whether the surrogate effectiveness of species subsets, defined as the 190 

proportion of species necessary to reach lower 95th percentile correlations r  0.8, was influenced 191 

by factors related to biogeographic region (Neotropics, Palaeotropics), sampling method (GN, 192 

CN AS was not considered as there were only two datasets), sampling effort (number of 193 

sampling plots, mean number of surveys per sampling plot), or structural characteristics of the 194 

respective assemblage (total assemblage abundance, proportion of rare species those 195 

representing < 1% of total RA, and the reciprocal form of Simpson’s diversity index 1/D (e.g. 196 

Maurer & McGill 2011)). Similarly, for non-random species subsets with rare species removed, 197 

we modeled the probability of achieving a correlation of 0.8 between full and reduced datasets 198 

(binary response variable) as a function of those same covariates.  199 

Analyses were performed as generalized linear mixed-effects models (GLMMs; Zuur et 200 

al. 2009), with ‘location’ specified as random factor. Models were fitted using the ‘glmer’ 201 

function in the R package ‘lme4’ (Bates & Maechler 2010), assuming a binomial error 202 

distribution and logit link function. To account for the variation in inventory completeness 203 

among datasets (see above), we included this variable as an offset. Continuous predictor 204 



13 

 

variables were standardized to facilitate comparison of parameter estimates (Schielzeth 2010). 205 

We conducted AICc-based model selection and multi-model inference (Burnham & Anderson 206 

2002) using the R package ‘AICcmodavg’ (Mazerolle 2010). We chose AIC over other model 207 

selection criteria such as BIC as it is not only by far the most widely used in ecological studies, 208 

but also the best suited in the context of our application based on a recently developed decision 209 

framework (Aho, Derryberry & Peterson 2014). 210 

 211 

Results 212 

RANDOM SPECIES SUBSETS 213 

Median correlations between full datasets and random subsets in general showed 214 

relatively little variation across datasets, and irrespective of the response metric, strong 215 

correlations were observed even with a large fraction of species removed (Figs 1 & 2, Figs S1 & 216 

S2). For species subsets representing 50% of the initial species pool, median correlations 217 

averaged 0.87 ± 0.10 SD (range 0.64-0.98) for SR, 0.83 ± 0.12 (range 0.44-0.99) for DCA1, and 218 

0.76 ± 0.09 (range 0.56-0.94) for J across all datasets analyzed.  219 

On the other hand, lower 95th percentile correlations, which represent a more 220 

conservative estimate, suggest that a great deal of information may be lost unless most of the 221 

original species set is retained. The magnitude of lower 95th percentile correlations differed 222 

significantly according to sampling method (LMM, χ2 = 7.35, df = 2, P = 0.025), being slightly 223 

higher for datasets based on canopy versus ground mist netting (Tukey contrasts, Z = -2.51, Padj. 224 

= 0.028). Moreover, it differed significantly with respect to the response metric considered (χ2 = 225 

29.04, df = 2, P < 0.001), with generally weaker correlations for DCA1 compared to SR (Z = 226 

4.31, Padj. < 0.001) and J (Z = 5.06, Padj. < 0.001). Correlations were weak with large proportions 227 
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of the species pool dropped and highly variable among datasets, especially for DCA1 (Fig. 2); 228 

average correlations at ≤ 70% of the original species pool were < 0.56 for SR, < 0.27 for DCA1, 229 

and < 0.55 for J. Strong lower 95th percentile correlations were only found with 90% of species 230 

retained, averaging 0.89 ± 0.12 (range 0.53-0.99) for SR, 0.64 ± 0.30 (range 0.11-0.99) for 231 

DCA1, and 0.80 ± 0.18 (range 0.05-0.96) for J (Fig. 2). In other words, across datasets, for SR 232 

on average 79.8 ± 15.6% (range 40.9 - 100%) of the species from the initial set were necessary to 233 

achieve lower 95th percentile correlations r  0.8 between original datasets and random subsets. 234 

Effective surrogates for species composition would require that on average roughly 90% of the 235 

original species pool be retained (DCA1: 88.8  15.8%, range 51.4 - 100%; J: 90.0  8.3%, 236 

range 68.2 – 100%). 237 

 238 

NON-RANDOM SPECIES SUBSETS 239 

As with random species subsampling, eliminating species from the original species pool 240 

in a non-random fashion based on their rarity in the respective assemblage yielded correlations 241 

that were highly variable across datasets (Figs 1 & 2, Figs S1 & S2). The magnitude of 242 

correlations between original and reduced datasets did not vary significantly among response 243 

metrics (LMM, χ2 = 1.75, df = 2, P = 0.418) or sampling methods (χ2 = 2.06, df = 2, P = 0.356). 244 

It did, however, differ significantly among data subsets, i.e. depending on what fraction of rare 245 

species was trimmed off from the tail of the species-abundance distribution (χ2 = 20.46, df = 2, P 246 

< 0.001). Irrespective of the response metric, correlations across datasets were on average > 0.8 247 

when only the rarest species (< 0.1% of total RA, corresponding to 9.4 ± 11.2% of the initial 248 

species pool) were eliminated, with little variation among datasets for SR and J compared to 249 

DCA1 (SR: 0.95 ± 0.05, range 0.84-0.99; DCA1: 0.82 ± 0.29, range 0.10-0.99; J: 0.94 ± 0.05, 250 
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range 0.85-0.99). Additionally removing the species in the next higher rarity categories (< 0.5 251 

and < 1% of total RA, corresponding to 39.9 ± 19.4% and 54.4 ± 15.3%, respectively, of the 252 

initial species pool) resulted in significantly lower correlations (Tukey contrasts, Padj. < 0.001) 253 

and increased variability in the magnitude of correlations among datasets also for SR and J (Fig. 254 

2). 255 

 256 

CORRELATES OF HIGH SAMPLE REPRESENTATIVENESS 257 

For random species subsampling, AICc-model selection revealed strong support for an 258 

effect of sampling effort, particularly the number of repeat visits per plot, on the proportion of 259 

species required to yield lower 95th percentile correlations r(SUB x FULL)  0.8 (Table 1 & 3). 260 

Number of surveys or the composite model ‘sampling effort’, which considered the number of 261 

sampling plots and the number of visits/plot, were the top-ranked or second-ranked model in the 262 

candidate set, irrespective of the response metric chosen.  263 

In the case of non-random species subsets (Table 2 & 3), for SR and J as response 264 

metrics, high sample representativeness was most strongly correlated with the proportion of rare 265 

species in the assemblage ( = 0.63 and  = 0.88, respectively). For DCA, there was 266 

considerable evidence for an overall effect of structural assemblage characteristics, although 267 

AICc-differences and model weights suggested considerable model selection uncertainty. Total 268 

assemblage abundance was the top-ranked model ( = 0.31), followed by Simpson’s diversity 269 

index ( = 0.19) and the proportion of rare species ( = 0.14). 270 

 271 

Discussion 272 
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We quantified inferential biases associated with species subsampling in tropical bat 273 

assemblages and demonstrate that moderately undersampled species subsets may in many cases 274 

be sufficient to enable reliable comparisons of species richness and compositional variation 275 

across sites. As expected, species subsets performed better at retaining information on inter-site 276 

variation in species richness than species composition. Moreover, in line with our predictions, we 277 

found that sampling effort and structural assemblage characteristics, specifically the proportion 278 

of rare species in an assemblage, were important predictors of subset performance. In contrast, 279 

there was no significant effect of either sampling method or geographic region on high sample 280 

representativeness. 281 

 282 

SURROGATE PERFORMANCE OF RANDOM AND NON-RANDOM SUBSETS 283 

Similar assessments for a diverse array of other taxa, including plants, invertebrates, fish, 284 

reptiles, birds, and non-volant mammals (Vellend et al. 2008; Molloy et al. 2010; Bried et al. 285 

2012) also found high levels of congruence between full and reduced datasets when ignoring 286 

10%, and often larger proportions, of the original species pool. Our results show that information 287 

loss was equally low with similar levels of species’ exclusion (ca. 15%). An important caveat to 288 

note is that our analysis was based on datasets that had an average of 81% completeness. 289 

Although we statistically controlled for variation in inventory completeness among datasets in 290 

modeling correlates of high sample representativeness, it remains unknown to what degree our 291 

results might have been different if we had subsampled fully inventoried assemblages, i.e. 292 

datasets that had near 100% completeness. 293 

In many instances we found that correlations for non-random subsets mirrored those 294 

based on random subsets reasonably well; however, for certain datasets correlations deviated 295 
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considerably from median correlations for randomly chosen subsets. Strong differences were 296 

particularly apparent with DCA1 correlations for some datasets (e.g. Comoé, Yungas, Victoria-297 

Mayaro, Fig. S1b), whereas agreement between correlations for random and non-random subsets 298 

was in most cases much better for SR and J. Our findings concur with those of Vellend et al. 299 

(2008) in that correlations for DCA1 often showed greater variability across datasets than for J. 300 

This indicates that species subsets may often be less effective at capturing the same maximum 301 

possible amount of compositional variation among sites (as given by DCA1) than the full set. In 302 

contrast, pairwise site differences (Jaccard dissimilarities) in species composition may be more 303 

consistently revealed with a reasonably large subsample of the entire species set. 304 

While part of our analyses focused on random species subsets, our findings concerning 305 

the effects of undersampling due to species rarity for predicting diversity patterns may be more 306 

revealing and of greater general relevance. Corroborating previous studies on invertebrates 307 

(Heino & Soininen 2010; Franklin et al. 2013), our results suggest that patterns of spatial 308 

turnover in tropical bat assemblages are to a large extent driven by the more common species and 309 

for the accurate description of assemblage similarity-environment relationships, rare species may 310 

often be of limited importance. Removing only the least abundant species from an assemblage 311 

(those with < 0.1% of total RA, comprising on average ~10% of the original species pool) 312 

yielded strong correlations (> 0.8) across nearly all datasets (Fig. 2). This indicates that if only 313 

the rarest species in an assemblage were missed during a survey, information loss would be 314 

tolerable in most cases and that the species subset sampled can serve as a good surrogate for the 315 

full suite of species actually present in the assemblage. Limiting surveys to sampling only the 316 

more common species and ignoring the rarest ones therefore seems a reasonable shortcut for 317 

reducing costs in tropical bat monitoring programs. It is important, however, to emphasize that 318 
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our findings in this regard do not apply to situations where the objective is the detailed 319 

population monitoring of rare species. Although inherently of greater conservation interest than 320 

common ones, rare species in tropical bat assemblages are difficult to monitor and will always 321 

require a high-effort sampling design for reliable trend detection, as we have previously 322 

demonstrated (Meyer et al. 2010). Common species have variously been shown to contribute 323 

disproportionately to species richness patterns (Pearman & Weber 2007; Gaston 2008; Šizling et 324 

al. 2009; Lennon et al. 2011). Our results are in line with these findings and point towards a 325 

considerable degree of structural redundancy in species composition (sensu Clarke & Warwick 326 

1998) in tropical bat assemblages, which may in fact be a general feature of many biological 327 

communities (Cayuela, De La Cruz & Ruokolainen 2011). 328 

 329 

FACTORS AFFECTING SPECIES SUBSET PERFORMANCE 330 

Contrary to expectations, subset performance was not dependent on geographic region. 331 

However, this finding should be interpreted with some caution since our study included far more 332 

datasets from the New World than from the Old World tropics, which may have reduced 333 

statistical power to detect significant differences. Only increased research efforts underway in 334 

Asia (Kingston 2013) and, hopefully, in the future also in Africa, can help to substantiate this  335 

finding based on a geographically more balanced set of studies. 336 

While sampling effort was the best correlate of high sample representativeness with 337 

random subsampling, structural assemblage characteristics, most notably the proportion of rare 338 

species in an assemblage, was the best predictor of surrogate performance when datasets were 339 

subsampled according to rarity. Tropical bat assemblages typically comprise many rare species, 340 

yet vary substantially with respect to the number of rare species they contain, as evidenced by 341 
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our datasets (Fig. 3). Our results imply that whenever assemblages are comprised of a large 342 

number of rare species, relatively larger fractions of these will need to be sampled to adequately 343 

capture among-site variation in species richness and composition, essentially requiring increased 344 

sampling effort and more comprehensive surveys. Trimming off progressively greater 345 

proportions of species (i.e. species representing < 0.5 and < 1% of total RA, encompassing on 346 

average 40% and 54%, respectively of the full set) resulted in correlations often lower than 0.8 347 

(Fig. 2). Correlations < 0.7 may greatly reduce the statistical power for testing relationships 348 

between species diversity or composition and environmental covariates, and in fact only strong 349 

relationships may be detectable using a surrogate in such cases (Vellend et al. 2008). Thus, in the 350 

search for suitable surrogates, correlations > 0.7 should be aimed for to guarantee that 351 

assemblage-environment relationships can be reliably assessed.  352 

That inferential biases associated with undersampling increase for species-rich 353 

assemblages that are made up of a large number of rare species can clearly be seen in the case of 354 

the assemblages from Comoé (Ivory Coast), Victoria-Mayaro (Trinidad) or Barro Colorado 355 

Nature Monument (Panama), each characterized by a high proportion of rare species (60-70%). 356 

Congruence in multivariate response patterns between original data and subsets with all of those 357 

rare species removed was generally very low (correlations << 0.8), particularly for DCA1. For 358 

these assemblages, subsets containing only the more abundant species would fail to capture the 359 

same dominant gradient in species composition as in the initial dataset. This was most prominent 360 

in the Comoé ground-net assemblage where even removing only the rarest few species yielded a 361 

correlation of less than 0.4 (Fig. S1b). Such apparent failure to capture among-site patterns in 362 

species composition with species subsets may reflect the major role of high habitat heterogeneity 363 

in shaping diversity patterns in this particular assemblage. The Comoé assemblage had the 364 
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largest proportion of rare species of all datasets examined (71%) and is characterized by high 365 

species richness, a pattern largely attributable to its geographical position in a biome transition 366 

zone between forest and savanna, where habitat heterogeneity is sharply elevated (Fahr & Kalko 367 

2011). In contrast, the bat assemblage at Tiputini (Ecuador), although one of the most species-368 

rich known (Rex et al. 2008), is characterized by comparatively higher evenness of its abundance 369 

distribution, which may explain the generally high correlations found with non-random species 370 

removal. These findings indicate that the trade-off between number of sites surveyed and survey 371 

comprehensiveness is system-specific. This in turn implies that the investment required for 372 

capturing a representative sample of the whole assemblage varies across geographic locations, 373 

reflecting spatial variation in the number of rare species and ultimately in mean species detection 374 

probabilities (Meyer et al. 2011), both of which are intuitively closely linked (McCarthy et al. 375 

2013). Gauging the relationship between species abundance and detectability is important as it 376 

can help to determine adequate sampling effort. However, in general how exactly detection 377 

probabilities scale with abundance remains little explored (McCarthy et al. 2013), an aspect 378 

which provides an interesting avenue for future research in the context of bat biodiversity 379 

surveys. 380 

The majority of assemblages analyzed in this study were sampled using a single method, 381 

ground-level mist nets, reflecting the general fact that tropical bat assemblage inventories that 382 

use a combination of different survey methods remain scarce. Our low sample size for datasets 383 

not based on ground-level mist netting may in part explain why, opposite to what we expected, 384 

sampling method was not found to be an important predictor of species subset performance. 385 

Sampling method influences species detectability in tropical bats (Meyer et al. 2011) and hence 386 

is an important determinant of local-scale patterns of species rarity. To accurately infer which 387 
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species in an assemblage are truly rare therefore requires comprehensive surveys employing a 388 

combination of active (i.e. mist netting at ground- and canopy level, harp traps) and passive 389 

survey methods (acoustic sampling) to maximize inventory completeness (MacSwiney, Clarke & 390 

Racey 2008; Kunz, Hodgkison & Weise 2009; Kingston 2013). Consequently, assessments of 391 

the surrogate effectiveness of species subsets should ideally be based on assemblages that have 392 

been surveyed with multiple complementary methods to properly account for confounding 393 

effects of sampling method on patterns of species rarity. If we had had such data available, this 394 

would no doubt have strengthened the robustness of our inferences drawn about how the 395 

exclusion of rare species influences surrogate effectiveness (see above). We therefore consider 396 

this an important aspect that merits attention in similar future evaluations. 397 

 398 

SURROGATE EFFECTIVENESS OF SPECIES SUBSETS: SPECIES RICHNESS VS. 399 

COMPOSITION 400 

As predicted and corroborating previous work on other taxa (Magierowski & Johnson 401 

2006; Vellend et al. 2008), we found that partial species sets generally are robust surrogates of 402 

total species richness, however, they perform less well in uncovering compositional patterns. 403 

Although species richness is a state variable commonly used in monitoring programs (JPG Jones 404 

et al. 2013), its usefulness in environmental impact assessments has recently been questioned as 405 

measures of assemblage composition and turnover have been found to be more informative and 406 

sensitive to change (Barlow et al. 2007; Magurran & Henderson 2010; Banks-Leite, Ewers & 407 

Metzger 2012; Dornelas et al. 2014). Undersampling bias is a key challenge not only with regard 408 

to biodiversity assessment and monitoring, as examined here, but also constitutes an active area 409 

of research in many other fields of ecological research, including species distribution modeling 410 
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(Kramer-Schadt et al. 2013; Syfert, Smith & Coomes 2013) or the analysis of plant-animal 411 

interaction networks (Nielsen & Bascompte 2007; Rivera-Hutinel et al. 2012), where equivalents 412 

of species richness (e.g. interaction richness) have also been found to be less robust than 413 

alternative metrics (e.g. Tylianakis et al. 2010). This highlights the general need for ecologists 414 

and conservation biologists to move beyond mere species numbers and to focus on more 415 

informative assemblage metrics, capable of adequately capturing changes in relation to 416 

environmental impacts or monitoring alterations in ecological network structure. We argue that 417 

in the context of monitoring for environmental impact assessment researchers should give greater 418 

consideration to measures of species composition and turnover to increase the validity of 419 

inferences made from evaluations of the suitability and performance of species subsets as 420 

surrogates of total taxon richness. More specifically, we advocate a wider application of metrics 421 

suitable for quantifying biodiversity change, for instance commonly applied similarity or 422 

distance measures (e.g. the Morisita-Horn index) and specialized turnover indices (Magurran & 423 

Henderson 2010; Jost et al. 2011; Magurran 2011) or rank abundance statistics such as mean 424 

rank shift (Collins et al. 2008). The merits and necessity of a shift of focus towards such 425 

measures are well illustrated by the recent finding of a global analysis of long-term assemblage 426 

time series, which detected no systematic temporal change in alpha diversity, but consistent 427 

compositional change and turnover (Dornelas et al. 2014). 428 

 429 

Conclusions 430 

Our analyses stress that there is potential for reducing costs in tropical bat monitoring by 431 

streamlining sampling activities if the focus is on assessing assemblage-environment 432 

relationships or changes in species richness or turnover. Protocols that consider reasonably high 433 
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but not exhaustive sampling, which may equate to fewer surveys, seem to be sufficiently 434 

sensitive to allow reliable inferences regarding among-site variation in bat species richness and 435 

assemblage composition. This suggests that survey efficiency may be maximized by ignoring 436 

those species that are most time-consuming to sample, i.e. those that make up the far end of the 437 

extended rare-species tail of the relative species-abundance distribution.  438 

Our analyses demonstrate, however, that a one-size-fits-all approach to surrogate 439 

selection based on species subsets may be inappropriate, but will have to be tailored to site-440 

specific circumstances and consider the structural idiosyncrasies of local assemblages. In 441 

essence, monitoring programs will have to establish site-specific performance levels for 442 

biodiversity surrogates based on pilot data. In practice, this will require relatively detailed 443 

surveys at the beginning of a survey or monitoring program, which should entail the use of 444 

multiple sampling methods to accurately establish true patterns of species rarity. Such pilot 445 

surveys should be combined with the application of robust statistical approaches to assess survey 446 

completeness based on the species richness estimator most appropriate for a given dataset (see 447 

Reese, Wilson & Flather 2014 for a recent framework concerning estimator selection) to 448 

determine to what extent the use of species subsets is justifiable (Franklin et al. 2013). 449 

Implementing adaptive sampling schemes that avoid oversampling at some sites and 450 

undersampling at others (cf. Holtrop et al. 2010), i.e. aim to spatially prioritize sampling effort, 451 

may ultimately be key to maximizing cost-effectiveness in tropical bat surveys. Finally, when 452 

adopting a surrogate as part of a bat monitoring program or in environmental impact assessments 453 

it will be essential to assess its robustness across relevant spatial and also temporal scales, and to 454 

determine its performance prior to and after environmental impact as disturbance may alter the 455 
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relationship between the species subset and total biodiversity (Magierowski & Johnson 2006; 456 

Sebek et al. 2012). 457 
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 664 

Table S1. List of datasets used in this study. 665 

Fig. S1. Plots showing correlations between full and reduced datasets based on ground-level mist 666 

netting. 667 

Fig. S2. Plots showing correlations between full and reduced datasets based on canopy-level mist 668 

netting and acoustic sampling.669 



Table 1 Comparative performance of GLMMs at predicting high sample representativeness for 670 

random species subsets based on AICc model selection. Models are shown up to 95% of 671 

cumulative Akaike weights (), with the ones receiving the strongest support (AICc < 2) shown 672 

in bold. 673 

Subset Model K AICc AICc  

Random – SR Mean no. of surveys 3 127.22 0 0.47 

 ‘Sampling effort’ 4 129.91 2.69 0.12 

 No. of plots 3 130.17 2.95 0.11 

 Total assemblage abundance 3 130.48 3.26 0.09 

 Simpson’s diversity 1/D 3 130.87 3.65 0.08 

 Prop. of rare species 3 131.79 4.57 0.05 

 ‘Assemblage properties’ 5 132.50 5.28 0.03 

 Region 3 132.79 5.57 0.03 

Random – DCA1 ‘Sampling effort’ 4 118.64 0.00 0.83 

 Mean no. of surveys 3 122.02 3.37 0.15 

Random – J Mean no. of surveys 3 91.28 0.00 0.70 

 ‘Sampling effort’ 4 93.40 1.95 0.26 



Table 2 Comparative performance of GLMMs at predicting high sample representativeness for 674 

non-random species subsets based on AICc model selection. Models are given up to 95% of 675 

cumulative Akaike weights (), with the ones receiving the strongest support (AICc < 2) shown 676 

in bold. 677 

Subset Model K AICc AICc  

Nonrandom – SR Prop. of rare species 3 27.07 0 0.63 

 Simpson’s diversity 1/D 3 30.67 3.60 0.10 

 Mean no. of surveys 3 31.43 4.36 0.07 

 Total assemblage abundance 3 32.55 5.48 0.04 

 Region 3 32.66 5.59 0.04 

 Method 3 32.69 5.62 0.04 

 No. of plots 3 32.76 5.69 0.04 

Nonrandom – DCA1 Total assemblage abundance 3 34.05 0 0.31 

 Simpson’s diversity 1/D 3 35.03 0.98 0.19 

 Prop. of rare species 3 35.56 1.51 0.14 

 Region 3 36.61 2.56 0.09 

 No. of plots 3 36.61 2.56 0.09 

 Mean no. of surveys 3 36.77 2.72 0.08 

 Method 3 36.79 2.74 0.08 

Nonrandom – J Prop. of rare species 3 19.07 0.00 0.88 

 ‘Assemblage properties’ 5 23.17 4.11 0.11 

 678 

 679 



Table 3 Model-averaged parameter estimates, unconditional standard errors and 95% confidence 680 

intervals for the best-selected GLMM models (AICc < 2) assessing correlates of high sample 681 

representativeness for random and non-random species subsets. 682 

Subset Model Estimate SE 95% unconditional CI 

    Lower Upper 

Random – SR  Mean no. of surveys 0.58 0.26 0.07 1.10 

Random – DCA1 Mean no. of surveys 1.55 0.49 0.59 2.51 

 No. of plots 1.65 0.64 0.40 2.89 

Random – J  Mean no. of surveys 0.60 0.20 0.21 0.98 

 No. of plots 0.16 0.17 -0.18 0.49 

Nonrandom – SR Prop. of rare species -1.74 0.92 -3.54 0.05 

Nonrandom – DCA1 Total assemblage abundance -0.83 0.57 -1.96 0.29 

 Simpson’s 1/D 0.65 0.57 -0.47 1.76 

 Prop. of rare species -0.69 0.76 -2.17 0.79 

Nonrandom – J Prop. of rare species -6.76 3.90 -14.4 0.89 

 683 

 684 

 685 



Figure captions 686 

Fig. 1. The magnitude of correlations across sites between the original dataset and subsets of 687 

data for species richness (SR), and for species composition as represented by the ordination 688 

scores of the first axis of a detrended correspondence analysis (DCA1) and the Jaccard index (J). 689 

Shown are examples for bat assemblages from both the New and Old World tropics based on 690 

ground-level mist netting (GN), canopy-level mist netting (CN), and acoustic sampling (AS). See 691 

Figs S1 and S2 for plots for all datasets included in the study. Subsets were generated by deleting 692 

different numbers of species either at random or based on species rarity. The bold line connects 693 

median correlations r(SUB x FULL) for 100 randomly chosen subsets at each of five species pool 694 

sizes; the broken lines indicate upper and lower 95th percentile correlations. Open circles denote 695 

non-random subset correlations, with species eliminated based on up to three abundance 696 

thresholds, whenever applicable (RA < 0.1% (    ), < 0.5% (    ), < 1% (   )). 697 

 698 

Fig. 2. Boxplots summarizing Pearson product-moment correlations between reduced and full 699 

species sets across all datasets examined in this study. For random species subsets, provided are 700 

both median correlations as well as lower 95th percentile correlations at five different species 701 

pool sizes. For non-random subsets, correlations are shown for each of the three threshold levels 702 

of relative abundance (RA) based on which rare species were eliminated from the full species 703 

pool. 704 

 705 

Fig. 3. Frequency histogram of the proportion of rare species across the datasets analyzed. 706 
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Fig. 2.710 
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Fig. 3. 712 
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