
 

 

 

 

 

 

 

 

 

Abstract 

This paper deals with two novel structures for mobile robots. The original inspiration of the robots comes from a salamander and a specific 

kind of spiders. Our robots have some especial moving capabilities causing to increase the robot maneuverability. Indeed, the capability of rolling 

motion is added to ordinary quadruped robots. This capability causes increment in maneuvering of the robots. Manipulators can be embedded into 

the robots to add the ability of transferring materials into the shell and conducting some tasks such as repairing. In this paper, after inspection of 

motion principles of the rolling robots, their dynamic equations are derived. Different simulations of two Bioinspired mobile robots are presented 

in order to scrutinize various capabilities of the proposed designs. Walking capabilities of the robots as well as their advantages are to be 

discussed in detail. The comprehensive simulation results of the robots in various motion modes are presented. Finally the first prototype is 

introduced to verify the motion mechanisms. 

Keywords: Bionics; rolling robot; quadruped robot; Lagrange equations. 

 

1 Introduction 

 

      Designing the mobile robots using rolling motion for their displacement has been attended by many researchers 

in recent years. The main reason of this attention can be attributed to less energy consumption and more smooth 

motion [1, 2]. In nature, we can observe utilization of rolling motion in some living creatures as well. By looking 

towards it, perhaps some lessons regarding rolling can be learned and applied to rolling robots [2]. For animals this 

motion is fruitful especially in cases needing quick reactions such as hunting and escaping. By millions years of 

evolution, salamander and spider are two of these animals having the ability of using this motion to avoid from 

danger. 

       “Web-toed Salamander”, Fig. 1a, is an especial kind of salamander living in steep mountainous area [3]. This 10 

cm creature disguises itself like a wheel when feels fear or danger. This disguising gives salamander the possibility 

of rolling on steep rocks and makes it easy to flee quickly. Fig. 1b shows a species of spiders called “Namib golden 

wheel spider” [4]. This invertebrate also uses rolling trick to flee when an intruder attacks. In case of intrusion into 

its nest, the spider is able to roll with a speed about 1 m/s or twenty rpm and escape from danger.  

      We inspired from the motions conducted by the mentioned salamander and spider and introduced two new 

mobile robots. The designs of the two structures named cylindrical quadruped robot (CQR) and spherical quadruped 

robot (SQR). In fact, CQR and SQR are combined models of the quadruped robots and cylindrical and spherical 

ones. As shown in Fig. 2, the robots have rolling, climbing and walking motion modes that we are going to deal with 

their explanations. These two robots compose of four legs that each leg has two links. On each leg two motors are 

suggested. The first motors are located in the joints of the two links and the second ones are located in the joints 

between each leg and frame. The main frame of the first robot consists of two hollow hemi-cylinders attached to 

each other by a revolute joint. A motor is also considered in the joint between two hemi-cylinders. 
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Turning this motor causes the motion of the two hemi–cylinders toward each other and closing the frame. In this 

case, the frame of the robot is in the cylindrical shape. For the second robot, two hemispheres instead of two hemi-

cylinders are used similar to the first robot. The hemispheres are attached to each other by the joints and a motor. In 

the front part of the robots, the manipulators can be installed.  

      By these manipulators, the robots can do transformational operations of transferring burdens into the robot or 

taking off them from inside of the frame towards outside. In Fig. 3, the structural configurations of the robots can be 

observed.  As shown in Fig. 4a, the first prototype of the SQR was implemented also in our mechatronics laboratory. 

As shown in this figure, the robot has a symmetrical structure causing the robot to utilize the complete area of the 

spherical shell for locomotion. The prototype was used to verify the equations and prove some capabilities of the 

robots. It, as shown in Fig. 4b, consists of four pendulums as four legs of the robot.  

      It is worth noting that the prototype is implemented only for the verification of the rolling movement and it has 

not been considered for walking motion yet. Hence, as shown in Fig. 4b, the prototype has only four DC motors and 

we neglect the linkage motors of the legs. There is a joint between this two hemispheres and a spring which is used 

to open the shell. The servo which is shown in the figure is used to connect two hemispheres of the shell. A tendon 

lies between this joint and shaft of the servo and helps to close the joint when the shaft starts to rotate. As shown in 

Fig. 4b, the stators of the DC motors are connected to the shell of the robot and their rotors are connected to the 

pendulums. There are also four weights connected to the end of the pendulums to increase the driving moments. By 

turning the motors, the pendulums start to turn and so the robot move.  

      In the last decade, there were several researches in the field of the robots using rolling mode as their motion 

mechanism. Many of these researches were about offering novel mechanisms for the propulsion mechanisms (PMs) 

of robots. In wheel-based robots for instance the robots use a car with one, two, three or four wheels inside. The 

propulsion of the robots comes from the movement of the cars. Indeed, the robot moves when its center of mass 

(CM) is displaced by car displacement inside the robot. The robot implemented by Halm et al. was one of the first 

samples of these types of the robots. Their robot consisted of a plastic spherical shell and an Internal Driving Unit 

(IDU). The IDU contained a driving wheel steered by a steering axis, one control box in center and one small 

passive wheel with spring. By rotation of the wheel and consequently IDU, the CM of the robot was transferred and 

hence, the robot began to move [5]. The robot developed by Bicchi et al. consisted of two wheels toy car located in a 

spherical case. When the car was starting to move, the CM of the robot was displaced and thus, the robot was 

generating a straight or curved motion depend on the motion of the car inside [6, 7]. For more information about the 

motion of the rolling robots refer to [8-12] and [18-26].  

      In this paper, after introducing and explaining the designs of the robots, their dynamic equations are derived. The 

rest of the paper includes consequently an explanation of our proposed designs, a description on the rolling 

capabilities of our robots and mathematical formulation of the dynamics of the robots. 

       

2 Dynamics of the robots 

 

As declared, SQR and CQR, are able to create rolling motion distinguishing them from other quadruped robots. 

To create rolling motion, as illustrated in Figs. 5 and 6, the robots transfer the CM using the leg motions and 

consequently move themselves. Their ways of motion are so that after closing the main frames and legs, the frames 

are located on the floor. After that, the four motors which are responsible for joining the legs to the frames begin to 

rotate one side. By moving the motors, the joined legs to them begin to rotate in one direction. The path of moving 

legs is so that by moving two front links to outside and two back links to inside, the main frames of robots roll. In 

this situation, as explained in the dynamic analysis section, by moving of the legs, the CM of the robots is 

transferred to create a moment for forward motion. It is clear that the rate of this moment depends on the weights of 

the links. By the increments in the weights of the links, the produced moment increases. The results of this type of 

rolling motion reveal smoother motion with lower swings (oscillations) during the movement.  

      In this section, the dynamic equations of CQR and motion model of SQR are achieved. The well-known 

Lagrange and Newton-Euler formulations are applied to obtain the equations.  The CQR and SQR are designed to 

move on the earth or other planets similar to some other mobile robots. In order to control the robots on trajectories, 



 

 

it is required to have dynamic models of the robots. In this section, we deal with motion modeling and dynamic 

analyses. At the first sub-section, Lagrangian equations are used to derive the dynamic equations of the CQR. In the 

Lagrangian formulation, it is required to formulate the potential and kinetic energies of the system. In the next sub-

section, although we can use the procedure applied in deriving the dynamic equation of the CQR, we try to obtain 

the motion model of the SQR via another way. 

 

2.1 Dynamics of the CQR 

 

      We suppose the universal coordinate system XYZ is fixed on the ground and obtain the dynamic relations of the 

robot with respect to the main coordinate axes. To obtain dynamic formulae of the robot, we consider that: 

 

𝜓𝑛 = 𝜃𝑛 + 𝜙𝑛 ,   𝑛 = 1, 2, 3, 4. (1) 

where, 𝜓𝑛 and 𝜙𝑛, as shown in Fig. 7, are respectively the angle of the leg orientation with respect to the horizontal 

plane and the angle between plane and leg attachment point. 𝜃𝑛 are the angles between the surfaces passing from 

geometric center of the robot and the attachment point of the leg with the cylinder 𝑝𝑛
′  and legs. The potential 

energies of the cylinder and legs are presented in (2). 
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, (2) 

 

where, 𝑈𝑠 is the potential energy of the cylinder with respect to the center of the coordinate frame O and 𝑈𝑖  is the 

potential energy of ith leg with respect to the center of the coordinate frame O. The sine was shown by S in (2) and 

R1 denotes the external radius of the shell. The symbol l, as shown in Fig. 7, is the length between CM of the leg and 

𝑝𝑛
′ , m is the mass of each leg and g denotes the gravity. Moreover, 𝑝𝑛 represent the CMs of the legs. From Fig. 7, we 

can get: 

 

�⃗⃗� 𝒑𝒏 = �⃗⃗�
 
𝒐 + �⃗⃗� 𝒑𝒏′ + �⃗⃗�

 
𝒑𝒏 𝒑𝒏

′⁄  , 𝑛 = 1, 2, 3, 4. (3) 

 

where, �⃗⃗� 𝒑𝒏  are the velocity vectors of CMs of the legs, �⃗⃗� 𝒐 is the velocity vector of geometric center of the robot, 

�⃗⃗� 𝒑𝒏′  are the velocity vectors of 𝑝𝑛
′  with respect to the geometric center of the robot and  �⃗⃗� 𝒑𝒏 𝒑𝒏

′⁄  are the relative 

velocity vectors of  𝑝𝑛 with respect to the 𝑝𝑛
′ . From Fig. 7, we can write: 

 

�⃗⃗� 𝑶 = [

𝑉𝑂𝑥
𝑉𝑂𝑦
𝑉𝑂𝑧

] = 𝜔𝑆R1 [

𝐶𝛽
0
𝑆𝛽

], (4) 

 

�⃗⃗� 𝒑𝟏
′ = [

𝑉𝑝1′𝑥
𝑉𝑝1′𝑦
𝑉𝑝1′𝑧

] = −𝜔𝑠R [

𝑆𝜙𝐶𝛽
𝐶𝜙
𝑆𝜙𝑆𝛽

] (5) 

 

where, C is acronym of cosine,  𝑉𝑂𝑥 , 𝑉𝑂𝑦 , 𝑉𝑂𝑧 are projections of �⃗⃗� 𝑶 wrt OXYZ, 𝜔𝑠 is the angular velocity of the shell 

and 𝛽 denotes the robot deviation angle from the straight line about Y axis. R and 𝛽 are shown in Fig. 7. The 



 

 

projections of �⃗⃗� 𝒑𝟏
′  in three main directions are 𝑉𝑝1′𝑥, 𝑉𝑝1′𝑦, 𝑉𝑝1′𝑧. To obtain �⃗⃗� 𝒑𝟏 𝒑𝟏

′⁄ , we need to calculate 𝒍 𝟏 and the 

angular velocity vectors as following: 

 

𝒍 𝟏 = [

𝑙1𝑥
𝑙1𝑦
𝑙1𝑧

] = l [

𝐶𝜓1𝐶𝛽
−𝑆𝜓1
𝐶𝜓1𝑆𝛽

]  (6) 

 

�⃗⃗⃗� 𝟏 = [

𝜔1𝑥
𝜔1𝑦
𝜔1𝑧

] = 𝜔1 [

−𝑆𝛽
0
𝐶𝛽

] (7) 

 

Where 𝒍 𝟏 is a vector which 𝑝1
′  and 𝑝1 are the start point and end point of it respectively and as already mentioned the 

length of this vector is equal to l. The projections of 𝒍 𝟏 are 𝑙1𝑥, 𝑙1𝑦 , 𝑙1𝑧  respectively and 𝜔1𝑥 , 𝜔1𝑦 , 𝜔1𝑧 are the 

projections of angular velocity vector of the motor 1 denoted by �⃗⃗⃗� 𝟏 in (7). From (6) and (7) we can calculate �⃗⃗� 𝒑𝟏 𝒑𝟏
′⁄  

as: 

 

�⃗⃗� 𝒑𝟏 𝒑𝟏
′⁄ = [

𝑉(𝑝1 𝑝1
′ )𝑥⁄

𝑉(𝑝1 𝑝1
′ )𝑦⁄

𝑉(𝑝1 𝑝1
′ )𝑧⁄

] = �⃗⃗⃗� 𝟏 × 𝒍 𝟏 = l𝜔1 [

𝐶𝛽𝑆𝜓1
−𝐶𝜓1
𝑆𝛽𝑆𝜓1

] (8) 

 

Then, the velocity vector of the leg 1 can be formulated from (3), (4), (5) and (8) as: 

 

�⃗⃗� 𝒑𝟏 = [

𝑉𝑝1𝑥
𝑉𝑝1𝑦
𝑉𝑝1𝑧

] = [

𝜔𝑠R1𝐶𝛽 −𝜔𝑠R𝑆𝜙𝐶𝛽 + l𝜔1𝐶𝛽𝑆𝜓1
−𝜔𝑠R𝐶𝜙 − l𝜔1𝐶𝜓1

𝜔𝑠R1𝑆𝛽 − 𝜔𝑠R𝑆𝜙𝑆𝛽 + l𝜔1𝑆𝛽𝑆𝜓1

] (9) 

 

So from (9), we get: 

 

𝐾1 =
1

2
m|�⃗⃗� 𝒑𝟏|

2
=

1

2
m[(𝜔𝑠R1𝐶𝛽 − 𝜔𝑠R𝑆𝜙𝐶𝛽 + l𝜔1𝐶𝛽𝑆𝜓1)

2 + (−𝜔𝑠R𝐶𝜙 − l𝜔1𝐶𝜓1)
2 + (𝜔𝑠R1𝑆𝛽 − 𝜔𝑠R𝑆𝜙𝑆𝛽 +

l𝜔1𝑆𝛽𝑆𝜓1)
2]    (10) 

 

where, 𝐾1 is the kinetic energy of the leg 1, and the relations of kinetic energies of other legs can be achieved as 

before. For the kinetic energies of the cylinder, we can write: 

 

{
𝐾𝑠
𝑇𝑠
} =

1

2
𝜔𝑠
2 {
𝑀𝑠R1

2

𝐽𝑠
} (11) 

 

where, 𝐾𝑠 and 𝑇𝑠 are the translational and rotational energies of the cylinder, respectively. From Lagrange equations, 

we can write: 

 

𝐿 = 𝐾𝑠 + 𝑇𝑠 − 𝑈𝑠 + ∑ 𝐾𝑖𝑛 − ∑ 𝑈𝑖𝑛  (12) 

 
𝑑

𝑑𝑡
(
𝜕 𝐿

𝜕 �̇�
) − (

𝜕 𝐿

𝜕 𝑞
) = 𝑄𝑖   (13) 

 



 

 

The following equation is obtained from (12) and (13): 

 

{
𝑇𝑛

−𝑇 + 𝑇𝑓
} =

𝑑

𝑑𝑡
{

𝜕𝐿

𝜕𝜔𝑛
𝜕𝐿

𝜕𝜔𝑠

} − {

𝜕𝐿

𝜕𝜃𝑛
𝜕𝐿

𝜕𝜙

} , 𝑛 = 1,2,3,4. (14) 

 

where, L, 𝑞, �̇� and 𝑄𝑖  are respectively Lagrangian, generalized coordinate, derivative of generalized coordinate and 

generalized force. Moreover, 𝑇 is the virtual torque applied to the center of geometry of the robot. 𝑇𝑓 denotes the 

friction torque between the robot and surface which the robot rolls on. Hence, from (2), (10), (11), (12) and (14), the 

applied torque on the leg 1 by the motor 1 can be presented as (15): 

 

𝑇1 = m× l[𝛼𝑠(R1𝐶𝛽
2𝑆𝜗 − R𝐶𝛽

2𝑆𝜙𝑆𝜗 − R𝐶𝜙 𝐶𝜗+R1𝑆𝛽 𝐶𝛽𝑆𝜗 − R𝑆𝛽𝑆𝜙𝐶𝛽𝑆𝜗) + 𝛼1l + g𝐶𝜗 − 𝜔𝑠𝜔1(R1𝐶𝛽
2𝐶𝜗 −

R𝐶𝛽
2𝑆𝜙𝐶𝜗 + R𝐶𝜙𝑆𝜗 + R1𝑆𝛽𝐶𝛽𝐶𝜗 − R𝐶𝛽

2𝑆𝜙𝐶𝜗]  (15) 

 

where, 𝛼𝑠 and 𝛼1 are the angular accelerations of the shell and motor 1, respectively and 𝜗 = 𝜃1 + 𝜙. Similar results 

can be obtained for the other legs. If the robot moves in a straight trajectory we can write: 

 

𝜙1 = 𝜙2 = 𝜙3 = 𝜙4 = 𝜙 (16) 

 

𝛽 = 0 (17) 

 

So, from (15), (16) and (17), we get: 

 

𝑇1 = m× l[𝛼𝑠(R1𝑆𝜗 − R𝑆𝜙𝑆𝜗 − R𝐶𝜙𝐶𝜗) + 𝛼1l + g𝐶𝜗 − 𝜔𝑠𝜔1(R1𝐶𝜗 − R𝑆𝜙𝐶𝜗 + R𝐶𝜙𝑆𝜗)] (18) 

 

The other torques can be obtained by similar procedures. In (14), the mentioned friction torque consists of two 

essential parts. One is the Coulomb friction which is almost constant and does not depend on the velocity. The other 

is the viscous friction that is proportional to the angular velocity of the robot. So, we can write 𝑇𝑓  as: 

 

𝑇𝑓 = 𝑇𝑐 + 𝛾𝑣𝜔𝑠 (19) 

 

where, 𝑇𝑐 is the torque due to Coulomb friction and can be positive or negative depending on the direction of the 

angular velocity vector of the robot, and 𝛾𝑣 is the coefficient of the viscous friction. To verify our calculations, we 

apply a virtual torque to the center of geometry of the robot. A similar method to obtain 𝑇1 is applied to formulate 

the virtual torque T. The only difference is that the derivatives are respect to 𝜔𝑠 and 𝜙 instead of 𝜔𝑛 and 𝜃𝑛. 
 

2.2 Motion model of the SQR 

 

      Here, we are going to obtain the motion model of the SQR. Although, by minor change in the parameters and the 

resultant changes in the governing equations, we can obtain the dynamic model of the SQR, in this sub-section, we 

try to obtain the motion model of the SQR via another way. As mentioned in the previous section, inertial coordinate 

frame attached to the surface is denoted by OXYZ and coordinate frame o'x'y'z' is established on the geometric 

center of the robot. The robot coordinate system is parallel with the world coordinate system and does not rotate 

with the robot rotation. As shown in the previous sub-section and Fig. 8, 𝜙 is the rolling angle of the ball measuring 

the rotational distance from an origin and 𝜃𝑚𝑐 is the tilt angle of CM of the robot. As shown in Fig. 8, this CM is 

shown by mc. As mentioned before and shown in Fig. 9, the robot has four same legs and same components. Thus, 

we can write: 



 

 

 

m1 = m2 = m3 = m4 = ml (20) 

 

where, m1, m2…m4  are the masses of the four legs and their components. Therefore, we have: 

 

Mmc = m1 +m2 +m3 +m4 = 4ml (21) 

 

where, mc  is the equivalent mass of the four legs and their components and Mmc denotes the mass of mc. The 

driving torque of the robot can be given by: 

 

𝜏 = I𝛼𝑠 (22) 

 

where, I is the inertial moment of  the SQR and 𝛼𝑠 is its angular acceleration where can be given by: 

 

𝛼𝑠 =
𝑑𝜔𝑠

𝑑𝑡
=

𝑑2𝜙

𝑑2𝑡
 (23) 

 

by (25) and Fig. 8, we get: 

 

|𝑙𝑐 ×Mmcg| = I𝛼𝑠 (24) 

 

where, 𝑙𝑐 is the distance between contact point p and mass center mc. Also from Fig. 8, the driving torque can be 

written as: 

 

|𝑙𝑐 ×Mmcg| = 𝑟mcMmcg sin 𝜃mc (25) 

 

In Fig. 8, os is the geometric center of the ball, p is the contact point where the robot contacts with the ground, 𝑟𝑚𝑐  is 

the distance between the geometric center of the SQR and the mass center mc and 𝜃mc represents the tilt angle of the 

mc with respect the vertical line. 

The position of the mc can be calculated as:  

 

{
 

 𝑥′mc =
1
4⁄ (𝑥′1 + 𝑥

′
2 + 𝑥

′
3 + 𝑥

′
4)

𝑦′mc =
1
4⁄ (𝑦′

1
+ 𝑦′

2
+ 𝑦′

3
+ 𝑦′

4
)

𝑧′mc =
1
4⁄ (𝑧′1 + 𝑧

′
2 + 𝑧

′
3 + 𝑧

′
4)

 (26) 

 

where, 𝑥′𝑛, 𝑦′
𝑛

 and 𝑧′𝑛 are the coordinates of cms of the legs shown in Figs. 9a and 9b, and 𝑥′mc, 𝑦′mc and 𝑧′mc are 

the coordinates of  mc. Here, by using Fig. 8, we have: 

 

𝑟𝑚𝑐 = √𝑥′mc
2 + 𝑦′mc

2 + 𝑧′mc
2  (27) 

 

As we know, the inertial moment of a spherical hollow shell can be calculated as: 

  

Iball =
2
5⁄ Mball

R1
5−R2

5

R1
3−R2

3 (28) 

 

where, Iball and Mball are the inertial moment and the mass of the shell, respectively. As shown in Fig. 8, R1 and R2 

are the outer and inner radii of the shell, respectively. As mentioned, the four legs and their components were 

equivalent by mc. The equivalent inertial moment of the four legs and their components can be calculated as: 



 

 

 

I𝑖𝑛 = ml(𝑟1
2 + 𝑟2

2 + 𝑟3
2 + 𝑟4

2) (29) 

where, 𝑟𝑛 is: 

 

𝑟𝑛 = √𝑥′𝑛
2 + 𝑦′𝑛

2 + 𝑧′𝑛
2  (30) 

 

As shown in Fig. 8, 𝜃mc can be calculated as: 

𝜃mc = tan
−1(

𝑥′mc
𝑦′mc
⁄ ) (31) 

 

The inertial moment of the robot can be obtained by: 

 

𝐼 = Iball + 𝐼𝑖𝑛 =
2
5⁄ Mball

R1
5−R2

5

R1
3−R2

3 +m∑(𝑟1
2 + 𝑟2

2 + 𝑟3
2 + 𝑟4

2)(32) 

 

Hence, from (23), (25) and (32), we can get: 

 

𝑑2𝜙

𝑑2𝑡
−

𝑟mcMmcg

𝐼
sin 𝜃𝑚𝑐 = 0 (33) 

 

As the outer shape of the robot is spherical, there is a needle contact between shell and ground causing a low friction 

in the contact point p. We have a bit changing in the above results by considering the friction. By import the friction 

in the previous equations, we can get:  

 

𝑟𝑚𝑐Mmcg sin 𝜃mc − 𝑇𝑓 = 𝐼𝛼𝑠 (34) 

 

So, by considering the friction, (33) can be rewrite as: 

 

𝑑2𝜙

𝑑2𝑡
+

𝑇𝑓

𝐼
−

𝑟mcMmcg

𝐼
sin 𝜃mc = 0 (35) 

 

2.3 Uphill motion 

 

      We can also compute the maximum slope of the uphill motion of the robots. As shown in Fig. 10, the kinematic 

maximum angle of the slope can be calculated easily. As depicted in this figure, it can be deduced that in the uphill 

motion there are two moments in opposite directions that can be calculated as: 

 

|𝑙𝑐 ×Mmcg| = Mmcg(𝑟mc sin 𝜃mc − R1 sin 𝛾𝑠𝑙𝑜𝑝𝑒) (36) 

 

where, 𝛾𝑠𝑙𝑜𝑝𝑒  is the slope of the hill. Since, we consider the robots move uphill, so the driving moment of the robot 

must be larger than or equal to the zero. So, from (36) we get: 

 

Mmcg(𝑟mc sin 𝜃mc − R1 sin 𝛾𝑠𝑙𝑜𝑝𝑒) ≥ 0 (37) 

 

sin 𝛾𝑠𝑙𝑜𝑝𝑒 ≤
𝑟mc

R1
sin 𝜃mc (38) 

 

Hence, the maximum angle of the slope that the robot can move on it is: 

 



 

 

𝛾𝑠𝑙𝑜𝑝𝑒 = sin
−1(

𝑟mc
R1
⁄ ) (39) 

 

It is worth noting that to obtain this maximum angle, we suppose that there is no slip in the robot motion. 

      By comparison of the motion of the SQR with pendulum robots, we found that more abilities in motions come 

from the legs of the SQR. For more explanation, it can be declared that in motion of the SQR, as shown in Figs. 11a 

and b, there are at least two legs in contact with the ground. As shown in the figures, in rolling of these robots, there 

are three contact points unlike the ordinal rolling robots having one contact point. The two more contact points can 

decrease the oscillation of motion and increase the hill motion ability of the robot by increasing the contact friction 

between the robot and surface. In walking mode our robots have a motion mode similar to the motion of ordinary 

quadruped mobile robots. The robots in both close and open states have the ability to perform walking motion. For 

more information about the motion of the quadruped and walking robots refer to [13-17]. Robots applying rolling 

motion for their displacement usually have two spherical and cylindrical shapes [18-27]. To create the rolling 

motion, the robots should change their situations from open state to the closed one; to do this, as shown in Fig. 12, 

while the main halves of the frames of the robots are closed by the motor between the two halves, the second links 

of each leg are gathered on the first link simultaneously.  

 

3 Motion simulation and experiment 

      The results of the simulations and experiments are presented in this section. First, we discuss on the motion of 

the CQR. In Fig. 13a, b and c, we apply three low, medium and fast constant rotational speeds of the motors, 

respectively. In this figures, agreements are observed between the simulation results and those obtained from (15). 

As illustrated in Fig. 13a, the robot is applied a low constant rotational speed of the motors. The figure shows 

fluctuations in motions of the robot; that these fluctuations decrease as the velocity increases, as presented in Figs. 

13b and 13c. It should be noted that although there are fluctuations in the robot motions, the dominant behavior of 

the angular velocity of the robot is a constant value. Figs. 14a and b display the results coming from the robot 

simulation and deduced in (33). In the figures, we plotted the first and second terms separately. The overlap between 

them reveals the accuracy of the equation. Furthermore, in these figures, we try to simulate the proposed robots in 

two distinct angular accelerations. As shown in these figures, there are acceptable coincidences between the 

simulation results (blue line) and analytic results (green lines).  

      An AVR controller main board is applied to control the motors and to perform the commands transferred from a 

PC as a command station. The commands transferred from command station are received by a Bluetooth serial 

adapter module and then they are sent to AVR main board in order to issue appropriate orders. Based on the 

commands, the main board controls the speeds of the motors. The robot is equipped with four encoders as sensors. 

The feedback signals of the sensors are transferred to the main board in order to compute the errors and send the 

appropriate orders. A rechargeable battery provides the required energy of the robot. The electrical components and 

structural information of the prototype are presented in Table. 1 and 2 respectively.  The accuracy of the results of a 

circular trajectory is illustrated in Fig. 15a. This figure shows the results of circular trajectories with (a) 𝜆 = 15.3°, 

(b) 𝜆 = 12.1°, (c) 𝜆 = 8.3° and (d) 𝜆 = 5.7°, respectively. The agreements between simulation results and analytic 

relations are remarkable as shown in this figure.  In this figure, there is also an experimental trajectory of the SQR 

prototype for 𝜆 = 5.7°. As shown in this figure, there are some deviations between the circular trajectory obtained 

from analytic formulae and experimental trajectory of the prototype. The deviation may be eliminated by using an 

appropriate controller. In Fig. 15b, a square trajectory of the robot is shown. As depicted in this figure, the robot 

easily and immediately can change its path including 90° bends. For having a square path like this, we should apply 

the following functions for the motors: 

 

Motor 1 = IF( time-19 : 1 , 5 , IF( time-38 : -1 , 5 , IF( time-57 : -1 , 5 , IF( time-76 : 1 , 5 , 0 ) ) ) ). 

Motor 2 = IF( time-19 : 1 , 5 , IF( time-38 : 1 , 5 , IF( time-57 : -1 , 5 , IF( time-76 : -1 , 5 , 0 ) ) ) ). 



 

 

Motor 3 =  IF( time-19 : -1 , 5 , IF( time-38 : 1 , 5 , IF( time-57 : 1 , 5 , IF( time-76 : -1 , 5 , 0 ) ) ) ). 

Motor 4 =  IF( time-19 : -1 , 5 , IF( time-38 : -1 , 5 , IF( time-57 : 1 , 5 , IF( time-76 : 1 , 5 , 0 ) ) ) ). 

 

This is one of the important characteristics of the robot motion capabilities. Furthermore, as shown in Fig. 15a and b, 

the robot has some deviations from the desired path indicating the robot requirements for a motion controller.  

 

4 Conclusion 

 

      Two new designs of mobile robots were offered in this paper. In our robots, we tried to hybridize the rolling and 

walking robots to use all advantages of these two types. By using rolling motion, the robots had smoother and more 

monotonous motions and lower energy consumptions. Moreover, by using walking motion, they could overcome the 

obstacles and had stable motion as well as higher abilities in downhill and uphill motions rather than other rolling 

robots. A relatively comprehensive studied on different propulsion mechanisms of the rolling robots were reviewed 

and discussed. Then the concepts of the motions of the robots were described. Furthermore, their dynamic and 

motion models in different situations and applications were developed. The results corresponding to the software 

and analytic simulations of two Bioinspired mobile robots were compared with each other in detail in order to verify 

the efficiency of the robots and accuracy of the obtained governing equations. The implementation of the prototype 

was reported to scrutinize some basic motions of the robots to validate the proposed motion mechanisms. In the near 

future, we are going to develop our research via application of feedback controllers to control the motions of the 

robots. 
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