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New models for describing outliers
in meta-analysis

Rose Baker* and Dan Jackson

An unobserved random effect is often used to describe the between-study variation that is apparent in
meta-analysis datasets. A normally distributed random effect is conventionally used for this purpose. When
outliers or other unusual estimates are included in the analysis, the use of alternative random effect
distributions has previously been proposed. Instead of adopting the usual hierarchical approach to
modelling between-study variation, and so directly modelling the study specific true underling effects,
we propose two new marginal distributions for modelling heterogeneous datasets. These two distributions
are suggested because numerical integration is not needed to evaluate the likelihood. This makes the
computation required when fitting our models much more robust. The properties of the new distributions
are described, and the methodology is exemplified by fitting models to four datasets. © 2015 The Authors.
Research Synthesis Methods published by John Wiley & Sons, Ltd.
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1. Introduction

In many meta-analyses, the results of different studies disagree among themselves by more than their within-study
statistical errors would imply. For example, in their large-scale empirical investigation of 14886 meta-analyses,
Turner et al. (2012) found in 43% of meta-analyses that the DerSimonian and Laird (1986) estimator of the
between-study variance was positive. The between-study variance was greater in subjective meta-analyses, and
least in all-cause mortality, which gives confidence that the unexplained additional error is not entirely a statistical
artifact. For small sample sizes, a modest unexplained error may well be estimated as zero, so between-study
variance is probably even more ubiquitous than we think.

The most commonly used solution to this difficulty is the introduction of an unobserved normally distributed random
effect. This random effect has variance 72, where this parameter is usually referred to as the between-study variance. In
particle physics on the other hand, the within-study standard errors are instead scaled up when the outcome data
appear to be heterogeneous; refer to Baker and Jackson (2013) for an account of this alternative idea, and also a
small-scale empirical demonstration that the conventional random-effects model usually describes the data better.

Perhaps the main motivation for adopting a normally distributed random-effect is that it is mathematically very
convenient to make this assumption. The resulting marginal model for the effect y; is then obtained from a
hierarchical modelling framework, where we assume that Y,»],u,f-N(,u,7 a,?) and u;~ N(u, 7, where u is the mean effect
and o7 the quoted within-study variance. This means that the marginal distribution, Y,-~N(y, o + rz), is obtained
after integrating u; out of the joint model for (Y; ;). Hence, the likelihood function for the random-effects model
differs trivially from the likelihood for the fixed-effect model, because o7 in the fixed effect model is simply replaced
by 67 + 2 in the random effects model. The within-study variances o7 are treated as fixed and known in analysis, so
that the random effects model involves two unknown parameters: the overall or average treatment effect x and the
between-study variance 2. However, as Hoaglin (2015) explains, taking the within-study variances as known is a
convenient approximation that can perform poorly in small studies. We explore this issue in our second simulation
study, where we simulate binary outcome data for which we take the within-study variances as fixed and known in
analysis.
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This assumption of between-study normality can be motivated by appealing to the notion that x; might be
thought to depend on the sum of several unknown variables, such as patient mix and operational procedures.
Then, by the central limit theorem, this random effect should be approximately normally distributed. However,
sometimes it is apparent that a long-tailed or even skew distribution may needed to describe the data well.
One way to motivate a skew distribution of effect would be in the situation, where the treatment is reasonably
effective but also where the effect is limited by the original severity of disease. This type of ‘ceiling effect’ is quite
likely to result in a skew distribution in the true study effects u;.

There has been little work on fitting non-normal distributions for the random effect in meta-analysis. Baker and
Jackson (2008) explored the use of several non-normal random-effects distributions, of which the t-distribution
performed best; however, they did not examine skew distributions. A difficulty with their methodology is that by using
maximum likelihood estimation in conjunction with non-tractable random effects distributions, the classical methods
proposed by Baker and Jackson (2008) required both numerical integration and numerical maximisation. This means
that that their numerical methods are quite liable to be fragile in repeated routine application. Lee and Thompson
(2008) explored the use of the skewed t-distribution in a Bayesian context. This distribution comprises two halves
of a t-distribution with differing scale factors, ‘glued together’ at the mode so that the probability density function
and its first derivative are continuous (Fernandez and Steel, 1998). Both Baker and Jackson (2008) and Lee and
Thompson (2008) used the fluoride toothpaste dataset that is re-analysed here; Lee and Thompson used Markov
Chain Monte Carlo to overcome the difficulties associated with integrating out the random effect.

One may wonder if there is any point fitting complex models, with the small sample sizes found in meta-
analysis. We shall show by Monte Carlo simulations that when outliers are present, simply fitting the normally
distributed random effects model can be misleading.

In this paper we therefore present some new marginal models for meta-analysis, so that heavy tailed and skew
distributions can be used where necessary. In order to ensure that our models are analytically tractable, we avoid
the hierarchical modelling approaches of Baker and Jackson (2008) and Lee and Thompson (2008), and we instead
model only the marginal distribution of Y;. We ensure that our models reduce to the conventional random effects
marginal model in special cases, so that the usual model is recovered in situations where it is adequate.

To our knowledge, only two proposals for tractable models of this kind have been previously proposed. Firstly,
Beath (2014) uses a mixture distribution. This has advantages, because it is computationally simple and the
probability that a study is an outlier can be readily found. However, a problem with this approach is that a mixture
of two normal distributions requires two extra parameters, the mixing probability and the variance scaling factor, so
this is an expensive methodology to use when there is little data, as is commonly the case. Secondly, Gumedze and
Jackson (2011) have a compromise solution to this type of identifiability problem; they use normal distributions
with a novel variance structure that facilitates sensitivity analyses and the identification and down-weighting of
outliers. Viechtbauer and Cheung (2010) and Julious and Whitehead (2011) also present methodologies for
identifying outliers.

We illustrate the use of our methodology using meta-analyses of the fluoride toothpaste and cytidine
diphosphate (CDP)-choline datasets described in Baker and Jackson (2008), the pravastatin dataset described by
Gehr, Weiss and Porzsolt (2006) and the paroxetine dataset described by Julious and Whitehead (2011), and
conclude with a discussion.

2. New marginal models for meta-analysis

In the conventional random effects model we assume the marginal model Y,-~N(,u7 o+ 12). The aim here is to
develop some alternative marginal models with additional parameters that allow skew and heavy tailed
distributions but also reduce to the conventional random effects model in special cases, so that this model can
be recovered when it is appropriate. We will define u? = 67 + 7% and omit the suffix i when presenting our
new models, so that the conventional random-effects model can be written simply as as Y~N(/¢,u2).

2.1. Symmetric distributions

Symmetric but heavy tailed distributions are useful in order to model and downweight outliers (Baker and
Jackson, 2008; Gumedze and Jackson 2011). In this section we develop such distributions for this purpose.

2.1.1. The four parameter symmetric marginal model. A suitable long-tailed symmetric distribution is the mixed
normal, with probability density functions (pdf)

1ol i) > o(-i5%)
V2ru 2n(u? 4 v?)

fly) = m

where V2 is an additional variance parameter. This is the solution proposed by Beath (2014), because model (1) is a
re-parameterisation of his robust model for meta-analysis described in his section 2.2. On setting v=0, or p=0, we
regain the conventional random effects marginal model. The parameter p describes the probability of outlying
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studies, and the parameter v* describes the additional variation associated with the outliers. Parameters x and 7°
retain their interpretation in the conventional random effects model.

The log-likelihood ¢ = 2;1 Inf(y;) involves the logarithm of a sum of negative exponentials. Throughout we

will compute the studies’ contributions to the likelihood in ways that avoid any possible numerical difficulties. For
this model, it is computationally best to take the exponential out of the logarithm to avoid numerical problems
associated with taking the logarithm of a very small number. The log-likelihood can be computed as

n

[— Z (yi—n)’ ln (1 _p)eXp<_Zf'?(7“?)+2:;)) I p

= 2w +v?) ui Vi +v?

where c= — (n/2)In(2x). Here the logarithm contains only a constant and a negative exponential, which provides a
small correction to the first term, and there is no positive exponential that could cause numerical difficulties.

Although not needed when implementing the proposed methodology, we describe further properties of the
four parameter exponential distribution in Appendix A. These properties are primarily presented in order to assist
with future methodological work involving this distribution.

+cC (2)

2.1.2. The three parameter symmetric marginal model. A problem with the model proposed by Beath (2014) is
that it requires two more parameters than the conventional random effects model: the mixing probability p
and the additional variance v2 These can be hard to identify together in typical small meta-analysis datasets,
because the presence of a handful of unusual study results could be explained by a small p and large v? or a
larger p and smaller v2. Hence, the effects of these two additional parameters are hard to disentangle in practice;
from the examples, there was a negative correlation between p and V2.

This difficulty in identifying the full model can be remedied by making p a function of v. Here there are several
possibilities.

One is to impose the constraint p=u?/(u®+v?) in order to obtain a three parameter symmetric marginal model.
The parameter p is now strictly decreasing in v?, so that as v increases the probability of outliers decreases. This
means that the single parameter v can be used to identify the situations where outliers are because of a small
proportion of studies with very considerable additional variance, or where the outliers are because of a large
proportion of studies with somewhat less additional variance.

An alternative approach is to write p = (s2 4+ 12)/(s3 + 7> +v?), where s3 is the reciprocal of the average
information in the sample (the harmonic mean of the variances)

st = n/Z1/ai2. (€)
p

This alternative model means that p is now common for all studies. A further alternative is to use the typical
within-study variance suggested by Higgins and Thompson (2002) in (3) instead of s.

Using the first method, because the within-study variances differ from one study to the next, so does the value
of p. The probability p now depends on i, where p; is increasing in 2. This means that smaller studies (larger ?) are
more likely to be outliers when imposing this constraint; this is appropriate because it is generally thought that
small studies are more prone to producing unusual results. This is because small study effects are not uncommon
in meta-analysis (Sterne 2001). This constraint also means that the probability p has a similar dependence on 2,
which means that as 72 increases so does the value of p. This also seems reasonable because outliers may be
thought to be be likely in very heterogeneous datasets. We shall see that this model generally fits better than
the alternative model that uses p = (s +72) /(s + 2 + v?), which we will refer to as ‘s’ model.

2.2. Skew distributions

Skewness of the distributions of the study estimates is another possibility. Lee and Thompson (2008) used the
skewed t-distribution for the random effect in order to allow for this possibility. In this section we propose an
alternative skew and marginal model that is more easily used in applied work.

2.2.1. The five parameter skew marginal model. Our skew marginal distribution can be derived as a mixture
distribution. Here we again take a mixture of two random variables, that we denote as R, and R,, where
Ry ~N(u, u?). However, here we take R,=¢; —&y+e3+1, &~Expl(a), e;~Exp(b) and &3~N(O, u?), where Exp(6)
denotes an exponential distribution with mean 1/6 and n=u — 1/a+ 1/b. The distribution of the sum or difference
of one or more exponentials and a Gaussian random variable follows the lagged-normal distribution
(Bassingthwaite et al., 1966; Johnson, Kotz and Balakrishnan 1995). It is also sometimes called the exponentially
modified Gaussian distribution. Any number of exponentials can be added or subtracted, but here we just add
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one and subtract one. Defining 7 as we have ensures that the mean of both R; and R;, and so the mean of the
marginal model, is u.
The probability density function of the mixture distribution is

f(x) = (1 = p)p((x — u)/u) + pfi(x — 1), 4

where ¢(-) is the standard normal density function and

ab

f’(y):a+b

{exp(a*u?/2 — ay)®(y/u — ua) + exp(b*u?/2 + by) ®(—y/u — ub)}, (5)

where @(-) is the standard normal cumulative distribution function. When deriving the pdf of the lagged-normal
density in (5) it is algebraically simpler to convolve the two exponentials first; the details are given in Appendix B. It
can be seen there that the distribution of &; — ¢, can be written as a mixture of exponential distributions, which
gives the algebraic simplification.

The model parameters are y,7,1/a,1/b and p. The model can be reparameterised using a=a/r, b =ar. The five
parameters are then g, 7, o, r and p, with zero skewness if r="1 or a=0 (refer to Appendix C for formulae for this
and other moments). A value of r > 1 denotes skewness to the right, and r<1 skewness to the left. When skewness
is small, the skewness y<r—r~'. Thus, r is a useful measure of skewness. The formula for excess kurtosis shows
that for small kurtosis, <« %, so that o ' is a useful measure of kurtosis. Hence, this alternative parameterisation
helps us to interpret the model fit. As ' — 0 we regain the normal random effects model. However, when
skewness is extreme, so that one of g, b is very large and the other very small, to avoid numerical problems, 1/a
and 1/b should be used when computing the likelihood. Table 10 shows this situation for the paroxetine dataset.
We recommend the routine use of 7/a and 1/b over r,a for robustness; if desired, one can then refit using r,a.

2.2.2. The four parameter skew marginal model. The estimation of five parameters is a very demanding task in
typical meta-analysis datasets that only contain a few studies; we have already criticised the model of Beath
(2014) on the grounds that it requires the estimation of four parameters. Furthermore, the full five parameter
model is difficult to interpret, despite the reparameterisation suggested in the previous section. It is therefore
desirable to eliminate p from the model in a similar way as before, and so we take p = -—%——, where a~ %2 and
b~ 2 are the variances of the exponential distributions. As before, because u,? varies from one study to the next,

%7 where s, is defined in (3).

p becomes p; when making this simplification. Alternatively, we can write p = Tra T
Also as before, we can reparamerise and write a=a/r, so that we can interpret the parameters in the way
explained in the preceding texts.
For illustrative purposes, Figure 1 shows the pdf with x=0,u*=1, =0.5 and r=10. As the exponential tails
become longer (g, b decrease) the mixing probability tends to zero, so that the bulk of the distribution is normal,
but with a very long tail, that can be skew to one side. Figure 1 gives an indication of how the proposed four

parameter skew marginal model can very effectively describe outliers.

2.2.3. Computing the log-likelihood. Even though all our proposed marginal models avoid numerical integration,
if evaluated directly from (4) and (5), and using the definition of ¢(), the pdf and hence the likelihood can still
present numerical problems. This is because, without due care, the computation may require multiplying together

0.4 T T T T T T T T

0.35} | 1
[
0.3t [ 1

0.25+ | i

pdf

0.2} ]

0.1} 1

0.05} / .

Figure 1. The four-parameter mixed skew distribution with u=1, u =0, @ =0.5 and r = 10. Note the bimodality
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very large and very small values, which results in numerical instability. Recall that a powerful motivation for our
models is that they avoid numerical problems and so are ‘safe’ for routine use.

To avoid such numerical problems, we suggest computing the contribution to the log-likelihood from a study
as follows: We compute the pdf f(x) from (4) and (5) and then compute Inf(x), so that the full data likelihood is
evaluated as the sum of the In f(x). Writing

exp(—(x—w?/22) g

fx)=(1-p) oz +pa+b(T1 +T2), ©6)
where
Ty =exp(a®u?/2 —a(x — n)) @ ((x — n)/u — ua)
and

T, = exp(b’u?/2 + b(x — 1)) @ (—(x — n)/u — ub)

the difficulty becomes clear: if the arguments in the ®(:) functions in T; and T, are very large and negative then
®(-) takes very small values but the other terms in T; and T, may be very large. If this occurs then we obtain the
product of very small and large numbers and hence potential numerical instability. To overcome this problem we
suggest using the first term of the asymptotic expansion

_ exp(—x*/2)

D(x) 7|x|\/ﬂ

for x < — 8. This enables us to absorb the ®(-) components of T; and T, into the exponents in these terms and so
avoid this issue. This means that in practice we evaluate T; as given in the preceding texts if (x —#)/u —ua > — 8,
else we use the approximation

~exp(—(x—m)?/22)
' Var|(x—n)/u—ua|

Similarly, we evaluate T, as in the preceding texts if — (x — #)/u — ub > — 8, else we use the approximation

exp((—(x — 1) /2u?)
Ty = .
V2rx((x —n)/u+ ub)

3. Computational details

The model was fitted using a Fortran program that invoked a Numerical Algorithms Group function minimiser
(e.g. EO4UCF) and computed standard errors on fitted model parameters by numerical differentiation using
EO4XAF. Random restarts were used to ensure that the global likelihood maximum had been found, although this
did not seem to be necessary. The program ensured a robust determination of standard errors, by allowing
negative eigenvalues of the estimated covariance matrix to be identified, and further computations were then
performed to improve the estimated matrix. We also provide R code in the web supplementary for two of our
main proposals: the three parameter symmetric marginal model (section 2.1.2) and the four parameter skew
marginal model (section 2.2.2). These are our main proposals because they allow heavy tails and skew
distributions using as few extra parameters as possible.

3.1.  Meta-regression

Meta-regressions are sometimes used to model study level covariate effects. This type of model adds to the
computational complexity very slightly: to carry out a meta-regression it is only necessary to allow u to differ
from one study to the next and so define a separate y; for each study. We then regress x; on m covariates x;
eg. y,-:,zz0+z:<n:1ﬂkxk and can perform maximum likelihood estimation as before. As shown in the
succeeding texts, the pravastatin dataset shows an effect that fades with time, so a meta-regression with
annual slope § was carried out. The corresponding covariate, the year of publication, was centred so that uo
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is the effect size in the centre of the period spanned by the studies. Introducing regression parameters in this
way requires sufficient numbers of studies to identify them and meta-regression models may be poorly
identified in practice.

4. Results

4.1.  Monte Carlo studies

We performed two simulation studies to examine the use of the proposed methodology. In order to provide a
severe test of our methods, we explored the use of the full five parameter skew marginal model (section 2.2.1).
However, we recognise that reasonably large datasets are required to identify our models in practice, so datasets
with a sample size of 40 studies were simulated. We fitted three models to each simulated dataset: the standard
random effects model (two parameters), the full five parameter skew marginal model and finally a reduced form
of this full model, not discussed up to this point, where we constrain a=b (four parameters). This four parameter
model was fitted in order to explore the ease or difficulty of identifying the correct model. In our simulation study
we produce some datasets where the conventional random-effects model is true (a = b = ), some datasets where
this reduced a=b model is true and some where the full model is true. We use the notation x/y/z where x, y and z
are the number of two-, four- or five-parameter model fits, where the minimum Akaike information criterion
estimation (MAICE) of the three models is chosen as the best fitting model. The root mean square error (RMSE)
of the fitted means was computed, and also the median absolute error, which should be more robust, for both
the full and standard random effects models.

In the first simulation study we simulated data where the within-study variances are correctly assumed to be
fixed and known. We randomly generated these variances as twice a random chi-squared variable, rejecting this
if the variance was less than 0.072 or more than 4.8. This gives a variance with a mean a little below unity. This is
about four times what is often seen for log-odds ratios (Brockwell and Gordon, 2001), but it was convenient to
scale everything up like this. The effects were then simulated from model (4).

Table 1 shows the results of the first simulation study, using 1000 simulations for each of 16 different sets of
parameter values. The skewness and kurtosis quoted are from the true model, but with all studies having the
average information, so these are only a rough guide. It can be seen that when there is no skewness or kurtosis
(a=b =), the conventional two-parameter random effects model is nearly always fitted, and the error increases
only slightly on allowing the four- and five-parameter models to be fitted. However, when there are indeed
outliers in the dataset (finite a and b), the error incurred on using the normal random effect model can be
enormous. The ‘right’ model is often not fitted however, reflecting the fact that the models can be difficult to
identify but their use gives a huge improvement over just ignoring the possibility of outliers and using the
conventional random-effects model. This simulation study therefore provides clear evidence that our methodology
is useful in datasets where outliers are present.

Table 1. Monte Carlo simulation results where data are simulated as continuous with fixed and known within-
study variances.

T a b p y K Model RMSE RMSE (2) m. er. m. er. (2)
0.2 0 0 N/A 0 0 996/2/2 0.129 0.126 0.083 0.087
0.2 0.1 0.1 0.2 0 26.3 3/773/224 0.151 1.02 0.103 0.662
0.2 0.1 0.1 0.2 0 27.0 0/765/235 0.149 10.1 0.097 6.18
0.2 0.1 0.01 0.2 —44 414 0/709/291 0.141 7.12 0.097 4.6

0.5 Ry by N/A 0 0 996/1/3 0.163 0.165 0.112 0.110
0.5 0.1 0.1 0.2 0 26.1 7/741/252 0.208 1.04 0.131 0.633
0.5 0.01 0.01 0.2 0 27.0 0/809/191 0.190 9.99 0.125 5.93
0.5 0.1 0.01 0.2 —44 414 1/699/300 0.189 7.57 0.123 472
0.2 0 0 N/A 0 0 1000/0/0 0.129 0.129 0.085 0.085
0.2 0.1 0.1 0.1 0 53.7 76/589/375 0.141 0.732 0.093 0423
0.2 0.01 0.01 0.1 0 57.6 8/680/312 0.142 6.94 0.092 3.97
0.2 0.1 0.01 0.1 —6.2 85.7 20/620/360 0.140 499 0.094 3.08
0.5 0 0 N/A 0 0 993/4/3 0.161 0.161 0.104 0.105
0.5 0.1 0.1 0.1 0 54.0 69/574/357 0.176 0.748 0.112 0.436
0.5 0.01 0.01 0.1 0 57.0 23/677/300 0.175 6.89 0.119 414
0.5 0.1 0.01 0.1 —6.2 85.7 23/611/366 0.174 5.22 0.126 2.95

y and k are model skewness and kurtosis. The ‘model’ column shows numbers of simulations fitting the two-, four-
or five-parameter models. Finally, the root mean squared error and median absolute error are shown for the
MAICE fit (RMSE and m. er.) and the standard random effects two-parameter model fit (RMSE (2) and m. er. (2)).
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A second simulation was performed which takes into account the fact that the within-study variances are
estimated in practice. Here we simulated two by two tables as in comparative trials for a binary outcome. Here
for each study we first generated the log-odds ratio from the five-parameter skew model using model (4) with
the within-study variances set to zero. Next, the number of patients in each arm was generated as uniformly
distributed between 50 and 500, and the probability of success in the control arm was generated as uniform
between 0.1 and 0.3. The probability of an event in the treatment arm is then trivially calculable. Next, the two
by two tables were generated using the binomial distribution. Finally, the estimated log-odds ratios and their
within-study variances were computed and used in analysis.

Table 2 shows that using the long-tailed and skew models still gives very much better accuracy than using the
normal model when outliers are present. Similar overall conclusions are obtained in this second simulation study
which provides further evidence that our methodology is useful in datasets where outliers are present. One might
also ask what happens with smaller sample sizes. With sample size 10 we have found the improvement from using
our new models to be even greater but performing extensive simulation studies with small sample sizes is
challenging because then it is more difficult to identify the models.

4.2. Fits to real data

The models described in the preceding texts are illustrated by fits to four datasets: the effect of fluoride
toothpaste on dental caries, CDP-choline, pravastatin (Gehr et al., 2006) and paroxetine (Julious and Whitehead,
2011).

The fluoride toothpaste dataset consists of 70 studies of the effectiveness of fluoride toothpaste compared
with a placebo; the ‘prevented fraction’ is given as control minus treatment, so a negative value is beneficial.
The CDP-choline dataset comprises 10 trials of cytidinediphosphocholine analysis for cognitive and behavioural
disturbances associated with chronic cerebral disorders in the elderly, and a standardised difference between
mean measurements in the treatment and control groups was used; positive values show benefit. The pravastatin
dataset consists of 64 studies of the effect of pravastatin for lowering LDL-cholesterol. The value is the percentage
reduction relative to a control. The paroxetine dataset consists of 23 studies of measurements on the HAMD
(Hamilton depression rating scale) for paroxetine versus placebo; a positive difference is beneficial.

Fits using t-distributed random-effects and skew-t random-effects are also given in the tables; these models
use the more conventional hierarchical modelling approach that we otherwise avoid here and assume that the
u; follows these distributions. The use of t-distributed random effects is described in Baker and Jackson (2008).
The skew t-distribution is described in Fernandez and Steel (1998), and its use in meta-analysis as the random-
effects distribution is described by Lee and Thompson (2008). The ‘sy" models, where sy is as defined in (3), are also
fitted.

Although we present AIC statistics for all models in order to determine which models best describe the data, for
brevity we only provide parameter estimates from the models that are of particular interest in each example.

Table 2. Monte Carlo simulation results where data are simulated using binomial distributions.

T a b p y K Model RMSE RMSE (2) m. er. m. er. (2)
0.2 Ry Ry N/A 0 0 997/0/3 0.049 0.048 0.031 0.033
0.2 0.1 0.1 0.2 —4.0 21.0 2/767/231 0.061 0.380 0.041 0.220
0.2 0.1 0.1 0.2 0. 21.0 0/773/227 0.058 0.465 0.039 0.124
0.2 0.1 0.01 0.2 —-3.9 325 1/508/491 0.060 0.747 0.041 0.498
0.5 Ry Ry N/A 0 0 985/6/9 0.107 0.088 0.056 0.060
0.5 0.1 0.1 0.2 -4 209 0/769/231 0.125 0.372 0.079 0.219
0.5 0.01 0.01 0.2 0 21.0 0/773/227 0.111 0.513 0.074 0.315
0.5 0.1 0.01 0.2 -39 325 1/613/386 0.114 0.780 0.071 0.593
0.2 b i N/A 0 0 994/2/4 0.050 0.049 0.033 0.036
0.2 0.1 0.1 0.1 —-.30 9.0 1/771/228 0.086 0.690 0.056 0.468
0.2 0.01 0.01 0.1 0 9.0 9.780/211 0.136 0.926 0.053 0.654
0.2 0.1 0.01 0.1 —2.8 14.8 9/397/594 0.245 1.530 0.051 1.380
0.5 R R N/A 0 0 988/4/8 0.094 0.089 0.061 0.056
0.5 0.1 0.1 0.1 —-.29 9.0 61/745/194 0.502 0.890 0.110 0.625
0.5 0.01 0.01 0.1 0 9.0 61/745/194 0.502 0.890 0.110 0.625
0.5 0.1 0.01 0.1 —2.8 14.8 116/580/304 0.680 1.569 0.121 1.430

y and k are model skewness and kurtosis, the ‘model’ column shows numbers of simulations fitting the two, four
or five-parameter models. Finally, the root mean squared error and median absolute error are shown for the
MAICE fit (RMSE and m. err.) and the standard random-effects two-parameter model fit (RMSE (2) and med.
err. (2)).
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4.3.  Example one: fluoride toothpaste

Table 3 shows the models fitted to the fluoride toothpaste dataset, with numbers of parameters, (minus)
log-likelihood and Akaike information criterion (AIC). It can be seen that the new models perform better than
the t-distribution for the random effect used by Baker and Jackson (2008). Further, the models with fewer
parameters, where the mixing probability is not taken as an extra parameter, perform best. The skew model of this
type gives a dramatic reduction in AIC, and this is the best model by the minimum-AIC criterion (the MAICE
model). It outperforms the skew-t model fit.

Table 4 shows parameter values with standard errors for some of the fitted models. We see that 7 < 1 so the
fitted distribution is skew to the left, i.e. in this case, where the effect is a reduction of caries, in the direction of
increasing fluoride effect. This confirms the results of Lee and Thompson (2007) who used the skewed
t-distribution (Fernandez and Steel, 1998) in their Bayesian analysis. The mean effect size decreases by nearly
10% on adopting the skew model, a slightly higher reduction than from the symmetric long-tailed model. This
shows that modelling the random effect better can have a significant impact on effect estimation.

4.4. Example two: CDP-choline

Tables 5 and 6 show the corresponding results for the CDP-choline dataset. Again, the four-parameter skew
marginal model gives the best fit, but the three parameter symmetric marginal model performs almost as well.
Both these models reduce the estimated effect size drastically, roughly halving it. The resulting model fits in Table
6 contrast considerably to those from the previous example: here the between-study variation comes purely from
the mixture distribution because 72 = 0. The residuals are skew purely to the right, again in the direction of
increasing effect size.

Here it would probably be better to work with the two exponential tail means 1/a and 1/b rather than with « and
r, and this would avoid the failure of the standard error computation. This bears out our earlier point that the 1/a, 1/b
parameterisation is more robust, whereas the r, « parameterisation is easier to relate to. In Table 6 we show that
both the estimate of 1/a=ar and its standard error are more easily computed than those of a and r separately.

4.5. Example three: pravastatin

For this example there is evidence of a time trend, so we include year of study as a covariate in meta-regression
models as explained in section 4. Tables 7 and 8 show comparable results for prevastatin, where ‘+ slope’ indicates

Table 3. Models fitted to the fluoride toothpaste dataset.

Model Params. —{ AIC
Fixed effect 1 20.823 43.646
Random effects 2 1.233 6.466
t-distributed random effects 3 —13.071 —20.143
Three-parameter symmetric 3 —17.148 —28.297
Three-parameter symmetric s, 3-12.06 —18.12

Four-parameter symmetric 4 —14.636 —21.271
Skew t-random effects 4 —15.181 —23.181
Four-parameter skew s, 4 —16.943 —25.887
*Four-parameter skew 4 —21.914 —35.828
Five-parameter skew 5 —-17.199 —24.399

The column — ¢ shows minus the log-likelihood function. The optimum (MAICE) model is marked with an asterisk.

Table 4. Parameter values for models fitted to the fluoride toothpaste dataset, with standard errors.

Model Parameter Estimate SE

Random effect u —0.300 0.0193
T 0.119 0.0217

Three-parameter symmetric u —0.282 0.0166
T 0911 0.0161
v 0.932 0.275

Four-parameter skew u —0.273 0.0178

(MAICE) T 0.0809 0.0177
o 0.229 0.132
r 0.437 0.231

The standard random effects model and the MAICE model are shown.
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Table 5. Models fitted to the CDP dataset.

Model Params. - AlC
Fixed effect 1 9.759 21.519
Random effects 2 8.199 20.397
t-distributed random effects 3 3.943 13.886
Three-parameter symmetric 3 2.847 11.694
Three-parameter symmetric s 3 3.954 13.908
Four-parameter symmetric 4 3.007 14.014
Skew t-random-effects 4 2.906 13.811
Four-parameter skew sg 4 2.307 12614
*four-parameter skew 4 1.403 10.806
Five-parameter skew 5 1.929 13.858

The column — ¢ shows minus the log-likelihood function. The optimum (MAICE) model is marked with an asterisk.

Table 6. Parameter values for models fitted to the CDP dataset, with standard errors.
Model Parameter Estimate SE
Random effects u 0.389 0.156
T 0.383 0.174
Three-parameter symmetric u 0.194 0.068
T 0 0
v 1.221 0.568
Four-parameter skew u 0.192 0.068
(MAICE) T 0.0 0.0
a 0.707x 10> -
r 150444 -
ar=1/a 1.064 0.505
The standard random effects model and the MAICE model are shown.
Table 7. Models fitted to the pravastatin dataset.
Model Params. - AlC
Fixed effect 1 187262.496 374526.993
Fixed effect + slope 2 163401.645 326807.290
Random effects 2 181.451 366.902
*Random effects + slope 3 170.610 347.220
t-distributed random-effects+slope 4 170.609 349.217
Three-parameter symmetric + slope 4 170.610 349.220
Three-parameter symmetric + slope s, 4 170.610 349.220
Four-parameter symmetric + slope 5 170.610 351.220
Skew t random effects + slope 5 169.962 349.925
Four-parameter skew sq + slope 4 170.610 351.220
Four-parameter skew + slope 5 168.880 347.761
Five-parameter skew + slope 6 170.610 353.220
The column — ¢ shows minus the log-likelihood function. The optimum (MAICE) model is marked with an asterisk.
Table 8. Parameter values for models fitted to the pravastatin dataset, with standard errors.
Model Parameter Estimate SE
Random effects + slope u 29.506 0.435
(MAICE) T 3475 0.307
B —0.643 0.127
Four-parameter skew + slope u 29.726 0.450
T 3.519 0.0915
a 0.361 0.011
r 0.819 0.0330
B —0.647 0.0235

The standard random effects model and the model with the next lowest AIC are shown.
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that the covariate effect of year is included in the model. Here there is a marked falloff in effect with time, at an
annual rate given by the parameter f. This time, the preferred model is simply the standard meta-regression
model with a normally distributed random effect. Some skew models perform nearly as well (they fit better but
the AIC is higher). There is slight evidence of skewness to the left, but a <z, showing that the long-tailed
behaviour is relatively unimportant. The skew model shifts the estimated effect x up only slightly, by roughly half
its standard error. For this example, and in contrast to the previous two, the fitting of heavy-tailed and skew
models satisfies us that the usual Gaussian random effect model is adequate.

4.6. Example four: paroxetine

Finally, Tables 9 and 10 show results for the paroxetine dataset from Julious and Whitehead (2011). Again, the four
parameter skew model fits best. The skewness of the distribution of the study estimates, which tends to be larger
for smaller studies, has caused the random effects effect estimate to be larger than the fixed effects estimate,
because the larger studies now less relative weight in a random effects meta-analysis. However, allowing for
the skewness in the data has reduced the mean effect estimate even below the fixed effects estimate. We
conclude with this example because it serves to emphasise that the careful modelling of the between-study
heterogeneity can have considerable implications for the resulting statistical inference. As mentioned earlier, here
again the 1/a,1/b parameterisation works, whereas because the left exponential mean 1/b is zero, the r,a
parameterisation gives an infinity.

4.7. Identifying outliers

This is sometimes desired as a sensitivity analysis, even when using long-tailed or skew random effects
distributions. The approach that we suggest here is to fit a flexible distribution to the data, such as one of the
marginal distributions we propose here, and then to compute a p-value for each study to have come from its fitted
distribution. It is better if possible to omit each study in turn from the dataset and to compute the p-values based
on the models fitted to all other studies. This idea differs from the approach of Beath (2014) who used the mixture
distribution to estimate the probability that studies come from the long-tailed component of the mixture, and
thus are outliers. Beath’s approach has the difficulty that the meaning of ‘long-tailed’ depends on the dataset,
so that a study deemed to be an outlier might not differ drastically from other observations. In contrast, the
‘p-value approach’ (for want of a better name) flags up outliers that are unlikely to come from the same
distribution of effects as the others.

However, a difficulty when using our proposal is that one then has to cope with the multiple-testing problem to
avoid spurious identification of outliers. We recommend applying a simple and useful multiple testing criterion,

Table 9. Models fitted to the paroxetine dataset.

Model Parameters. - AlC
Fixed effect 1 100.830 203.66
Random effects 2 48.566 101.151
t-distributed random-effects 3 48.575 103.149
Three-parameter symmetric 3 48.576 103.151
Three-parameter symmetric sq 3 48.576 103.151
Four-parameter symmetric 4 48.576 105.151
Skew t-random-effects 4 46.808 101.615
Four-parameter skew s, 4 46.015 100.030
*Four-parameter skew 4 44955 97.909
four-parameter skew 5 45.145 100.29

The column — ¢ shows minus the log-likelihood function. The optimum (MAICE) model is marked with an asterisk.

Table 10. Parameter values for models fitted to the paroxetine dataset, with standard errors.

Model Parameter estimate s.e.
Fixed effect u 2917 0.131
Random effects u 3.360 0.508
T 1.805 0.453
Four-parameter skew u 2.223 0.223
(MAICE) T 0.457 0.243
1/a 1.370 0.306
1/b 0 0
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false discovery rate (Benjamini and Hochberg, 1995). Here the p-values are ordered from smallest to largest, and if
the kth smallest is the largest of the independent p-values for which py < ka/n, where a is the test size, we take
the k studies with the lowest p-values as outliers. One can use this criterion as a rough guide, bearing in mind the
caveat that the p-values are not quite independent.

We exemplify this methodology using the paroxetine dataset, using the four parameter skew marginal model
(section 2.2.2) as the flexible distribution required. Table 11 shows the two-sided p-values for each study,
computed by fitting the model to all other studies, i.e. a ‘leave-one-out method'. Julious and Whitehead (2011)
note that studies 4 and 13 look like outliers, but their methodology does not in the end identify them as such.
A similar conclusion follows from Table 11. Given 23 studies, it is not surprising that two of them (4 and 13) have
p-values of around 2%. Hence, we also conclude that the estimates from studies 4 and 13 are unusual but not
outlying.

We also applied this idea to the fluoride data using the four parameter skew marginal model (results not
shown) This produced one study (number 8) with a very small p-value of 0.0042; this study shows a huge
reduction in caries. There was also another outlier (number 57) with p=0.0096, this time with very low reduction
in caries. These would be candidates for deletion or for applying Gumedze and Jackson’s method (2011). However,
the probability that the lowest of n independent p-values is below p is 1 — (1 — p)" =np, so we would require the
most extreme p-value to be below 0.05/70=0.00071, which it is not. Applying our recommended multiple-testing
method, these two studies would not be regarded as outliers under the four parameter skew marginal model.

It is interesting that Gumedze and Jackson (2011) examined this dataset and identified three outliers, which the
present approach would not have performed. In part this is because the skewness of effect in the fitted model
persists even when an apparent outlier is removed from the dataset. However, this is also in part because of
the fact that Gumedze and Jackson (2011) look for outliers under the usual random-effects model. Their method
gives —0.28 for the treatment effect which is not far from the results in table 4, so the inferences for the average
effect are highly robust to the distributional assumptions made.

5. Discussion

Some new marginal distributions for meta-analysis have been developed, and their use has been exemplified
using four datasets. For those who do not wish to identify specific outliers, but instead wish to model and
downweight them by modelling the random effect distribution adequately, this methodology offers an advance
on what has gone before. The new distributions are mathematically tractable, so that convolving the within and
between-study variation does not require numerical integration. This is needed with, for example, the
t-distribution and its skewed version. Hence, the computations required here are much simpler; the only special
function that is required is the standard normal cumulative distribution function and this is very widely available.

Table 11. Effect sizes, standard errors and p-values for the paroxetine dataset.

Study number Effect SE p-value
1 3.00 1.70 0.7331
2 1.90 2.23 0.4062
3 1.63 117 0.3481
4 7.18 0.55 0.0270
5 1.12 0.96 0.1730
6 3.50 1.13 0.8617
7 5.50 1.06 0.2757
8 5.50 0.92 0.2264
9 4.70 0.85 0.3387
10 0.82 0.88 0.0886
11 4,09 0.89 0.4973
12 5.04 0.93 0.3109
13 8.34 0.93 0.0206
14 5.17 0.92 0.2826
15 2.30 0.42 0.8661
16 1.50 0.92 0.2939
17 1.80 0.63 0.4206
18 333 0.82 0.7015
19 1.70 0.42 0.3005
20 2.60 0.42 0.8206
21 1.30 0.40 0.0318
22 2.40 0.39 0.9823
23 293 0.38 0.4191
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Here the computation was performed using Fortran, but we also provide R code in the Supporting Information to
implement two of our proposed models.

Computing the cumulative distribution functions is also straightforward; this is needed for goodness of fit plots
and tests (Baker and Jackson, 2008). Generating random numbers is also easy; this could be used for parametric
bootstrap computations used to obtain standard errors. We provide full details of these further and potentially
useful mathematical details in the appendices.

For those who wish to identify specific studies as outliers, and for example model them using Gumedze and
Jackson’s method (2011) or simply remove them, these new marginal distributions are also useful. One can fit
the model to all studies except the one of interest, and then compute a p-value, i.e.the probability of obtaining
such as extreme observation or one more so, given the model fitted to the other observations. Here again the
tractable marginal distributions offer an advantage because the distribution function is easy to compute.

Further work in this area might explore the use of further variants of the new marginal models presented. A
useful rule of thumb might be to insist upon having a minimum number of studies for every parameter included
in the model presented here, and further work could explore what this minimum number might be. The use of the
proposed models in Bayesian statistics could also be explored, where we can anticipate that introducing
informative priors would be another way to help identify them.

Appendix A:

This appendix describes further properties of the distribution from the marginal model in section 2.1, to facilitate
its use in both further methodological work and application. These properties are most easily derived directly from
the mixture distribution in equation (1). The variance is

var(Y) = (1 — p)u* +p(v* +v?) = v* + pv?,

For the three parameter symmetric marginal model (section 2.1.2), we have p = u*/(u? +Vv?) so that the variance
becomes

2(,2 2 2
var(y) = LW 2V

w4vz
so that as v — oo the variance doubles from u? to 2u?.
The excess kurtosis is
3p(1 —p)v*
K=——"">
(u? +pv2)’

For the three-parameter symmetric marginal model (section 2.1.2), we have p=u?/(u”+V?) so that the excess
kurtosis becomes

B 3v0

K — 72 .
u?(u? + 2v?)

For the three-parameter distribution, as v— o0, p— 0 and x — oo.
The cumulative distribution function is

F) = (1 =)@ ((y = )/u) +p@((y =)/ Ve +2).

Quantiles could be found by using F(y) and Newton-Raphson iteration starting from u. The generation of
random numbers is also straightforward. To simulate one random number, begin by generating a standard normal
random variate. Then with probability p multiply it by v/u? + v2 and with probability 7-p multiply it by u. Finally,
add the mean u.

Appendix B:

This appendix provides an outline of the derivation and moment generating function of the lagged-normal
distribution. This is given to make the paper self-contained, and because surprisingly little has been written about
this distribution. We will derive the distribution of &; — &5 + &3, Where &, ~Exp(1/a), &;~Exp(1/b) and &5~ N(0, u?).
We denote the resulting probability density function as fi(x), so that the probability density function of R,
is filx — ).
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Writing the exponential pdfs as f;(x) = a exp(—ax) for x>0, else zero, and f,(x) = b exp(—bx) if x>0, else zero, the
pdf of their difference, &, — &, is the convolution

00 = [ Fi(x+y)faly)dy )

The convolution in (7) is a general expression for the pdf of the difference between two random variables. This
can be obtained after a change of variables in the integration in the usual convolution for the pdf of the sum of two
random variables; replacing the sign of the second random variable to obtain the difference means that we change
the sign of argument in the corresponding density function. The functions f;(x) and f,(x) are zero for negative x, so
that the presence of f;(x+y) in (7) means that the lower limit in the integration depends on the sign of x. We have

F) = [ F1(x+ y)faly)dy

for x>0 and

f(x) = [ Fi(x +y)f2(y)dy
for x < 0. Then for x>0,

ab exp(—ax)

f(x) = abf:oexp(faxf (a+b)y)dy = a+b

For x < 0, note that the distribution is continuous at x=0 and is a mixture of exponentials; thus defining /, as 1
for x>0 (i.e. it is the Heaviside step function), else zero, and /_ =1 —/,, we have that

f(x) = 22 1. exp(-ax) + I_exp(bx)}.

which is a mixture distribution. The pdf of the sum of the three random variates, ¢; — ¢, + &3 is now found by
convolving:

ab
(a+ b)V2ru?

where this integration can can be performed by completing the square in the exponents, to yield (5).

f(x) = {/: exp{—(x —2)% /2% - az}dz +ff°o exp{—(x —2)%/20% + bz}dz}

The moment generating function M(t) of the lagged-normal distribution can also be found as/_eo f(y)exp(ty)dy
. This integral is the Laplace transform of the convolution of three pdfs, i.e. the product of the three transforms, or

w0 _ab exp(t’u?/2)
/,oo f(y)exp(ty)dy = ICEDICES R

This yields the mgf for moments about the mean as

_ab exp(t?u?/2 — (1/a — 1/b)t)

M() CENICET)

which now on expanding in a power series in t yields zero mean and the higher moments about the mean; all
moments exist. The moment generating function of the mixed distribution is (1 — p) exp(u*t*/2) + pM(t). Moments
for the random effect can be found by setting u”>=7°.

Appendix C:

This appendix describes further properties of the five parameter skew distribution introduced in section 2.2.1. The
moments are relatively straightforward using the fact that R, — u is the sum of three random variables, N(0, 4?),
Exp(a) — 1/a and — (Exp(b) — 1/b), each of which has zero mean, and a little algebra yields

var(X) =u’ +p(a? +b7?),
with skewness
~ 2p(a?-b7)
{@+pla2+b2))*
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In terms of the parameters r and « introduced in the main text,

C2pa 3 (r—r ) (rr+1+17?)
{u? 4 pa2(r2 4 r-2)}*?
The (excess) kurtosis is
3p{2(a*4 +b ) +(1-p)(a?+ b’z)z}
{2 +pa2tb?)

K =

)

or

3pa {2t 4+ (1= p) (2 )
o Wrpa )

For the four-parameter distribution, as p — 0, if a— 0 the skewness tends to infinity, and as a or b tends to zero,
the kurtosis tends to infinity. Thus, these distributions can model very long-tailed and skew data.

The cumulative probability distribution function corresponding to f(y) can be obtained by integrating this
function to yield

1

F(y) = ®(y/u) S

{aexp(b*u®/2 + by) @ (—y/u — ub) — bexp(a*u®/2 — ay) ®(y/u — ua)}.

This means that the cumulative distribution function G(x) of the five-parameter skew marginal distribution is

Gx) = (1 =p)®((x — ) /u) +pF(x = 7).

Quantiles can be found by Newton-Raphson iteration from x, using G(x).

The distribution will be bimodal if one of g,b is small and the other large, giving a very skew distribution,
otherwise it will be unimodal. There is no simple expression for the mode.

The fact that a random variable from the lagged-normal distribution is the sum of three independent random
variables can be exploited. Rather than using a method based on the distribution function, random numbers can
be generated more quickly and easily by generating a standard normal r.v. X3 and two standard exponential r.vs X;
and X,. Then the random variable X from the lagged-normal distribution with mean u is

X:UX3+X1/G*X2/b*1/G+1/b+,u.

To generate a random number from the four- or five-parameter mixed distribution: with probability 7-p
generate a random number from a normal distribution with mean x and variance u?, and with probability p
generate X as described.
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